
Tamper-Resistant Execution in an Untrusted Operating System
Using A Virtual Machine Monitor

Haibo Chen, Fengzhe Zhang, Cheng Chen, Ziye Yang, Rong Chen, Binyu Zang
{hbchen,fzzhang,chengchen,ziyeyang,chenrong,byzang}@fudan.edu.cn

Parallel Processing Institute, Fudan University

Pen-chung Yew
yew@cs.umn.edu

Department of Computer Science and Engineering
University of Minnesota at Twin-Cities

Wenbo Mao
mao wenbo@emc.com
EMC China Research

Parallel Processing Institute Technical Report
Number: FDUPPITR-2007-08001
August 2007

Parallel Processing Institute, Fudan University
Software Building, 825 Zhangheng RD.
PHN: (86-21) 51355363-18
FAX: (86-21) 51355358
URL: http://ppi.fudan.edu.cn

NOTES: This report has been submitted for early dissemination of its contents.
It will thus be subjective to change without prior notice. It will also be proba-
baly copyrighted if accepted for publication in a referred conference of journal.
Parallel Processing Institute makes no gurantee on the consequences of using
the viewpoints and results in the technical report. It requires prior specific
permission to republish, to redistribute to copy the report elsewhere.

Tamper-Resistant Execution in an Untrusted Operating System
Using A Virtual Machine Monitor

Haibo Chen, Fengzhe Zhang, Cheng Chen, Ziye Yang, Rong Chen, Binyu Zang
{hbchen,fzzhang,chengchen,ziyeyang,chenrong,byzang}@fudan.edu.cn

Parallel Processing Institute, Fudan University

Pen-chung Yew
yew@cs.umn.edu

Department of Computer Science and Engineering
University of Minnesota at Twin-Cities

Wenbo Mao
mao wenbo@emc.com
EMC China Research

Fudan University, Parallel Processing Insitute, PPITR-2007-08001

August 2007

Abstract

Software applications today face constant threat of tampering because of the vulnerability in operating
systems and their permissive interface. Unfortunately, existing tamper-resistance approaches often require
non-trivial amount of changes to core CPU architectures, operating systems and/or applications.

In this paper, we propose an approach that requires only minimal changes to existing commodity oper-
ating systems running on commodity hardware without compromising their functionality and compatibility.
The key idea is to use a trustworthy virtual machine monitor (VMM) to monitor and regulate the behavior
of other untrustworthy processes including the underlying operating system that might have been compro-
mised. We use the trusted VMM to compartmentalize a process that demands tamper resistant protection
from OS kernels and other processes, by interposing security-sensitive operations (e.g. system calls) and
isolating (and sealing) security-sensitive information (e.g. registers and memory).

We have implemented a working prototype, CHAOS 1, that supports tamper-resistant applications run-
ning on Linux and Xen VMM. Our prototype shows that it only requires minor changes (about 230 LOCs)
to Linux and a small amount of code expansion to Xen (about 4200 LOCs). Performance measurements
also show that CHAOS incurs a little performance degradation to the application software: about 3% for
SPECINT-2000 and less than 15% for apache httpd and vsftpd.

1 Introduction

1.1 Motivation

Tamper-resistant software is vitally important to combat many challenges facing computer industry today
[9, 16, 26]. Examples include software copyright protection, digital right management (DRM), secure remote
execution (e.g. grid computing) and software security.

It has been noted that an untampered software execution should have at least the following two properties
[23]: (1) authenticity : the code under execution should be authentic, and should not have been altered or
changed. (2) integrity : runtime states (e.g. CPU registers, memory and sensitive I/O data) should not have
been tampered with. To facilitate DRM and copyright protection, we believe that an additional property
is also needed, i.e. (3) privacy : code, data and runtime states should not be observable to unauthorized
processes or even underlying OS that might have been compromised.

Providing tamper-resistant protection can hardly be achieved without the support of operating systems.
Unfortunately, despite continued efforts to improve modern operating systems, they are still essentially

1CHAOS stands for confidentiality and high-assurance equipped operating systems.

1

untrustworthy in two aspects. First, they are big, complex and often developed using unsafe languages, thus
are inherently error prone. They could also be tampered with or penetrated due to design flaws, security
vulnerabilities and implementation bugs (e.g. [6, 22]). Second, they allow poor isolation among processes due
to permissive OS interface [15, 8]. For example, some processes are often granted with high privileges, yet
can easily be tampered with due to security vulnerabilities [4]. A tampered process with the root privilege
can easily access private data and tamper with the execution of other processes. Meanwhile, using specially
tailored operating systems can only have very limited success due to their restricted functionalities and
compatibility to existing applications.

To remedy this situation, there have been numerous efforts aimed at providing high-assurance execution
environments. Generally, those efforts can be classified into three categories. First, there are architectural
enhancements [17, 26, 7] aiming to provide a private, tamper-resistant execution environment for high-
assurance applications. XOMOS [16] is such a system. It utilizes architectural enhancements to support
trustworthy applications running on an untrustworthy operating system. However, this approach requires
nontrivial changes to the core processor architecture (e.g. tagging registers and caches, as well as adding
crypto units). There are currently no commercially available processors supporting such functionalities.

Second, VMM-based machine partitioning schemes, such as Terra [9] and NGSCB [20, 12], try to solve
the problem by multiplexing commodity OSes and specialized OSes on the same hardware platform. They
rely on the specialized OSes to provide tamper-resistant capabilities. Essentially, they provide all-or-nothing
trustworthiness at the operating system level: an operating system and its applications are either completely
trustworthy or not at all. Applications that demand tamper-resistant protection can only run on specialized
trustworthy OSes with restricted functionalities 2). It may also require modification to the applications.

Third, micro-kernel based approaches [24, 25] try to reduce their trusted computing base (TCB) by
running only limited code in the privileged mode. However, they require a redesign of operating systems
and/or applications. There, two design options are usually available: (1) Allow the micro-kernel to retain the
same interface of commodity OSes. However, this may give a hostile process the same permissive interface to
tamper with other processes; or (2) Redesign the existing interface to the micro-kernel that provides tamper-
resistant capability. However, it will then require nontrivial modifications to port existing applications [25].

1.2 Our Contributions

In this paper, we propose a VMM-based tamper-resistant scheme, called CHAOS, which could transparently
provide a tamper-resistant execution environment using commodity (thus untrustworthy) kernels, to host
existing applications that demand tamper-resistant protection. In contrast to existing systems, it does not
require changes to existing processor architectures. It also avoids using specialized OSes to provide tamper-
resistant capabilities, and it preserves the same OS interface to retain backward compatibility for existing
applications.

The key idea is using a trusted VMM to monitor and regulate the behavior of its guest operating systems.
It compartmentalizes an application that demands tamper-resistant protection from the kernels and other
applications at runtime, thus preserves the privacy and integrity of the application. The VMM also uses
cryptographic approaches to detect possible tampering of the code to ensure its authenticity.

Privacy and Integrity: In CHAOS, applications that demand tamper-resistant protection are executed
as trusted processes. They are resistant to both inspection and tampering from other processes and even
from the untrustworthy OS kernel. To achieve this, the trusted VMM interposes all kernel/user interactions
such as system calls (section 2.2.1). Using interposition, CHAOS could then have the capabilities to isolate
CPU context and memory owned by a trusted process by concealing them from the OS kernel and other
processes (section 2.2.2). Also, I/O data owned by a trusted process are encrypted before being transferred
to the OS kernel (section 2.2.3).

Authenticity: CHAOS uses cryptographic approaches to prevent an OS kernel from running alternative
or modified code, as done in XOMOS [16]. The code and data in a trusted application are both encrypted
using the available public key of the platform. They can only be decrypted with the assistance and attestation
of the VMM since only the VMM knows the private key to decrypt them. The encrypted hash is used to

2Terra’s architecture requires a high-assurance OS to be run as a close-box VM. While there is no such high-assurance OS,
its prototype uses Linux to run high-assurance applications, which should obviously not be trusted.

FDUPPITR-2007-08001 2

verify the integrity of the application. Hence, the VMM can attest to the authenticity of the code, and even
a compromised OS kernel cannot tamper with the code.

Normal (i.e. untrusted) processes that did not request tamper-resistant protection can co-exist with trusted
processes in the OS kernel, yet with little or no intervention from the trusted VMM. Processes are uniquely
identified by their page table root, as done in Antfarm [13]. In essence, CHAOS makes no restriction on
which applications can execute as trusted processes, thus tamper-resistant.

We have implemented a prototype system using the Xen VMM [2] to provide a tamper-resistant envi-
ronment on Linux. We have also conducted an experimental measurement on the performance of CHAOS
using a set of benchmarks and real-life applications that demand tamper-resistant protection. The perfor-
mance degradation for SPECINT-2000 is within 3%. The incurred overhead for two prevalent server software
applications (vsftpd and apache httpd) is within 15%.

The rest of the paper is organized as follows. Section 2 describes the trust model as well as an overview of
the system architecture of CHAOS. Then, we describe the implementation details of the prototype system in
Section 3. Section 4 follows with an experimental evaluation on the relative performance of CHAOS. Section
5 compares CHAOS with existing systems. Finally, this paper ends up with a concluding remark in section
6.

2 CHAOS Overview

In this section, we first describe our trust model. Then, we present the overall system architecture.

2.1 Trust Model

The trust model in CHAOS is derived mainly from the perspective of user applications. That is, it focuses
on parts in the hardware/software stack that could be trusted (or not trusted) by applications. Once the
trustworthy parts are identified, CHAOS uses cryptographic approaches to enforce authenticity, integrity
and privacy between applications and these parts (section 3.4.2).

As a VMM is much smaller and simpler than an OS kernel, it is reasonable to include VMM into the
trusted computing base (TCB) [9, 20]. CHAOS, thus, chose not to trust the operating systems, but to trust
an enhanced VMM and the underlying hardware instead. Hence, it can fend off sophisticated attackers even
after they have gained full control of a compromised operating system. The integrity of the VMM could be
ensured by authenticated boot using TPM (Trusted Platform Module) from the Trusted Computing Group
(TCG) [28]. This could prevent an adversary from installing a rootkit below the VMM or launching a
malicious VMM.

For practicality and cost-effectiveness, CHAOS does assume the trustworthiness of the underlying hardware
(such as CPU, cache and memory). However, peripheral I/O devices are not trusted because they are shared
among operating systems and processes and thus are vulnerable to exposure (i.e. violation of privacy) and
tampering. From a user’s viewpoint, we need to treat all machine owners as possible adversaries in order to
enable copy protection and secure remote execution.

It is important to note though that CHAOS assumes that applications can correctly execute provided that
the OS kernel is well-behaved. Hence, similar to other approaches, assuming the untrustworthiness of the
operating system [16] and other legacy code [25] may subject trusted applications to denial of service attacks.
A bug or a compromise in the OS kernel could also prevent trusted applications from functioning correctly,
yet no secret in the applications can be divulged. CHAOS, like other approaches, makes no assumption that
a trusted application is not buggy or malicious. CHAOS only ensures that a buggy or malicious application
running as a trusted process cannot tamper with the execution of other trusted processes.

2.2 Approach Overview

CHAOS transparently creates a tamper-resistant environment by implementing a trust management layer
in the VMM. This layer intercepts and monitors control and data transfer among trusted processes, the OS
kernel and the underlying hardware. It ensures that the trusted processes cannot be observed and tampered
with by a compromised OS kernel and untrustworthy applications.

FDUPPITR-2007-08001 3

Figure 1: The physical and logical view of CHAOS, which is essentially a trust management layer that
interposes kernel/user interactions.

An important property of this layer is transparency, that is, it must retain backward compatibility so
existing applications could run without changes on code to accommodate this layer. Another property is
that it is mandatory that no OS kernel, malicious or not, can bypass this layer. Some modifications to an
OS kernel are needed (about 230 LOCs for Linux) to make it work with the trusted VMM in CHAOS. A
malicious OS kernel could refuse to cooperate with the layer, but it cannot tamper with a trusted process.

Figure 1 depicts the overall system architecture of CHAOS. Unlike the conventional (i.e. physical, in the
left figure) view of a VMM, CHAOS logically treats it as a trusted layer between an OS kernel and user
processes, because a VMM is capable of intercepting all privileged operations and kernel/user interactions
in an operating system.

CPU context conceal it from OS kernel

memory
pages

conceal user mappings from OS kernel
track page usages to prevent

unauthorized mappings
persistent data encrypt it before flowing to OS kernel

Table 1: Methodologies to protect sensitive information.

For a trusted process, the sensitive information to be protected can be classified into three categories:
CPU execution context, memory pages and I/O data. To protect that information, CHAOS mainly relies
on three mechanisms: interposition, isolation and I/O sealing. Table 1 provides an overview of these three
approaches. We describe each approach below.

2.2.1 Interposition

The interposition mechanism ensures that: (1) all user/kernel interactions pass through CHAOS trust man-
agement layer, (2) all data transfers between trusted processes and OS kernels are mediated by CHAOS,
and (3) accesses from OS kernels to hardware resources are intercepted by the VMM. Through such an
interposition mechanism, the VMM ensures that sensitive information will not flow to unauthorized parts,
and a malicious process cannot create unauthorized mappings on pages owned by a trusted process.

FDUPPITR-2007-08001 4

Normally, system calls are made directly from processes to OS kernels without intervention from the
VMM. To implement the interposition mechanism, CHAOS provides Trusted System Call (TSC) to handle
communication between a trusted process and the OS kernel. The idea is to treat a system call as a remote
procedure call (RPC) [3] between mutually untrusted peers. A TSC resembles a conventional system call
except that the control and data transfers are interposed by the VMM. Such interpositions are completely
transparent to the OS kernel and trusted processes.

2.2.2 Isolation

The isolation mechanism is built on the interposition mechanism and provides compartmentalization among
trusted processes, normal processes, and OS kernels. It conceals CPU execution context and memory pages
while a trusted process is not running in user mode. CHAOS follows two policies to facilitate memory
isolation. First, the user-level mapping on a page table owned by a trusted process is hidden from the
OS kernel and other processes. Second, pages owned by a trusted process are not allowed to be mapped
by other processes and the OS kernel. However, concealing user-level mappings could disrupt the required
communication between an OS kernel and a trusted process. For example, to handle I/O related system
calls, an OS kernel needs to get/put the data to be written/read from/to a process. To handle this, CHAOS
provides a TSC layer in the VMM to transparently handle control transfers and data exchanges between a
trusted process and the OS kernel.

In summary, the major tasks of the isolation mechanism are: (1) to save and restore CPU context and
the page table during control transfer between kernel and trusted processes, (2) to track pages owned by a
trusted process, and (3) to implement a TSC layer to handle kernel/user communication.

2.2.3 I/O Sealing

The sealing mechanism protects data transfer (e.g. sensitive files) between memory and disks for a trusted
process. As disks and OS kernel are not trustworthy, data passed to them should be protected. CHAOS
uses cryptographic approach to protect sensitive I/O data from inspection and tampering. The sealing code
handles three types of memory-disk interactions: (1) system-call based I/O, (2) memory-mapped I/O, and
(3) paging (i.e. virtual memory) related I/O.

For I/O related system calls, a trusted process may need to pass I/O data to an untrustworthy OS kernel,
which is capable of inspecting sensitive information in the data. To prevent this, the sealing mechanism in
VMM uses encryption to protect the I/O data. VMM also decrypts the I/O data handed over from the OS
kernel before passing it to the trusted process. The I/O sealing is built upon the TSC layer and completely
transparent to user processes and the OS kernel.

CHAOS currently only handles file related I/O. CHAOS does not seal network I/O since most security-
sensitive applications already use cryptographic approach (e.g. SSL) to ensure data privacy. Nevertheless,
CHAOS does need to provide security-related services such as random number generation and time services
to protect cryptographic mechanism. For example, a malicious OS cannot fake a pseudo-random number to
make the application reveal cryptographic keys.

Memory-mapped I/O (MMIO) occurs without explicitly issuing system calls. CHAOS relies on the de-
mand paging mechanism to handle MMIO. On intercepting a page fault, CHAOS determines whether the
faulting address falls within the MMIO range. It unseals data when it is copied from disks to memory. An
untrustworthy OS kernel cannot access the unsealed data because its mapping will only be available when
the trusted process is resumed in user mode.

3 Detailed Design and Implementation

We have implemented a prototype system based on Linux 2.6.16 running on Xen 3.0.2. The hardware
platform is x86 architecture. However, we believe the CHAOS architecture and its approach are not Xen-
specific and its concept and architecture should be applicable to other VMMs and operating systems.

Figure 2 depicts the working model of CHAOS based on Linux and Xen. All kernel/user interactions
of a trusted process are monitored and protected by the interposition, sealing and isolation modules. For
interrupts with no data exchanges, only the interposition and isolation modules are involved. We use the flow

FDUPPITR-2007-08001 5

Figure 2: The CHAOS layer in Xen and Linux and its processing stages.

of a trusted system call (TSC) to illustrate the processing stages in CHAOS. In Step 1, CHAOS interposition
module intercepts a TSC from a trusted process and forwards it to the TSC layer. The TSC layer fetches
the data associated with the TSC and encrypts the data if the TSC is write-related (Step 2). In Step 3,
the isolation module conceals the CPU-context and user-level page table mappings before transferring the
execution to the Linux kernel. The interrupt handler in Linux serves the TSC request and then invokes Xen,
where the isolation module restores the concealed CPU-context and page table (Step 4). Afterwards, the
TSC layer retrieves the returned data and decrypts it if necessary in Step 5. Finally, CHAOS resumes the
execution of the trusted process in user mode (Step 6).

The following subsections describe the implementation detail of the major mechanisms in CHAOS: inter-
position, isolation, I/O sealing, and management of trusted processes. Then, we present the implementation
complexity of CHAOS in terms of lines of code (LOC). We also discuss the implementation limitations and
possible future work.

3.1 Interposition

The interposition mechanism in CHAOS intercepts all operations that trigger control transfers among pro-
cesses, OS kernels and the VMM. These transfers include: (1) system calls between user mode and kernel
mode; (2) hardware traps and interrupts; (3) hypercalls 3 to Xen-provided interfaces.

Normal interrupts and traps will be captured by Xen since Xen is the sole resource manager. However,
it requires special handling for system calls and resumption from interrupts. Figure 3 depicts the control
flow transitions for a trusted system call (TSC) and a normal system call in CHAOS. Normally, a system
call is basically an interrupt 4 (0x80 in Linux) intercepted and forwarded by the VMM. However, to improve
performance, Xen optimizes the system call forwarding mechanism that allows user processes to directly call
operating system kernel. CHAOS forces Xen to regain control by using trusted system calls (TSC). To do so,
it simply replaces the system call entry in the interrupt description table (IDT) with a routine provided by
CHAOS. The routine performs necessary operations such as isolation and sealing to protect sensitive data.

Further, to avoid the performance loss for normal processes, CHAOS utilizes another unused interrupt
line (i.e. 0x81) for TSCs. We provide an off-line binary rewriting tool to rewrite all system calls in a trusted
application to utilize the new interrupt line, i.e., to change the system call code from int $0x80 to int $0x81.

3A hypercall is essentially an interrupt that allows a guest OS to invoke the services provided by the Xen VMM.
4Other forms such as sysenter (Intel) and syscall (AMD) can be similarly handled in CHAOS.

FDUPPITR-2007-08001 6

Figure 3: System call control flow for trusted system calls and normal ones in CHAOS.

To prevent normal processes from triggering this interrupt line, the service routine denies all accesses from
an untrusted process.

Normally, Linux kernel directly resumes the execution of user processes using iret without the intervention
of Xen. To interpose such transitions, CHAOS modifies the interrupt handlers in Linux to check if the running
process is a trusted process or not before transferring control to the user process. If it is a trusted process, a
hypercall (hypervisor iret) to Xen is invoked instead. Note that the interposition mechanism is mandatory
and cannot be bypassed. The isolation mechanism ensures that if the OS kernel does not behave correctly
the process will not have the necessary information, such as execution context and memory mapping, and
cannot be resumed.

3.2 Isolation

It is relatively easy to conceal CPU context. In contrast, concealing memory data is more complicated and
requires four parts: (1) page table management - to conceal user-level mapping from the kernel; (2) page
usage tracking - to forbid unauthorized mapping to pages owned by a trusted process; (3) paging handling
- to handle swapping in and out of pages owned by a trusted process, and (4) Trusted System Call (TSC)
Layer - to implement a RPC layer in Xen that facilitates secure data exchange between TSCs and the OS
kernel.

3.2.1 CPU context Isolation

Upon an interposition of an interrupt to a trusted process, Xen saves the CPU context and clears register
information that is not needed to limit data exposed to the Linux kernel. This includes general-purposed
registers (GPRs). For system calls, some GPRs cannot be concealed and must be available to the Linux kernel
in order to service it. Yet, an operating system can derive very limited information from them [16]. The
saved context is restored when the kernel transfers control to the trusted process. Here, a replay attack by
a malicious kernel is not possible because the VMM does not use the context provided by the untrustworthy
kernel before resuming the trusted process.

Signal Handling: User-defined signal handlers permit applications to handle specific kernel events. A
process receiving a signal will save its current context and transfer its execution to the signal handler. The

FDUPPITR-2007-08001 7

kernel could alter the program counter of the process to an arbitrary user instruction, which should be
considered as a potential threat. To defend this, CHAOS intercepts system calls that register user-defined
handlers, and records the signal numbers and handlers. The saved addresses of the handlers will then be
used to verify the CPU context before a trusted process resumes its execution in user mode. Hence, even
if a malicious kernel alters the process execution by sending arbitrary signals, it can hardly cause a trusted
process to expose sensitive information because only the user-mode handlers provided by the trusted process
can be used.

3.2.2 Page Table Concealing

CHAOS conceals the user-level memory mapping of a trusted process. A malicious kernel thus cannot inspect
or tamper with the memory owned by a trusted process. To achieve this, Xen saves the page table of the
trusted process and installs an idle page table (swapper pg dir in Linux) that contains only the kernel-level
mapping of memory pages. The page table will be restored before the trusted process is resumed. Since the
installation of a page table will be validated by the VMM, a malicious kernel cannot trick CHAOS with a
tampered page table.

3.2.3 Page Usage Tracking

Xen already tracks the usage of all pages to ensure the strict isolation among virtual machines [2]. To further
enforce the isolation among processes in an OS kernel, CHAOS extends this mechanism by tracking each
page at the process level, and disallowing page sharing between a trusted process and an untrusted one.
CHAOS maintains owner ID and group ID for each page owned by a trusted process. Only trusted processes
in the same group (i.e. executing the same binary image) are allowed to share pages. Moreover, CHAOS
maintains a bit to indicate whether a page needs to be encrypted or not, i.e. the page is sensitive or not. By
default, all pages owned by a trusted process are sensitive and need encryption. CHAOS tracks the virtual
address range of insensitive memory-mapped files by tracking the related system calls (e.g. sys mmap).
Pages mapped to the above memory range need not be encrypted.

CHAOS transparently isolates process memory by intercepting the page table updating requests (e.g.
set pte()). Whenever a page is allocated to a trusted process, CHAOS updates the table entry that corre-
sponds to the allocated page. CHAOS then forbids further unauthorized mappings to the allocated table
entry by validating each page table updating request. When a page is de-allocated, its previous mapping
will be restored to make this page accessible by the Linux kernel again.

3.2.4 Paging of a Trusted Process

CHAOS marks all pages as insensitive if they are still being mapped by at least one trusted process. As
mentioned before, CHAOS tracks the mapping of a page by intercepting page table updating requests. When
the reference count of a page decreases to zero, i.e. the page is to be de-allocated and swapped out to disk,
CHAOS encrypts the page and treats this page as a normal one. Thus, the page swapper will be able to
map this encrypted page and swap it out. When the page is swapped in again, CHAOS will decrypt the
page, increase its reference count, and mark it as insensitive before handing it over to the trusted process.

3.2.5 Trusted System Call Layer

Since the Linux kernel and a trusted process are considered mutually untrustworthy in CHAOS, strict
isolation prevents most kernel-user data transfer. However, parameters and return values still need to be
passed between them during system calls. Some of them are stored in user space and passed through memory,
e.g. user buffers for I/O related system calls.

As the Linux kernel cannot access the memory space of a trusted process, CHAOS implements a RPC
(Remote Procedure Call) layer for trusted system calls in Xen to monitor and handle data exchanges between
the Linux kernel and trusted processes. CHAOS first validates a system call and finds the memory locations
of the parameters. Then, CHAOS copies the parameters from the user space to a pre-allocated buffer, and
adjusts the system arguments to make sure the kernel can correctly fetch them. Cryptographic approaches
are used to conceal sensitive information, as described in section 3.3. On returning from a system call,

FDUPPITR-2007-08001 8

CHAOS also checks the data and copies them to proper memory locations indicated by the system call
arguments. The TSC layer uses the POSIX (Portable Operating System Interface for uniX) standard to
interpret and pass parameters for a TSC, thus should be portable to all operating systems conforming to
the POSIX standard.

3.3 I/O Sealing

Like other trusted computing systems, CHAOS uses cryptographic approach to ensure the security of per-
sistent data, but in a transparent way. CHAOS supports both system-call based I/O and memory mapped
I/O.

For system-call based I/O, CHAOS mainly relies on the TSC Layer to do I/O sealing on security-sensitive
files. Upon interceptions of I/O related system calls, CHAOS encrypts/decrypts the associated data before
resuming the execution in the kernel/trusted process. The system call arguments are modified accordingly to
ensure correct data transfer. In contrast, memory-mapped I/O is handled using the page fault mechanism.
When a page is allocated (i.e. set pte()) to service a no page fault incurred by a trusted process, CHAOS
decrypts the content of the page before it is handed over. The memory-mapped virtual address range is
recorded during each memory map system call (i.e. sys mmap()).

3.3.1 CHAOS File Format

In CHAOS, files are classified into two categories: (1) public files shared among all processes, including system
configuration files (e.g. /etc/mtab), proc files and device files; (2) private files exclusively owned by a trusted
process, which usually contain sensitive information. CHAOS protects private files by encrypting them using
symmetric cipher (e.g. Advanced Encryption Standard, AES). As the public files should be accessible by
multiple mutually untrusted processes, they should not contain sensitive information and should not be
encrypted.

Public files can usually be identified by the file names, such as (/etc/∗, /proc/∗, /dev/∗, etc.). CHAOS
should differentiate the private (encrypted) files from the public (plain) files. It is important that an encrypted
file is self-evident and compatible. It should contain information on the permission and ownership of this
file, i.e., which application on which platform could manipulate the file. It should also require no adjustment
of existing file formats. To satisfy these two requirements, a CHAOS file is encrypted using a symmetric key
and the key is also sealed together with a platform tag using the public key of the platform owning the file.
The tag resembles UUID 5 and is a number that uniquely identifies the platform. The sealed key and tag are
appended to encrypted file and will be used by CHAOS to distinguish between an encrypted file and a plain
file. Hence, CHAOS does not need to know the detail of the file format, and thus maintains compatibility
with existing files. We also provide a simple tool to encrypt the file.

3.3.2 Key Management and I/O Sealing

CHAOS uses both asymmetric and symmetric cipher to protect files owned by trusted processes. CHAOS
uses the storage root key (SRK) in the TPM [28] as the platform key and utilizes it to generate other keys.
The SRK consists of a public/private key pair (PK-SRK and SK-SRK). The PK-SRK is used by third
parties to sign data to the platform, while the SK-SRK is used to decrypt the data. To secure software
distribution, CHAOS requires a binary file to be encrypted using a random symmetric key. The symmetric
key is also encrypted using the PK-SRK of a platform and appended in the binary file.

As shown in Figure 4, CHAOS relies on a group-based key management scheme to handle file I/O for
trusted processes. The file I/O is sealed and unsealed using symmetric cipher. All trusted processes using
the same binary image share the same encryption key provided by the image. Thus, an execve() after a
fork() should require the child process to use a different encryption key, which can be retrieved from the
image file. When an opened file is closed, CHAOS appends the encryption key together with a platform tag
6(encrypted together using the public key of the SRK) to the end of the file. On opening a file, CHAOS
first retrieves the encryption key and tried to match the tag. If the tag does not match, we know it is not

5http://en.wikipedia.org/wiki/UUID
6A platform tag is essentially a unique ID that represents a machine.

FDUPPITR-2007-08001 9

Figure 4: Key management in CHAOS.

an encrypted file. However, a trusted process is not allowed to write unencrypted data to a regular file.
Therefore, even if a malicious kernel could trick CHAOS by disguising an encrypted file as a normal file
(e.g. system configuration files), no secret will be divulged because subsequent data written to the file are
encrypted. On closing an encrypted file, CHAOS appends the encrypted key together with the tag to the
end of the file. Newly created files should also be encrypted and appended with the key and tag on file
closing.

Sometimes an I/O operation is not aligned, i.e., it does not conform to the block size of a ciphering algo-
rithm. To handle this, CHAOS transparently adds some compensating system calls to perform compensative
work for the user-issued system call. For instance, for an unaligned write operation, CHAOS needs to fetch
the unaligned chunk, decrypt the content, combine the data to make it be aligned to the block size, encrypt
them, and finally write back the sealed data. To mitigate possible overhead, CHAOS uses system call clus-
tering [21] to batch independent calls to a multicall. It reduces the number of transitions between the VMM
and the kernel. The clustering is completely transparent to user applications. Fortunately, trusted processes
using buffered I/O could largely mitigate the overhead by reducing the number of system calls.

3.4 Trusted Process Management

3.4.1 Identifying a Trusted Process

CHAOS needs to track the execution of a trusted process, thus it needs to uniquely identify a trusted process.
As a page table is generally unique for each trusted process, the VMM uses the page table base (PTB) to
identify a trusted process [13]. Because loading the PTB into hardware is done by the VMM, a malicious

FDUPPITR-2007-08001 10

Source Components Lines of Code
Interposition 217
TSC Layer 2,281

Page Tracking 605
I/O Sealing 654

Process Manager 256
Miscellaneous 173

Total changes in Xen 4186
changes in Linux 227
Total line of code 4,413

Table 2: The number of non-comment lines of source code in CHAOS for Xen-Linux-2.6.16 on Xen-3.0.2.

OS cannot trick the VMM with a faked trusted process.

3.4.2 Running a Trusted Process

Many applications use dynamically linked library (DLL) to minimize the code size. However, this could
undermine the security concern since DLLs are shared among processes. The DLLs may be tampered with
by other processes to inject malicious code to observe and steal secrets. To prevent such attacks, CHAOS
requires a trusted application be statically linked and encrypted using the public key of this platform. We
believe static linking should not be a problem for compatibility, and there are also tools available to convert
a dynamically linked executable to a statically linked one [5]. Further, static linking can avoid ”DLL Hell”
7 problem and making programs mostly independent of the system environment, although at the cost of
increased memory usage. Besides, the performance could be slightly improved due to reduced indirection
and increased locality [10].

A trusted application can run as a trusted process by simply appending an extra flag to the argument list
to inform the OS kernel and the VMM. As the OS kernel does not know the private key required to decrypt
the program code and data, launching a trusted process should be in cooperation with the VMM. Thus,
even if a user or the operating system has maliciously tampered with the flag, it cannot run the program
correctly. Here, standard process launching (e.g. do execve() in Linux) is adjusted to invoke a hypercall to
Xen, and register a control structure to monitor the process.

A trusted process follows the scheduling policies of OS and time-shares the CPU with others. A process
context switch is intercepted by the VMM since it is required to update the PTB (i.e. CR3 in x86). Upon
a context switch, the VMM examines the PTB to determine whether the process is trusted or not.

3.4.3 Interprocess Communication

Interprocess communication (IPC) allows processes to communicate and exchange data. As IPC requests are
usually delivered using system calls, the VMM can intercept these requests and make decisions on whether to
block or to proceed. Generally, as IPCs require collaboration between two communicating parties, a trusted
process could be aware of its communication with an untrusted counterpart. Therefore, CHAOS allows the
IPC requests issued from a trusted process, but denies IPCs initiated from processes not in the same trusted
group.

3.5 Implementation Complexity

Table 2 lists the implementation complexity of CHAOS for Linux-2.6.16 and Xen-3.0.2. A relatively small
amount of source code is added for CHAOS. As illustrated in the table, CHAOS is made of 4,413 non-
comment lines of code. The code changes consist of 227 lines of code, most of which are changes to the
interrupt handling routines and file I/O (to implement I/O system-call clustering (in section 3.3.2)). Thus,
CHAOS introduces only a small amount of changes to existing systems, and incurs only a modest increase
in the system complexity and little degradation to the trustworthiness of the Xen VMM.

7http://en.wikipedia.org/wiki/DLL hell

FDUPPITR-2007-08001 11

3.6 Discussions and Limitations

DMA Access: Currently, for platforms without an I/O MMU (e.g. most x86-based platforms), CHAOS is
still vulnerable to unrestricted DMA accesses. A hardware device can perform arbitrary memory accesses,
including accesses to memory owned by a trusted process. Fortunately, hardware vendors will soon release
hardware extensions to restrict the memory accesses by DMA devices [1]. We plan to incorporate the
extension to close such known vulnerability.

Covert Channels: While CHAOS explicitly protects CPU context, memory and I/O data, there could
be some implicit information leaking to the OS kernel and other process. Typical covert channels include
timing and execution statistics. As in other similar trusted systems, CHAOS does not aim to prevent all
covert channels, but instead tries to make it hard enough to derive sensitive information.

Secure Human Computer Interaction: In light of trusted computing metrics, CHAOS has achieved
code identity (section 3.4.2), curtained memory (section 3.2), Sealed I/O (section 3.3) and Attestation (using
TPM). Yet, secure human computer interaction is an extremely hard problem for most existing systems using
commodity hardware devices (e.g. mouse and keyboard). Recently, Intel Trusted eXecution Technology [12]
is considering hardware devices with protected I/O paths. We intend to use these security enhanced I/O
devices in CHAOS when they are available for highly interactive applications.

DoS Attacks: Assuming the distrust of an OS kernel or legacy code may make software vulnerable to
denial-of-service (DoS) attacks from the OS kernel, due to its role as the service provider [16, 26, 25]. For
example, a malicious OS kernel can provide unintended services for a system call requested by software or
completely refuse to serve it. Although this is still an open problem and there is no general solution, we
intend to provide verifying system calls (VSCs) to ascertain the correctness of OS services. VSCs are similar
to Proof-Carrying Code but are issued by the VMM, thus are completely transparent to user processes. They
are automatically generated by the VMM according to the system call trace of a running trusted process.
CHAOS verifies the results of VSCs according to the execution context, and determines if the OS kernel is
functioning correctly. For example, after a process writes some data chunks to a file, the VMM can selectively
keep the data and issues a read system call to fetch the data back and make a comparison. Since the VSCs
can be selected to mimic the normal sequences of a process, the OS kernel can hardly distinguish it from
normal ones.

Platform Mobility: Like many other trusted computing platforms, CHAOS also restricts the mobility
of resources including files as they are tightly bound to the platform key (SRK). However, the TPM V1.2
standard does provide key migration between TPMs and the key migration has been implemented [19]. This
can largely facilitate the migration of files among trusted peers.

Adapting CHAOS for Other OSes: CHAOS is currently implemented for Linux. Providing tamper-
resistance to trusted processes requires a VMM that understands processes to some extent. Fortunately,
modern OSes share a lot of similarities in their design and implementation, as well as interfaces. For
example, many operating systems conform to the POSIX interface. Thus, the TSC layer, which contributes
to the major source of implementation complexity in CHAOS, can be reused for POSIX-compliant OSes.
We believe that adapting CHAOS to other OSes (e.g. NetBSD, OpenBSD and OpenSolaris) should require
only minimal coding effort since the core mechanisms are very similar.

4 Evaluation

One important issue for CHAOS is that it should not incur too much overhead to the trusted applications.
Meanwhile, it should have minimal performance impact on normal applications that do not require tamper
resistant protection.

To measure the performance overhead of CHAOS, we compared the performance of several applications
running on the following systems and configurations: original Linux-2.6.16; Xen-Linux on unmodified Xen-
3.0.2; normal processes in Xen-Linux running on CHAOS; trusted processes on CHAOS. Besides, to under-
stand the benefit of TSC rewriting (using int 0x81) since it saves the kernel/user crossing for normal system
calls, we also provided the results for normal processes running on CHAOS without TSC rewriting.

All the experiments were conducted on a system equipped with a 2.8GHz Pentium IV with 1GB RAM,
a Realtek 8169 Gigabit Ethernet NIC in a 100M LAN, and a single 160GB 7200 RPM SATA disk. The

FDUPPITR-2007-08001 12

version of Xen-Linux is 2.6.16 and the version of Xen VMM is 3.0.2. The Fedora Core 2 distribution was
used throughout. It is installed on ext3 file system.

As we are currently not aware of general trusted computing benchmarks, we use traditional system-related
benchmarks and typical security-critical applications. Two types of benchmarks were used to characterize
the performance overhead of CHAOS: (1) application-level benchmarks to study the performance overhead
of CHAOS against other mentioned systems and configurations. (2) micro-benchmarks to gain more precise
performance results of some particular subsystems in all the test systems. Since applications that demand
tamper-resistance protection should be statically linked in CHAOS, all tested benchmarks are statically
linked for fairness. The results presented are the median of five trials.

4.1 Application Benchmarks

For application benchmarks, we report the performance results for SPECCPU-INT 2000 testsuite. we also
use two prevalent server applications demanding tamper-resistance protection: the very secure FTP daemon
(vsftpd), which is a de facto FTP server in UNIX environments; and Apache http daemon, the prevalent
http server (httpd). Table 3 describes the methods used to measure these two applications.

Apps connection time transfer rate
vsftpd average time of requesting 100 empty files using wget download rate of a single 165MB file
httpd use ab (apache benchmark) with “ab -n 20000 -c 500 filename“ to get a 2KB file

Table 3: Test methodologies for the two server applications.

0.5

0.6

0.7

0.8

0.9

1.0

Total gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

Native Linux Xen Linux CHAO S Int80 Normal CHAO S Int81 Normal CHAO S Trusted

Figure 5: Relative results of SPECINT-2000 for Native-Linux, unmodified Xen-Linux, normal process (with-
out and with system call rewriting) and trusted process in CHAOS.

Figure 5 shows the performance overhead for SPECINT-2000. As shown int the figure, CHAOS incurs
only undetectable performance overhead to normal applications and trusted applications in CHAOS. This
is because the incurred overhead mainly lies in the TSC layer and I/O sealing, without impacts on user-
level activities. For CPU-intensive applications, most of their execution is in user space. As the overhead
from system calls are amortized in application benchmarks, the incurred performance overhead is nearly
undetectable. Although not significant, it can still tell from the figure that the results for normal applications
without system call rewriting degrade a little compared to those with system call rewriting.

Figure 6 depicts the performance overhead for vsftpd and apache httpd, including the data for both
connection time and transfer rate. For transfer rate of vsftpd, the incurred overhead is nearly undetectable
because most operations are network-bounded, without lots of system calls. For the connection time of
vsftpd, the incurred overhead is a bit higher (about (9%) due to a number of file creation, open and close

FDUPPITR-2007-08001 13

0.5

0.6

0.7

0.8

0.9

1.0

Vsftpd Transfer Rate Vsftpd Connection Time Httpd Transfer Rate Httpd Connection Time

Native Linux Xen Linux CHAOS Int80 Normal CHAOS Int81 Normal CHAOS Trusted

Figure 6: Relative results of vsftpd and apache httpd for Native-Linux, unmodified Xen-Linux, normal
process (without and with system call rewriting) and trusted process in CHAOS.

tests L-O X-N C-W C-N C-T Overhead
Null.call 0.39 0.40 0.75 0.40 2.4 2.01 6.2X

stat 1.60 1.65 1.95 1.66 9.41 7.81 5.9X
open&close 2.40 2.67 3.17 2.64 11.97 9.57 4.9X

read 0.50 0.50 0.86 0.51 3.70 3.20 7.4X
write 0.46 0.47 0.84 0.48 3.51 3.05 7.5X
fstat 0.63 0.64 0.99 0.63 3.98 3.35 6.4X

Table 4: lmbench system call results for Native-Linux (L-O), unmodified Xen-Linux (X-N), normal process
(without (C-W) and with (C-N) system call rewriting) and trusted process in CHAOS (C-T) in µs.

operations. The incurred overhead for apache httpd is within 15% for connection time and 7.2% for transfer
rate. The major incurred overhead also comes from the large numbers of disk I/O operations. However, the
incurred overhead is still tolerable for applications demanding tamper-resistant protection.

4.2 Micro-benchmarks

Micro-benchmarks provide a more intimate understanding of the incurred performance overhead. The bench-
marks were chosen from LM-bench 3.0-a5 micro-benchmark suite, with five tests as shown in Table 4. As
shown in the figure, CHAOS incurs negligible overhead over normal processes, because the system calls are
made directly between OS kernel and user applications without the intervention from CHAOS. In contrast,
CHAOS incurs a relative high overhead for trusted processes. The performance of CHAOS without TSC
rewriting for normal process is high due to the unnecessary system call interceptions. This also reflects the
proportion of TSC interception in the total incurred overhead.

From Table 4, we know the performance overhead for a read/write system call is relatively high since
it involves the data forwarding and decryption/encryption operations, which tends to be time-consuming.
The overhead for an open/close system call is a bit high since opening an encrypted file involves matching
the tag and key appended to the file. For all system calls, the TLB flushes incurred by reloading page
tables cost some performance overhead. Although the performance penalty for system calls is relatively
high, however, we believe it is quite justifiable for applications demanding tamper-resistance. Yet, as shown
in the application benchmark, the amortized overhead is still modest.

FDUPPITR-2007-08001 14

5 Related Work

While there are many schemes and innovations proposed for a tamper-resistant execution environment, our
work differs from previous efforts in that it relies on existing programming languages, conventional operating
systems and commodity hardware to retain backward compatibility for existing applications. We only discuss
the closely related work here.

XOM and Aegis: XOM [17] and Aegis [26] use core CPU architectural enhancements to support tamper-
resistant software. XOMOS [16] examines these enhancements to support an untrusted commodity OS (IRIX
in their case). XOMOS and Aegis do not trust main memory and encrypt off-chip data, which results in a
strong tamper-resistant environment even to physical attacks. Yet, it could also incur high CPU overhead
due to encryption. By contrast, CHAOS uses a VMM with a commodity OS to support tamper-resistant
protection, which can be more flexible and practical. It relies only on commodity hardware and does not
require changes to the core CPU architectures.

Pioneer: Pioneer [23] is a trusted computing primitive that utilizes time-difference as well as cryptographic
approaches to ascertain untampered software execution. Functions executing longer than normal indicates
possible tampering. It aims at preserving the integrity of the code and execution, but not privacy. Besides,
the approach is applicable only to a restricted execution environment (e.g. no SMP, no SMI and should
execute at most privileged level) and may not work correctly if the OS becomes malicious or compromised.

Proxos: Proxos [27] aims to provide tamper-resistant protection to application by partitioning the system
calls between a private OS and a commodity OS, thus reusing the functionality in a commodity OS. However,
the private OS in Proxos can only support limited functionalities (e.g. single address space and single-
threaded). If the private OS is full-fledged, then its code size will inevitably be comparable to a commodity
operating system, which degrades its trustworthiness. Moreover, Proxos requires programmers to customize
the sensitivity of system calls. It incurs a relatively high overhead due to the need to create a VM for each
process and inter-VM switches during system calls. Besides, Proxos cannot prevent attacks from the machine
owner.

Type-safe OS: There is a recent trend that uses type-safe languages to build new operating systems
to host security-sensitive applications. Singularity [11] employs safe languages (e.g. C#) to build a new
operating system with the primary goal of dependability, but not compatibility. Instead of heavily relying
on runtime monitoring, Singularity utilizes type-safety of a program and uses compilers to statically verify
its safety and trustworthiness, which differs from CHAOS in the design goals and approaches.

MAC-based OS: In the past, mandatory access control (MAC) systems have been widely used to enhance
system security. One typical system is SELinux [18]. It integrates fine-grained access control policies to many
system resources in Linux. However, the policies are usually rather big and complex. They are hard to derive
and to verify their completeness. Other MAC-based systems such as Eros [24], Asbestos [8] and Histar [29]
are not designed to retain backward compatibility. They build new operating systems from scratch and
require modifications to existing applications to be ported.

VMM-based Resource Tracking: Tracking processes and resources in a virtualized environment [13,
14] has recently been investigated. They aim to bridge the semantic gap between a VMM and the operating
systems thereon by deriving useful information from hardware events (e.g. page faults, context switches).
However, these systems are mainly designed to improve the efficiency of the resource utilization. In contrast,
CHAOS monitors and tracks processes and resources mainly for tamper-resistance.

6 Conclusion

In this paper, we present CHAOS, a trusted computing infrastructure that transparently provides a tamper-
resistant execution environment for a commodity OS kernel. CHAOS uses a trusted VMM to interpose
privileged operations, isolate sensitive information and seal persistent data, thus protects a trusted process
from exposing its private data and prevents tampering from a compromised OS kernel and other processes.
It also utilizes cryptographic approaches to securing software distribution and process launching. In contrast
to other schemes, CHAOS embraces both functionalities and tamper-resistance, yet is cost-effective. It also
retains backward compatibility.

FDUPPITR-2007-08001 15

References
[1] Abramson, D., Jackson, J., Muthrasanallur, S., Neiger, G., Regnier, G., Sankaran, R., Schionas, I., Uhlig, R.,

Vembu, B., and Wiegert, J. Intel Virtualization Technology for Directed I/O. Intel Technology Journal 10, 3 (2006),
179–192.

[2] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., and Warfield,
A. Xen and the art of virtualization. In Proc. SOSP (2003), pp. 164–177.

[3] BIRRELL, A., and NELSON, B. Implementing Remote Procedure Calls. ACM TOCS 2, 1 (1984), 39–59.

[4] CERT Coordination Center. http://www.cert.org, 2007.

[5] Collberg, C., Hartman, J., Babu, S., and Udupa, S. Slinky: Static Linking Reloaded. In Proc. USENIX ATC (2005),
pp. 309–322.

[6] CVE-2006-0038. Linux kernel netfilter do replace local buffer overflow vulnerability. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2006-0038.

[7] Duc, G., and Keryell, R. Cryptopage: an efficient secure architecture with memory encryption, integrity and information
leakage protection. In Proc. ACSAC (2006).

[8] Efstathopoulos, P., Krohn, M., VanDeBogart, S., Frey, C., Ziegler, D., Kohler, E., Mazières, D., Kaashoek,
F., and Morris, R. Labels and event processes in the asbestos operating system. In Proc. SOSP (2005), pp. 17–30.

[9] Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., and Boneh, D. Terra: a virtual machine-based platform for
trusted computing. In Proc. SOSP (2003), pp. 193–206.

[10] Ho, W., Chang, W., and Leung, L. Optimizing the performance of dynamically-linked programs. In Proc. USENIX
(1995), pp. 19–19.

[11] Hunt, G., Hawblitzel, C., Hodson, O., Larus, J., Steensgaard, B., and Wobber, T. Sealing os processes to improve
dependability and safety. In Proc. EuroSys (2007).

[12] Intel. Intel trusted execution technology. http://www.intel.com/technology/security/, 2006.

[13] Jones, S., Arpaci-Dusseau, A., and Arpaci-Dusseau, R. Antfarm: Tracking Processes in a Virtual Machine Environ-
ment. In Proc. USENIX ATC (2006).

[14] Jones, S. T., Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H. Geiger: Monitoring the buffer cache in a virtual
machine environment. In Proc. ASPLOS (2006), pp. 14–24.

[15] Krohn, M., Efstathopoulos, P., Frey, C., Kaashoek, F., Kohler, E., Mazieres, D., Morris, R., Osborne, M.,
VanDeBogart, S., and Ziegler, D. Make least privilege a right (not a privilege). In Proc. HotOS (2005).

[16] Lie, D., Thekkath, C., and Horowitz, M. Implementing an untrusted operating system on trusted hardware. In Proc.
SOSP (2003), pp. 178–192.

[17] Lie, D., Thekkath, C., Mitchell, M., Lincoln, P., Boneh, D., Mitchell, J., and Horowitz, M. Architectural support
for copy and tamper resistant software. In Proc. ASPLOS (2000), pp. 168–177.

[18] Loscocco, P., and Smalley, S. Integrating Flexible Support for Security Policies into the Linux Operating System. In
Proc. FREENIX (2001), pp. 29–42.

[19] Mao, W., Yan, F., and Chen, C. Daonity: grid security with behaviour conformity from trusted computing. In Proc.
ACM STC (2006), pp. 43–46.

[20] Peinado, M., Chen, Y., England, P., and Manferdelli, J. NGSCB: A Trusted Open System. In Proc. ACISP (2004),
pp. 86–97.

[21] Rajagopalan, M., Debray, S., Hiltunen, M., and Schlichting, R. Cassyopia: Compiler assisted system optimization.
In Proc. HOTOS (2003), pp. 103–108.

[22] securityfocus. Windows vista voice recognition command execution vulnerability.
http://www.securityfocus.com/bid/22359/, 2007.

[23] Seshadri, A., Luk, M., Shi, E., Perrig, A., van Doorn, L., and Khosla, P. Pioneer: verifying code integrity and
enforcing untampered code execution on legacy systems. In Proc. SOSP (2005), pp. 1–16.

[24] Shapiro, J., Smith, J., and Farber, D. EROS: a fast capability system. In Proc. SOSP (1999), pp. 170–185.

[25] Singaravelu, L., Pu, C., Hartig, H., and Helmuth, C. Reducing TCB complexity for security-sensitive applications:
Three case studies. In Proc. EuroSys (2006), pp. 161–174.

[26] Suh, G., Clarke, D., Gassend, B., van Dijk, M., and Devadas, S. AEGIS: architecture for tamper-evident and
tamper-resistant processing. In Proc. Supercomputing (2003), pp. 160–171.

[27] Ta-Min, R., Litty, L., and Lie, D. Splitting Interfaces: Making Trust Between Applications and Operating Systems
Configurable. In Proc. OSDI (2006), pp. 279–292.

[28] Trusted Computing Group. http://www.trustedcomputing.org.

[29] Zeldovich, N., Boyd-Wickizer, S., Kohler, E., and Mazieres, D. Making Information Flow Explicit in HiStar. In
Proc. OSDI (2006), pp. 279–292.

FDUPPITR-2007-08001 16

