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Abstract
Many classic and emerging security attacks usually

introduce illegal control flow to victim programs. This

paper proposes an approach to detecting violation of

control flow integrity based on hardware support for

performance monitoring in modern processors. The key

observation is that the abnormal control flow in security

breaches can be precisely captured by performance

monitoring units. Based on this observation, we design

and implement a system called CFIMon, which is the

first non-intrusive system that can detect and reason

about a variety of attacks violating control flow integrity

without any changes to applications (either source or

binary code) or requiring special-purpose hardware.

CFIMon combines static analysis and runtime training

to collect legal control flow transfers, and leverages

the branch tracing store mechanism in commodity

processors to collect and analyze runtime traces on-the-

fly to detect violation of control flow integrity. Security

evaluation shows that CFIMon has low false positives or

false negatives when detecting several realistic security

attacks. Performance results show that CFIMon incurs

only 6.1% performance overhead on average for a set

of typical server applications.

1. Introduction

Security breaches have been a major threat to the de-

pendability of networked systems, due to the inevitable

security vulnerabilities in many software systems.

Viruses exploiting such vulnerabilities have caused loss

in millions of dollars [1], [2], [3], resulting in not

only economic problems, but also significant social

impact [4], [3].

Currently, many classes of security exploits usually

involve introducing abnormal control flow transfers. For

example, the code-injection attack leverages security

vulnerabilities to inject malicious code to a program and

then redirects control flow to the injected code to gain

control. To bypass protection from processor and OS

support for non-executable stack, sophisticated attack-

ers switch to code-reuse attack that leverages existing

code to form malicious gadgets. There are currently

multiple classes of code-reuse attacks: 1) return-to-libc

attack [5], which overwrites stack to redirect the control

to library functions in libc; 2) return-oriented pro-

gramming [6], which injects a forged stack containing

instruction addresses in existing binary and leverages

ret-like instructions to transfer control flow among these

instructions to form malicious gadgets; 3) jump-oriented

programming [7], which uses indirect branches instead

of “ret” and a dispatcher gadget to transfer control flow

among existing binary to form malicious gadgets.

There are current many countermeasures to defeat

against these attacking means. Some approaches de-

fend against code-injection attacks, including Stack-

Guard [8], FormatGuard [9] and non-executable stacks.

Some systems defend return-oriented programming by

leveraging either heuristic characteristics [10] and elim-

inated all “ret” instructions [11], [12]. However, these

approaches are usually ad-hoc to a specific protection

means. For jump-oriented programming, there are cur-

rently few effective means to defend against it.

There are also several general approaches that may

defeat against these attacks. For example, control flow

integrity [13] statically rewrites a program and uses

dynamic inlined guards to check the integrity of control

flow. However, this approach may suffer from the cov-

erage problems as static analysis along can easily either

overlook legal or tolerate illegal control flow transfers.

Control flow locking [14] recompiles a program to limit

the number of abnormal control flow transfer, which is

thus difficult to be applied to legacy applications.

To improve the efficiency and/or coverage of detec-

tion of control flow violation, researchers have also

proposed architectural support to validate or enforce

control flow integrity [15], [16], [17]. For example,

Shi et al. [17] enhance the branch target buffer with



a bloom-filter like signature table to abnormal control

flow. However, these proposals need to change existing

processors, thus are not readily deployable in stock

systems.

In this paper, we propose a non-intrusive approach to

detecting a set of attacks that cause abnormal control

flow transfers, without changes to existing hardware,

source code or binaries. The approach we propose,

namely CFIMon, leverages the pervasively available

hardware support for performance monitoring in com-

mercial processors, to collect the legal sets of control

transfers and monitor control flow deviation of a running

application to detect possible attacks. The key observa-

tion of CFIMon is that security breaches causing abnor-

mal control flow that can be precisely captured by the

branch tracing mechanisms in performance monitoring

units in commodity processors.

Performance monitoring units have been standard

components in almost all commercial processors. They

provide non-intrusive and low-overhead ways of online

performance monitoring and optimization. To improve

monitoring precision [18], [19] and lower performance

overhead, commercial processors have been integrated

with support for precise monitoring mode, including

Intel’s Precise Event Based Sampling (PEBS) [20],

AMD’s Instruction-based Sampling (IBS) [21] and Pow-

erPC’s Instruction Marking. To analyze control flow be-

havior of a program, commercial processors have been

integrated with support for Branch Tracing, including

Intel’s Branch Trace Store (BTS) and Itanium2’s Branch

Trace Buffer (BTB). These features allow collecting

all branch instructions in a predefined buffer for future

analysis.

We leverage hardware support for performance mon-

itoring, which is originally designed for tuning the

performance of both applications and system software,

to collect legal control transfers and detect violation of

control flow integrity. To detect such attacks, we use

both static analysis and runtime training to collect the

legal set of control flow transfers. During the training

phase, CFIMon continuously monitors the performance

samples using the BTS mechanism and correlates the

traces with the set obtained from static analysis to

generate a high-precise set of control transfers. During

normal execution, CFIMon also uses the BTS mecha-

nism to collect and analyze in-flight control transfers.

Any deviation in performance samples can be used as

signs of possible attacks. Upon the detection of an

attack, the recorded branch traces can be used to locate

the exploited security vulnerability and reason how the

vulnerability is exploited.

We have designed and implemented a prototype based

on perf events [22] supports in Linux kernel 2.6.34 1,

to detect possible attacks. CFIMon currently supports

x86 architecture, including Intel Core Duo, Core i5 and

i7, using the PEBS and branch trace store mechanism

in these processors.

To measure the effectiveness of CFIMon, we have

conducted a variety of security tests using real-world

vulnerabilities, including heap/stack/integer overflow,

format string vulnerabilities and dangling pointers. Our

evaluation results indicate that CFIMon can precisely

detect the attacks at the first time it happens. We also

show that it is very easy to reason about the attacks us-

ing the branch traces collected by CFIMon. Performance

evaluation results show that CFIMon incurs modest

performance overhead for real-world applications.

Based on our experience, we further propose several

enhancements to existing performance monitoring units

(PMUs) for both performance and detection ability. To

further lower performance overhead, we propose adding

event filtering mechanism in Branch Trace Store to se-

lectively record a few branches instead of recording all

branching instructions. To further enhance the detection

ability of CFIMon, such as detecting non-control-data

attacks [23], current PMUs can be enhanced to support

collecting precise linear address of each memory opera-

tions. Finally, current PMUs can be enhanced to support

simultaneously monitoring of multiple events precisely,

so that multiple events could be used to simultaneously

detect a variety of attacks (e.g., control and non-control

data attacks).

In summary, this paper makes the following contri-

butions:

• The key observation that abnormal control transfers

in security breaches can be precisely captured in

performance samples of the Branch Trace Store

mechanism.

• The CFIMon system for detecting security

breaches, which is the first system that leverages

the hardware support for performance counters to

precisely detect and analyze attacks.

• A working implementation of the above techniques

on commercial processors, as well as security and

performance evaluation to demonstrate the effec-

tiveness of our approach.

The rest of the paper is organized as follows: The

next section provides some background information on

existing hardware support for performance monitoring.

Section 3 illustrates the idea and design of CFIMon, fol-

lowed by the implementation issues in section 4. After

describing the experimental setup, the security analysis

of CFIMon and its incurred performance overhead are

1. It should be easy to port CFIMon to other OSes such as Windows
and FreeBSD, which will be our future work.



evaluated in section 5.1 and section 5.2 accordingly.

Section 6 discusses some implications on hardware

enhancement for further enhancing performance and

detection ability in CFIMon. Finally, we review pre-

vious literature in section 7 and conclude the paper in

section 8.

2. Performance Monitoring Units

There are generally two working modes of PMUs:

interrupt-based mode and precision mode. In the first

mode, a counter will automatically increase and gen-

erate an interrupt when it has reached a predefined

threshold (i.e., event-based sampling) or predefined time

has elapsed (i.e., time-based sampling). This is the

basic performance counter mode, which supports most

types of events, but lacks precise instruction pointer

information, resulting in that the reported IP (instruction

pointer) is up to tens of instructions away from the

instruction causing the event, due to the out-of-order

execution in modern processors. For example, according

to AMD’s manual, the reported IP may be up to 72

instructions away from the actual IP [21] causing the

event.

To improve the precision and flexibility of PMUs,

most commodity processors also support a precise mode

of performance monitoring, including the Precise Event-

Based Sampling (PEBS), Branch Trace Store (BTS),

Last Branch Record (LBR) and Event Filtering (EF).

Currently, most existing commodity processors support

parts of the features mentioned above.

Precise Performance Counter: In PEBS, the sam-

ples of performance counters are written into a pre-

registered memory region. When the memory region

is nearly full, an interrupt is generated to trigger the

handler. By batching the samples and processing them

together, this mechanism improves the performance

of monitoring significantly. Meanwhile, thanks to the

atomic-freeze feature, the IP addresses recorded in

traces are exactly the ones causing the event. However,

only a few events are PEBS events in Intel Core and i7

processors.

Branch Trace Store: Intel’s BTS mechanism pro-

vides the capability of capturing all control transfer

events and saving the events in a memory-resident BTS

buffer. The events include all types of jump, call, return,

interrupt and exception. The recorded information in-

cludes the addresses of branch source and target. Thus,

it enables the monitoring of the whole control flow of

an application. Similar as PEBS, the branch trace is

also recorded in a pre-registered memory region, which

makes the batching processing possible.

Last Branch Record: LBR in Intel Core and Core

i7, as well as Branch Trace Buffer (BTB) in Itanium2,

records the most recent branches into a register stack.

This mechanism records similar data as in BTS. It

records the source address and target address of each

branch, thus provides the ability to trace the control

flow of a program as well. However, due to the small

size of the register stack (e.g., Intel Core has 4 pairs,

Core i7 has 16 pairs, Itanium2 has 8 PMD registers),

previous samples may be overwritten by upcoming

samples during monitoring.

Event Filtering: The Event Filtering mechanism pro-

vides additional constraints to record events. It is used

to filter events not concerned with. For example, latency

constraints can be applied in Itanium2’s cache related

events, which only count on high latency cache misses.

Further, constraints such as “do not capture conditional

branches”, “do not capture near return branches” are

generally available on recent processors, which support

LBR/BTB such as Intel Core i7 and Itanium2. However,

this mechanism is currently only available in LBR/BTB,

control transfers recorded in BTS lack this type of

filtering support.

Conditional Counting: To separate user-level events

from kernel-level ones, PMUs also support conditional

event counting: they only increment counter while the

processor is running at a specific privilege level (e.g.

user, kernel or both). Further, to isolate possible inter-

ferences in performance counters among multiple pro-

cesses/threads, operating systems are usually enhanced

by saving and restoring performance counters during

context switches.

3. CFI Enforcement by CFIMon

CFIMon adopts two phases: offline phase and online

phase. During the offline phase, CFIMon builds a legal

set of target addresses for each branch instruction.

During the online phase, CFIMon collects branch traces

from applications and diagnoses possible attacks with

legal sets following a number of rules. A rule can be

applied to a portion or all of branch traces, and can

determine the status of the branch as legal, illegal or

suspicious. Further decision will be made depending on

the status of the branch and context.

This section first describes the requirements of dif-

ferent branch types for enforcing control flow integrity,

and then presents the reasons of choosing the BTS

(Branch Trace Store) among all the performance coun-

ters to monitor the control flow. Finally, we describe our

approaches to detecting typical attacks and use several

real-world vulnerabilities to show how to detect control

flow violation when the vulnerabilities are exploited,

and discuss possible issues with CFIMon.



Branch Type Branch Example Target Instruction Target Set In Binary Run-time

Direct call callq 34df0 <abort> 1: taken / 16.8% 14.5%

Direct jump jnz c2ef0 < write> 1 or 2: taken or fallthrough / 74.3% 0.8%

Return retq Limited: insn. next to a call ret set 6.3% 16.3%

Indirect call callq *%rax Limited: 1st insn. of a function call set 2.1% 0.2%

Indirect jump jmpq *%rdx Unlimited: potentially any insn. train set 0.5% 68.3%

TABLE 1. Branch Classification. The distribution is from Apache and libraries it uses.

3.1. Branch Classification

The control flow integrity of an application can be

maintained if we can 1) get a legal set of branch target

addresses for every branch, and 2) check whether the

target address of every branch is within the correspond-

ing legal set at runtime. There are five types of branches

in x86 ISA, including direct jump, direct call, indirect

jump, indirect call, and return. Table 1 shows examples

for each branch type.

A direct jump has only one target address if it is an

unconditional jump, or two target addresses if it is a con-

ditional jump. For example, instruction “0x403291: jnz

0x403200” has two possible target addresses: 0x403200

if the branch is taken, and the address of the next

instruction if the branch falls through. Similarly, a direct

call also has only one target address. Since the code

is read-only and cannot be modified during runtime, a

direct branch, either a direct jump or call, is always

considered as a safe one.

However, not all branch instructions have determin-

istic target address set. An indirect jump, e.g., “jmp

%eax”, may theoretically branch to any instruction in

the memory space. It is not possible to gain the whole

legal target address set of indirect jump just by statically

scanning the binary.

Unlike indirect jump, the legal target set of an indirect

call is limited. A call can only transfer control to the

start of a function, which could be obtained by statically

scanning the binary code of the application and the

libraries it uses.

A return instruction branches to an address popped

from the stack, which could only be determined during

runtime. Since a function maybe be invoked through

a function pointer, we cannot know exactly all of its

callers. Fortunately, we finds that in most cases, a return

follows a call instruction. Thus the target address of a

return has to be the one next to a call, which could also

be obtained by scanning the binary code. However, there

do exist several cases of “return-without-call”, which

will be discussed in Section 3.3.

We analyze the distribution of branches in binary and

at runtime. Table 1 presents the distribution of different

types of branches of Apache and the libraries it uses.

As shown in the figure, the indirect branch (including

indirect call/jump and return) takes up only 8.5% in

static binary, but 84.8% at runtime. However, among

all the executed indirect branches, 94.7% have only one

target address, 99.3% have less than or equal 2 target

addresses. There are only 0.1% of all 7736 branches (9

branches) have more than 10 different target addresses.

It indicates that the variation of an application’s control

flow is limited. Thus, only a small number of rules

are needed to diagnose and analyze the branch trace

at runtime.

3.2. Monitoring All Branches at Runtime

To accurately and effectively identify an attack, CFI-

Mon needs precise information of every branch at run-

time for detection. As mentioned in section 2, there are

some mechanisms that can record each control transfer,

e.g. LBR and BTS, thus provide users with the ability

to trace back program execution flow and find how

attackers transfer control flow to the malicious code.

However, since LBR uses a small register stack to store

the branch information, previous samples may be over-

written by upcoming samples during monitoring, and

the overwritten events cannot be detected. Thus, LBR

provides no opportunity to check the samples, which

makes this mechanism hard to be used in detecting

security attacks. On the other hand, BTS can precisely

record all control transfers into a predefined buffer. An

interrupt will be delivered when the buffer is nearly full.

The monitor can then get the trace in a batch and do the

security check. Meanwhile, since the monitor can obtain

all the branch information of a running application, it

can not only detect security attacks, but also identify the

control flow of the execution of malicious code, thus

help users locate the vulnerabilities.

3.3. Detecting CFI Violation

During the offline phase, CFIMon first scans the

binary of application and dynamic libraries to get ret set

and call set. The ret set contains addresses of the

instructions next to each call. The call set contains

all addresses of the first instruction of each function.

CFIMon gathers branch traces from training runs to get



the legal set of branch target for each indirect jump,

namely train sets.

There are several cases that the calling convention

may be violated, including setjmp/longjmp and Unix

signal handling. In the setjmp/longjmp situation, the

longjmp() will not return to its own caller, but return

to the caller of setjmp() instead, which is also a legal

return address. Hence, no false positive will occur. In

the case of Unix signal handling, when a signal has

been received, the OS will invoke the signal handler,

and push a return address on the stack. When the signal

handler returns, it will pop and branch to the address

as if it is invoked from there. Since an application may

be trapped into OS at any instruction, the address may

be any location in the memory space, thus violates the

rules of return. In order to eliminate such false positives,

we modify the OS to notify the monitor when a signal

handler is invoked. The monitor will then omit the alarm

when a signal handler returns.

<source,

target>

<target> in

call_set ?

<target> in

train_set ?

<target> in

ret_set ?

<source> is direct call/jump

<source> is

return

<source> is 

indirect call

<source> is 

indirect jump

<source> is unknown

yes

no

yes

no

yes

no

Legal

Legal

Illegal

Legal

Illegal

Legal

Suspicious

Illegal

Fig. 1. Rules in CFIMon

Figure 1 shows the detail of diagnose module in

CFIMon. Any branch has one of three states: legal,

illegal or suspicious. For every branch sample, the

diagnosis module first handles special cases such as a

return from legal signal handler. Then, it switches into

different cases according to the type of source address,

and considers the state of branches depending on the

target address.

The train sets are obtained through training runs.

CFIMon collects branch traces of an application with

training input, and parses the trace to get the legal target

addresses for each indirect jump, namely train set.

However, the train set may not be complete since

there could be corner cases which are not covered.

Thus, during online checking, if a branch is not in the

train set, it is not considered as illegal but suspicious,

which will be delivered to the diagnose module to make

further decision.

Once the diagnose module discovers an illegal

branch, it will take serious actions such as suspending

the application and triggering an alarm immediately. For

suspicious branches, the diagnose module can make a

flexible decision, depend on the pattern of the branches.

For example, the diagnose module can maintain a

window of the states of recent n branches, and apply a

rule of tolerating at most m suspicious branches in the

recent n ones. The parameter m and n can be adjusted

by the users to make a balance between availability and

security, according to specific requirements of appli-

cation. Our current prototype adopts this slide-window

mechanism.

CFIMon also collects all suspicious branches at run-

time. If the suspicious branches are considered as corner

cases, the trace will be used as the input of online

training to further improve the accuracy of train set.

In order to make the training more accurate, machine

learning technologies can be adopted to analyze the

pattern of continues branches, which is our future work.

3.4. Case Studies of Real-World Exploits

In this section, we use three real-world examples of

the above mentioned attack types and show on how they

could be detected with our approach.

Code-injection Attack of Samba: In this at-

tack, we exploits a heap overflow vulnerability in

the “lsa trans name” function to overwrite a function

pointer called “destructor” in Samba’s malloc header.

When a memory buffer is freed, the destructor will be

called, causing the control to be transferred into the

injected nop-sled 2, which eventually executes shell-

code. The shellcode will open a socket and listen to

tcp connections. Upon each connection, the shellcode

will provide attackers with a remote shell. The attack is

detected since the branches have never appeared in the

train set. The monitor detected such event and triggered

an alarm when the number of suspicious branches

exceeds the threshold.

There may be cases where code execution on stack is

legal, such as trampoline code on the stack for nested

functions in GCC and signal handling code in old

versions of Linux. Fortunately, recent Linux kernel has

abandoned the need of execution on stack for signal

handling. GCC generates trampoline code only when

an nested function address is referenced and the nested

function accesses variables from its outer closure, which

is a very rare case. Even if an application indeed use

code execution in data section, CFIMon can solve the

situation without false positive since the branches will

be in the train set.

2. nop-sled is a piece of code that is semantic equivalent to nops,
which is used to enlarge the chance of transferring to injected code.



Return-to-libc Attack of GPSd: GPSd is a service

daemon that monitors GPSes or AIS receivers attached

to a host computer through serial or USB ports. It makes

all data on the location/course/velocity of the sensors

available to be queried on TCP port 2947 of the host

computer. We use GPSd of version 2.7, which has a

format string vulnerability in “gpsd report” function.

Attackers can overwrite arbitrary memory addresses

with arbitrary values. In our evaluation, we use this

format string vulnerability to overwrite the GOT entry of

“syslog” into “system” library routine address, and the

subsequent calls to “syslog” library routine will actually

invoke “system” with attacker-supplied arguments.

We evaluate CFIMon by detecting this return-to-libc

attack, according to our detection scheme. When the

“system” library routine appear in the branch target

address of the collected traces, CFIMon marks it and

the following branches as suspicious. The number of

suspicious branches quickly exceeds the threshold and

an alarm is triggered as expected.

Return-oriented Programming Attack of Squid:

We use Squid with version 2.5-STABLE1, which is a

widely-used proxy server. In Squid, the helper module

for ntlm authentication has a stack overflow bug in

its function “ntlm check auth”. Attackers can supply

arbitrary password of at most 300 bytes to smash the

stack. After the attack, the return value stored before

old %ebp is overwritten to the address of the first

instruction of our return-oriented shellcode and the stack

is overwritten as the return addresses of return-oriented

shellcode, as shown in Figure 2. When the program gets

to execute “leave”, the stack pointer now points to our

injected return address stack. After the “ret” instruction

execution, control transfers to our shellcode finally.

We use CFIMon to detect this return-oriented pro-

gramming attack. When the malicious code executes the

first “ret” instruction, the monitor finds that the target of

the “ret” is not an instruction next to a “call”. Since the

instruction is not a special case, e.g., signal handling,

CFIMon indicated it as an illegal return.

3.5. Discussions

False Alarms: As most attack detecting systems,

CFIMon might have false positives or false negatives.

For code-injection attacks, since the attack needs to

trigger abnormal control transfer to injected code. Thus,

CFIMon is able to detect code-injection attacks with-

out false negatives. However, there may have some

false positives when detecting code-injection, besides

the trampoline and signal usage in stack or heap,

applications can still execute code on heap or stack,

including some self-modifying code, binary translators

or Java virtual machines. In such cases, CFIMon can

stack

...

ADDR7

ADDR6

ADDR5

ADDR4

ADDR3

ADDR2

ADDR1

old ebp

password

insn1

ret

insn4

ret

insn2

ret

insn3

ret

ADDR4

samples

ret

(ntlm_check_auth) A
D

D
R

5

Inst1->inst2->inst3->inst4->...

ADDR1

ADDR2

ADDR3

Fig. 2. An example return-oriented programming
attack of Squid.

learn application-specific knowledge to filter such false

positives.

For code-reuse attacks, CFIMon needs to prepro-

cess binaries and use training to collect legal sets of

branches. Consequently, if there is imprecision during

the preprocessing, CFIMon might have some false pos-

itives or false negatives. However, CFIMon is able to

learn from the program execution to minimize false

alarms.

Informed Attackers: Attackers knowing the mech-

anisms in CFIMon can still hardly bypass CFIMon.

First, an attacker can leverage the detection latency.

Since CFIMon is triggered when the buffer is full or a

sensitive system call is made, there’s latency from attack

starting. An attacker may carefully construct malicious

code with few or even no branches. When such code is

running, it delays the detection.

Second, an attacker can leverage the slide-window

size. If the attack code is constructed in the form of loop

of “few abnormal-branches + many normal-branches”,

it may use normal-branches to fill the slide-window and

not trigger alert.

We argue that both attacks are hard to construct that

increases the cost of attacking. Meanwhile, in the first

case, one can make a tradeoff between the security level

and performance by setting the buffer size. In the second

case, one can balance between the security level and

false-positive rate by setting the slide-window size.

For example, for attackers exploiting return-oriented

programming, they now have to choose a consecutive

number of unusual branch sequences not covered in

the train sets, which, unfortunately, are very rare in

reality. Further, once the number of suspicious branch

instructions increase to a threshold, CFIMon will report

an alarm. The memory buffer used by BTS is also pro-

tected by CFIMon. If an attacker aims to compromise

the memory buffer, there’ll be abnormal branches too.



4. Implementation of CFIMon

We have implemented CFIMon based on perf events on

Linux kernel version 2.6.34, which is a unified kernel

extension in Linux for user-level performance monitor-

ing. Currently, CFIMon supports Intel Core Duo, Core

i5 and i7 processors and focuses on user-level attacks

only.

BTS

Trace

Buffer

Trace

Buffer

Ret

Sets

Train

Set

Core 0 Core 1

CFIMon

OS

Application

Control Flow

Data Flow

Control

Module

Diagnose ModuleChild Process

Parent Process

Call

Sets

Fig. 3. Architecture of CFIMon.

Figure 3 presents the overall architecture of CFIMon.

There are two components of CFIMon: a kernel ex-

tension and a user-level tool. The kernel extension is

responsible to operate the performance samples, monitor

signals, and provide the interfaces to user-level tool.

The user-level tool has two modules: diagnose module

and control module. The diagnose module uses branch

traces, call set, ret set and train sets as inputs to check

the control flow integrity, and receives information

from the OS to solve special cases such as signal

handling. The control module is in charge of initializing

the environment, launching and synchronizing with an

application.

The user-level tool is executed as a monitoring pro-

cess, which is the parent process of the application

processes. It uses ptrace to synchronize with the ap-

plication processes. When launching an application, the

monitoring process forks a child process. The child pro-

cess first calls ptrace with the flag PTRACE TRACEME

on. Thus, when making the exec system call, it will be

suspended by the OS and its parent process gets to run.

Since the addresses in call set and ret set are obtained

from the binary file of application and dynamic libraries,

they are in the form of relative address. Thus the parent

process will get the memory mapping information of

the child process and transfer the address to absolute

address. After the monitoring process sets up the per-

formance events and trace buffers, it resumes the child.

Afterwards, the two processes can run simultaneously

without any synchronization until next time the child

calls exec, so that the monitoring process has a chance

to run for security check at the critical point. The

monitoring process and the application processes are

binded on different cores on multicore hardware, for

the purpose of further reducing interference between the

two. When the application processes further forks other

children process, the monitoring process can automati-

cally monitor them as well.

When the application starts to run, the BTS counter

generates trace of branch and writes the trace directly

into a memory buffer. Once the buffer is nearly full,

the kernel will copy the trace to user space, and the

monitoring process will start to diagnose. This batching

mode significantly reduces the performance overhead

compared with per-sample check mode. Meanwhile,

when the application processes is trying to invoke

sensitive system calls (e.g. execve which is usually used

by a shellcode), the monitoring process will suspend

the application processes and resume it after the check.

This prevents the application processes from running

out-of-sync, which may cause harmful effects to the

system being made by attacks. The suspend time of

application processes is small since the diagnose process

is simple and effective that only utilizes a little CPU

during execution.

Once a CFI violation is detected, the monitoring

process can take different actions according to different

requirement of applications. It may immediately kill the

application processes or email the administrator, or both.

It can also store the recent branch trace for post-attack

analysis. The administrator can know the process of the

attacking by diagnosing the trace to malicious code and

further fix the vulnerability of the application.

5. Experimental Setup

All evaluations were performed on an Intel Core i5

processor with 4 cores. Each core is with 32k L1

instruction and L1 data cache and a 256K L2 data cache.

The four cores share an 6 MB L3 cache. The machine

has 2BG 1066MHz main memory, a 500GB sataII disk

of 7200 rpm, and a 100Mbps NIC. The operating system

is a Debian-6 with kernel version 2.6.34.

5.1. Security Analysis

We use several real-world applications as well as

two demo programs with the dangling pointer and

integer overflow vulnerabilities to evaluate the detection

ability of CFIMon, which is shown in Table 2. For

these applications with different vulnerabilities, we used



Application Reference Description Vulnerability
Attack Means

Injected Ret-to-libc Ret-oriented

Samba-3.0.21 CVE-2007-2446 file and print server heap overflow
√ √

×
Squid-2.5.STABLE1 CVE-2004-0541 cache proxy stack overflow

√ √ √

GPSd-2.7 CVE-2004-1388 gps device agent format string vul.
√ √

×
Wu-ftpd-2.6.0 CVE-2000-0573 ftp server format string vul.

√ √
×

Wu-ftpd-2.4.2 CVE-1999-0368 ftp server stack overflow
√ √ √

Bug1 Demo bug test program dangling pointer
√ √ √

Bug2 Demo bug test program integer overflow
√ √ √

TABLE 2. Security vulnerabilities for evaluation, which are exploited using three means of attacks:
code-injection (Injected), return-to-libc (Ret-to-libc) and return-oriented programming (Ret-oriented).

three types of attacks to exploit them, namely code-

injection attacks (Injected), return-to-libc attack (Ret-to-

libc) and return-oriented programming (Ret-oriented).

For Samba, GPSd and Wu-ftpd-2.6.0, as we cannot

overflow the stack to construct a return stack with

instruction addresses, we failed to exploit the vulner-

abilities in the three applications using return-oriented

programming. For all these attacks, we set the window

size as 20, and tolerant at most 3 suspicious branches

within the window. Evaluation for Code-Injection

Attacks: To effectively and reliably attack these appli-

cations using code-injection and finally transfer control

to injected code, we use the metasploit framework [24]

to generate nop-sled before the injected code. We attack

each application with injected code five times to test the

false negatives. As expected, all attacks are detected by

CFIMon in the evaluation and CFIMon detects these

attacks at the first time an abnormal performance sample

is generated. During this evaluation, we simply report a

security alarm upon the detection of attacks.

Evaluation for Return-to-libc Attacks: All vulnera-

bilities that can be attacked with code-injection can also

be attacked with the return-to-libc attack. Similar to our

evaluation on code-injection attacks, CFIMon success-

fully detects all these attacks without experiencing false

negatives.

Evaluation for Return-oriented Programming At-

tacks: Similar to other evaluation, CFIMon successfully

detects all these attacks without experiencing false neg-

atives. Return-oriented programming attacks have the

following features: it uses return to organize logic and

heavily use “unintended instruction sequence” to form

code gadgets. It violates the rules of CFIMon which

enforces that the target address of a return instruction

must be the one next to a call. Even if the start address

of the first gadget happens to be the legal target, it is

hard to make all the gadget legal. Such attacks are hard

to be applied on applications using heap overflow or

format string vulnerability, because we cannot modify

the stack top pointer(e.g. %esp) to our supplied return

addresses stack.

Evaluation for Jump-oriented Programming At-

tacks: The jump-oriented programming attack is similar

with return-oriented programming except it uses jump

to organize the malicious code gadgets. We didn’t make

a jump-oriented programming attack on real application.

However, we argue that since this kind of attack relies

heavily on “unintended instruction sequence”, it is likely

to issue an invalid jump instruction, which will be

captured by the CFIMon. Even if it uses all legal jump,

the branches will be marked as suspicious for their

rareness, and an alarm will be reported accordingly.

Evaluation for False Positives: We run several

typical server daemons (e.g., squid, sshd) using CFIMon

in our daily use, to evaluate the false positives in

CFIMon. We check the log every day to see if there

are any false alarms in daily use. With several days

of monitoring, we experience no false positive in our

daily use. Thus, CFIMon could be practically used for

real-world applications in off-the-shell systems with few

false positives.

Samples Corresponding Calls

b7e6b837->b7e6b12f process complete pdu->process request pdu

b7e6b67d->b7e6b06a process request pdu->free pipe context

b7e6b0f3->b7effc32 free pipe context->talloc free children

b7effc97->b7effcde talloc free children->talloc free

b7effd60->b80ce000 talloc free->shellcode(destructor)

TABLE 3. The results of post-attack diagnosis of

code-injection attack for Samba Server

Post-Attack Diagnosis: We also use Samba Server

to demonstrate the post-attack diagnosis ability of CFI-

Mon. As shown in Table 3, CFIMon dumps the per-

formance samples with abnormal control flow when

a code-injection attack is detected. By analyzing the

back traces of the attack, we can easily find that when

calling “destructor” function pointer in “talloc free’, the

shellcode is invoked. Virtually, CFIMon can back trace

as far as the dumped samples can reach. Here only

five function records are presented which is enough for

understanding the attack.



Application Description Performance Matrix Parameters

Apache A widely used web server Throughput of get/put 4 clients put 64KB files and get 1MB file
Latency of get Latency of 4 clients getting 1MB file

Exim A mail transfer agent Mails per second Send 1MB mails

Memcached An object caching server Throughput of values get by key Use trace of Facebook

Wu-ftpd A widely used FTP server Throughput Client gets 700MB file from the server

TABLE 4. Different types of real-world applications for benchmarking

5.2. Performance Evaluation

In this section, we quantitatively evaluate the perfor-

mance of CFIMon using several real-world applications,

which many attacks target at.

Benchmark Selection: To show CFIMon can be

applied to a variety of applications with practical perfor-

mance, we choose different types of server applications,

as shown in Table 4. These applications can be divided

into two categories: 1) widely-used server side applica-

tions, including Apache Web Server, wu-ftpd and Exim

Mail Server [25]; 2) emerging applications including

Memcached [26], which is a distributed memory ob-

ject caching system widely used in many productions

systems in companies such as Facebook, Google and

Yahoo!.

Performance Results: We evaluate these benchmarks

by different performance matrix as shown in Table 4.

Figure 4 shows the relative performance overhead for

these applications, from the figure, we can see that

CFIMon incurs modest performance overhead, with

only 6.1% on average, ranging from 2.3% to 8.4%. We

also compare the overhead of CFIMon with pure BTS

(trace recording only). The overhead of pure BTS is

5.2%, which takes 86% of all the overhead of CFIMon.

The result means that CFIMon can be applied to some

real-world server applications on off-the-shell systems

in daily use.

Figure 5 shows the overhead of CFIMon when clients

get/put files of different size from/to an Apache server.

The performance overhead is less than 5% when the

file size is larger than 2MB, but increases as the file

getting smaller. This is because when the file is large,

the server is I/O-bound. But for small-size file, the

server consumes more CPU. The throughput of apache-

put and apache-get are 42% and 15% of the original

run when the file size is 1KB, respectively. We further

broke down the overhead and found that in this case,

97% of the overhead came from the BTS itself, because

of the frequent memory write of trace buffer.

Memory Overhead: The ret set, call set and

train set of target addresses are organized in the form

of hash table. The size of the tables is quite small:

in Apache, the sum size of both is only a little more

than 200KB. Thus the memory overhead incurred by
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CFIMon is negligible.

6. Implications on Hardware Enhancement

According to our experience, existing performance

monitoring units could be enhanced in the following

ways for the purpose of attack detection:

Event Filtering for BTS: Currently, none of com-

mercially available processor supports Event Filtering

for BTS. Although Intel Core i7 supports Event Filtering

for LBR, its register stack is not big enough for security

diagnosis. If the hardware support for more flexible

filtering of events is available, the performance overhead

and complexity of CFIMon could be further reduced

in different usage scenarios. For example, if the BTS

is with the support of selective sampling of only call

or return instructions, the overhead in CFIMon would



be significantly lowered when detecting return-oriented

programming.

Co-existing Multiple Counters for Security: The

support for simultaneous monitoring of multiple events

is poor in commodity processors. For example, when

monitoring 4 events at the same time in Intel processors,

the precision is lowered and the performance overhead

increases significantly. Hence, we plan to investigate the

hardware support to increase the concurrency level of

performance monitoring, yet without sacrificing perfor-

mance and precision significantly. This also enables the

co-existence of CFIMon with performance tuning.

Precise Linear Address Information of Memory

Stores: Although Intel Core i7 supports precise linear

address information of memory operation with event

mem inst retired:latency above threshold, it cannot be

used to detect non-control-data attacks [23] due to the

following reasons: it randomly tags instructions by hard-

ware and only tagged instructions have linear address

information; as the minimal latency threshold is set to

4, it is unable to report memory loads of latency less

than 4 cycles; To enable the detection of non-control-

data attacks by checking the data flow integrity or write

integrity testing [27], it is desirable for the PMUs to

provide with a precise event which can record specific

memory stores with linear address information.

7. Related Work

There is already a considerable amount of work aiming

at detecting or preventing security attacks and improv-

ing performance counters. However, none of them has

exploited performance counters for the use of attack de-

tection and analysis. In this section, we shortly describe

related literatures in performance counters and discuss

some typical systems in the security area:

7.1. Performance Counters

Performance counters have been used extensively

for performance profiling [28] and online optimiza-

tion [29]. Being aware of the importance of perfor-

mance counters, previous researchers have proposed a

variety of architectural techniques in order to provide

low-overhead, non-intrusive and accurate performance

monitoring [19], [21]. Software developers have also

provided a number of interfaces to support simple and

portable uses of diverse performance counters. In this

paper, by exploiting existing hardware and software

support for performance monitoring, we demonstrate

the novel use of performance counters to non-intrusive

detection of security attacks with unmodified, deployed

applications.

In a recent positional paper, Yuan et al. [30] con-

duct a survey on how diverse PMU features such as

itlb misses, branch miss predict and branch trace store

could be used to detect various attacks. However, their

approach are ad-hoc and there is no uniformed to detect

and analyze different attacks related to violation of

control flow integrity. Avritzer et al. [31] performed a

set of tests to measure CPU, memory and I/O usages

between normal and attacking runs and concluded that

the accumulated resource usages tend to be different.

However, they failed to show how to leverage the

difference for precise and in-place detection of attacks.

7.2. Control Flow Attacks and its Countermea-

sures

Code-reuse Attacks: Code-reuse attacks have

emerged recently. Return-to-libc attacks [5] has been

used as an effective means to exploit many security

vulnerabilities. Return-oriented programming [6] and

its variety “pop+jmp” attacks [11] and jump-oriented

programming [7] go a step further by reusing existing

binary sequences instead of function calls, and thus

place much less assumptions on victim programs.

Defending Against Code-reuse Attacks: There are

also a number of efforts aiming at detecting or defend-

ing against code-reuse attacks. For example, ROPde-

fender [32] uses a shadow stack together with binary

rewriting to validate each return target. DynIMA [10]

instead leverages the characteristics of return-oriented

programming of using short code sequences before “ret”

to detect possible attacks. Return-less kernel instead

using compiler-rewriting However, these approaches are

ad-hoc in defending only a special class of code-reuse

attack and most of them require rewrite either source

code or binaries.

Security Through Diversity: Security through run-

ning several diverse copies and comparing the re-

sults [33], [34] has been a useful technique to defend

against a variant of attacks, by increasing the attacking

difficulty in requiring understanding and attacking sev-

eral copies simultaneously. When implementing purely

in software, this usually means that the resource con-

sumption will be increased by approximately the num-

ber of diverse copies. Hence, recent researchers exploit

the architectural support and multicore hardware [35]

to reduce the resource consumption and increase per-

formance.

Security Through Randomization: Randomizing

the execution environments such as instruction sets [36],

[37], and address spaces [38] is an effective approach to

defend code-injection attacks or memory errors. As the

environments (ISA, address spaces) assumed by attack-

ers are different from the real execution environments,



attacking code will fail to execute. While effective, it

could incur significant performance degradation without

the hardware support [36], or is only effective to a

specific attack [38].

Control and Data Flow Integrity: Dynamically

enforcing the integrity of control flow [13] or data

flow [39] could defend against attacks aiming at altering

the normal control and data flow. It has also been

implemented in the system address space [40]. However,

it requires binary rewriting of software and would incur

non-trivial performance overhead [16].

Taint Tracking: Taint tracking is a general security

defense technique. It works by marking data from

untrusted channels as tainted, tracking the propagation

of the tags during execution, and checking the tags

before critical uses of data to detect attacks. There

has been a considerable number of systems that extend

existing hardware to support taint tracking [41], as

well as software-based implementation using compiler

instrumentation [42], running the code in an emula-

tor [43], binary translator [44] and JVM [45]. Compared

to its hardware counterparts, software-based taint track-

ing is more expressive but would result in significant

performance overhead (e.g., 3.6X for LIFT [44] and

37X for TaintCheck [43]), or require instrumenting

software [42].

Security on Existing Hardware: As CFIMon, pre-

vious researchers have also leveraged existing hardware

support for security. For example, SHIFT [46] exploits

existing hardware support for control speculation to

implement an efficient and flexible taint tracking sys-

tem. BOSH [47] uses the flow-sensitive tags in taint

tracking to implement an efficient binary obfuscation

system. Compared to CFIMon, these systems require

instrumenting the software using compilers, thus cannot

work on unmodified and deployed binaries.

8. Conclusion and Future Work

In this paper, we observed that many security exploits

against control flow can result in precisely identifiable

control flow deviation in performance samples. Based

on the observation, we designed and implemented CFI-

Mon, which leveraged the branch trace store mechanism

in performance counters for the purpose of detecting

a wide variety of security attacks to control flow,

including classic code-injection attacks and emerging

code-reuse attacks. Our evaluation using several realis-

tic vulnerabilities showed that CFIMon can effectively

detect attacks on these vulnerabilities. Performance re-

sults indicates that CFIMon has modest performance

overhead for real-world applications, and we proposed

our several hardware proposals for further enhancement

to the detection ability and performance in existing

processors.

CFIMon has made its first step in using performance

monitoring units for the purpose of attack detection. In

future work, we plan to extend and improve CFIMon in

several directions. First, while this paper only explores

the use of PMU for security attacks, the idea of CFI-

Mon could also be similarly applied to other types of

bugs such as race conditions, ordering violations and

deadlocks, whose behaviors might also result in some

performance anomaly. However, as the performance

anomaly of some types of bugs could be insignificant

compared to that of security attacks, it would also be

interesting to couple with minor architectural support to

filtering out possible false positives, as those in Event

Filtering. Second, CFIMon does not detect high-level

semantic attacks now, whose explosion usually requires

understanding the high-level semantics of a program.

In our future work, we plan to extend our system with

program semantics to detect such attacks. Finally, CFI-

Mon is designed with the aim of supporting unmodified

applications. However, if being coupled with compiler

transformation or instrumentation support, it could fur-

ther reduce the complexity and increasing the precision

of CFIMon. In the future, we plan to investigate how

compilers could be used to make applications friendlier

to CFIMon.
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[16] M. Budiu, Ú. Erlingsson, and M. Abadi, “Architectural support

for software-based protection,” in Proc. Workshop on Architec-

tural and system support for improving software dependability,
2006, p. 51.

[17] Y. Shi and G. Lee, “Augmenting branch predictor to secure pro-
gram execution,” in Dependable Systems and Networks, 2007.

DSN’07. 37th Annual IEEE/IFIP International Conference on.
IEEE, 2007, pp. 10–19.

[18] J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger,
S. Leung, R. Sites, M. Vandevoorde, C. Waldspurger, and
W. Weihl, “Continuous profiling: where have all the cycles
gone?” ACM SIGOPS Operating Systems Review, vol. 31, no. 5,
p. 14, 1997.

[19] J. Dean, J. Hicks, C. Waldspurger, W. Weihl, and G. Chrysos,
“ProfileMe: Hardware support for instruction-level profiling on
out-of-order processors,” in Proc. MICRO, 1997, pp. 292–302.

[20] B. Sprunt, “Pentium 4 performance-monitoring features,” IEEE

Micro, vol. 22, no. 4, pp. 72–82, 2002.
[21] AMD, “Instruction-based sampling: A new performance analysis

technique,” developer.amd.com/assets/amd ibs paper en.pdf.
[22] I. Molnar, “Performance counters for linux, v8.”

http://lwn.net/Articles/336542, 2009.
[23] S. Chen, J. Xu, E. Sezer, P. Gauriar, and R. Iyer, “Non-Control-

Data Attacks Are Realistic Threats,” in Proc. USENIX Security,
2005.

[24] Metasploit Team, “Metasploit,” http://www.metasploit.com/.
[25] “Exim,” http://www.exim.org/.
[26] B. Fitzpatrick, “Distributed caching with memcached,” Linux

journal, 2004.
[27] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro, “Pre-

venting memory error exploits with WIT,” in IEEE Symposium

on Security and Privacy, 2008, pp. 263–277.

[28] G. Ammons, T. Ball, and J. Larus, “Exploiting hardware per-
formance counters with flow and context sensitive profiling,” in
Proc. PLDI, 1997, pp. 85–96.

[29] R. Azimi, M. Stumm, and R. Wisniewski, “Online performance
analysis by statistical sampling of microprocessor performance
counters,” in Proc. Supercomputing, 2005, pp. 101–110.

[30] L. Yuan, W. Xing, H. Chen, and B. Zang, “Security breaches
as pmu deviation: Detecting and identifying security attacks
using performance counters,” in 2011 ACM SIGOPS Asia-pacific

Workshop on Systems, 2011.
[31] A. Avritzer, R. Tanikella, K. James, R. G. Cole, and E. Weyuker,

“Monitoring for security intrusion using performance signa-
tures,” in Proceedings of the first joint WOSP/SIPEW interna-

tional conference on Performance engineering, 2010, pp. 93–
104.

[32] L. Davi, A. Sadeghi, and M. Winandy, “Ropdefender: A detec-
tion tool to defend against return-oriented programming attacks,”
in Proceedings of the 6th ACM Symposium on Information,

Computer and Communications Security. ACM, 2011, pp. 40–
51.

[33] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson,
J. Knight, A. Nguyen-Tuong, and J. Hiser, “N-variant systems:
A secretless framework for security through diversity,” in Proc.

USENIX Security, 2006, pp. 105–120.
[34] A. Nguyen-Tuong, D. Evans, J. Knight, B. Cox, and J. Davidson,

“Security through redundant data diversity,” in Proc. DSN, 2008,
pp. 187–196.

[35] R. Huang, D. Deng, and G. Suh, “Orthrus: efficient software
integrity protection on multi-cores,” in Proc. ASPLOS, 2010,
pp. 371–384.

[36] G. Kc, A. Keromytis, and V. Prevelakis, “Countering code-
injection attacks with instruction-set randomization,” in Proc.

CCS, 2003.
[37] E. Barrantes, D. Ackley, S. Forrest, and D. Stefanović, “Ran-
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