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Abstract—The increasing algorithmic complexity and dataset sizes necessitate the use of networked machines for many
graph-parallel algorithms, which also makes fault tolerance a must due to the increasing scale of machines. Unfortunately, existing
large-scale graph-parallel systems usually adopt a distributed checkpoint mechanism for fault tolerance, which incurs not only notable
performance overhead but also lengthy recovery time. This paper observes that the vertex replicas created for distributed graph
computation can be naturally extended for fast in-memory recovery of graph states. This paper describes Imitator, a new fault tolerance
mechanism, which supports cheap maintenance of vertex states by replicating them to their replicas during normal message
exchanges, and provides fast in-memory reconstruction of failed vertices from replicas in other machines. Imitator has been
implemented on Cyclops with edge-cut and PowerLyra with vertex-cut. Evaluation on a 50-node EC-2 like cluster shows that Imitator
incurs an average of 1.37 and 2.32 percent performance overhead (ranging from —0.6 to 3.7 percent) for Cyclops and PowerLyra
respectively, and can recover from failures of more than one million of vertices with less than 3.4 seconds.

Index Terms—Graph-parallel system, fault-tolerance, replication

1 INTRODUCTION

RAPH-PARALLEL abstractions have been widely used
to express many machine learning and data mining
(MLDM) algorithms, such as topic modeling, recommenda-
tion, medical diagnosis and natural language processing [1],
[2], [3]. With the algorithm complexity and dataset sizes con-
tinuously increasing, it is now a common practice to run
many MLDM algorithms on a cluster of machines or even in
the cloud [4]. For example, Google has used hundreds to thou-
sands of machines to run some MLDM algorithms [5], [6], [7].
Many graph algorithms can be programmed by follow-
ing the “think as a vertex” philosophy [5], by coding graph
computation as a vertex-centric program that processes ver-
tices in parallel and communicates along edges. Typically,
many MLDM algorithms are essentially iterative computa-
tion that iteratively refines input data until a convergence
condition is reached. Such iterative and convergence-
oriented computation has driven the development of many
graph-parallel systems, including Pregel [5] and its open-
source clones [8], [9], GraphLab [10], [11], GraphX [12], and
PowerLyra [13].
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Running graph-parallel algorithms on a cluster of
machines essentially faces a fundamental problem in dis-
tributed systems: fault tolerance. With the increase of prob-
lem sizes (and thus execution time) and machine scales,
the failure probability of machines would increase as well.
Currently, most graph-parallel systems use a checkpoint-
based approach. During computation, the runtime system
will periodically save the runtime states into a checkpoint on
some reliable global storage, e.g., a distributed file system.
When some machines crash, the runtime system will reload
the previous computational states from the last checkpoint
and then restart the computation. Example approaches
include synchronous checkpoint (e.g., Pregel and Power-
Graph) and asynchronous checkpoint using the Chandy-
Lamport algorithm [14] (e.g., Distributed GraphLab [10]).
However, as the processes of checkpoint and recovery
require saving and reloading from slow persistent storage,
such approaches incur notable performance overhead during
normal execution as well as lengthy recovery time from a fail-
ure. Consequently, though most existing systems have been
designed with fault tolerance support, they are disabled
during the production run by default [12].

This paper observes that many distributed graph-paral-
lel systems require creating replicas of vertices to provide
local access semantics such that graph computation can be
programmed as accessing local memory [10], [11], [13],
[15], [16]. Such replicas can be easily extended to ensure
that there are always at least K+1 replicas (including
master) for a vertex across machines, in order to tolerate K
machine failures.

Based on this observation, Imitator proposes a new
approach that leverages existing vertex replication to toler-
ate machine failures, by extending existing graph-parallel
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systems in three ways. First, Imitator extends existing graph
loading phase with fault tolerance support, by explicitly cre-
ating additional replicas for vertices without replication.
Second, Imitator maintains the freshness of replicas by syn-
chronizing the full states of a master vertex to its replicas
through extending normal messages. Third, Imitator exte-
nds the graph-computation engine with fast detection of
machine failures through monitoring vertex states and
seamlessly recovers the crashed tasks from replicas on mul-
tiple machines in a parallel way, inspired by the RAMCloud
approach [17].

Imitator uses a randomized approach to locating replicas
for fault tolerance in a distributed and scalable fashion.
To balance load, a master vertex selects several candidates
at random and then chooses among them using more
detailed information, which provides near-optimal results
with a small cost. Imitator currently supports two failure
recovery approaches. The first approach, which is called
Rebirth based recovery, recovers graph states on a new
backup machine when a hot-standby machine for fault tol-
erance is available. The second one, the Migration-based
recovery, redistributes graph states of the failed machines
to multiple surviving machines.

Further, since different graph partitioning strategies (i.e.,
edge-cut [18], [19], [20], [21], [22] or vertex-cut [11], [12],
[13], [23], [24], [25]) will treat edges in different ways, Imita-
tor adopts differentiated approaches to tolerating the loss of
edges. For graph-parallel systems using edge-cut, all edges
are extended with full states of the masters and duplicated
and synchronized to replicas upon updates. For systems
using vertex-cut, all edges are partitioned and saved to per-
sistent storage as multiple files at graph loading; the
updates to the edges will be logged into persistent storage
by overlapping with graph processing.

We have implemented Imitator on Cyclops [26] and
PowerLyra [13], which use edge-cut and vertex-cut accord-
ingly. To demonstrate the effectiveness and efficiency of
Imitator, we have conducted a set of experiments using four
popular MLDM algorithms on a 50-node EC2-like cluster
(200 CPU cores in total). Experiments show that Imitator can
recover from one machine failure in around 2 seconds.
Performance evaluation shows that Imitator incurs an average
of 1.96 percent (ranging from —0.6 to 3.7 percent) performance
overhead for all evaluated algorithms and datasets. The mem-
ory overhead from additional replicas is also modest.

This paper makes the following contributions:

e A comprehensive analysis of existing checkpoint-
based fault tolerance mechanisms for graph-parallel
computation model (Section 2).

e A new replication-based fault tolerance approach for
graph computation using either edge-cut or vertex-
cut (Sections 3, 4, and 5).

e A detailed evaluation that demonstrates the effec-
tiveness and efficiency of Imitator (Section 6).

2 BACKGROUND AND MOTIVATION

This section first briefly introduces checkpoint-based fault
tolerance in typical graph-parallel systems. Then, it exam-
ines performance issues during both normal execution and
recovery.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO.7, JULY 2018

graph
loading

£E
N1 |:|'>

in

P

recovery Il global barrier

[
metadata B . = =N data
snapshot n—1 nsnapshm@ﬁ‘s

Fig. 1. The sample of checkpoint-based fault tolerance.

B checkpoint

[ recovery:meta

l recovery:data

2.1 Graph-Parallel Execution

Many existing graph-parallel systems usually provide a
shared memory abstraction’ to a graph program. To achieve
this, the input graph is first partitioned into multiple
machines using edge-cut or vertex-cut, and then replicated
vertices (vertex 1, 2, 3 and 6 under edge-cut, and vertex 2
and 3 under vertex-cut in Fig. 1) are created in machines
where there are edges connecting to the original master
vertex. To enable such an abstraction, a master vertex syn-
chronizes its states to its replicas either synchronously or
asynchronously through messages.

Graph partitioning plays a vital role in reducing communi-
cation cost, and highly impacts the design of all components
of graph-parallel systems from computation engine to fault
tolerance. Broadly, the algorithms are categorized into two
groups: edge-cut and vertex-cut. The p-way edge-cut [18],
[19], [20], [21], [22] evenly assigns vertices of a graph to p
machines and replicates edges spanning machines to ensure
that the master of each vertex locally connects with all of its
edges. The vertices will also be replicated for edges spanning
machines. In contrast, the p-way vertex-cut [11], [12], [13],
[23], [24], [25] evenly assigns edges to p machines and repli-
cates vertices for all edges. The main difference between edge-
cut and vertex-cut is whether to replicate edges or not. Fig. 1
illustrates the edge-cut and vertex-cut on the sample graph.

The scheduling of computation on vertices can be syn-
chronous (SYNC) or asynchronous (ASYNC). Fig. 1 illus-
trates the execution flow of synchronous mode on a sample
graph, which is divided into two nodes (i.e., machines). Ver-
tices are evenly assigned to two nodes with ingoing edges,
and replicas are created for edges spanning nodes. In the
synchronous mode, all vertices are iteratively executed in a
fixed order within each iteration. A global barrier between
consecutive iterations ensures that all vertex updates in the
current iteration are simultaneously visible in the next itera-
tion for all nodes through batched messages. The computa-
tion on vertex in the asynchronous mode is scheduled on
the fly, and uses the new states of neighboring vertices
immediately without a global barrier.

Some graph-parallel systems such as PowerGraph [11],
PowerLyra [13], PowerSwitch [27], and GRACE [28], pro-
vide both execution modes, but usually use synchronous
execution as the default mode. Hence, this paper only con-
siders the synchronous mode. How to extend Imitator to
asynchronous execution will be our future work.

1. Note that this is a restricted form of shared memory such that a
vertex can only access its neighbors using shared memory abstraction.
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Fig. 2. (a) The performance cost of once checkpointing in Imitator-CKPT for different algorithms and datasets. (b) The breakdown of overall perfor-
mance overhead of checkpoint-based fault tolerance for PageRank with LJournal [29] using different configuration. (c) The breakdown of recovery

time for PageRank with LJournal using different configuration.

2.2 Checkpoint-Based Fault Tolerance

Existing graph-parallel systems implement fault tolerance
through distributed checkpointing for both synchronous and
asynchronous modes. After loading a graph, each node
stores an immutable graph topology of its own graph part
to a metadata snapshot on the persistent storage. Such infor-
mation includes adjacent edges and the location of replicas.
During execution, each node periodically logs updated data
of its own part to the snapshots on the persistent storage,
such as new values and states of vertices and edges. For the
synchronous mode, all nodes will simultaneously do log-
ging for all vertices in the global barrier to generate a con-
sistent snapshot. While for asynchronous mode, all nodes
initiate logging at fixed intervals, and perform a consistent
asynchronous snapshot based on the Chandy-Lamport
algorithm [14]. The checkpoint frequency can be selected
based on the mean time between failures model [30] to bal-
ance the checkpoint cost against the expected recovery
cost? Upon detecting any machine failures, the graph
states will be recovered from the last completed check-
point. During recovery, all nodes first reload the graph
topology from the metadata snapshot in parallel and then
update states of vertices and edges through data snap-
shots. Finally, since the last checkpoint may be earlier than
the latest state before the failure, all nodes should also
replay all missing operations before resuming execution.
Fig. 1 illustrates an example of checkpoint-based fault tol-
erance for synchronous mode.

2.3 Issues of Checkpoint-Based Approach

Though many graph-parallel systems provide checkpoint-
based fault tolerance support, it is disabled by default due
to notable overhead during normal execution and lengthy
recovery time [12]. To estimate checkpoint and recovery
cost, we evaluate the overhead of checkpoint (Imitator-
CKPT) based on Apache Hama [9], [31],° an open-source
clone of Pregel. Note that Imitator-CKPT is several times
faster than Hama’s default checkpoint mechanism (up to
6.5X for Wiki dataset [32]), as it can periodically launch
checkpoint to create an incremental snapshot and avoid stor-
ing messages in snapshots due to vertex replication. Further,

2. The mean time between failures (MTBF) of a 50-node cluster is
about 7.3 days [10]. According to Youngs model [30], the optimal check-
pointing interval is more than 2 hours, which far exceeds the execution
time of graph processing. In contrast, the overhead of pessimistic
checkpointing and the lengthy recovery time may exceed the cost of
just rerunning the bare execution when machine failures.

3. We extended and refined Hama'’s checkpoint and recovery mech-
anism as it currently does not support completed recovery.

Imitator-CKPT only records the necessary states according
to the behavior of graph algorithms. For example, Imitator-
CKPT skips edge data for PageRank. Hence, Imitator-CKPT
can be viewed as a near-optimal case of prior checkpoint-
based approaches.

In the rest of this section, we will use Imitator-CKPT to
illustrate the issues with checkpoint-based fault tolerance
on a 50-node EC2-like cluster. The detailed experimental
setup can be found in Section 6.1.

2.3.1 Checkpointing

Checkpointing requires time-consuming I/O operations to
create snapshots of updated data on a globally visible per-
sistent storage (we use HDFS [33] here). Fig. 2a illustrates
the performance cost of one checkpoint for different algo-
rithms and datasets. The average runtime of one iteration
without checkpointing is also provided as a reference. The
relative performance overhead of checkpointing for LJour-
nal [29] and Wiki [32] is relatively small, since HDFS is
more friendly to writing large data. Even for the best case
(i.e., Wiki), creating one checkpoint still incurs more than 55
percent overhead.

Fig. 2b illustrates an overall performance comparison
between turning on and off checkpointing on Imitator-CKPT
for PageRank with the LJournal by 20 iterations. We configure
Imitator-CKPT using HDFS to store snapshots and using dif-
ferent intervals from 1 to 4 iterations. Checkpointing snap-
shots to HDFS is not the only cause of overhead. The
imbalance of global barrier also contributes a notable fraction
of performance overhead, since the checkpoint operation
must execute in the global barrier. In addition, though
decreasing the frequency of intervals can reduce overhead, it
may result in snapshots much earlier than the latest iteration
completed before the failure, and increase the recovery time
due to replaying a large amount of missing computation. The
overall performance overhead for intervals 1, 2, and 4 itera-
tion(s) reaches 89, 51 and 26 percent accordingly. Hence, such
a significant overhead becomes the main reason to the limited
usage of checkpoint-based fault tolerance for graph-parallel
systems in practice.

2.3.2 Recovery

Though most fault-tolerance mechanisms focus on minimiz-
ing overhead in logging, the time for recovery is also an
important metric of fault tolerance. The poor performance
and scalability in recovery is another issue of checkpoint-
based fault tolerance. In checkpoint-based recovery, all
nodes, even the surviving nodes, need to reload states in the
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Fig. 3. (a) The percent of vertices without replicas, including normal and
selfish vertex. (b) The percent of extra replicas for fault tolerance.

most recent snapshot from the persistent storage or even
through network, since all nodes must rollback to a consis-
tent state. Further, because the states of crashed node are
stored on persistent storage, surviving nodes can not help
to reload the states on the new node (newbie), which substi-
tutes the crashed node. Consequently, the time for recovery
is mainly limited by the I/O performance of each node.
Even worse, typical optimizations in checkpointing, such as
incremental snapshot and lower frequency of intervals, may
further increase the recovery time.

Fig. 2c illustrates a comparison between the average run-
time of one iteration and recovery on Imitator-CKPT for
PageRank with the LJournal. The recovery consists of three
steps, including (reload)ing (meta)data, (reconstruct)ing in-
memory graph states, and (replay)ing the missing computa-
tion.* The reloading from snapshots on persistent storage
incurs the major overhead, since all nodes are busy reload-
ing their own states from persistent storage, not just the
states of crashed nodes.

In addition, a standby node for recovery may not always
be available, especially in a resource-scarce in-house cluster.
It is also impractical to wait for rebooting of the crashed
node. This constrains the usage scenario of such an
approach. Further, as it only enables to migrate the work-
load on crashed node to a single surviving node, it may
result in significant load imbalance and performance degra-
dation of normal execution after recovery.

3 REPLICATION-BASED FAULT TOLERANCE

This section first identifies challenges and opportunities in
providing efficient fault tolerance, and then describes the
design of Imitator.

3.1 Challenges and Opportunities
Low Owerhead in Normal Execution. Compared to data-
parallel computing models, the dependencies between ver-
tices in graph-parallel models demand a fine-grained fault
tolerance mechanism. Low overhead re-execution [34] and
coarse-grained transformation [35] can hardly satisfy such a
requirement. In contrast, checkpoint-based fault tolerance
in existing graph-parallel systems sacrifices the perfor-
mance of normal execution for fine-grained logging.
Fortunately, existing replicas for vertex computation in a
distributed graph-parallel system open an opportunity for
efficient fine-grained fault tolerance. Specifically, we
observe that the replicas originally used for local access in

4. For brevity, we assume that the failure occurs at the middle of an
interval. The failure point only impacts on the replay time, which is usu-
ally proportional to the number of lost iterations.
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vertex computation can be reused to backup data of vertices
and edges, while the synchronization messages between a
master vertex and its replicas can be reused to maintain the
freshness of replicas.

To leverage vertex replicas for fault tolerance, it is neces-
sary that each vertex has at least one replica; otherwise extra
replicas for these vertices have to be created, which incurs
additional overhead for communication during normal exe-
cution. Fig. 3a shows the percentage of vertices without rep-
licas on a 50-node cluster for a set of real-world and
synthetic graphs using the default hash-based (random)
partitioning. Only GWeb [36] and LJournal [29] contain
more than 10 percent of such vertices, while others only
contain less than 1 percent vertices. The primary source of
vertices without replicas is from selfish vertices, which have
no out-edges (e.g., vertex 7 in Fig. 1). For most graph algo-
rithms, the value of a selfish vertex has no consumer and
only depends on ingoing neighbors. Consequently, there is
no need to create extra replicas for selfish vertices. In addi-
tion, the performance cost in communication depends on
the number of replicas, which is several times the number
of vertices. Fig. 3b illustrates the percentage of extra replicas
required for fault tolerance regardless of selfish vertices,
which is less than 0.15 percent for all dataset.

One challenge is that, for vertex-cut, there are no repli-
cated edges that can be used to tolerate the loss of edges
during recovery. Fortunately, we observe that very few
graph algorithms will update the state of edges during com-
putation. This means that a graph-parallel system can hide
the cost of storing edges to persistent storage by overlap-
ping it with graph execution, which avoids the runtime
overhead from synchronizing edge states.

Fast Recovery by Leveraging Scale. For checkpoint-based
fault tolerance, recovery from a snapshot on the persistent
storage cannot harness all resources in the cluster. The I/O
performance of a single node becomes the bottleneck of
recovery, which does not scale with the increase of nodes.
Further, a checkpoint-based fault tolerance mechanism also
depends on standby nodes to take over the workload on
crashed nodes.

Fortunately, the replicas of a vertex scattered across the
entire cluster provides a new opportunity to recover a
machine failure in parallel, which is inspired by the fast
recovery in DRAM-based storage system (e.g., RAM-
Cloud [17]). Specifically, Imitator leverages a number of sur-
viving nodes to recover states of a single crashed node in
parallel. Actually, the time for recovery may be less with
more nodes if the replicas selected for recovery can be
evenly assigned to all nodes.

In addition, an even distribution of replicas for vertices
on the crashed node further provides the possibility to sup-
port migrating the workload on crashed nodes to all surviv-
ing nodes without using additional standby nodes for
recovery. This may also help reserve the load balance of exe-
cution after recovery.

3.2 Overall Design of Imitator

Based on the above observation, we propose Imitator, a rep-
lication-based fault tolerance scheme for graph-parallel sys-
tems. Unlike prior systems, Imitator employs replicas of a
vertex to provide fault tolerance rather than periodically
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checkpointing graph states to persistent storage. The repli-
cas of a vertex inherently provide a remote consistent
backup, which is synchronized during each global barrier.
When a node crashes, its workload (vertices and edges) will
be reconstructed on a standby node or evenly migrated to
all surviving nodes.

Note that Imitator assumes a fail-stop model where a
machine crash will not cause wild or malicious changes to
other machines. How to extend Imitator to support more
complicated faults like byzantine faults [37] will be our
future work.

Execution Flow. Imitator extends existing synchronous
execution flow with the detection of potential node failures
and seamless recovery. As shown in Algorithm 1, each itera-
tion consists of three steps. First, all vertices are updated
using neighboring vertex states in the computation phase
(line 5). Second, an update of vertex states is synchronized
from a master vertex to its replicas in the communication
phase through message passing (line 6). Note that all mes-
sages have been received before entering the global barrier.
Finally, all new vertex states are consistently committed
within a global barrier (lines 14 and 15). Imitator employs a
highly available and persistent distributed coordination ser-
vice (e.g., Zookeeper [38]) to provide barrier-based synchro-
nization and distributed shared states among nodes, whichi
is inherited from Apache Hama [9], [31].° Node failures will
be detected before (line 7) and after (line 16) the global bar-
rier. Before recovery, each node must enforce the consis-
tency of its local graph states. If a failure occurs before the
global barrier, each surviving node should roll back its
states (line 9) and execution flows (line 12) to the beginning
of the current iteration, since messages from crashed nodes
may be lost. Imitator provides two alternative recovery
mechanisms: Rebirth and Migration. For Rebirth, a standby
node will join the global synchronization (line 2), and recon-
struct the graph states of the crashed nodes from all surviv-
ing nodes (lines 3, 10 and 18). For Migration, the vertices on

5. Each node will create a file in a shared directory of Zookeeper and
check if the number of files equals the number of nodes. If not, the node
will wait for the notification. The last node will ask Zookeeper to wake
up all waiting nodes.
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crashed nodes will be reconstructed on all surviving nodes
(lines 11 and 19). Note that Imitator no needs to timely
detect machine failures, since the recovery is always
delayed to the next global barrier of the current iteration. At
that time, all surviving nodes have finished their own tasks,
and can help recover the states of the crashed node. There-
fore, Imitator uses heartbeat communications to a central
master node with a conservative interval (e.g., 500 ms)
which can safely determine the machine failures.

4 MANAGING REPLICAS

Many graph-parallel systems [10], [11], [13], [26], [39] con-
struct a local graph on each node by replicating vertices to
avoid remote accesses during vertex computation. As shown
in Fig. 4, the sample graph is partitioned to three machines
using random edge-cut or vertex-cut. Vertices (with their
edges) or edges are evenly assigned to three machines, and
replicas are created to provide local vertex accesses. These
replicas will be synchronized with their master vertices to
maintain consistency. Imitator reuses these replicas as consis-
tent backups of vertices for recovery from failures. However,
replication-based fault tolerance requires that every vertex
has at least one replica with exactly the same states with the
master vertex, while existing replicas are only with partial
states. Further, not all vertices have replicas. Finally, since the
master vertex in vertex-cut will not be co-located with all of
its edges, replicating edges with the master vertex is not
always feasible to tolerate the loss of edges.

Algorithm 1. Imitator Execution Model

Input: Date Graph G = (V, E, D)
Input: Initial active vertex set V

1 if is_newbie() then

2 newbie_enter_leave_barrier();

3 iter = newbie_rebirth_recovery();
4 whileiter < max_iter do

5 compute();
6
7
8

// new node

send-msgs();
state = enter_barrier();

if state.is_fail() then // node failure

9 rollback()
10 if is_rebirth() then rebirth_recovery(state);
11 else migration_recovery(state);
12 continue;
13 else // normal execution
14 commit_state();
15 iter ++;
16 state = leave_barrier();
17 if state.is_fail() then //node failure
18 if is_rebirth() then rebirth_recovery(state);
19 else migration_recovery(state);

This section describes extensions for fault-tolerance ori-
ented replication, creating full-state replicas, replicating edges
and an optimization for selfish vertices. Here, we only focus
on creating at least one replica to tolerate one machine failure
for brevity; creating more replicas can be done similarly.

4.1 Fault Tolerant (FT) Replica

The original replication optimized for local accesses may
leave some vertices without replicas. For example, the
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internal vertex (e.g., vertex 7 in Fig. 4) has no replica as all
its edges are stored at the same node. A failure of Nodel
may cause an irrecoverable state for vertex 7.

For such an internal vertex, Imitator creates an addi-
tional fault tolerant replica on another machine when load-
ing the graph. There is no constraint on the location of
these replicas, which provides an opportunity to balance
the workload among nodes to hide the performance over-
head. Before assignment, the number of replicas and inter-
nal vertices are exchanged among nodes. Each node
proportionally assigns FT replicas to the remaining nodes.
For example, vertex 7 has no computation replicas and its
additional FT replica is assigned to Node0, which has
fewer replicas, as shown in Fig. 4.

4.2 Full-State Replica (Mirror)

The replica to provide local access does not have full states
to recover the master vertex, such as the location of replicas.
However, it is not efficient to upgrade all replicas to be
homogeneous with their masters, which will cause exces-
sive memory and communication overhead. Imitator selects
one replica to be the homogeneous replica with the master
vertex, namely mirror.

Most additional states in mirrors are static, such as the
location of replicas, which are replicated during graph load-
ing. The remaining states are dynamic, such as whether a
vertex is active or inactive in next iteration, and should be
transferred with synchronization messages from a master to
its mirrors in each iteration of computation.

As mirrors are responsible to recover their masters on a
crashed node, the distribution of mirrors may affect the scal-
ability of recovery. Since the locations of mirrors are restricted
by the locations of all candidate replicas, each machine adopts
a greedy algorithm to evenly assign mirrors on other mac-
hines independently: each machine maintains a counter of
existing mirrors, and the master always assigns mirrors
to replicas whose hosting machine has the least mirrors so far.

Note that the FT replica is always the mirror of a vertex.
As shown in Fig. 4, the mirrors of vertex 1 and 4 on Nodel
are assigned to Node0 and Node2 accordingly, and the
mirror of vertex 7 has to be assigned to Node0.

4.3 Replicating Edges

To recover the lost edges upon a crash, Imitator also
requires replicating edges. For systems using edge-cut,
since the master vertex locally connects with all of its edges
(see Fig. 4), it would be natural to include all edges into the
full states of the masters and replicate them to the mirrors.
However, for a system using vertex-cut, there is no repli-
cated edges and the edges of the same vertex may connect
to replicas on multiple nodes, such as the vertex 2 in Fig. 4.

A simple way for vertex-cut is to accumulate all edges on
the master as the edge-cut and replicate them to mirrors.
Nevertheless, it will incur high communication cost, exces-
sive memory consumption, and even load imbalance, espe-
cially for natural graphs [11], [13].

Fortunately, we observe that very few graph algorithms
will update the states of edges during computation. Hence,
we let each node replicate edges of its own graph part to per-
sistent storage (e.g., HDFS [33]) during the graph loading
phase. For cases where the state of edges is updated during
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execution, Imitator will incrementally log the updates to the
corresponding edge-ckpt files by overlapping the logging
with the graph computation on vertices. Since the edges on
the crashed nodes will be evenly migrated to all surviving
nodes during Migration-based recovery (Section 5.2), the
edges of each node are further partitioned and stored to multi-
ple edge-ckpt files. Note that each node simply assumes that
all others are survived and will exclusively receive one edge-
ckpt file during recovery. To reduce communication cost dur-
ing recovery, the edge will be assigned to the edge-ckpt file
corresponding to the node hosting the master or mirror of the
target vertex. As shown in Fig. 4, all four edges on Node2 are
assigned to two edge-ckpt files (i.e., FileO and Filel), and the
edges (3,2) and (4,2) are stored to Filel.

4.4 Optimizing Selfish Vertices
The main overhead of Imitator during normal execution is
from the synchronization of additional FT replicas. According
to our analysis, many vertices requiring FT replicas have no
neighboring vertices consuming their vertex data (selfish ver-
tices). For example, vertex 7 has no out-edges in Fig. 4. Fur-
ther, for some algorithms (e.g., PageRank), the new vertex
data is computed only according to its neighboring vertices.
For such vertices, namely selfish vertices, Imitator only
creates an FT replica for recovery, and never synchronizes
them with their masters during normal execution. During
recovery, the static states of selfish vertices can be obtained
from its FT replicas, and dynamic states can be re-computed
using the neighboring vertices.

5 RECOVERY

The main issue of recovery is knowing which vertices, either
master vertices or other replicas, have been assigned to the
crashed node. A simple approach is adding a layer to store
the location of each vertex. This, however, may become a
new bottleneck during the recovery. Fortunately, when a
master vertex creates its replicas, it knows its replicas’ loca-
tions. Thus, by storing its replicas’ locations, a master vertex
knows if its replicas are assigned to the crashed node. As
the mirror (i.e., a full-state replica) is responsible for recov-
ery when its master vertex is lost, the master vertex needs to
synchronize its own location to its mirror as well. Further,
all edges are replicated with the full-state of mirrors for
edge-cut or into the edge-ckpt files for vertex-cut.

During recovery, each surviving node will check in par-
allel whether master or replica vertices and edges related to
the failed nodes have been lost and reconstruct such lost
graph states accordingly. As each remaining node has the
complete information of its related graph states, such check-
ing and reconstruction can be done in a decentralized way
and in parallel.

Imitator provides two strategies for recovery: Rebirth-
based recovery, which recovers graph states in crashed
nodes to standby ones; Migration-based recovery, which
scatters vertices on the crashed nodes to surviving ones.

5.1 Rebirth-Based Recovery

During recovery, the location information of vertices will be
used by master vertices or mirrors to check whether there
are some vertices to recover. All states of edges will be
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Fig. 5. A sample of Rebirth-based recovery in Imitator.

obtained from adjacent vertices on surviving nodes or edge-
ckpt files on persistent storage. Rebirth-based recovery com-
prises three steps: Reloading, where the surviving nodes
send the recovery messages to the standby nodes to help it
recover states; Reconstruction, which reconstructs the states
(mainly the graph topology) necessary for computation;
and Replay, which redoes some operations to get the latest
states of some vertices.

5.1.1 Reloading

First, through checking the location of its replicas, a master
vertex will know whether there are any of its replicas located
in the crashed nodes. If so, the master vertex will generate
messages to recover such replicas. If a master vertex is on the
crashed nodes, its mirror will be responsible to recover this
crashed master. Based on this rule, each surviving node can
just use the information from its local vertices to decide
whether it needs to participate in the recovery process.

For the sample graph in Fig. 5, Node2 crashed during com-
putation. After a new standby node (i.e., machine) awakes
Node0 and Nodel from a global barrier, these two nodes will
check whether they have some vertices to recover. Nodel will
check its master vertices (master vertex 1, 4, and 7), and find
that there are some replicas (replica 1 and mirror 4) on the
crashed node. Hence, it needs to generate two recovery
messages to recover replica 1 and mirror 4 on the new node.
Further, Nodel will also check its mirrors to find whether
there is any mirror whose master was lost. It then finds that
the master of vertex 2 was lost, and thus generates a message
to recover master 2. Node0 will act the same as Nodel.

Second, for systems using edge-cut, all edges on crashed
nodes are also stored within the masters or mirrors on surviv-
ing nodes, which can be reloaded with the vertices. For exam-
ple, the five edges connected with vertex 2 will be included
within the message from the mirror of vertex 2 on Nodel. For
a system using vertex-cut, the edge-ckpt files with all edges of
the crash node can be directly reloaded from persistent stor-
age, which can be done through overlapping with the reload-
ing vertices from the surviving nodes.

The surviving nodes also need to send some global states
to the new node, such as the number of iterations so far. All
the recovery messages are sent in a batched way to reduce
communication cost.

5.1.2 Reconstruction

For the new node, there are three types of states to recon-
struct: the graph topology, runtime states of vertices, and
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global states (e.g., number of iterations so far). The last two
types of states can be retrieved directly from recovery mes-
sages. The graph topology is a complex data structure,
which is non-trivial to recover.

A simple way to recover the graph topology is to use the
raw edge information (the “points-to” relationship between
vertices) and redo operations of building topology in the
graph loading phase. In this way, after receiving all the
recovery messages, the new node will create vertices based
on the messages (which contain the vertex types, the edges
and the detailed states of a vertex). After creating all verti-
ces, the new node will use the raw edge information on
each vertex to build the graph topology. One issue with this
approach is that building the graph topology can only start
after creating all vertices. Further, due to the complex
“points-to” relationship between vertices, it is not easy to
parallelize the topology building process.

To expose more parallelism, Imitator uses enhanced edge
information for recovery. Since all vertices are stored in an
array in each machine, the topology of a graph is repre-
sented by the array index. This means that if there is an
edge from vertex A to vertex B, vertex B will have a field to
store the index of vertex A in the array. Hence, if Imitator
can ensure a vertex is placed at the same position of the ver-
tex array in the new node, reconstruction of graph topology
can be done in parallel on all the surviving nodes.

To ensure this, Imitator also replicates the master’s posi-
tion to its mirror with other states in the graph loading
phase. When a mirror recovers its master, it will create the
master vertex and its edges, and then encode the vertex and
the master position into the recovery message. On receiving
the message, the new node just needs to retrieve the vertex
from the message and put it at the given position. Recover-
ing replicas can be done in the same way.

Since every crashed vertex only needs one vertex to do
the recovery, there is only one recovery message for one
position. Thus, there is no contention on the array (which is
thus lock-free) and can be done immediately when receiv-
ing the message. Hence, it is completely decentralized and
can be done in parallel. Note that there is no explicit recon-
struction phase for this approach because the reconstruction
can be done during the reloading phase when receiving
recovery messages.

5.1.3 Replay

Imitator can recover most states of a vertex directly from the
recovery message, except the activation state, which cannot
be timely synchronized between masters and mirrors. The
reason is that a master vertex may be activated by some
neighboring vertices that are not located on the same node.
When a master replicates its states to its mirrors, the master
may still not be activated by its remote neighbors. Hence,
the activation state can only be recovered by replaying the
activation operations. However, the neighboring vertex of a
master vertex might also locate at the crashed node. As a
result, a master vertex needs to replicate its activation infor-
mation (which vertices it should activate) to its mirrors.
A vertex (either master or mirror) doing recovery will attach
the corresponding activation information to the recovery
message. The new node will re-execute the activation opera-
tions according to these messages on all the vertices.
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Fig. 6. A sample of Migration-based recovery in Imitator.

5.2 Migration-Based Recovery
When there are no standby nodes for recovery, Migration
based recovery will scatter graph computation from the
crashed nodes to surviving ones. Fortunately, the mirrors,
which are isomorphic with their masters, provide a conve-
nient way to migrate a master vertex from one node to
another. Other data to be used by the new master in future
computation can be retrieved from its neighboring vertices.
The Migration approach also consists of three steps:
Reloading, Reconstruction, and Replay, of which the processes
are only slightly different from the Rebirth approach. In the
following, we will use the example in Fig. 6 as a running
example to illustrate how Migration based recovery works.

5.2.1 Reloading

The main differences between Rebirth and Migration for
reloading is that mirror vertices will be “promoted” to masters
and take over the computation tasks for future execution.

On detecting a failure, all surviving nodes will get the
information about the crashed ones from the master node
of a cluster. Surviving nodes will scan through all of their
mirrors to find whose masters were on the crashed nodes.
In Fig. 6, they are mirror 5 on Node0 and mirror 2 on
Nodel. These mirrors will be “promoted” as new masters.

For systems using edge-cut, the “promoted” mirrors
already have the information of their edges. For systems
using vertex-cut, the surviving nodes will reload edges
within edge-ckpt files of crashed nodes in parallel, which
can well overlap with vertex promotion. For example, in
Fig. 6, Nodel will reload the edge (3,2) and (4,2) from Filel
of Node2.

After recovering vertices and edges, the “promoted” mir-
rors send the new location information to their surviving
replicas, create additional FT replicas to retain the original
fault tolerance level and select new mirrors. In Fig. 6, FT
replica 4 is created on NodeO and selected as the mirror. In
addition, due to reloading edges on a different node, some
new replicas are necessary to retain local access semantics
for computation. Replica 6 on Nodel under edge-cut in
Fig. 6 illustrates this case. All surviving nodes will cooper-
ate to create such replicas.

5.2.2 Reconstruction

During reconstruction, all surviving nodes will assemble new
graph states from the recovery messages sent in the reloading
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phase. After the reconstruction phase, the topology of the
graph and most of the states of the vertices (both masters and
replicas) are migrated to the surviving nodes.

5.2.3 Replay

The Migration approach also needs to fix the activation
states for new masters. However, the Rebirth approach
needs to fix such states for all recovered masters, while the
Migration approach only needs to fix the states of newly
promoted masters, which are only a small portion of all
master vertices on one machine. Hence, we choose to treat
these new masters especially instead of redoing the activa-
tion operation on all the vertices. Imitator checks whether a
new master is activated by some of its neighbors or not.
If so, Imitator will correct the activation states of the new
master. When finishing the Replay phase, the surviving
nodes can now resume the normal execution.

5.3 Additional Failure Models
5.3.1  Multiple Machine Failures

To tolerate multiple nodes failure at the same time, Imitator
needs to ensure that the number of mirrors for each vertex
in Imitator is equal or larger than the expected number of
machines to fail. When a single machine failure happens, if
all mirrors participate the recovery, it is a waste of network
bandwidth. Hence, during graph loading, each mirror is
assigned with an ID; only the surviving mirrors with the
lowest ID will do the recovery work. Since a mirror has the
location information of other mirrors and the new coming
node’s logic ID of this job, mirrors need not communicate
with each other to elect a mirror to do recovery.

5.3.2 Other Types of Failures

When a failure happens during the system is loading graph,
since the computation has not started, we just restart the
job. If a failure happens during recovery, such a failure is
almost the same as the failure happening during the normal
execution. Hence, we just restart the recovery procedure.

There is a single master node for a cluster, and it is only
in charge of job dispatching and failure handling. It has
nothing to do with the job execution. Since there are a lot of
prior work to address the single master failure, we do not
consider the failure of master node in this paper.

6 EVALUATION

We first incorporated the design of Imitator into
Cyclops [26], which extends Apache Hama [9], [31] (an
open source clone of Pregel) by vertex replication instead of
pure message passing as the communication mechanism. It
provides multiple state-of-the-art edge-cuts. The support of
fault tolerance requires no source code changes to graph
algorithms. To measure the efficiency of Imitator, we use
four typical graph algorithms (PageRank, Alternating Least
Squares (ALS), Community Detection (CD) and Single
Source Shortest Path (SSSP)) to compare the performance
and scalability of different systems and configuration.
We also provide a case study to illustrate the effectiveness
of Imitator by illustrating the execution of different recovery
approaches under injected machine failures.
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TABLE 1
A Collection of Real-World and Synthetic Graphs

Algorithm Graph \4 |E|
GWeb [36] 0.87M 511 M
PageRank LJournal [29] 485M 70.0 M
Wiki [32] 5.72M 130.1 M

ALS SYN-GL [11] 0.11M 2.7M
CD DBLP [26] 0.32M 1.05M
SSSp RoadCA [36] 1.97M 5.53 M

|V| and |E| denote the number of vertices and edges respectively.

To demonstrate the generality, we further incorporated
Imitator into PowerLyra [13], which provides a set of state-
of-the-art vertex-cuts, and also performed a detailed experi-
ment with various workloads and configurations during
normal execution and recovery. It should be noted that our
implementation of checkpoint-based fault tolerance on both
Cyclops and PowerLyra can be viewed as near-optimal
cases, which are several times faster than the default check-
point implementations [40], [41].

6.1 Experimental Setup

All experiments are performed on a 50-node EC2-like clus-
ter. Each node has four AMD Opteron cores, 10 GB of RAM,
four 500 GB SATA HDDs, and is connected via a 1 GigE net-
work. We use HDFS on the same cluster as the distributed
persistent storage to store input files and checkpoints. The
replication factor of HDFS is set to three.

Table 1 lists a collection of algorithms and large graphs
for our experiments on Cyclops. The SSSP algorithm
requires the input graph to be weighted. Since the
RoadCA [36] graph is not originally weighted, we syntheti-
cally assign a weight value to each edge, where the weight
is generated based on a log-normal distribution (© = 0.4,
o = 1.2) from the Facebook user interaction graph [42].

For brevity, we directly report the results of checkpoint-
based fault tolerance with the interval of one iteration
unless otherwise stated. This means that the runtime over-
head is the upper bound, while the recovery time is the
lower bound. Since the checkpoint time is commonly
inversely proportional to the interval, readers can roughly
estimate the performance overhead of checkpoint-based
approaches for different intervals.

6.2 Runtime Overhead
Fig. 7 shows the runtime overhead due to applying differ-
ent fault tolerance mechanisms on the baseline system
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Fig. 7. A comparison of runtime overhead between replication (REP) and
checkpoint (CKPT) based fault tolerance over baseline (Cyclops) w/o
fault tolerance (BASE).
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Fig. 8. The overhead of (a) #replicas and (b) #msgs for Imitator w/ and w/
o selfish optimization.

(Cyclops [26]). The overhead of Imitator is less than 3.7
percent for all algorithms with all datasets, while the over-
head of the checkpoint-based fault tolerance is very large,
varying from 65 percent for PageRank on Wiki to 449 per-
cent for CD on DBLP. Even using in-memory HDEFS, the
checkpoint-based approach still incurs performance over-
head from 33 to 163 percent partly due to the cross
machine triple replication in HDFS. In addition, writing to
memory also causes significant pressure on memory capac-
ity and bandwidth to the runtime, occupying up to 42.1 GB
extra memory for SSSP on RoadCA.

The time of checkpointing once is from 1.08 to 3.17 sec-
onds for different size of graphs, since the write operations
to HDFS can be batched and are insensitive to the data size.
The overhead of each iteration in Imitator is lower than 0.05
seconds, except 0.22 seconds for Wiki, which is still several
tens of times faster than checkpointing.

6.3 Overhead Breakdown

Fig. 8a shows the extra replicas among all the replicas used
for fault tolerance. The rates of extra replicas are all very
small without selfish vertices, even the largest rate is only
0.12 percent. Fig. 8b shows the redundant messages among
the total messages during the normal execution. Since the
rate of extra replicas is very small, the additional messages
rate is very small, with only 2.92 percent for the worst case.
When enabling the optimization for selfish vertices, the
messages overhead is lower than 0.1 percent.

6.4 Efficiency of Recovery

Replication-based fault tolerance provides a good opportu-
nity to fully utilize the entire resources of the cluster for
recovery. As shown in Table 2, the replication-based recov-
ery outperforms checkpoint-based recovery by up to 6.86X
(from 3.93X) and 17.67X (from 3.55X) for Rebirth and
Migration approaches accordingly. Overall, Imitator can

TABLE 2
The Recovery Time (Seconds) of Checkpoint (CKPT),
Rebirth (REB) and Migration (MIG)

Algorithm Graph CKPT REB MIG
GWeb 8.17 2.08 1.20
PageRank LJournal 41.00 8.85 2.32
Wiki 55.67 14.12 3.40
ALS SYN-GL 6.86 1.00 1.28
CD DBLP 3.88 0.67 1.09
SSSpP RoadCA 12.06 2.27 1.57
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Fig. 9. The recovery time of Rebirth (a) and Migrate (b) on Imitator for
PageRank with the increase of nodes.

recover 0.95 million and 1.43 million vertices (including
replicas) from one failed node in just 2.32 and 3.4 seconds
for LJournal and Wiki dataset accordingly.

For large graphs (e.g., LJournal and Wiki), the perfor-
mance of Migration is relatively better than that of Rebirth,
since it avoids data movement (e.g., vertex and edge val-
ues) in the reloading phase and distributes replaying oper-
ations to all surviving nodes rather than on the single new
node. On the other hand, for small graphs (e.g.,, SYN-GL
and DBLP), the performance of Rebirth is relatively better
than that of Migration, since there are multiple rounds of
message exchanges in Migration. This causes the slow-
down to recovery, ranging from 28 to 63 percent, com-
pared with Rebirth.

6.5 Scalability of Recovery

We evaluate the recovery scalability of Imitator for Pag-
eRank with the Wiki dataset using different numbers of
nodes that participate in the recovery. As shown in Fig. 9,
both recovery approaches scale with the increase of nodes,
since all nodes can participate in the reloading phase.
Because the local graph has been constructed in the reload-
ing phase, there is no explicit reconstruction phase for
Rebirth. Further, the replay operations are only executed in
the new node for Rebirth, while are distributed to all surviv-
ing nodes for Migration.

6.6 Impact of Graph Partitioning

To analyze the impact of different graph partitioning algo-
rithms, we implemented Fennel [20] on Imitator, which
is a heuristic graph partitioning algorithm. As shown in
Fig. 10a, compared to the default hash-based partitioning,
Fennel significantly decreases the replication factor for all
datasets, reaching 1.61, 3.84 and 5.09 for GWeb, LJournal
and Wiki respectively.

Fig. 10b illustrates the overhead of Imitator under the
Fennel partitioning. Due to lower replication factor, Imita-
tor requires more additional replicas for fault tolerance,
which also result in an increase of message overhead.
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Fig. 10. (a) The replication factor of different partitioning schemes.
(b) The overhead of Imitator using Fennel algorithm.
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Fig. 11. (a) The runtime overhead, and (b) The recovery time for tolerat-
ing 1, 2, and 3 machine failure(s).

However, the runtime overhead is still small, ranging from
1.8 to 4.7 percent.

6.7 Handling Multiple Failures

When Imitator is configured to tolerate multiple machine
failures, there will be more extra replicas to add. The over-
head tends to be larger. Fig. 11 shows the overall cost when
Imitator is configured to tolerate 1, 2 and 3 machine failure
(s). As shown in Fig. 11a, the overhead of Imitator is less
than 10 percent even when it is configured to tolerate 3
nodes failures simultaneously.

Fig. 11b shows the recovery time of the largest dataset,
Wiki, when different numbers of nodes crashed. For Rebirth,
since the surviving nodes need more messages to exchange
when the crashed nodes increase, the time to send and receive
recovery messages increases. However, the time to rebuild
graph states and replay some pending operations is almost
the same as that of a single machine failure. Since Migration
strategy harnesses the cluster resource for recovery, the time
of all operations in Migration is relatively small.

6.8 Memory Consumption

As Imitator needs to add extra replicas to tolerate faults, we
also measure the memory overhead. We use jstat, a memory
tool in JDK, to monitor the memory behavior of the baseline
system and Imitator. Table 3 illustrates the result of one
node of the baseline system and Imitator on our largest
dataset Wiki. If Imitator is configured to tolerate one
machine failure during execution, the memory overhead is
modest, and the memory usage of the baseline system and
Imitator is comparable.

6.9 Case Study

Fig. 12 presents a case study for running PageRank using
LJournal with none or one machine failure during the
execution of 20 iterations. Different recovery strategies are
applied to illustrate their performance. The symbols, BASE,

TABLE 3
Memory and GC Behavior of Imitator with Different Fault
Tolerance Setting for PageRank on Wiki

Config Max Cap (GB) Max Usage (GB) Young/Full GC
Number Time (Sec))
w/oFT 3.85 2.76 40/15 13.7/134
FT/1 5.05 3.70 50/29 19.9/21.7
FT/2 6.24 4.51 55/29 23.6/26.1
FT/3 6.99 491 58/30 25.7/29.7
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Fig. 12. An execution of PageRank of LJournal with different fault toler-
ance settings. One failure occurs between the 6th iteration and the 7th
iteration.

REP, and CKPT/4, denote the execution of the baseline, rep-
lication and checkpoint-based fault tolerance systems with-
out failure accordingly, where others illustrate the cases
with a failure between the 6th and 7th iterations. Note that
the interval of checkpointing is four iterations.

The scheme of failure detection is the same for all strate-
gies, of which the time span is about 7 seconds. For the
recovery speed, the Migration strategy, of which recovery
time is about 2.6 seconds, is the fastest due to the fact that it
harnesses all resources and minimizes data movements.
The Rebirth strategy has a time span of 8.8 seconds. This still
outperforms the 45 seconds recovery time of CKPT/4,
which does the periodic checkpoint with an interval of 4
iterations, due to fully exploiting network resources and
without accessing distributed file system.

After the recovery has finished, REP with Rebirth can
still execute at full speed, since the execution environment
before and after the failure is the same in this approach. On
the other hand, the REP with Migration is slower since the
available computing resource has decreased, but only
slightly. For the CKPT/4, it still has to replay 2 lost itera-
tions after a long time recovery.

6.10 Effectiveness on Vertex-Cut

To study the performance of replication-based fault toler-
ance for systems using vertex-cut, we further evaluation
the runtime overhead and recovery time of Imitator with
various configuration, compared to the baseline system
(PowerLyra [13]). Unless mentioned, the partitioning

TABLE 4
A Collection of Real-World Graphs and Synthetic
Graphs with Varying Power-Law Constant
(o) and Fixed 10 Million Vertices

Graph V] |E|
GWeb [36] 09M 51M
LJ [43] 54 M 79M
Wiki [32] 57M 130 M
UK-2005 [44] 40 M 936 M
Twitter [45] 42 M 147 B
o 14 |E]|
2.2 10M 39M
2.1 10M 54 M
2.0 10M 105 M
1.9 10M 249 M
1.8 10M 673 M

|V| and |E| denote the number of vertices and edges
respectively.
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Fig. 13. A comparison of runtime overhead between replication (REP)
and checkpoint (CKPT) based fault tolerance over baseline (PowerLyra)
w/o fault tolerance (BASE).

algorithm adopts hyrbid-cut as default. Table 4 lists a collec-
tion of real-world and synthetic graphs for experiments on
PowerLyra.

Runtime Overhead. Fig. 13 illustrates the performance
cost to applying different fault tolerance mechanisms for
PageRank (20 iterations) with various real-world and syn-
thetic graphs. Compared to the baseline without fault toler-
ance, the normalized overhead of Imitator is always less than
3.3 percent (from 1.5 percent), while that of checkpoint-based
approach is very large, varying from 531 to 135 percent.

Efficiency of Recovery. Imitator also provides a good recov-
ery performance due to fully utilizing the entire resources of
the cluster. As shown in Table 5, the replication-based
recovery outperforms checkpoint-based recovery by up to
7.66X (from 1.70X) and 7.18X (from 1.29X) for Rebirth and
Migration approaches accordingly.

Overall, Imitator can recover 5.2 million vertices (includ-
ing replicas) and 26.9 million edges from one failed node in
just 42.0 and 33.4 seconds for Twitter using Rebirth and
Migration approaches accordingly.

For large graphs (e.g., Twitter), the performance of
Migration is relatively better than that of Rebirth, since it
can read edge-ckpt files from persistent storage in parallel
by all surviving nodes in the reloading phase. On the other
hand, for small graphs (e.g., GWeb), the performance of
Rebirth is better, because it can overlap the reloading of
edges from persistent storage with that of vertices from
surviving nodes. Further, Migration requires more rounds
of message exchanges.

TABLE 5
The Recovery Time (Seconds) of Checkpoint
(CKPT), Rebirth (REB) and Migration (MIG)
for Real-World and Synthetic Graphs

Graph CKPT REB MIG
GWeb 1.8 0.8 1.4
LJ 12.5 3.1 4.7
Wiki 13.1 3.9 4.8
UK 216.0 28.2 30.1
Twitter 183.7 42.0 33.4
o CKPT REB MIG
22 8.0 2.1 4.6
2.1 9.2 2.8 5.0
2.0 10.6 3.8 7.1
1.9 14.3 6.0 8.6
1.8 22.3 13.1 11.9
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Fig. 14. (a) The replication factor and (b) The overhead and recovery
time of Imitator using different partitioning algorithms for PageRank with
Twitter.

Impact of Graph Partitioning. The default graph partition-
ing schemes of PowerLyra is the Hybrid-cut [13], which is
highly optimized for natural graphs. It leads to quite fewer
replicas and better performance. As shown in Fig. 14a, the
replication factor of Hybrid-cut for Twitter on our cluster is
only 5.56, which is lower than that of Grid-cut [23] and
Random-cut [11] (i.e., 8.34 and 15.96).

In fact, using Hybrid-cut can be regarded as a worst case
for Imitator due to fewer candidate replicas for fault tolerance.
As shown in Fig. 14b, the runtime overhead of Imitator using
Random-cut and Grid-cut is just 0.16 and 0.73 percent. How-
ever, as shown in Table 6, we believe that the tiny difference
of runtime overhead will not impact the advantages of using a
better graph partitioning like Hybrid-cut. Further, compared
to Hybrid-cut, the higher replication factor of Random-cut
and Grid-cut will also cause slowdown to recovery time due
to larger replication factors, reaching 51.9 and 12.9 percent for
Rebirth and 36.5 and 28.1 percent for Migration respectively.

Multiple Failures. To tolerate multiple machine failures,
Imitator needs more extra FT replicas, which will increase
runtime overhead and recovery time. As shown in Fig. 15a,
the runtime overhead of Imitator for PageRank with Twitter
is only 4.69 percent even when it is configured to tolerate
three machine failures simultaneously.

Fig. 15b shows the recovery time when different numbers
of nodes crashed. For Rebirth, since all of the new nodes can
reload edges from persistent storage in parallel, the time is
almost the same as that of a single machine failure. How-
ever, for Migration, all surviving nodes need to reload more
edges from persistent storage with the increase of crashed
nodes. Therefore, the increase of recovery time of Rebirth is
relatively smaller than that of Migration.

TABLE 6
A Comparison of Runtime Overhead and Communication Cost per
lteration Between Different Partitioning Algorithms for Tolerating 1,
2, and 3 Machine Failure(s) on PageRank with Twitter
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30%

FT/3 mm Config | Rebirth | Migration
25% FT/2 wm FT/1 42.0 33.4
20% FT/1 - FT/2 50.6 459
Jo F1/3 63.1 70.0

10%
5%

Normalized Overhead

Runtime

0% " -
#Replicas Loading

Fig. 15. (a) The runtime overhead of normal execution, and (b) the recov-
ery time (seconds) of Rebirth (REB) and Migration (MIG) on PowerLyra
for tolerating 1, 2, and 3 machine failure(s).

We further study the impact of graph partitioning on tol-
erating multiple failures. As shown in Table 6, the runtime
overheads of Random-cut and Grid-cut to tolerate multiple
failures are slightly smaller than that of Hybrid-cut due to
introducing fewer FT replicas. For example, the runtime
overhead to tolerate three machine failures simultaneously
is 1.14, 2.27, and 4.69 percent respectively. However, the
impact of fault-tolerance on runtime overhead is negligible
compared to that of adopting different partitioning algo-
rithms, which is confirmed by our evaluation on communi-
cation cost. It means that Imitator can almost preserve the
behavior and not interfere with the choice of partitioning
algorithms.

Memory Consumption. As Imitator needs to add extra repli-
cas to tolerate faults, we also measure the memory overhead.
Different to edge-cut, vertex-cut will not replicate edges,
which dominate the memory consumption for most graphs.
For example, the number of edges (|E|) is about 35 times
larger than the number of vertices (|V]) in Twitter (see Table 4).
Therefore, the memory overhead of Imitator is much lower
than the increase of replication factor. Table 7 shows the total
memory consumption on our 50-node cluster with different
partitioning algorithms. The memory overhead for Hybrid-
cut is only 1.87 percent even when it is configured to tolerate
three machine failures simultaneously.

6.11 Efficiency of Fault-Tolerance Schemes

Readers might be interested in the theoretical efficiency of
different fault-tolerance schemes with the optimal interval
according to Young's model [30]. The efficiency is the mini-
mum time (w/o fault-tolerance) divided by the expected
time (w/fault-tolerance, including performance overhead
and recovery cost for an expected number of failures). We
assume the MTBF of a 50-node cluster is about 7.3 days [10].
For brevity, we use the results on PowerLyra for PageRank
with Twitter as an example to estimate the efficiency of
checkpoint-based (CKPT) and replication-based (REP)

Random Grid Hybrid
Execution Time (Sec) TABLE 7
A Comparison of Total Memory Consumption (GB)

1V:VT//01FT 59.4 (596316‘7) 295 (2962737) 16.8 (1 6i549¢7) on Our 50-Node Cluster Between Different Partitioning

2 M. 0% 2 AL./5%0 O AF 2T Algorithms for Tolerating 1, 2, and 3 Machine Failure(s)
FT/2 59.7 (+0.60%) 29.6 (+1.27%) 17.0 (+2.66%) on PageRank with Twitter
FT/3 60.0 (+1.14%) 299 (+2.27%)  17.3 (+4.69%) g

Communication Cost (GB) Random Grid Hybrid

w/oFT 1.85 0.46 0.21 w/oFT  223.8 136.7 173.1
FT/1 1.86 (+0.92%) 047 (+1.82%) 0.22 (+5.59%) FT/1 223.8 (+0.01%) 136.7 (+0.01%)  173.9 (+0.42%)
FT/2 1.89 (+2.22%) 0.48 (+3.93%) 0.24 (+13.05%) FT/2 2239 (+0.04%)  136.8 (+0.08%)  175.0 (+1.08%)
FT/3 1.91 (+3.31%) 0.49 (+6.70%) 0.26 (+21.49%) FT/3 2241 (+0.14%)  137.0 (+0.26%)  176.4 (+1.87%)
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approaches. First, the optimal intervals of CKPT and REP
are 9,768 and 623 s respectively, which match the significant
difference of performance costs (75.63 and 0.31 s). Second,
the efficiency of CKPT and REP are 98.44 and 99.90 percent
respectively, which is relatively close since the failure rate is
low. However, the negligible overhead and fast recovery of
our replication-based approach are still of significant impor-
tance for graph processing since the execution time of an
interval is usually short.

7 RELATED WORK

Checkpoint-based fault tolerance is widely used in graph-par-
allel computation systems. Pregel [5] and its open-source
clones [8], [9] adopt synchronous checkpoint to save the graph
state to the persistent storage, including vertex and edge val-
ues, and incoming messages. GraphLab [10] designs an asyn-
chronous alternative based on the Chandy-Lamport [14]
snapshot to achieve fault tolerance. PowerGraph [11] and
PowerLyra [13] provide both synchronous and asynchronous
checkpointing for different modes. Yan et al. [46] propose an
optimized lightweight checkpoint approach, which only
stores vertex states and incremental edge updates to persis-
tent storage. Shen et al. [47] combine checkpoint-based and
log-based mechanisms to reduce the frequency of checkpoint-
ing and parallelize the recovery process. Zorro [40] also pro-
poses a replication-based fault tolerance for distributed graph
processing, but which trades off the accuracy of results while
reducing the overhead during normal execution. Greft [48] is
a distributed graph processing system that tolerates acciden-
tal arbitrary (e.g., Byzantine) faults.

Piccolo [49] is a data-centric distributed computation sys-
tem, which provides user-assisted checkpoint mechanism to
reduce runtime overhead. However, the user needs to save
additional information for recovery. MapReduce [34] and
other data-parallel models [50] adopt simple re-execution
to recover tasks on crashed machines, since they suppose
all tasks are deterministic and independent. Unfortunately,
graph-parallel models do not satisfy such assumptions.
Spark [35] and Discretized Streams [51] propose a fault-toler-
ant abstraction, namely Resilient Distributed Datasets (RDD),
for coarse-grained operations on datasets, which only logs the
transformation used to build a dataset (lineages) rather than
the actual data. However, it is hard to apply RDD to graph-
parallel models, since the computation on the vertex is a fine-
grained update. Tiled MapReduce [52] backs up the results of
sub-jobs to save the associated computation during a global
failure. GraphX [12] claims to use in-memory distributed rep-
lication to reduce the amount of recomputation on failure, but
it does not explain how to guarantee the replication and
recover from machine failures.

Replication is widely used in large-scale distributed file
systems [33], [53] and streaming systems [54], [55] to pro-
vide high availability and fault tolerance. In these systems,
all replicas are full-time for fault tolerance, which may intro-
duce high-performance cost. RAMCloud [17] is a DRAM-
based storage system, it achieves a fast recovery from
crashes by scattering its backup data across the entire clus-
ter and harnessing all resources of the cluster to recover the
crashed nodes. Distributed storage only provides simple
abstraction and does not consider data dependency and
computation on data. SPAR [15] is a graph-structured
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middleware to store social data. It also briefly mentions of
storing more ghost vertices for fault tolerance. However, it
does not consider the interaction among vertices, and only
provides eventual consistency between master and replicas,
which does not fit for graph-parallel computation systems.

8 CONCLUSION

This paper presented a replication-based approach called Imi-
tator to provide low-overhead fault tolerance and fast crash
recovery for large-scale graph-parallel systems with either
edge-cut or vertex-cut. The key idea of Imitator is leveraging
and extending an existing replication mechanism with addi-
tional mirrors and complete states as the master vertices, such
that vertices in a crashed machine can be reconstructed using
states from its mirrors. The evaluation showed that Imitator
incurs very small normal execution overhead, and provides
fast crash recovery from failures. Currently, we currently
only consider graph-parallel computation; our future work
will extend Imitator to support graph-structured stream proc-
essing and querying [56].
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