
Catalyzer: Sub-millisecond Startup for Serverless
Computing with Initialization-less Booting

Dong Du†‡, Tianyi Yu†‡§, Yubin Xia†‡, Binyu Zang†‡, Guanglu Yan§, Chenggang Qin§,
Qixuan Wu§, Haibo Chen†‡

† Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University
‡ Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

§ Ant Financial Services Group

Abstract
Serverless computing promises cost-efficiency and elasticity
for high-productive software development. To achieve this,
the serverless sandbox system must address two challenges:
strong isolation between function instances, and low startup
latency to ensure user experience. While strong isolation
can be provided by virtualization-based sandboxes, the ini-
tialization of sandbox and application causes non-negligible
startup overhead. Conventional sandbox systems fall short in
low-latency startup due to their application-agnostic nature:
they can only reduce the latency of sandbox initialization
through hypervisor and guest kernel customization, which
is inadequate and does not mitigate the majority of startup
overhead.
This paper proposes Catalyzer, a serverless sandbox sys-

tem design providing both strong isolation and extremely
fast function startup. Instead of booting from scratch, Cat-
alyzer restores a virtualization-based function instance from
a well-formed checkpoint image and thereby skips the ini-
tialization on the critical path (init-less). Catalyzer boosts the
restore performance by on-demand recovering both user-level
memory state and system state. We also propose a new OS
primitive, sfork (sandbox fork), to further reduce the startup
latency by directly reusing the state of a running sandbox in-
stance. Fundamentally, Catalyzer removes the initialization
cost by reusing state, which enables general optimizations
for diverse serverless functions. The evaluation shows that
Catalyzer reduces startup latency by orders of magnitude,
achieves <1ms latency in the best case, and significantly
reduces the end-to-end latency for real-world workloads.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7102-5/20/03. . . $15.00
https://doi.org/10.1145/3373376.3378512

Catalyzer has been adopted by Ant Financial, and we also
present lessons learned from industrial development.

CCS Concepts • Computer systems organization →
Cloud computing; • Software and its engineering →
Operating systems.

Keywords serverless computing; startup latency; check-
point and restore; operating system
ACM Reference Format:
Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Cheng-
gangQin, QixuanWu,Haibo Chen. 2020. Catalyzer: Sub-millisecond
Startup for Serverless Computing with Initialization-less Booting.
In Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS ’20), March 16–20, 2020, Lausanne, Switzerland. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3373376.3378512

1 Introduction
Serverless computing, the new trending paradigm in cloud
computing, liberates developers from the distraction of man-
aging servers and has already been supported by many
platforms, including Amazon Lambda [2], IBM Cloud Func-
tion [1], Microsoft Azure Functions [3] and Google Cloud
Functions [7]. In serverless computing, the unit of compu-
tation is a function. When a service request is received, the
serverless platform allocates an ephemeral execution sand-
box and instantiates a user-defined function to handle the
request. This computing model shifts the responsibility of
dynamically managing cloud resources to cloud providers,
allowing the developers to focus purely on their application
logic. Besides, cloud providers can manage their resources
more efficiently.
The ephemeral execution sandboxes are typically con-

tainers [1], virtual machines [20, 44] or recently proposed
lightweight virtualization designs [6, 8, 19, 35, 37, 41, 45].
However, container instances suffer from isolation issues
since they share one kernel, which is error-prone. Virtual
machines can achieve better isolation but are too heavy to
run serverless functions. Lightweight virtualization designs
like Google gVisor [8] and Amazon FireCracker [6] achieve
high performance, easy resource management and strong iso-
lation by customizing the host-guest interfaces, e.g., gVisor
uses a process abstraction interface.

Session 6A: Datacenter/cloud power/performance — Managing
the beast. Physics Experiments (with a particular eye on CERN LHC)

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

467

https://doi.org/10.1145/3373376.3378512
https://doi.org/10.1145/3373376.3378512

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60C
D

F
 o

f
se

rv
er

le
ss

 f
u

n
ct

io
n
s

Execution Time/Latency (%)

gVisor
Catalyzer

65.54

Figure 1. Distribution of Execution/Overall latency ratio in
serverless computing. The ratio of all functions in gVisor can not
even achieve 65.54%. The startup is cold boot.

Executing serverless functions with low latency is critical
for user experience [21, 24, 28, 32, 38], and is still a signifi-
cant challenge for virtualization-based sandbox design. To
explain the severity, we conduct an end-to-end evaluation on
three benchmarks, DeathStar [22], E-business microservices,
and image processing functions, and divide the latency into
“execution” part and “boot” part (§6.4). We calculate the “Ex-
ecution/Overall” ratio of the tested 14 serverless functions,
and present the CDF in Figure 1. The ratio of 12 functions
(out of 14) in gVisor can not even achieve 30%, indicating
that the startup dominates the overall latency. Long startup
latency, especially for virtualization-based sandbox, has be-
come a significant challenge for serverless platforms.

Existing VM-based sandboxes [6, 8, 37] reduce the startup
latency through hypervisor customization, e.g., FireCracker
can boot a virtual machine (microVM) and aminimized Linux
kernel in 100ms. However, none of them can reduce the appli-
cation initialization latency like JVM or Python interpreter
setup time. Our studies on serverless functions (written by
five programming languages) show that most of the startup
latency comes from application initialization (Insight I).
This paper proposes Catalyzer, a general design to boost

startup for serverless computing. The key idea of Catalyzer is
to restore an instance from a well-formed checkpoint image
and thereby skip the initialization on the critical path. The
design is based on two additional insights: First, a server-
less function in execution stage typically accesses only a small
fraction of memory and files used in the initialization stage
(Insight II), thus we can on-demand recover both appli-
cation state (e.g., data in memory) and system state (e.g., file
handles/descriptors). Second, sandbox instances of the same
function possess almost the same initialized state (Insight III),
thus it is possible to reusemost of the state of running sand-
boxes to spawn new ones. Specifically, Catalyzer adopts on-
demand recovery of both user-level and system state. And it
proposes a new OS primitive, sfork (sandbox fork), to further
reduce the startup latency by directly reusing state of a run-
ning sandbox instance. Fundamentally, Catalyzer eliminates
the initialization cost by reusing state, which enables general
optimizations on diverse serverless functions.

We have implemented Catalyzer based on gVisor. We mea-
sure the performance with both micro-benchmarks and real-
world applications developed in five programming languages.

The result shows the Catalyzer can achieve <1ms startup la-
tency on C-hello (best case), and <2ms to boot Java SPECjbb,
1000x speedup over baseline gVisor. We also present eval-
uations on server machines and share our lessons learned
from industrial development at Ant Financial.

The main contributions of this paper are as follows:
• A detailed analysis of latency overhead on serverless
computing (§2).

• Ageneral design of Init-less booting that boosts startup
of diverse serverless applications (§3 and §4).

• An implementation of Catalyzer on a state-of-the-art
serverless sandbox system, Google gVisor (§5).

• An evaluation with micro-benchmarks and real-world
serverless applications proving the efficiency and prac-
ticability of Catalyzer (§6).

• The experience of deploying Catalyzer on real plat-
forms (§6.9).

2 Serverless Function Startup Breakdown
In this section, we evaluate and analyze the startup latency
of serverless platforms with different system sandboxes (i.e.,
gVisor, FireCracker, Hyper Container, and Docker) and dif-
ferent language runtimes. Based on evaluation and analysis,
we present our motivation that serverless functions should
be executed with an initialization-less approach.

2.1 Background
Serverless Platform. In serverless computing, the devel-
oper sends a function to the serverless platform to execute.
We use the term handler function to represent the target
function, which could be written in different languages. The
handler function is compiled offline together with a wrapper,
which does initialization and invokes the handler function.
Wrapped programs (consist of the wrapper and handler func-
tion) execute safely within sandboxes, which can be con-
tainers [5, 40] or virtual machines (VM) [6, 8, 10]. There is a
gateway program running on each server as a daemon, which
accepts “invoke function” requests, and starts a sandbox with
two arguments: a configuration file and a rootfs containing
both the wrapped program and runtime libraries. The argu-
ments are based on OCI specification [12] and compatible
with most of the existing serverless platforms.

gVisor Case Study. In this paper, we propose a general op-
timization to achieve sub-millisecond startup even for VM-
based sandboxes like gVisor. In the following text, we will
take gVisor as an example for analysis, implementation, and
evaluation. For evaluation, we use server machines (§6.1) to
reveal performance improvement in the industrial environ-
ment.

On a serverless platform, the first step of invoking a func-
tion is to prepare a sandbox. In the case of gVisor, the sandbox
preparation includes four operations: configuration parsing,
virtualization resource allocation (e.g., VCPUs and guest

Session 6A: Datacenter/cloud power/performance — Managing
the beast. Physics Experiments (with a particular eye on CERN LHC)

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

468

Gateway
Process

Sandbox
Process

Boot I/O
process

Parse
Configuration

Boot Sandbox
process

Create and
initialize kernel/

platform

Load task image Start JVM Load class files

Recover Kernel Load App memory Wait I/O finish

Reconnect I/O

Execute
handler

1.369 ms 0.319 ms 0.757 ms 19.889 ms

1850 ms

56.723 ms 128.805 ms

79.180 ms
Send RPC

Boot

Restore

Figure 2. Boot process of gVisor. The numbers are the latency of each step of Java SPECjbb. The Restore path is the process of restoring a
sandbox from a checkpoint image in gVisor (gVisor-restore).

Isolation

Low: Software
proces/thread

Medium: Software
container

High: Hardware
virtualization

S
ta

rt
u

p

Slow
(>1000ms)

Fast
(~50ms)

Catalyzer

gVisor

Hyper Container

FireCracker

gVisor-restore

SOCK

SAND

Replayable-Execution

Extreme
(≤10ms)

Docker
(>100ms)

Figure 3. Serverless sandbox design. Catalyzer is the only sys-
tem that achieves both high isolation and low startup latency.

memory regions), root file system mounting and guest ker-
nel initialization (Figure 2). The guest kernel consists of two
user processes: a sandbox process and an I/O process. The
sandbox process sets up the virtualized resource, e.g., the
extended page table (EPT)1, and prepares the guest kernel.
The I/O process mounts the root file system according to the
configuration file. Figure 2 shows that sandbox initialization
takes non-negligible time (22.3ms) in gVisor. Since sandbox
initialization depends on function-specific configurations,
it is hard to use techniques like caching [31, 40] to reduce
sandbox initialization overhead. The critical path of startup
refers to the period from when the “Gateway process” got a
request until the handler executed. We use the term offline
to represent the non-critical path operations (e.g., caching).

After sandbox initialization, the sandbox runs thewrapped
program specified in the configuration file. Taking Java as an
example, the wrapped program first starts a JVM to initial-
ize Java runtime (e.g., loading class files), then executes the
user-provided handler function. We define the application
initialization latency as the period from when then wrapped
program starts until the handler function is ready to run. As
the following evaluation shows, the application initialization
latency dominates the total startup latency.

1A hardware virtualization technique in Intel. The term is NPT (nested page
table) in AMD, we use EPT to represent both in this paper.

2.2 A Quantitative Analysis on Startup
Optimizations

The design space of serverless sandboxes is shown in Fig-
ure 3.

Cache-based Optimizations. Many systems adopt the idea
of caching for serverless function startup [17, 39, 40]. For ex-
ample, Zygote is a cache-based design for optimizing latency,
which has been used in Android [14] to instantiate new Java
applications. SOCK [40] leverages the Zygote idea for server-
less computing. By creating a cache of pre-warmed Python
interpreters, functions can be launched with an interpreter
that has already loaded the necessary libraries, thus achieve
high startup performance. SAND [17] allows instances of
the same application function to share the sandbox which
contains the function codes and its libraries. However, there
are two reasons that caching is far from ideal. First, a single
machine is capable of running thousands of serverless func-
tions, so caching all the functions in memory will introduce
high resource overhead. Caching policies are also hard to be
determined in the real-world. Second, caching does not help
with the tail latency, which is dominated by the “cold boot”
in most cases.

Optimizations on Sandbox Initialization. Besides caching,
sandbox systems also optimize their initialization through
customization. For example, SOCK [40] proposes a lean con-
tainer, which is a customized container design for serverless
computing, to mitigate the overhead of sandbox initializa-
tion. Compared with container-based approaches, VM-based
sandboxes [6, 8, 10] provide stronger isolation and also in-
troduce more costs to sandbox initialization. Researchers
have proposed numerous lightweight virtualization tech-
niques [6, 19, 26, 36, 37] to solve performance and resource
utilization issues [18, 23, 25, 29] in traditional heavy-weight
virtualization systems. These proposals have already stimu-
lated significant interest in serverless computing industry
(e.g., Google’s gVisor [8] and Amazon’s FireCracker [6]).

Further, the lightweight virtualization techniques adopt
various ways to optimize startup latency: by customizing
guest kernels [26, 36], customizing hypervisors [19, 37] or a
combination of the two [6, 8]. For instance, FireCracker [6]
can boot a virtual machine (microVM) and aminimized Linux

Session 6A: Datacenter/cloud power/performance — Managing
the beast. Physics Experiments (with a particular eye on CERN LHC)

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

469

 0

 20

 40

 60

 80

 100

 120

Ja
va

-h
el

lo

Ja
va

-S
PEC

jb
b

Pyt
ho

n-
he

llo

Pyt
ho

n-
D

ja
ng

o

P
er

ce
n
ta

g
e

o
f

S
ta

rt
u
p
 L

at
en

cy
 (

%
)

Sandbox
Application

DockergVisorFireCrackerHyper
Container

Figure 4. Startup latency distribution. Application initializa-
tion costs dominate in complex applications like Java SPECjbb,
while sandbox initialization costs are significant for lightweight
applications like Python Hello.

kernel in 100ms. Although different in design and imple-
mentation, today’s virtualization-based sandboxes have one
common limitation: they can not mitigate the application
initialization latency like JVM or Python interpreter.
To understand the latency overhead (including sandbox

and application initialization), we evaluate the startup la-
tency of four widely used sandboxes (i.e., gVisor, FireCracker,
Hyper Container, and Docker) with different workloads, and
present the latency distribution in Figure 4. The evaluation
uses the sandbox runtime directly and does not count the
cost of container management. The settings are the same as
described in §6.1.
We highlight several interesting findings from the evalu-

ation. First, much of the latency overhead comes from ap-
plication initialization. Second, compared with C language
(142ms startup latency in gVisor), the startup latency is much
higher for high-level languages like Java and Python. The
main reason is that high-level languages usually need to
initialize a language runtime (e.g., JVM) before loading ap-
plication codes. Third, sandbox initialization is stable for
different workloads and dominates the latency overhead for
simple functions like Python Hello.
The evaluation shows that much of the startup latency

comes from application initialization instead of sandbox.
However, none of the existing virtualization-based sand-
boxes can reduce the application initialization latency caused
by JVM or Python interpreter.

Wrapped Program

Function
Invocation

Runtime
Initialization

Persistent
Storage

Memory

Wrapped
Program

Func-image

Load Save

Run Call

Function’s
entry point

Func-load

Figure 5. Init-less booting.

Checkpoint/Restore-basedOptimizations. Checkpoint/re-
store (C/R) is a technique to save state of a running sandbox
into a checkpoint image. The saved state includes both ap-
plication state (in the sandbox) and sandbox state (e.g., the

 0

 500

 1000

 1500

 2000

C-Hello Nginx J-Hello Specjbb P-Hello Django C
Hello

C
Nginx

Java
Hello

Java
Specjbb

Python
Hello

Python
Django

gVisor gVisor-restore

T
im

e
(m

s)

Sandbox
Application

Figure 6. Startup latency of gVisor and gVisor-restore. gVisor-
restore adopts C/R to eliminate the application initialization cost,
but still has high startup (restore) latency.

hypervisor). Then, the sandbox can be restored from the im-
age and run seamlessly. Replayable Execution [43] leverages
C/R techniques to mitigate the application initialization cost,
but only apply to container-based systems. Compared with
other C/R systems, Replayable optimizes memory loading
using an on-demand approach for boosting startup latency.
However, our evaluation shows virtualization-based sand-
boxes incur high overhead to recover system state during
the restore, which is omitted by the prior art.

The major benefit of C/R is that it can transform the appli-
cation initialization costs into the sandbox restore costs (init-
less). We generalize the idea as Init-less booting, shown
in Figure 5. First, a func-image (short for function image) is
generated offline, which saves initialized state of a server-
less function (Offline initialization). The func-image could
be saved to both local or remote storage, and a serverless
platform needs to fetch a func-image first. After that, the
platform can re-use the state saved in the func-image to
boost the function startup (func-load).

Challenges. C/R (checkpoint/restore) techniques re-use se-
rialized state (mostly application state) of a process to dimin-
ish application initialization cost, but rely on re-do operations
to recover system state (i.e., in-kernel state like the opened
files). A re-do operation recovers the state of a checkpointed
instance and is necessary for correctness and compatibility.
For example, a C/R system will re-do “open()” operations
to re-open files that are opened in a checkpointed process.
However, re-do operations introduce performance overhead,
especially for virtualization-based sandboxes.
To analyze the performance effect, we implement a C/R-

based init-less booting system on gVisor, called gVisor-restore,
using gVisor-provided checkpoint and restore [4] mecha-
nism. We add a new syscall in gVisor to trap at the entry
point of serverless functions. We use the term, func-entry
point, to indicate the entry point of a serverless function,
which is either specified by developers or at the default loca-
tion: the point right before the wrapped program invoking
the handler function. The syscall is invoked by the func-entry
point annotation and will block until checkpoint operation
begins.

Session 6A: Datacenter/cloud power/performance — Managing
the beast. Physics Experiments (with a particular eye on CERN LHC)

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

470

We evaluate the startup latency of gVisor-restore using
different applications, and compare with unmodified gVisor.
We use the sandbox runtime directly (i.e., runsc for gVisor) to
exclude container management cost. As the result (Figure 6)
shows, gVisor-restore successfully eliminates the application
initialization overhead and achieves 2x–5x speedup over gVi-
sor. However, the startup latency is still high (400ms for a
Java SPECjbb application and >100ms in other cases). Fig-
ure 2 suggests that gVisor-restore spends 135.9ms on guest
kernel recovery, which can be classified into “Recover Ker-
nel” and “Reconnect I/O” in the figure. The “Recover Kernel”
means recovering non-I/O system state, e.g., thread infor-
mation, while I/O reconnection is for recovering I/O system
state, e.g., re-open a “suppose opened” file. For reusable state
(“App memory” in the figure), gVisor C/R mechanism com-
presses the saved data to reduce the storage overhead, and
needs to decompress, deserialize, and load the data into mem-
ory on the restore critical path, costing 128.8ms for a SPECjbb
application. During the restore process in SPECjbb case, gVi-
sor recovers more than 37,838 objects (e.g., threads/tasks,
mounts, sessionLists, timers, and etc.) in guest kernel and
loads 200MB memory data.
Prior container-based C/R systems [43] have exploited

on-demand paging to boost application state recovery, but
still recover all the system state in the critical path.

2.3 Overview
Our evaluation and analysis motivate us to propose Cat-
alyzer, an init-less booting design for virtualization-based
sandboxes, which is equipped with novel techniques to over-
come the high latency on the restore process.

sfork

partially load

Warm boot

(12ms)

Cold boot

(40ms)

Fork boot

(1ms)

Func-image

New

Sandbox

Running

Sandbox

Func-image

New

Sandbox
Sandbox

Template

New

Sandbox

fully load

share

cold warm warm hot

Func-image

Figure 7. Overview of Catalyzer. Catalyzer combines C/R and
sandbox fork to boost both cold boot and hot boot.

As shown in Figure 7, Catalyzer defines three kinds of
booting: cold boot, warm boot, and fork boot. Precisely, cold
boot means that the platform must create a sandbox instance
from func-image through restore. Warm boot means there are
running instances for the requested function; thus, Catalyzer
can boost the restore by sharing in-memory state of running
instances. Fork boot in Catalyzer needs a dedicated sandbox
template, a sandbox contains the initialized state, to skip the
initialization. Fork boot is a hot-boot mechanism [11, 40]—a
platform that knows a function may be invoked soon and
prepares the running environment for the function. The

significant contribution is that fork boot is scalable to boot
any number of instances from a single template, while prior
hot boot can only serve limited instances (depending on the
cache size).

Catalyzer adopts a hybrid approach combining C/R-based
init-less booting and a new OS primitive to implement the
cold, warm, and fork boot. Since a serverless function in the
execution stage typically accesses only a small fraction of
both memory and files used in the initialization stage, Cat-
alyzer introduces on-demand restore for cold and warm boot
to optimize the recovery of both application and system
state (§3). In addition, Catalyzer proposes a new OS primi-
tive, sfork (sandbox fork), to reduce the startup latency in
fork boot by directly reusing the state of a template sandbox
(§4). Fork boot can achieve faster startup than the warm boot,
but also introduces more memory overhead; thus, fork boot
is more suitable for frequently invoked (hot) functions.

3 On-demand Restore
The performance overhead of restore comes from two parts.
First, the application and system state need to be uncom-
pressed, deserialized (only metadata) and loaded into mem-
ory. Second, re-do operations are necessary to recover system
state, including multi-threaded contexts, virtualization sand-
box and I/O connections.
As shown in Figure 8-a, Catalyzer accelerates restore by

splitting the process into three parts: offline preparation,
critical path restore, and on-demand recovery. The prepara-
tion work, like uncompression and deserialization, is mostly
performed offline in the checkpoint stage. The loading of
application state and recovering of I/O-related system state
are delayed with on-demand paging and I/O re-connection.
Thus, Catalyzer only performs minimized work on the criti-
cal path, i.e., recovering non-I/O system state.
Specifically, Catalyzer proposes four techniques. First,

overlay memory is a newmemory abstraction that allows Cat-
alyzer to directly map a func-image into memory, boosting
application state loading (for cold boot). Sandboxes running
the same function can share a “base memory mapping”, fur-
ther omitting file mapping cost (for warm boot). Second, sep-
arated state recovery decouples deserialization from system
state recovery on the critical path. Third, on-demand I/O re-
connection delays I/O state recovery. Last, virtualization sand-
box Zygote provides generalized virtualization sandboxes
that are function-independent and can be used to reduce
sandbox construction overhead.

3.1 Overlay Memory
The overlay memory is a design for on-demand application
state loading through copy-on-write of file-based mmap.
As shown in Figure 8-b, the design allows a “base memory
mapping” to be shared among sandboxes running the same

Session 6A: Datacenter/cloud power/performance — Managing
the beast. Physics Experiments (with a particular eye on CERN LHC)

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

471

Restore

Checkpoint

Execute

Critical

section

time

Checkpoint

Execute

Prior approaches Catalyzer

Critical

section

Offline
preparation

On-demand
recover

Offline

Online

Restore

(a) Comparison.

Guest-1 Guest-2

Base-EPT

Base-EPT (RO)

Private-EPT (RW)

Base-EPT (RO)

Private-EPT (RW)

COW COW

Func-image

In-memory Data

Metadata

1. map file 2. share mapping

(b) Overlay memory.

Gofer Sandbox

App memory

Func config

Base config

SentryApp rootFS

Base rootFS

Private EPT

Base EPT

K
e
rn

e
l
m

o
d
e

U
s
e
r

m
o
d
e

Opened file
Opened file

…

Root mode Non-root mode

2. mount 4. map

Kernel

5. reconnect I/O

Metadata

3. recover

1. append

Instance specific data

(c) Operational flow.

Figure 8. On-demand restore. (a) Compared with prior approaches, Catalyzer leverages offline preparation and on-demand recovery to
eliminate most of the work on the critical path. (b) Overlay memory allows a func-image to be directly mapped into memory to construct
the Base-EPT, and the Base-EPT can also be shared among different instances through copy-on-write. (c) The operational flow shows how
a gVisor sandbox is instantiated using on-demand restore.

function, and relies on memory copy-on-write to ensure
privacy.

Overlay memory uses a well-formed func-image for direct
mapping, which contains uncompressed and page-aligned
application state. During a cold boot, Catalyzer loads applica-
tion state by directly mapping the func-image into memory
(map-file operation). Catalyzer maintains two layered EPTs
for each sandbox. The upper one is called Private-EPT, and
the lower one is Base-EPT. Private-EPT is private to each
sandbox, while Base-EPT is shared and read-only. During
a warm boot, Catalyzer directly maps the Base-EPT for the
new sandbox with the share-mapping operation. The main
benefit comes from the avoidance of costly file loading.
The platform constructs the hardware EPT by merging

entries from the Private-EPT with the Base-EPT, i.e., using
the entries of Private-EPT if the entries are valid, otherwise
using the entries of Base-EPT. The construction is efficient
and triggerd by hardware. Base-EPT is read-only thus can
be inherited by new sandboxes through mmap, while the
Private-EPT is established using copy-on-write when an EPT
violation happens on the Base-EPT.

3.2 Separated State Recovery
C/R relies on metadata of system state (represented by ob-
jects in the sandbox) for re-do operation, which is serialized
before saving into checkpoint images and deserialized during
the restore. The system state includes all guest OS internal
state, e.g., the thread list and timers. However, such process
is non-trivial for sandboxes implemented by high-level lan-
guages (e.g., Golang for gVisor), as the language abstraction
hides the arrangement of state data. Even with the help of se-
rialization tools such as Protobuf [16], metadata objects have
to be processed one-by-one to recover, which can cause huge

overhead when the number of objects is large (e.g., 37,838 ob-
jects are recovered for SPECjbb application in gVisor-restore,
consuming >50ms).
Catalyzer proposes separated state recovery to overcome

the challenge, by decoupling deserialization from state re-
covery. During offline preparation, Catalyzer saves partially
deserialized metadata objects into func-images. Specifically,
Catalyzer first re-organizes the discrete in-memory objects
into continuous memory; thus they can be mapped back
to memory through mmap operation instead of one-by-one
deserialization. Then, Catalyzer zeros pointers in objects
with placeholders, and records all (pointer) reference rela-
tionships in a relation table, which stores a map from offsets
of pointers to offsets of pointer values. The metadata objects
and the relation table together constitute the partially deseri-
alized objects. The partially means that Catalyzer needs to
deserialize pointers during runtime using the relation table.

With the func-image, Catalyzer accomplishes state recov-
ery in two stages: loading the partially deserialized objects
from a func-image (stage-1), reconstructing the object rela-
tionships (e.g., pointer relation) and recovering system state
in parallel (stage-2). First, objects as well as the saved re-
lation table will be mapped to the sandbox’s memory with
overlay memory. Second, the object reference relationships
are re-established by replacing all placeholders with real
pointers through the relation table, and non-I/O system state
are established on the critical path. Since each update is inde-
pendent, this stage can be carried out in parallel. The design
does not depend on a specific memory layout, which is bet-
ter for portability so that a func-image can run on different
machines.

3.3 On-demand I/O Reconnection
The numerous I/O operations performed in restore (e.g.,
opening files) add high latency on the critical path. Inspired

Session 6A: Datacenter/cloud power/performance — Managing
the beast. Physics Experiments (with a particular eye on CERN LHC)

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

472

by our insight that many of the I/O-related state (e.g., files)
will not be used after restore, Catalyzer adopts an on-demand
I/O reconnection design. For example, a previously opened
file “/home/user/hello.txt” may only be accessed for specific
requests. Those unused I/O connections can not be elimi-
nated even with a proper point in the checkpoint, because
existing serverless functions are usually running with lan-
guage runtime (e.g., JVM) and third-party libraries, in which
the developers have no idea whether they will access some
rarely used connections.

Thus, we can re-establish the connections lazily—only re-
establish when the connections are used. To achieve this, I/O
reconnection is performed asynchronously on the restore
critical path, and the sandbox guest kernel maintains the
I/O connection status, i.e., a file descriptor will be passed to
functions but tagged as not re-opened yet in the guest kernel.
We observe that for a specific function, the I/O connec-

tions that are immediately used after booting are mostly
deterministic. Thus, we introduce an I/O cache mechanism
to further mitigate the latency of I/O reconnection. The I/O
connection operations performed during cold boot are saved
in cache, which are used by Catalyzer to guide a sandbox
(in warm boot) to establish these connections on the critical
path. Specifically, the cache stores the file paths and the op-
erations on the path, so Catalyzer can use the information
as a hint to re-connect these I/O first. For I/O connections
missed in the cache (i.e., the non-deterministic connections),
Catalyzer will use the on-demand strategy to establish the
needed I/O connections.

3.4 Virtualization Sandbox Zygote
On the restore critical path, a sandbox is constructed before
application state loading and system state recovery. Chal-
lenges of reducing sandbox construction latency lie in two
factors: first, sandbox construction depends on function-
specific information (e.g., the path of rootfs), thus techniques
like caching do not help; second, a sandbox is tightly coupled
with system resources that are not directly re-usable (e.g.,
namespace and hardware virtualization resources).

Catalyzer proposes a Virtualization Sandbox Zygote design
that separates the function-dependent configuration from a
general sandbox (Sandbox Zygote) and leverages a cache of
Zygotes to mitigate sandbox construction overhead. A Zy-
gote is a generalized virtualization sandbox used to generate
a function-specific sandbox during the restore. As described
in Figure 2, a sandbox is constructed with a configuration file
and a rootfs. Catalyzer proposes a base configuration and a
base rootfs, which separate out function-specific details. Cat-
alyzer caches a Zygote by parsing the base configuration file,
allocating virtualization resources (e.g., VCPU) andmounting
the base rootfs. Upon function invocation, Catalyzer special-
izes a sandbox from a Zygote by importing function-specific

binaries/libraries, and appending the function-specific con-
figuration in the Zygote. Virtualization Zygotes can be used
in both cold boot and warm boot in Catalyzer.

3.5 Putting All Together
The three elements, overlay memory, separated state, and
I/O connections, are all included in the func-image. The
workflow of cold boot and warm boot is shown in Figure 8-c.
First, function-specific configuration and its func-image (in
“App rootFS”) is passed to a Zygote to specialize a sandbox.
Second, the function-specific rootfs indicated by the con-
figuration is mounted for the sandbox. Then, the sandbox
recovers system state using separated state recovery. After
that, Catalyzer maps the Base-EPT ’s memory to the gVisor
process as read-only for warm boot, in which copy-on-write
is used to preserve the privacy of the sandbox’s memory.
For cold boot, Catalyzer needs to establish the Base-EPT first
by mapping the func-image into memory. At last, the guest
kernel asynchronously recovers I/O connections, and I/O
cache assists the process for warm boot.

4 sfork: Sandbox fork
Based on our Insight III, Catalyzer proposes a new OS prim-
itive, sfork (sandbox fork), to further reduce the startup la-
tency by reusing the state of a running “template sandbox”
directly. The term, “template sandbox”, means a special sand-
box for a specific function that has no information about user
requests; thus, it can be leveraged to instantiate sandboxes
to serve requests. The basic workflow is shown in Figure 9-a.
First, a template sandbox is generated through template ini-
tialization, containing clean system state at the func-entry
point; then, when a request of the function arrives, the tem-
plate sandbox will sfork itself to reuse the initialized state
directly. The state here includes both user state (application
and runtime) and guest kernel state.

Challenges. An intuitive choice is to use the traditional
fork to implement sfork. However, it is challenging to keep
system state consistent by using fork only. First, most OS ker-
nels (e.g., Linux) can only support single-thread fork, which
means the information of multi-threading will be lost after
forking. Second, fork is not suitable for sandbox creation,
during which a child process will inherit its parent’s shared
memory mappings, file descriptors and other system state
that are not supposed to be shared between sandboxes. Third,
fork will clone all the user state in memory, some of which
may depend on system state that have been changed. For
example, given a common case where the template sand-
box issues getpid syscall and uses the return value to name
a variable during initialization, the PID is changed in the
forked sandbox, but the variable is not, leading to undefined
behavior.

The clone syscall provides more flexibility with many op-
tions, but is still not sufficient. One major limitation is the

Session 6A: Datacenter/cloud power/performance — Managing
the beast. Physics Experiments (with a particular eye on CERN LHC)

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

473

Func-image

Function

Runtime

Function
Invocation

Template
sandbox

Sandbox
program

Load

Function’s

entry point

System
state

Offline Online

sfork

handle

Template
initialization

(a) Overview of sandbox fork.

Template
thread

Sys-monitor
thread

M-thread
(m0)

Blocking threads + Timeouts
(syscall/..)

Runtime threads

Scheduling threads

Blocking threads

Transient single-thread Golang

merge

Stopable

Template sandbox

M-thread (m0)

Scheduling thread

Multi-threaded
contexts info

…

(b) Transient single-thread for Golang.

Sandbox

OverlayFS-1

RootFS
Log-1 Log-2

copy

OverlayFS-2
sfork

FS server

Read-
only

R/W

Write (persistent)

Persistent
storage

Memory

fork boot

Offline Online

(c) Stateless overlayFS.

Figure 9. Catalyzer with sandbox fork. (a) Catalyzer can sfork a new instance from a template sandbox generated offline. (b) The
transient single-thread mechanism can support multi-threading fork by temporarily merge a multi-threaded program into a single thread.
(c) Stateless overlay rootfs achieves efficient handling for file descriptors and files.

handling of shared memory (mapped with MAP_SHARED
flag). If a child sandbox inherits the shared memory, it will
violate the isolation between parent and child sandboxes; if
not, it may change the semantics of MAP_SHARED.

Template Initialization. To overcome the challenges, Cat-
alyzer relies on user-space handling of most inconsistent
state and only introduces minimal kernel modifications. We
classify syscalls into three groups, denied, handled and al-
lowed. The allowed and handled syscalls are listed in Table 1.
The handled syscalls require user-space logic to fix related
system state after sfork for consistency explicitly. For ex-
ample, clone creates a new thread context for a sandbox,
and the multi-threaded contexts should be recovered after
sfork (Challenge-1). The denied syscalls are removed from
the sandbox since they may lead to non-deterministic system
state modification. We illustrate how Catalyzer keeps the
multi-threaded contexts and reuses inherited file descrip-
tors (Challenge-2) after sfork with two novel techniques,
transient single-thread and stateless overlay rootFS. The only
modification to the kernel is adding a new flag, CoW flag,
for shared memory mapping. We take advantage of Linux
container technologies (USER and PID namespaces) to main-
tain system state like user id and process id consistent after
sfork (Challenge-3).

4.1 Multi-threading Fork
Sandboxes implemented using Golang (e.g., gVisor) are natu-
rally multi-threaded, because the Golang runtime uses mul-
tiple threads for garbage collection and other background
works. Specifically, threads in Golang can be classified into
three categories: runtime threads, scheduling threads, and
blocking threads (Figure 9-b). The runtime threads are re-
sponsible for providing runtime functionalities like garbage
collection and preemption. They are long-running and trans-
parent to the developers. The scheduling threads (M-threads
in Figure 9-b) implement the co-routinemechanism inGolang
(i.e., Go routine). When a Go routine switches to the blocked
state (e.g., executing blocking system calls like accept), Golang
runtime will dedicate an OS thread to the Go routine.

Catalyzer proposes a transient single-thread mechanism
to support multi-threaded sandbox fork. With the mecha-
nism, a multi-threaded program can temporarily merge all
the threads into a single thread (i.e., the transient single-
thread), which can be expanded to a multi-threaded one after
sfork. The process is shown in Figure 9-b. First, we modify
the Golang runtime in Catalyzer to support stoppable run-
time threads. When the runtime threads are notified to enter
the transient single-thread state, they will save the thread
contexts in the memory and terminate themselves. Then,
the number of scheduling threads can be configured to one
through Golang runtime. In addition, we add a time-out in
all blocking threads, and the threads will check whether they
should terminate for entering the transient single-thread
state when the time-out is triggered. Finally, the Golang
program will only keep them0 thread in the transient single-
thread state, and expand to multiple threads again after sfork.
Our modification is only used for template sandbox genera-
tion, and will not affect program behaviors after sfork.

4.2 Stateless Overlay RootFS
A sforked sandbox will inherit file descriptors and file sys-
tems of the template sandbox, which should be handled after
sfork. Inspired by existing overlayFS design [13] and the
ephemeral nature of serverless functions [27, 28], Catalyzer
employs stateless overlay rootFS technique to achieve zero-
cost handling for file descriptors and the rootFS. The idea
is to put all the modification on the rootFS into the mem-
ory, which can be automatically cloned during sfork using
copy-on-write (Figure 9-c).

Specifically, each sandbox uses two layers of file systems.
The upper layer is the in-memory overlayFS, which is private
to a sandbox and allows both read and write operations. The
overlayFS is backed by an FS server (per-function) which
manages the real rootFS. A sandbox cannot directly access
the persistent storage for security reasons; thus, it relies on
the (read-only) file descriptors received from the FS server to
access the rootFS. During sfork, besides the cloned overlayFS,
the file descriptors owned by the template sandbox are still

Session 6A: Datacenter/cloud power/performance — Managing
the beast. Physics Experiments (with a particular eye on CERN LHC)

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

474

Categories Handlers Syscalls (in gVisor)

Proc Transient single-thread,
Namespace

capget, clone, getpid, gettid, arch_prctl, prctl, rt_sigaction, rt_sigprocmask, rt_sigreturn, seccomp,
sigaltstack, sched_getaffinity

VFS (FS/Net) Read-only FD poll, ioctl, memfd_create, ftruncate, mount, pivot_root, umount, epoll_create1, epoll_ctl,
epoll_pwait, eventfd2, fcntl, chdir, close, dup, dup2, lseek, openat

File (Storage) Stateless overlayFS newfstat, newfstatat, mkdirat, write, read, readlinkat, pread64
Network Reconnect sendmsg, shutdown, recvmsg, getsockopt, listen, accept
Mem Handled by sfork mmap, munmap
Misc Namespace setgid, setuid, get(e)gid, get(e)uid, getrandom, nanosleep, futex, getgroups, clock_gettime, getrlimit,

setsid

Table 1. Syscall classification used in Catalyzer for sfork. Non-bold font means allowed but not handled syscalls, while bold font is for
handled syscalls. The allowed syscalls can run as normal syscalls. Handlers are only used for handled syscalls.

Startup: offline

Func-image

Language

runtime

template

Template

sandbox

Cold

(sfork)

Cold/Warm

(restore)

Fork

(sfork)

Virtualization setup Prepare

Zygote

Startup: online Execution

Lazy dup
Overlay

memory

On-demand

I/OSeparated

state

sfork

Import

func

Runtime and function restore/init Execute function

Stateless

overlayFS

CoW

from

sfork

Fine-grained

func-entry

point

KVC

cache &

Disable

PML

Figure 10. Techniques/Optimizations used in Catalyzer for
different kinds of boot. Besides techniques introduced in §3 and
§4, Catalyzer has other optimizations like the fine-grained func-
entry point to further reduce startup latency.

valid in the child sandbox since they are read-only and will
not violate the isolation guarantee.
Our industrial development lessons show that persistent

storage is still required for serverless functions in some cases,
e.g., writing logs. Catalyzer allows the FS server to grant
some file descriptors of the log files (with the read/write
permission) to sandboxes. Overall, the majority of files are
sforked with low latency, and only a small number of persis-
tent files are copied for functionalities.

4.3 Language Runtime Template for Cold Boot
Although the on-demand restore can provide promising cold
boot performance, it relies on a well-formed func-image
containing uncompressed data (larger image size). Thus, we
propose another choice for the cold boot, using sfork with
language runtime template, which is a template sandbox for
functions written by the same language. A language runtime
template initializes the environment of the wrapped program
(e.g., JVM in Java), and will load a real function to serve
requests on demand. Such a sandbox should be instantiated
differently in different languages, e.g., loading libraries in
C or loading Class files in Java. For instance, a single Java
runtime template is sufficient to boost our internal functions
as most of the functions are written in Java.

5 Implementation
Catalyzer is implemented based on gVisor, with 2017 LoC
modification in gVisor and 732 LoC modification in Golang
runtime for sfork, and 5000 lines of Golang modification to
support the Init-less booting and optimizations. In addition,
we extend our platform with a kernel module (about 300
lines of C) and a user-level manager program (500 lines of
Golang).

Besides the techniques proposed in the design, Catalyzer
leverages other optimizations to further reduce startup la-
tency, e.g., the fine-grained func-entry point (§6.7).We present
an overall view on how these techniques and optimizations
are used in Catalyzer for different boots, as shown in Fig-
ure 10. The details will be explained in §6.7.

Func-image Compilation. The offline func-image compi-
lation is performed by the following steps: 1) The func-entry
point provided by the user is inserted into the wrapper pro-
gram as an annotation; 2) The func-entry point annotation is
transferred to a system call invocation (Gen-Func-Image in
Catalyzer) in the wrapper program. For example, in C, the an-
notation is replaced by a call to “syscall()” of libC; in Java, the
wrapper program uses JNI codes to invoke the syscall. Any
invocation of the syscall is taken as “the program reaches the
func-entry point”, and triggers Catalyzer to save the state;
3) The wrapper program starts to run, and traps into the
gVisor kernel when it reaches the func-entry point; 4) The
current program state, including in-memory data, system
metadata and the I/O information is saved into the gener-
ated func-image. Most of the image compilation process is
automated. Catalyzer uses the func-image for cold boot, and
re-uses in-memory state of existing running instances for
warm and fork boot.

Generality. Although we choose to implement Catalyzer
on gVisor/Golang, the design is general, and most of the
techniques are also applicable to other lightweight virtual-
ization systems. For example, FireCracker [6] needs more
than 100ms to boot a guest kernel, which can be optimized
safely with the on-demand restore. The four techniques in
on-demand restore (e.g., overlay memory) only depend on

Session 6A: Datacenter/cloud power/performance — Managing
the beast. Physics Experiments (with a particular eye on CERN LHC)

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

475

hardware virtualization extensions like Intel EPT or AMD
NPT. Moreover, the transient single-thread of sfork is also
general and can be used in other Golang-based virtualization
systems (e.g., Google novm [9]).

6 Evaluation
In the evaluation, we try to answer the following questions:

• Question-1: How does Catalyzer improve the startup
performance of diverse applications? (§6.2)

• Question-2: How does each technique in Catalyzer im-
prove the startup performance individually? (§6.3)

• Question-3: How does Catalyzer reduce the latency of
end-to-end serverless functions? (§6.4)

• Question-4: How does Catalyzer reduce memory usage
of a serverless platform? (§6.5)

• Question-5: How is the scalability of Catalyzer when
there are 1000 running instances? (§6.6)

• Question-6: How does Catalyzer achieve near 1ms la-
tency through optimizations? (§6.7)

• Question-7 : Will Catalyzer introduce new security is-
sues? (§6.8)

• Question-8: What can we learn from industrial devel-
opment? (§6.9)

6.1 Evaluation Environment
We use an x86-64 machine (the experimental machine) with
an 8-core Intel i7-7700 CPU, 32GB memory and Samsung
512GB SSD, to evaluate microbenchmarks and performance
breakdown. The OS is Ubuntu 16.04 with Linux kernel 4.17.3.
In addition, we use a server machine from Ant Financial,
with 96 cores (@2.50GHz) and 256GB memory for end-to-
end latency and scalability evaluation. We compare several
serverless platforms, including gVisor (commit #56fa562),
FireCracker (commit #28f44b3) using the official minimized
kernel, Docker runc (commit #bbb17ef) and Hyper Container
(commit #565496c).

6.2 Application Startup Latency
We evaluate the startup latency of Catalyzer with diverse
applications written by different programming languages to
answer the first question.

Methodology. We compare cold boot (Catalyzer-restore),warm
boot (Catalyzer-Zygote) and fork boot (Catalyzer-sfork) with
Docker container, Hyper container, gVisor, gVisor-restore,
and FireCracker. We chose applications written by five lan-
guages: C, Java, Python, Ruby, and Node.js, which are widely
supported in existing serverless platforms. For each language,
we test two workloads. One is “helloworld” which represents
the minimal application, and the other is a real application.
We do not evaluate Ruby on FireCracker since the official
kernel provided by FireCracker does not support Ruby yet.

Table 2. Cold boot with Java runtime templates.

Systems Native gVisor Java template

Cold boot (ms) 89.4 659.1 29.3

The C application is a widely used web server, Nginx (ver-
sion 1.11.3). The latency is evaluated as the time from the “ng-
inx” command to the start of its main function. SPECjbb2015
is a widely used benchmark to evaluate the Java server busi-
ness scenarios. We evaluate the time between the “java”
command and the entry of BackendAgent. Django is used
for Python application and Sinatra for Ruby applications,
which are both web frameworks/libraries for applications.
For Node.js, we use a web server as the tested application.

Results. Figure 11 shows the result. Catalyzer achieves the
best performance in all the applications. Specifically, Catalyzer-
sfork can boost startup latency of a serverless function to
even less than 1ms (0.97ms in C-hello). Catalyzer-Zygote
can boot a serverless function using 5ms for C, 14ms for
Java, 9ms for Python, 12ms for Ruby, and 9ms for Node.js ap-
plications. Catalyzer-restore usually needs extra 30ms over
Catalyzer-Zygote to initialize the sandbox and map func-
image into memory. The results also reveal the improvement
of Catalyzer is general for diverse applications, from the
simple C-hello to Java-SPECjbb.

Language Runtime Templates. The sfork primitive is pro-
posed for hot boot in most cases. However, with the lan-
guage runtime templates design (§4.3), sfork can provide a
general template for diverse functions written by the same
language (to achieve fast cold boot for lightweight func-
tions). As shown in Table 2, we evaluate the latency of boot-
ing a lightweight Java-based function, using a JVM runtime
template. The latency is about 20ms longer than Catalyzer-
sfork, but still 30x faster than baseline gVisor. Moreover, Java
template sandbox can even boost the startup latency better
than the native (3.0x and 3.7x faster). The major overhead
of Catalyzer-sfork is caused by loading Java class files of
requested functions.

6.3 Improvement Breakdown
We evaluate the optimization of the three techniques used
in Catalyzer (cold boot). The baseline is the gVisor-restore.
We evaluate the startup latency of two applications, Python
Django and Java SPECjbb with four configurations, the base-
line (gVisor-restore), Catalyzer without separated loading
and lazy reconnection, Catalyzer without lazy reconnection,
and Catalyzer.

As shown in Figure 12, overlay memory can reduce 261ms
of latency for Java SPECjbb comparedwith the gVisor-restore.
Separated object loading reduces the kernel loading latency
by 6.3x for Python Django, and 7.0x for Java SPECjbb, Lazy

Session 6A: Datacenter/cloud power/performance — Managing
the beast. Physics Experiments (with a particular eye on CERN LHC)

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

476

 1

 10

 100

 1000

C-hello
C-Nginx

Java-hello

Java-SPECjbb

Python-hello

Python-Django

Ruby-hello

Ruby-Sinatra

Node.js-hello

Node.js-Web

S
ta

rt
u
p
 L

at
en

cy
 (

m
s)

HyperContainer
FireCracker

gVisor

Docker
gVisor-restore

Catalyzer-restore

Catalyzer-Zygote
Catalyzer-sfork

 0

 0.5

 1

 1.5

 2

 2.5

 3

C Java
Python

Ruby
Node.js

Figure 11. Startup latency of Catalyzer compared with other systems. The test cases for Catalyzer-sfork (right part) are the same.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

B
as

el
in

e

O
ve

rla
yM

em

+Sep
ar

at
ed

 L
oa

d

+Laz
y

 R

ec
on

ne
ct

io
n

T
im

e
(m

s)

Kernel
Memory

I/O

Java SPECjbbPython Django

Figure 12. Breakdown of Catalyzer (cold boot) on gVisor.

I/O reconnection reduces >57ms of latency on I/O reconnec-
tion in both two applications, namely, 18x improvement. The
result shows that applications with small memory footprint
can benefit more from separated object loading and lazy I/O
reconnection, while overlay memory contributes most of the
optimization for applications with large memory footprint.

6.4 End-to-End Evaluation
We present three end-to-end tests to show howCatalyzer can
reduce latency for real-world serverless functions. In each
case, we present the startup latency (Boot) and the execu-
tion latency (Execution). We compare three systems, gVisor,
Catalyzer-sfork (fork boot) and Catalyzer-restore (cold boot).

DeathStar Social Network Microservices. DeathStar [22]
is an open-source microservice benchmark. We port five
microservices in DeathStar social network benchmark to our
serverless platform. Specifically, all microservice invocations
in selected microservices are replaced by stub functions to
be compatible with the platform.

The results are shown in Figure 13-a. DeathStar represents
real-world lightweight serverless functions. All the selected

functions are written in C++, and have <2.5ms execution
time in all the cases, as shown in the figure. For these func-
tions, Catalyzer can significantly reduce the overall latency
by boosting startup (35x–67x using sfork).

Image Processing Application. Image processing can be
implemented as serverless functions and has been deployed
in existing platforms [17]. We use Python Pillow [15], a
Python imaging library to implement five major tasks for im-
age processing. Specifically, the Pillow applications receive
images, process them (i.e., enhance/filter/roll/splitmerge/-
transpose the images), and then return the processed results.
As shown in Figure 13-b, the execution time of the five

functions are 100–200ms. The major cost is from reading the
input images. Although the execution time is much longer
than DeathStar, the startup latency still dominates the overall
latency (>500ms). Overall, Catalyzer can reduce the end-to-
end latency by 4.1x–6.5x in fork boot, and 3.6x–4.3x in cold
boot, compared with the baseline.

E-commerce Functions. Weevaluate four E-commerce server-
less functions written in Java: purchase, advertising, report
generation, and discount applying. The execution time of
these services varies from hundreds of milliseconds (report
generation) to more than one second (purchase).We compare
the Boot and Execution latency of them running in gVisor
and Catalyzer.
The results are shown in Figure 13-c. In baseline gVisor,

booting of the four Java applications contributes to 34%–88%
of their end-to-end latency. In Catalyzer, the number drops
below 5%, which is a significant improvement over existing
systems and is acceptable in most server service scenarios.

6.5 Memory Usage Evaluation
On-demand Paging. Figure 14 comparesmemory usages of
the DeathStar composePost function in gVisor and Catalyzer
(with sfork) under concurrent running sandboxes (from 1

Session 6A: Datacenter/cloud power/performance — Managing
the beast. Physics Experiments (with a particular eye on CERN LHC)

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

477

 0

 50

 100

 150

 200

 250

 300

 350

gVisor
C-sfork

C-restore
gVisor

C-sfork
C-restore

gVisor
C-sfork

C-restore
gVisor

C-sfork
C-restore

gVisor
C-sfork

C-restore

L
at

en
cy

 (
m

s)

Boot
Execution

TimelineUniqueIDComposeMediaText

(a) Deathstar microservices.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

gVisor
C-sfork

C-restore
gVisor

C-sfork
C-restore

gVisor
C-sfork

C-restore
gVisor

C-sfork
C-restore

gVisor
C-sfork

C-restore

L
at

en
cy

 (
m

s)

Boot
Execution

TransposeSplitMergeRollingFiltersEnhancement

(b) Pillow image processing.

1K

2K

3K

gVisor
C-I gVisor

C-I gVisor
C-I gVisor

C-I

L
at

en
cy

 (
m

s)

Boot
Execution

DiscountReportAdvertisementPurchase

(c) E-commerce functions.

Figure 13. End-to-end evaluation. C-sfork means fork boot of Catalyzer, C-restore means cold boot of Catalyzer, and C-I means
Catalyzer on the server machine.

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16

M
em

o
ry

 u
sa

g
e

(M
B

)

Number of concurrent sandboxes

RSS
PSS

(a) gVisor baseline.

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16

M
em

o
ry

 u
sa

g
e

(M
B

)

Number of concurrent sandboxes

RSS
PSS

(b) Catalyzer.

Figure 14. Memory usages in the DeathStar.

Table 3. Memory costs in Catalyzer for warm boot.

Applications Metadata
Objects

I/O
Cache All

C-Nginx 165.5KB 370B 165.9KB
Java-SPECjbb 680.6KB 2.4KB 683.0KB
Python-Django 289.3KB 1.2KB 290.5KB
Ruby-Sinatra 349.2KB 1.5KB 350.8KB
NodeJS-Web 302.1KB 472B 302.6KB

instance to 16). We use resident set size (RSS) and the propor-
tional set size (PSS) to represent the memory usage. RSS is
the total memory used by a process, while PSS is composed
by the private memory of that process plus the proportion
of shared memory with other processes. Each point in the
figure shows the average value of memory usages over all
running sandboxes. A comparison of the two figures shows
that Catalyzer achieves lower RSS and private memory us-
ages (indicated by PSS) comparing to gVisor.

Memory Costs of Catalyzer. Memory costs of warm boot
in Catalyzer are acceptable. We have observed that many
metadata objects will be copied into Private-EPT, which in-
curs memory overhead. We present the costs of metadata
objects and I/O caches in Table 3, which are negligible. For
most applications, Catalyzer needs ≤2.4KB for I/O caches,
165–680KB for metadata objects. Notably, the overhead is per
serverless function (not per serverless instance), making the
cost (≤683KB overall) acceptable for most cases. sfork will
introduce more memory overheads, e.g., a SPECjbb template
sandbox can cost >200MB memory.

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

S
ta

rt
u

p
 t

im
e

(m
s)

Number of running instances.

gVisor-restore
Catalyzer

Catalyzer-Indus

Figure 15. Startup latency as the instance number increases.
Catalyzer-Indus means results from the server machine.

6.6 Concurrent Running
One appealing feature of serverless computing is auto-scaling.
Hence, having many serverless instances running simulta-
neously in a machine is a common case. We evaluate the
startup time of Catalyzer when there are concurrently run-
ning instances.
We use the DeathStar text service as the test function,

which handles a request and hangs a while before exit, for
evaluation. As shown in Figure 15, we evaluate the booting
latency with n (0–1000) running instances. We compared Cat-
alyzer with gVisor-restore and only considered the restore
latency of gVisor-restore (without “create” sandbox latency).
Overall, the startup latency in Catalyzer is less than 10ms
on both the experimental machine and the server machine.

6.7 Optimizations
Customized func-entry point. Carefully choosing the func-
entry point location, e.g., moving it after the in-function
preparation logic, can further improve the performance of
serverless functions. Using the optimization, the developers
should put the func-entry point in their function code. The
developers should be careful to ensure privacy and security.
Further, a platform can evenwarmup some dependencies of a

Session 6A: Datacenter/cloud power/performance — Managing
the beast. Physics Experiments (with a particular eye on CERN LHC)

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

478

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

C-mem-read-16K Java-SPECjbb

360.6us 2643.8ms

N
o
rm

al
iz

ed
 L

at
en

cy

baseline
Catalyzer

(a) Fine-grained func-entry
point.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

1 2 3 4 5 6

T
im

e
 (

u
s)

Number of kvcalloc invocations.

Baseline KVM
KVM cache

(b) KVM allocation cache.

 10

 100

 1000

 10000

1 2 3 4 5 6 7 8 9 10 11

T
im

e
(u

s)

Number of ioctl requests.

Default
Disable PML

(c) Latency of
set_memory_region.

 1000

 1x10
6

 0 5 10 15 20 25 30 35 40

T
im

e
(n

s)

Number of syscall.

Dup latency
Dup2 latency

(d) Latency of dup/dup2 syscall.

Figure 16. Optimizations in Catalyzer. Figure (a) shows fine-
grained func-entry point can reduce the execution latency by 3x.
From Figure (b), adding a cache in KVM can reduce the latency of
kvcalloc. Figure (c) shows the latency of set_memory_reдion ioctl
in KVM and disabling PML achieves 10x shorter latency. Figure (d)
shows the latency of dup syscall during boot. The burst one takes
about 30 ms for the syscall.

function with user-provided requests as training and use the
warmed state as func-image (user-guided pre-initialization).
Thus, the time of application-dependent preparation work
can be mitigated.
We use a case in Java SPECjbb and a memory reading C

program (as microbenchmark) for evaluation. The C program
will allocate a memory region to read and write. We move
the func-entry point after memory allocation. For SPECjbb,
we move the func-entry point after its initialization logic. As
shown in Figure 16-a, the execution latency is reduced by 3x
for both cases.

OptimizingKVM. Pagemodification logging (PML), which
is a virtualization feature to monitor changes made to guest
physical pages, is enabled by default in current KVM. If the
guest does not need the feature, it has to be disabled, or it will
introduce high latency when adding a new memory region,
as shown in Figure 16-c. A trick we employed is to disable
PML by default for both the baseline and our systems, which
reduces 5–8ms of latency for setting KVM memory regions.
In addition, KVM uses kvcalloc to allocate memory re-

source for VM management, which can incur 1.6ms over-
head, as shown in Figure 16-b. To mitigate the cost, we add a
dedicated cache in KVM to boost the allocations, which can
reduce the overhead to <50us in most cases.

High Tail Latency System Calls. System call invocation
on the host kernel can incur high latency. For example, dup
and dup2 take ≤1ms to 30ms to finish (Figure 16-d). The burst

latency comes from rare cases in the kernel. For example,
the kernel may expand the fdtable when the table size is
not enough, which causes long latency. Thus, we use a lazy
dup, in which the Gofer process first returns an available fd
and duplicate a new one for itself, to mitigate the overhead.
This optimization is implemented in the Gofer process for
on-demand I/O reconnection, which contributes to 10–20ms
improvement.

6.8 Security Analysis
Catalyzer shares a “base mapping” among instances. Since
the “base mapping” only contains user requests independent
state, the sharing will not leak data or create new cache side
channels. A possible issue is the violation of ASLR (Address
Space Layout Randomization), which can be mitigated by
periodically updating func-images and template sandboxes
or adopting previous techniques [33, 34] to re-randomize the
layout of address space during sfork.

6.9 Lessons Learned from Industrial Development
Heavyweight-functions. Priorwork focuses on lightweight
languages for serverless functions, e.g., Python. However, a
trend is that more functions are directly ported from well-
tested service code written in Java. Thus, a system to boost
the startup latency of functions wrapped with a heavyweight
language runtime is necessary. Recent work [43] on boosting
Java-based serverless functions also confirms the necessity.

SustainableHot Boot. Most of existing serverless platforms
use function caches to provide “hot boot”. However, the bene-
fits of caching depend on its policies and caching can not help
reduce tail latency, which is dominated by the “cache miss
boot” in most cases. Our fork boot using sfork guarantees a
sustainable hot boot for functions.
The usage of sfork still depends on workloads and plat-

forms. For private serverless platforms, it is reasonable to
assign different priorities to different functions; therefore,
the platform can use sfork to boot high priority functions.
For a public platform, some hints from the developers are
necessary to improve the boot switching policies to better
leverage the efficiency of fork boot.

7 Related Work
Besides the systems mentioned in Section 2, there are other
systems [30, 42, 43] that have tried to leverage the check-
point/restore mechanism for instantiation. Flash cloning [42]
uses a reference image which contains the memory snap-
shot of a pre-initialized OS and application environment.
SnowFlock [30] provides a fast VM instantiation scheme
using VM fork, allowing a virtual machine to fork a new
instance to handle requests. The two systems target tradi-
tional virtual machines, and thus still have high latency,
e.g., VM cloning operation in SnowFlock introduces near
second latency. Replayable Execution [43] identifies two

Session 6A: Datacenter/cloud power/performance — Managing
the beast. Physics Experiments (with a particular eye on CERN LHC)

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

479

execution phases of FaaS applications and extends the check-
point/restore mechanism with on-demand paging to achieve
54ms JVM boot. Catalyzer has two key distinctions. First,
on-demand paging is not sufficient in virtualization-based
sandboxes, as system state recovery occupies prominent
overheads. Thus, Catalyzer adopts the on-demand recovery
also for system state. Second, Catalyzer further proposes
sfork primitive and achieves 1.5ms–2ms latency for Java
functions.
Unikernels like Mirage [36] and OSv [26] can achieve

faster startup than traditional VM by minimizing and cus-
tomizing the guest OS for applications and removing the
isolation between kernel and applications. LightVM [37] can
achieve <10ms Unikernel booting by optimizing Xen and
minimizing the guest environment. Catalyzer uses a different
idea to boost startup by skipping the initialization, which is
much more efficient and suitable for serverless. Besides, we
believe that Catalyzer can also be applied to Unikernels.

8 Conclusion
This paper presents Catalyzer, a general design for serverless
to boost the function startup by eliminating the initialization
phase with on-demand restore and sfork. We implement
the design based on gVisor, and the evaluation shows that
Catalyzer can significantly reduce the latency overhead of
diverse serverless applications.

Acknowledgments
We thank our shepherd Mike Swift and the anonymous re-
viewers for their insightful comments. This work is sup-
ported in part by the National Key Research & Development
Program (No. 2016YFB1000104), and the National Natural
Science Foundation of China (No. 61972244, 61925206), the
HighTech Support Program from Shanghai Committee of
Science and Technology (No. 19511121100), and the Pro-
gram of Shanghai Academic/Technology Research Leader
(No.19XD1401700). Yubin Xia (xiayubin@sjtu.edu.cn) is the
corresponding author.

References
[1] [n.d.]. Apache OpenWhisk is a serverless, open source cloud platform.

http://openwhisk.apache.org/. Referenced December 2018.
[2] [n.d.]. AWS Lambda - Serverless Compute. https://aws.amazon.com/

lambda/. Referenced December 2018.
[3] [n.d.]. Azure Functions Serverless Architecture. https://azure.

microsoft.com/en-us/services/functions/. Referenced December 2018.
[4] [n.d.]. Checkpoint/Restore in gVisor. https://gvisor.dev/docs/user_

guide/checkpoint_restore/. Referenced July 2019.
[5] [n.d.]. The Docker Containerization Platform. https://www.docker.

com/. Referenced December 2018.
[6] [n.d.]. Firecracker. https://firecracker-microvm.github.io/. Referenced

December 2018.
[7] [n.d.]. Google Cloud Function. https://cloud.google.com/functions/.

Referenced December 2018.
[8] [n.d.]. Google gVisor: Container Runtime Sandbox. https://github.

com/google/gvisor. Referenced December 2018.

[9] [n.d.]. google/novm: Experimental KVM-based VMM for containers,
written in Go. https://github.com/google/novm. Referenced Jan 2020.

[10] [n.d.]. Hyper - Make VM run like Container. https://hypercontainer.io/.
Referenced December 2018.

[11] [n.d.]. Keeping Functions Warm - How To Fix AWS Lambda Cold
Start Issue. https://serverless.com/blog/keep-your-lambdas-warm/.
Referenced July 2019.

[12] [n.d.]. OCI Runtime Specification. https://github.com/opencontainers/
runtime-spec. Referenced December 2018.

[13] [n.d.]. Overlay Filesystem. https://www.kernel.org/doc/
Documentation/filesystems/overlayfs.txt. Referenced July
2019.

[14] [n.d.]. Overview of memory management | Android Developers. https:
//developer.android.com/topic/performance/memory-overview. Ref-
erenced December 2018.

[15] [n.d.]. Pillow: the friendly PIL fork. https://python-pillow.org/. Refer-
enced December 2018.

[16] [n.d.]. Protocol Buffers Google Developers. https://developers.google.
com/protocol-buffers/. Referenced July 2019.

[17] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus
Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. {SAND}:
Towards High-Performance Serverless Computing. In 2018 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 18). 923–935.

[18] Nadav Amit and Michael Wei. 2018. The Design and Implementation
of Hyperupcalls. In 2018 USENIX Annual Technical Conference (USENIX
ATC 18). USENIX Association, Boston, MA, 97–112. https://www.
usenix.org/conference/atc18/presentation/amit

[19] Adam Belay, Andrea Bittau, Ali José Mashtizadeh, David Terei, David
Mazières, and Christos Kozyrakis. 2012. Dune: Safe User-level Access
to Privileged CPU Features.. In Osdi, Vol. 12. 335–348.

[20] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator..
In USENIX Annual Technical Conference, FREENIX Track, Vol. 41. 46.

[21] Sol Boucher, Anuj Kalia, David G. Andersen, and Michael Kaminsky.
2018. Putting the "Micro" Back in Microservice. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18). USENIX Association, Boston,
MA, 645–650. https://www.usenix.org/conference/atc18/presentation/
boucher

[22] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, et al. 2019. An Open-Source Benchmark Suite for Microser-
vices and Their Hardware-Software Implications for Cloud & Edge
Systems. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems. ACM, 3–18.

[23] Abel Gordon, Nadav Amit, Nadav Har’El, Muli Ben-Yehuda, Alex Lan-
dau, Assaf Schuster, and Dan Tsafrir. 2012. ELI: Bare-metal Perfor-
mance for I/O Virtualization. In Proceedings of the Seventeenth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS XVII). ACM, New York, NY, USA,
411–422. https://doi.org/10.1145/2150976.2151020

[24] Joseph M Hellerstein, Jose Faleiro, Joseph E Gonzalez, Johann Schleier-
Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. 2018.
Serverless Computing: One Step Forward, Two Steps Back. arXiv
preprint arXiv:1812.03651 (2018).

[25] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. 2018. Scaling
Guest OS Critical Sections with eCS. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18). USENIX Association, Boston, MA, 159–
172. https://www.usenix.org/conference/atc18/presentation/kashyap

[26] Avi Kivity, Dor Laor Glauber Costa, and Pekka Enberg. 2014. OS
v—Optimizing the Operating System for Virtual Machines. In Proceed-
ings of USENIX ATC’14: 2014 USENIX Annual Technical Conference.
61.

[27] Ana Klimovic, Yawen Wang, Christos Kozyrakis, Patrick Stuedi, Jonas
Pfefferle, and Animesh Trivedi. 2018. Understanding Ephemeral
Storage for Serverless Analytics. In 2018 USENIX Annual Technical

Session 6A: Datacenter/cloud power/performance — Managing
the beast. Physics Experiments (with a particular eye on CERN LHC)

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

480

http://openwhisk.apache.org/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://gvisor.dev/docs/user_guide/checkpoint_restore/
https://gvisor.dev/docs/user_guide/checkpoint_restore/
https://www.docker.com/
https://www.docker.com/
https://firecracker-microvm.github.io/
https://cloud.google.com/functions/
https://github.com/google/gvisor
https://github.com/google/gvisor
https://github.com/google/novm
https://hypercontainer.io/
https://serverless.com/blog/keep-your-lambdas-warm/
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt
https://developer.android.com/topic/performance/memory-overview
https://developer.android.com/topic/performance/memory-overview
https://python-pillow.org/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://www.usenix.org/conference/atc18/presentation/amit
https://www.usenix.org/conference/atc18/presentation/amit
https://www.usenix.org/conference/atc18/presentation/boucher
https://www.usenix.org/conference/atc18/presentation/boucher
https://doi.org/10.1145/2150976.2151020
https://www.usenix.org/conference/atc18/presentation/kashyap

Conference (USENIX ATC 18). USENIX Association, Boston, MA, 789–
794. https://www.usenix.org/conference/atc18/presentation/klimovic-
serverless

[28] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfefferle, and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Stor-
age for Serverless Analytics. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). USENIX Association,
Carlsbad, CA, 427–444. https://www.usenix.org/conference/osdi18/
presentation/klimovic

[29] Yossi Kuperman, Eyal Moscovici, Joel Nider, Razya Ladelsky, Abel
Gordon, and Dan Tsafrir. 2016. Paravirtual Remote I/O. In Proceedings
of the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’16). ACM,
New York, NY, USA, 49–65. https://doi.org/10.1145/2872362.2872378

[30] Horacio Andrés Lagar-Cavilla, JosephAndrewWhitney, AdinMatthew
Scannell, Philip Patchin, Stephen M Rumble, Eyal De Lara, Michael
Brudno, and Mahadev Satyanarayanan. 2009. SnowFlock: rapid virtual
machine cloning for cloud computing. In Proceedings of the 4th ACM
European conference on Computer systems. ACM, 1–12.

[31] David Lion, Adrian Chiu, Hailong Sun, Xin Zhuang, Nikola Grcevski,
and Ding Yuan. 2016. Don’t Get Caught in the Cold, Warm-up Your
JVM: Understand and Eliminate JVM Warm-up Overhead in Data-
Parallel Systems. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). USENIX Association, Savannah,
GA, 383–400. https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/lion

[32] Ming Liu, Simon Peter, Arvind Krishnamurthy, and Phitchaya Mangpo
Phothilimthana. 2019. E3: Energy-Efficient Microservices on
SmartNIC-Accelerated Servers. In 2019 USENIX Annual Technical Con-
ference (USENIX ATC 19). USENIX Association, Renton, WA, 363–378.
https://www.usenix.org/conference/atc19/presentation/liu-ming

[33] Kangjie Lu, Wenke Lee, Stefan Nürnberger, and Michael Backes. 2016.
How to Make ASLR Win the Clone Wars: Runtime Re-Randomization..
In NDSS.

[34] Kangjie Lu, Chengyu Song, Byoungyoung Lee, Simon P Chung, Taesoo
Kim, and Wenke Lee. 2015. ASLR-Guard: Stopping address space
leakage for code reuse attacks. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 280–291.

[35] Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas
Gazagnaire, David Sheets, David J Scott, Richard Mortier, Amir
Chaudhry, Balraj Singh, Jon Ludlam, et al. 2015. Jitsu: Just-In-Time
Summoning of Unikernels.. In NSDI. 559–573.

[36] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David
Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,

and Jon Crowcroft. 2013. Unikernels: Library operating systems for
the cloud. In Acm Sigplan Notices, Vol. 48. ACM, 461–472.

[37] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuen-
zer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017.
My VM is Lighter (and Safer) than your Container. In Proceedings of
the 26th Symposium on Operating Systems Principles. ACM, 218–233.

[38] Garrett McGrath, Jared Short, Stephen Ennis, Brenden Judson, and Paul
Brenner. 2016. Cloud event programming paradigms: Applications and
analysis. In 2016 IEEE 9th International Conference on Cloud Computing
(CLOUD). IEEE, 400–406.

[39] Edward Oakes, Leon Yang, Kevin Houck, Tyler Harter, Andrea C
Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. 2017. Pipsqueak: Lean
Lambdas with large libraries. In 2017 IEEE 37th International Confer-
ence on Distributed Computing Systems Workshops (ICDCSW). IEEE,
395–400.

[40] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. {SOCK}:
Rapid Task Provisioning with Serverless-Optimized Containers. In
2018 {USENIX} Annual Technical Conference ({USENIX}{ATC} 18).

[41] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bagdasaryan,
Christina Delimitrou, Robbert Van Renesse, and HakimWeatherspoon.
2019. X-containers: Breaking down barriers to improve performance
and isolation of cloud-native containers. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems. ACM, 121–135.

[42] Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft,
Alex C Snoeren, Geoffrey M Voelker, and Stefan Savage. 2005. Scala-
bility, fidelity, and containment in the potemkin virtual honeyfarm. In
ACM SIGOPS Operating Systems Review, Vol. 39. ACM, 148–162.

[43] Kai-Ting Amy Wang, Rayson Ho, and Peng Wu. 2019. Replayable
Execution Optimized for Page Sharing for a Managed Runtime En-
vironment. In Proceedings of the Fourteenth EuroSys Conference 2019.
ACM, 39.

[44] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart,
and Michael Swift. 2018. Peeking behind the curtains of server-
less platforms. In 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 18). 133–146.

[45] Liang Zhang, James Litton, Frank Cangialosi, Theophilus Benson, Dave
Levin, and Alan Mislove. 2016. Picocenter: Supporting Long-lived,
Mostly-idle Applications in Cloud Environments. In Proceedings of
the Eleventh European Conference on Computer Systems (EuroSys ’16).
ACM, New York, NY, USA, Article 37, 16 pages. https://doi.org/10.
1145/2901318.2901345

Session 6A: Datacenter/cloud power/performance — Managing
the beast. Physics Experiments (with a particular eye on CERN LHC)

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

481

https://www.usenix.org/conference/atc18/presentation/klimovic-serverless
https://www.usenix.org/conference/atc18/presentation/klimovic-serverless
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://doi.org/10.1145/2872362.2872378
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/lion
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/lion
https://www.usenix.org/conference/atc19/presentation/liu-ming
https://doi.org/10.1145/2901318.2901345
https://doi.org/10.1145/2901318.2901345

	Abstract
	1 Introduction
	2 Serverless Function Startup Breakdown
	2.1 Background
	2.2 A Quantitative Analysis on Startup Optimizations
	2.3 Overview

	3 On-demand Restore
	3.1 Overlay Memory
	3.2 Separated State Recovery
	3.3 On-demand I/O Reconnection
	3.4 Virtualization Sandbox Zygote
	3.5 Putting All Together

	4 sfork: Sandbox fork
	4.1 Multi-threading Fork
	4.2 Stateless Overlay RootFS
	4.3 Language Runtime Template for Cold Boot

	5 Implementation
	6 Evaluation
	6.1 Evaluation Environment
	6.2 Application Startup Latency
	6.3 Improvement Breakdown
	6.4 End-to-End Evaluation
	6.5 Memory Usage Evaluation
	6.6 Concurrent Running
	6.7 Optimizations
	6.8 Security Analysis
	6.9 Lessons Learned from Industrial Development

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

