Check for
Updates

BeeHive: Sub-second Elasticity for Web Services with Semi-Faa$

Ziming Zhao
Institute of Parallel and Distributed
Systems, SEIEE, Shanghai Jiao Tong
University
Shanghai, China
dumplings_ming@sjtu.edu.cn

Binyu Zang
Institute of Parallel and Distributed
Systems, SEIEE, Shanghai Jiao Tong
University
Engineering Research Center for
Domain-specific Operating Systems,

Execution

Mingyu Wu
Institute of Parallel and Distributed
Systems, SEIEE, Shanghai Jiao Tong
University
Shanghai Al Laboratory
Shanghai, China

mingyuwu@sjtu.edu.cn

Zhaoguo Wang
Institute of Parallel and Distributed
Systems, SEIEE, Shanghai Jiao Tong

University
Shanghai, China

zhaoguowang@sjtu.edu.cn

Jiawei Tang
Institute of Parallel and Distributed
Systems, SEIEE, Shanghai Jiao Tong
University
Shanghai, China
jlawei_tang@sjtu.edu.cn

Haibo Chen
Institute of Parallel and Distributed
Systems, SEIEE, Shanghai Jiao Tong
University
Engineering Research Center for
Domain-specific Operating Systems,

Ministry of Education, China
Shanghai, China
byzang@sjtu.edu.cn

ABSTRACT

Function-as-a-service (FaaS), an emerging cloud computing par-
adigm, is expected to provide strong elasticity due to its promise
to auto-scale fine-grained functions rapidly. Although appealing
for applications with good parallelism and dynamic workload, this
paper shows that it is non-trivial to adapt existing monolithic ap-
plications (like web services) to FaaS due to their complexity. To
bridge the gap between complicated web services and FaaS, this
paper proposes a runtime-based Semi-FaaS execution model, which
dynamically extracts time-consuming code snippets (closures) from
applications and offloads them to Faa$S platforms for execution. It
further proposes BeeHive, an offloading framework for Semi-FaaS,
which relies on the managed runtime to provide a fallback-based ex-
ecution model and addresses the performance issues in traditional
offloading mechanisms for FaaS. Meanwhile, the runtime system
of BeeHive selects offloading candidates in a user-transparent way
and supports efficient object sharing, memory management, and
failure recovery in a distributed environment. The evaluation using
various web applications suggests that the Semi-FaaS execution
supported by BeeHive can reach sub-second resource provisioning
on commercialized FaaS platforms like AWS Lambda, which is up
to two orders of magnitude better than other alternative scaling
approaches in cloud computing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPLOS °23, March 25-29, 2023, Vancouver, BC, Canada

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9916-6/23/03...$15.00
https://doi.org/10.1145/3575693.3575752

74

Ministry of Education, China
Shanghai, China
haibochen@sjtu.edu.cn

CCS CONCEPTS

- Computer systems organization — Cloud computing; - Soft-
ware and its engineering — Runtime environments.

KEYWORDS

Cloud Computing, Function-as-a-Service, Java Virtual Machine

ACM Reference Format:

Ziming Zhao, Mingyu Wu, Jiawei Tang, Binyu Zang, Zhaoguo Wang, Haibo
Chen. 2023. BeeHive: Sub-second Elasticity for Web Services with Semi-
Faa$ Execution. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems,
Volume 2 (ASPLOS °23), March 25-29, 2023, Vancouver, BC, Canada. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3575693.3575752

1 INTRODUCTION

The dynamic nature of the real-world web environment stimu-
lates strong demand for resource elasticity, i.e., to rapidly and auto-
matically scale with the fluctuating workload. Fortunately, cloud
vendors have proposed many different scaling mechanisms, and
function-as-a-service (FaaS) is one of the most recent and popular
solutions. Compared with others, FaaS automatically scales applica-
tions in a finer granularity (namely functions) and shorter reaction
time. It also embraces a pay-as-you-go model for cost-efficient com-
putation.

FaaS$ has drawn great attention since its birth. Mainstream cloud
vendors have provided their own Faa$ platforms [12, 17, 32, 36,
47], while prior work has proposed to run various applications as
FaaS$ functions, including video processing [30], software compila-
tion [29], micro-services [31, 39], data-parallel execution [55, 56],
etc. Those applications exhibit massive parallelism, which suits
FaaS well in that they can be supported by elastic and unbounded
computing resources in the cloud with acceptable budgets. However,
Faa$ encounters challenges when applying to more complicated

https://doi.org/10.1145/3575693.3575752
https://doi.org/10.1145/3575693.3575752
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3575693.3575752&domain=pdf&date_stamp=2023-01-30

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

scenarios. A typical example is traditional monolithic web applica-
tions. Although they also require elastic resources to tackle request
bursts, it is quite difficult to migrate them to FaaS.

To further understand the challenges in adapting web applica-
tions to FaaS, this work tries three different mechanisms on an
enterprise-level web application named pybbs [8], but none of them
is satisfying. First, it is inappropriate to directly run those compli-
cated applications atop FaaS due to their stateful nature violates
the stateless assumption of FaaS. Second, it is not practical to man-
ually break them into fine-grained functions for FaaS due to their
code complexity and tight integration with underlying develop-
ment frameworks. Third, it is not feasible to statically slice web
applications due to dynamically generated classes and general call
stubs from frameworks. The above observations call for a new ex-
ecution paradigm, which leverages the power of FaaS while still
keeping the monolithic nature of web applications.

This work thus proposes Semi-FaaS, a new execution model
for complicated applications (like web services) to embrace FaaS.
Figure 1 illustrates that Semi-FaaS combines the execution model
of both traditional monolithic services and FaaS: instead of directly
running or code refactoring, Semi-Faa$ only uploads fine-grained
code snippets to Faa$S for execution while executing the rest and
maintaining states on the monolith side (referred to as server). Due
to the complexity of static analysis, Semi-FaaS relies on managed
runtimes from high-level languages to dynamically extract code
snippets and offload them to FaaS. We have implemented BeeHive
in Java, a managed language widely used in web applications, to
realize the Semi-FaaS model. Our contributions are as follows.

Monolithic FaaS Semi-FaaS
e ©0 ¢
o O 0O
fwe] 00O

[state]
o

Figure 1: The Semi-FaaS model combines both

An offloading-based Semi-FaaS execution model. BeeHive
provides an offloading-based execution model, which automatically
extracts and offloads sliced Java code snippets from the original
monolithic application (or server) to FaaS platforms for execution.
Rather than statically analyzing complicated code of web applica-
tions, BeeHive relies on the language runtimes (JVMs) to collect
the application profiles and select time-consuming functions for
offloading. Afterward, BeeHive calculates an initial closure from the
function and sends it to FaaS. Due to the inaccuracy of dynamic
analysis, the initial closure is incomplete, so BeeHive embraces a
fallback-based mechanism, which returns the control flow from
Faa$S back to the server to handle issues like missing code and
data. The fallback mechanism continuously completes the closure
and quickly achieves comparable performance against that on the
server.

Comprehensive analysis and optimizations to reduce the
fallback overhead. The major shortcoming of BeeHive’s offload-
ing mechanism is the fallback overhead, which mainly consists of

75

Ziming Zhao, Mingyu Wu, Jiawei Tang, Binyu Zang, Zhaoguo Wang, and Haibo Chen

three parts according to our analysis. First, frameworks in web appli-
cations heavily rely on native invocations, many of which are cou-
pled with native states and cannot be offloaded. BeeHive proposes
the Packageble abstraction, which allows packing related native
states into closures and thus enables offloading native invocations.
Second, web applications frequently communicate with external
services (like databases) through stateful connections. Since those
connections are not offloadable, BeeHive provides a proxy-based
communication mechanism to eliminate network-related fallbacks.
Third, the first few invocations to FaaS functions suffer from large
overhead due to excessive fallbacks, the warm-up phase in JVM,
and the instance construction in Faa$ platforms (also known as
cold boot). BeeHive thus provides the shadow execution mechanism,
which executes duplicated user requests on FaaS with no side ef-
fects, while the real requests are executed in servers and thus not
bothered by any fallbacks.

A runtime system to support consistent execution on mul-
tiple endpoints. The runtime system in BeeHive is responsible for
data sharing, offloading method selection, and memory manage-
ment among multiple endpoints (servers and Faa$S functions). To
enable efficient data sharing among multiple endpoints, BeeHive
modifies the object address layout to distinguish remote references,
and it also relies on the Java Memory Model (JMM) to handle syn-
chronizations among endpoints. It further leverages the intensively-
used annotations in frameworks to filter candidate functions and
provides a profiler to find time-consuming ones for FaaS execution.
BeeHive also proposes a low-pause garbage collector to reclaim
memory resources among different endpoints and provides a re-
execution-based failure recovery mechanism to handle failures on
Faa$ invocations.

A thorough evaluation against other scaling solutions. Bee-
Hive is implemented atop the HotSpot JVM for Open]DK 8. We have
employed it on two widely-used Faa$S platforms, OpenWhisk [15]
and AWS lambda, and evaluated it with enterprise-level web appli-
cations [13]. The result shows that BeeHive can react to the dynamic
workload with instances in the FaaS platform and reduce the tail
latency in less than one second at best, which is up to two orders of
magnitude better than other scaling approaches provided by AWS.
Thanks to the optimizations in BeeHive, the number of fallbacks
is trivial and leads to moderate execution overhead. However, for
applications inducing many fallbacks (e.g., frequent synchroniza-
tion on shared variables), the overhead of BeeHive may still be
considerable.

2 ANALYSIS AND MOTIVATION
2.1 Tackling Request Bursts with FaaS

Request bursts are long-term enemies for web applications. Due to
the highly dynamic characteristics of requests, bursts are usually
unpredictable but damaging. In the last few years, well-known web
services like Twitter and Paypal have suffered from unavailabil-
ity when facing sudden request bursts [1, 2]. To show the effect
of request bursts on web applications, this paper uses pybbs, an
enterprise-level web service studied by prior work, as an example
for analysis. pybbs is a popular open-source forum built with main-
stream web frameworks like Spring [59] and contains 24692 Java
classes in all [13]. We run the pybbs web server in an AWS m4.xlarge

BeeHive: Sub-second Elasticity for Web Services with Semi-FaaS Execution

instance (4 vCPUs) and simulate clients to comment on different
topics. Figure 2 indicates that both the average and tail latencies of
pybbs dramatically increase with the number of concurrent clients,
which may lead to the degradation of user experiences.

0.251 S

Request Latency (s)

Concurrent Clients

Figure 2: The latency of web service (pybbs) rapidly in-
creases with the number of concurrent clients

An intuitive solution to handle request bursts is adding more
resources. Fortunately, cloud vendors have provided various solu-
tions for resource scaling. Taking AWS as an example, it provides
the following choices.

o Reserved instance. Customers can reserve cloud resources
and use them once request bursts happen. Since those in-
stances are prepared in advance, they can rapidly handle
request bursts, but the cost is relatively high: the instances
must be active no matter if they are used, and they should
be reserved for at least one year [18].

e On-demand instance. As the name suggests, this type of
instance can be created on-demand to handle request bursts.
However, the instance creation time is relatively long.

e Burstable instance. This type of instance is similar to re-
served instances but embraces a different billing model: when
the resource is not sufficiently used, AWS reduces its cost.
The burstable instance can also be used on-demand, but we
mainly discuss its reserved use case in this work.

o Fargate. AWS Fargate provides a similar abstraction to FaaS:
it automatically scales the resources (in containers) to meet
the demand of dynamic workloads. Nevertheless, the granu-
larity for configuration and billing is not flexible compared
with FaaS.

e Lambda (FaaS). AWS lambda claims to scale smaller pieces
of code (i.e., functions) in a rapid, elastic, and automatic
fashion.

Table 1 summarizes the characteristics of the above scaling so-
lutions. The preparation time for different solutions is evaluated
by employing a prepared system image with OpenJDK 8 installed.
Compared with others, the Faa$ solution (Lambda) finishes resource
provisioning in a second or less, and the billing granularity is as
small as a millisecond. As for configuration, FaaS allows customers
to configure memory resources in MB, while others only support
GB-level configuration. Last but not least, only FaaS and Fargate
support auto-scaling, which automatically scales resources up and

76

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

down due to workload fluctuation, while others need to involve
manual resource management'. To summarize, FaaS would be an
appealing choice to rapidly auto-scale and fight against request
bursts.

2.2 Implications of Applying FaaS to Web
Applications

Although FaaS has virtues like rapid auto-scaling and pay-as-you-
go billing model, it is not trivial to adapt existing web applications to
FaaS platforms. In this section, we show three different methods to
migrate an enterprise-level web service (pybbs) into FaaS platforms
for execution, but none of them is satisfying. Our experiences are
shown below.

Method 1: direct execution. The most straightforward way is
to directly run web applications as a whole atop FaaS platforms.
Although the notion of FaaS suggests a brand-new instance should
be created for each request, mainstream platforms have provided
instance caches to mitigate the overhead of environment setup (or
cold boot). The life span of a cached instance is usually hours [64],
which is enough for a short-term request burst.

However, Faa$ is mainly designed for auto-scaling fine-grained
and stateless tasks (functions), which is not the case for monolithic
and stateful applications. Web services usually contain complex
local states like sessions and local files, which violates the state-
less nature of FaaS. When a function (e.g., a request) finishes its
execution, the local states might be abandoned by the FaaS plat-
form, which leads to data loss and unavailability. Prior work has
shown that both popular monolithic web services [13] and smaller
micro-services [40] contain complex states, which makes it difficult
to migrate them to FaaS. Although FaaS platforms have provided
stateful support recently [22, 38, 58, 66], they still require signifi-
cant modifications to existing applications for state management.
Despite local states, the large code base of web services also makes
it inconvenient for FaaS execution. For example, mainstream Faa$S
platforms only support launching a function from an uploaded jar
file whose size is not larger than 50MB. In contrast, the packed jar
file for pybbs is 67MB and thus cannot be directly uploaded for
execution.

Experience 1: Direct execution is not appropriate as web appli-
cations’ stateful and monolithic nature violates the stateless and
lightweight assumptions of FaaS.

Method 2: manual rewriting. Our experience with direct ex-
ecution suggests that directly running web applications on FaaS
is not practical. We thus turn to a rewriting-based method, which
manually splits applications into small pieces and selectively up-
loads some of them to FaaS. Unfortunately, this method is also
unacceptable due to the complexity of web applications. Those ap-
plications contain a large number of classes, which are mainly con-
tributed by web development frameworks. Although those frame-
works greatly reduce the development labor with their expressive
annotations and versatile functionalities, their complexity makes
rewriting quite difficult. As for pybbs, 99.6% of its compiled jar
file is filled with framework-related Java classes, including user
authentication (Spring [59]), object-relational mapping required

'EC2 also supports auto-scaling, but it can only create new instances and users are
still responsible for launching services on them

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Ziming Zhao, Mingyu Wu, Jiawei Tang, Binyu Zang, Zhaoguo Wang, and Haibo Chen

Table 1: Comparisons on existing scaling solutions exemplified by AWS

Scaling solution ~ Minimum running time Billing granularity = Preparation time Configuration granularity (memory) Auto-scaling
Reserved 1 year years - GB no
On-demand 1 minute seconds ~40 seconds GB no
Burstable 1 year years - GB no

Fargate 1 minute seconds ~40 seconds GB yes
Lambda (FaaS) 1 millisecond milliseconds <1 second MB yes

by storage services (MyBatis [6, 7]), and optimizers (HikariCP [5]).
To rewrite web applications into smaller parts, developers need to
manually refactor those frameworks into lightweight ones. Recent
experiences [4] also show that totally rewriting web applications
to replace the frameworks’ functionalities may take years, which
suggests the rewriting method is infeasible and thus necessitates
an automatic approach [40].

Experience 2: Web applications are too complicated to manually
rewrite into smaller, FaaS-friendly pieces.

Method 3: static code analysis. As rewriting is infeasible, an
alternative solution is to automatically extract executable pieces
from web applications through static analysis. Unfortunately, static
analysis has also proven difficult when applied to monolithic web
applications [13] since development frameworks heavily rely on
dynamic code generation for helper classes and general call stubs.
Taking the comment request in pybbs as an example, frameworks
generate 287 new classes for the request class, which greatly en-
larges the code base for analysis. Those generated classes wrap the
real comment request with nearly 20 indirect invocations, resulting
in a deep call stack. Furthermore, many call sites use general stubs
for invocations, which contain tens of possible call targets for each.
A typical example is MethodInterceptor, a commonly-used stub to
intervene in user-defined methods. In pybbs, MethodInterceptor has
31 different kinds of implementations. All dynamically generated
classes and stubs create obstacles for a static analyzer to split web
applications into FaaS-friendly functions.

Experience 3: Web applications are too dynamic to be statically
analyzed.

2.3 Design Principles of Semi-Faa$S

Our analysis necessitates a new execution model for web applica-
tions to leverage the power of FaaS, which should conform to the
following principles:

o Partial. Web applications should be partitioned, and only a
part of them should be offloaded to FaaS for cost-efficient
execution.

e Automatic. Due to the code complexity of web applications,
they should be automatically partitioned and uploaded to
FaaS.

e Dynamic. Due to the dynamic nature of web applications,
they should be dynamically analyzed for smart partitioning
and offloading.

Considering such principles, we thus propose Semi-FaaS, a model
combining the normal execution with FaaS for web applications.
We implement BeeHive to realize the Semi-FaaS execution model.

77

3 OFFLOADING-BASED SEMI-FAAS WITH
BEEHIVE

3.1 Overview

According to experiences in Section 2.2, we build a Semi-Faa$ exe-
cution model atop BeeHive, an automatic and dynamic offloading
framework supported by managed runtimes (like JVMs). The ar-
chitecture of BeeHive is shown in Figure 3. Note that the design of
BeeHive is not restricted to JVMs and can be used in other language
virtual machines like JavaScript V8.

BeeHive mainly contains two parts: long-running servers, which
originally accept and process user requests, and FaaS$ platforms. It
is non-intrusive to both FaaS platforms and operating systems and
can be directly used by commercialized ones like AWS Lambda.
When facing request bursts, BeeHive controls servers to proactively
offload a part of its workload as functions to FaaS platforms for
execution, while the rest is still handled by the server (namely
Semi-FaaS). The number of offloaded requests is determined by an
offloading ratio, and BeeHive can scale in and out by setting the
ratio. For each offloaded function, BeeHive leverages the managed
runtimes provided by high-level languages like Java to track their
runtime behaviors and construct an initial closure, which is the
basic unit for FaaS execution. The initial closure contains code (Java
bytecode) and data likely to be used according to dynamic profiling,
which is sent together with user arguments to the FaaS platform.
After receiving the initial closure, the FaaS platform assigns it to
an instance (usually containers or virtual machines) for execution.

With the offloading mechanism above, BeeHive can achieve user-
transparent and lightweight offloading by only sending closures
to FaaS platforms. Nevertheless, due to the dynamic nature of Bee-
Hive’s offloading mechanism and the complexity of monolithic web
applications, the initial closure is incomplete, and the execution
on FaaS can encounter issues like missing code or data. To this
end, BeeHive embraces a fallback-based approach and relies on the
managed runtime to detect and handle all fallbacks. As shown in
Figure 3, functions on FaaS send fallback-related requests to the
server, while the server handles requests and sends the results back
so that the offloaded function can resume its execution. For exam-
ple, if the function encounters a missing code, it sends a request
with the name of the missing Java class, while the server sends the
corresponding class file back to the function. The fallback-based
mechanism repeats until the offloaded function exits with a return
value.

The fallback mechanism in BeeHive ensures the progress of FaaS
execution. Furthermore, the frequency of fallbacks gradually de-
creases as the closure is refined by receiving results from the server
(e.g., fetched code and data). Nevertheless, the overhead of fallbacks
is still considerable, and BeeHive is responsible for (1) reducing the

BeeHive: Sub-second Elasticity for Web Services with Semi-FaaS Execution

@ initial closure

Server JVM O

class
33
oY)
[O/

T

user requests

Faa$S Platform

function instances

]‘ﬁ)

class

@ fallback

class

© execution result
class

class O return value

forward

Figure 3: The workflow of BeeHive’s offloading mechanism

number of fallbacks and (2) reducing the performance overhead
of fallbacks. Specifically, BeeHive needs to handle the following
challenges given the characteristics of web applications, and we
will elaborate on how BeeHive solves them in the rest of this section.

e Native invocations. Native invocations are intensively used
in web applications, but they are treated as not offloadable
due to tight coupling with JVM-specific native states, which
leads to fallbacks for each native call.

o Stateful connections. Web applications are interactive and
contain connections with external services like databases.
Those connections cannot be directly offloaded and cause
fallbacks for each inter-service communication.

e Warmup overhead. The number of fallbacks is large for the
first few executions on FaaS. Furthermore, the FaaS platform
needs to establish a fresh runtime environment for function
execution, which also contributes to prohibitive execution
overhead, and naively offloading functions leads to a long
tail problem.

3.2

High-level languages like Java allow applications to use native li-
braries through their native interfaces. Due to the dynamic nature
of web applications, native invocations are heavily used. For exam-
ple, the frameworks frequently use the Reflection APIs to query
the metadata of classes and methods, which invokes corresponding
native methods to access off-heap data. Since native data is out of
management by the Java heap, prior work usually avoids offload-
ing native invocations. For example, COMET [34] returns from
the offloaded endpoint to the original device when encountering
a native call. However, the fallback overhead is not acceptable for
web services, and BeeHive should reduce fallbacks related to native
invocations.

Handling Native Invocations

Table 2: Native methods used in pybbs request handling

Categories Invocation Numbers Representative Methods

Pure on-heap 226643 System.arraycopy
Hidden states 34749 MethodAccessor.invoke0
Network 248 socketRead0

Others 415 Thread.currentThread

We first analyze which native methods are heavily used in web
applications, exemplified by pybbs. Table 2 shows the number of

78

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

native invocations by dividing them into different categories. Since
each request contains over 200 thousand invocations to different
native methods, simply returning to servers for handling would
introduce prohibitive overhead.

Fortunately, most native invocations do not involve complicated
manipulations on native states and can be directly handled on the
FaaS side. We divide those native methods into four categories and
handle them separately.

Pure on-heap operations. Most invoked native methods only
manipulate data on the heap. Applications and libraries use them to
improve their performance (for example, using arraycopy to copy
a large array). Since those methods do not impact off-heap states,
they can be directly executed on FaaS.

Hidden states. Although most invocations are easy to handle,
web applications also invoke methods that contain hidden states
stored off-heap. Those methods are frequently invoked by web
development frameworks mainly because they need to access object
metadata like classes and methods. Therefore, BeeHive proposes
an abstraction named packageable classes, which pack native states
together with Java objects to support direct invocation on FaaS
without fallbacks.

Packageable classes are implemented via the packageable Java
interface. A Java class implementing the packageable interface con-
tains methods to specify how to marshal/unmarshal the native
states owned by a Java class. During offloading, if the type of an
object is packageable, BeeHive will invoke its marshal method to
pack native states into the closure and subsequently call its un-
marshal method to transform and store the native states on the
Faa$ side. A typical example is a Method object which stores an
off-heap reference to corresponding method-related metadata. If
BeeHive only offloads the Method object, its native states become
uninterpretable and induce correctness issues for related methods
like invoke0. Therefore, we refactor the Method class to implement
packageable to include necessary metadata (such as the method
name) into the closure and unmarshal it on the FaaS side. Thanks
to the packageable interface, BeeHive can offload native methods
together with their corresponding states and avoid a large number
of fallbacks. The annotation burden is also acceptable: we manually
enhance 15 Java classes as packageable. Since all those classes are
in the Java system library (JDK), other applications can also reuse
them for offloading.

Network-related. Web applications rely on native socket APIs
to communicate with others (like databases). BeeHive proposes a
separate approach for those network-related invocations, which
relies on the support of packageable classes (discussed later in
Section 3.3).

Others. Other methods, such as currentThread() are stateless
and cause no side effects among invocations. Those methods can
also be tagged and directly executed on FaaS.

After handling the above four categories of native methods, Bee-
Hive allows most native invocations in offloaded code snippets to
execute directly on FaaS. As shown in Section 5, fallbacks due to
native invocations have been eliminated in all evaluated applica-
tions.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

3.3 Proxy-Based Connection Management

Web applications are also connected with others during their exe-
cution. A typical example is storage services (or databases), which
are used to maintain persistent states. As for pybbs, the execution
of each comment request includes more than 80 rounds of com-
munication with databases. If network communication cannot be
offloaded, the fallback overhead for each request would become con-
siderable. Nevertheless, the connections between web applications
and databases contain complex system states, and offloading them
may involve migrating kernel-related states to the Faa$S platform,
which is not practical in our user-level design. To this end, we pro-
pose a proxy-based approach to manage those stateful connections.

The core idea of our proxy is to share a connection to external
services between servers and FaaS functions. As shown in Figure 4,
each database service can have its own proxy for connection man-
agement, which runs on the same machine as the service. When the
server establishes a connection with the database, it is actually con-
nected via the proxy. The proxy originally maintains connections
to both database and server by memorizing their corresponding
descriptors. When a connection needs to be offloaded, the server
sends a special prepare request to the proxy to generate a unique
ID for the connection. This ID is stored in the proxy and returned
to the server. Afterward, the server treats the ID as a part of native
states related to the offloaded network-related object (the corre-
sponding type is SocketImpl) and packs it into the initial closure.
As for the FaasS side, it unpacks the native states and connects to
the proxy with the unique ID. After receiving the ID, the proxy can
determine that the request is from an offloaded function, so it main-
tains a descriptor mapping among the server, FaaS, and database.
Subsequently, requests from the FaaS function will be redirected
and sent to the database through the same connection it uses before
offloading, and no fallback is required.

@ offloading closure FaaS

M O connect (ID=123)
@ prepare
de:mpmxym:ws|._| Database |
@return (ID=123) update
[1o server [Faas | oo |

1] 1 [o [1]

Figure 4: BeeHive’s proxy-based connection management

3.4 Hiding Warmup with Shadow Execution

A newly-offloaded function may encounter an extremely long ex-
ecution time due to a warmup phase whose overhead consists of
three parts. First, as the resources are supplied on demand in FaaS
platforms, a function may suffer a cold boot when it is running
for the first time, which involves launching new instances (virtual
machines or containers), deploying JVMs, creating network con-
nections, etc. Second, since JVMs need to load required classes and
profile user methods for optimizations, the first-time execution is
usually slow. Third, as the initial closure is incomplete, it triggers
many fallbacks to fetch missing code and data. Although prior
work [23, 26, 52, 57, 62] has proposed solutions to mitigating the

79

Ziming Zhao, Mingyu Wu, Jiawei Tang, Binyu Zang, Zhaoguo Wang, and Haibo Chen

effects of cold boots in Faa$, they cannot solve fallback-related prob-
lems and still cause the long-tail problem for offloaded functions.
Instead of optimizing the warmup, BeeHive proposes an alternative
method named shadow execution to hide the warmup overhead
from users.

The shadow execution in BeeHive offloads a duplicated user
request to the Faa$ platform, and the execution introduces no side
effects on observable states. The real request is executed on the
server side and directly returned to users once complete. When
the shadow execution finishes, the warmup phase is passed and
the closure on the Faa$S side has been refined, so the subsequent
requests can be effectively offloaded and executed.

The major challenge for shadow execution is how to process
a duplicated user request without introducing observable state
modifications. BeeHive divides potentially observable states into
two parts: memory states and external states. As for memory states,
BeeHive relies on the stateless feature of FaaS functions, which
suggests all states on the Faa$ platform can be treated as invisible
(an exception is shared states between FaaS and servers, details
in Section 4). As for external states, they are usually persisted in
databases, which are managed by neither the server nor the Faa$S
platform. To this end, BeeHive leverages the aforementioned proxies
to intercept all operations on external states and specially handle
those from a shadow Faa$S execution. When the shadow execution
begins, the FaaS platform sends a shadowbegin message to the
proxy. The message also contains an identifier to specify the FaaS
function so that its subsequent write requests introduce no side
effects. When the shadow execution ends, the FaaS platform sends
a shadowend message, and subsequent requests from the function
can be normally handled.

4 THE BEEHIVE RUNTIME SYSTEM

Laying the foundation of offloading, the BeeHive runtime is respon-
sible for handling all communications between servers and FaaS
platforms, including state management, closure construction, and
memory management. Building such runtime for offloading also
faces several challenges. First, BeeHive should correctly handle cases
when states are shared among Faa$ functions and servers. Second,
BeeHive should choose suitable functions for offloading regardless
of the code complexity of monolithic web services. Third, BeeHive
should manage memory resources in a distributed manner. Lastly,
BeeHive should recover from cases where a remote invocation to
FaasS fails.

4.1 Distributed Object Sharing

Since the offloaded functions contain objects originally residing
in the server, they are potentially shared with other endpoints
(the server and other Faa$S functions), and BeeHive needs to handle
them specially. Figure 5 illustrates an example where objects are
shared between a newly offloaded function and the server. When
the function is is being launched, the server JVM constructs the
initial closure to include objects likely to be used by the offloaded
function. Suppose the dynamic analysis includes object a and ¢
in the closure but excludes b. The chosen objects are copied into
a buffer and sent to a Faa$ instance for execution. Since object a
points to b, which is not in the closure, BeeHive needs to mark the

BeeHive: Sub-second Elasticity for Web Services with Semi-FaaS Execution

reference as a remote one. As Figure 5 shows, BeeHive modifies
the reference in a to mark the most significant bit as 1. Since the
resulting address is only used in the kernel space, it cannot be
confused with normal heap references in a JVM on FaaS.

When the Faa$ function receives the closure, it directly copies
all objects therein to its own heap. Those objects are stored in a
separate space called closure space for ease of memory management
(details in Section 4.4). After copying, the FaaS function responds
with the start address of the closure space. Since the copied objects
remain in the same order as those in the initial closure, the server
can easily calculate the new address in FaaS and establish a one-
to-one address mapping for each offloaded object. This mapping
is responsible for synchronizing updates on the shared objects
between Faa$ functions and the server.

Introducing remote references allows BeeHive to restrict the
initial closure size, but it may cause unexpected behaviors when
FaaS functions access them. For example, the FaaS function in
Figure 5 may access object b, whose address is out of the heap
range. To ensure correctness, BeeHive instruments check for each
reference loading operation to detect remote references. When the
most significant bit is set, BeeHive triggers a fallback, fetches the
corresponding object from the server, and resets the bit to avoid
repeated fallbacks. Note that the check instructions are only added
on the Faa$ side and thus induce no overhead on the server.

Faa$ func1

copied closure
)
A
0x8220
©addr: 0x700

% ° @

Server JVM

@copy

Mapping Table 1

Remote
0x100 [4)
0x110

Local
0x200
0x300
0x220

initial
closure

o

e

0x8220

T o

Figure 5: BeeHive’s object sharing mechanism

4.2

Applications would leverage synchronization primitives to coordi-
nate accesses on shared objects which may be distributed to FaaS
functions in BeeHive. To this end, BeeHive needs to support state syn-
chronization to ensure consistent execution for multiple endpoints.
A naive solution would be broadcasting all updates conducted by
any endpoint, which can cause considerable overhead. Similar to
prior work [34], BeeHive embraces a release consistency model
based on the Java Memory Model (JMM) [35], which synchronizes
states among multiple endpoints for each synchronization primitive.
For simplicity, we introduce the implementation of commonly-used
monitor-based synchronizations as an example. Other synchroniza-
tion operations, like volatile memory accesses, are also supported
by BeeHive.

In Java, every object can be used as a lock to handle synchroniza-
tions with the synchronized keyword. JMM states the happen-before

Shared State Synchronization

80

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

relationship with object locks: if thread A acquires a lock previously
released by thread B, then all memory operations before the lock
releasing operation in thread B should be observed by thread A
before any of its future memory operations. BeeHive conforms to
JMM and leverages locks for state synchronizations among end-
points. Figure 6 shows the workflow of a state synchronization
between two FaaS functions. When function 1 acquires the lock, it
checks the last owner of it. If it is previously held by other endpoints
(function 2 in this example), a happen-before relationship should
be established between them, and a synchronization is required. To
this end, function 1 first communicates with the server for coor-
dination, and the server subsequently contacts the previous lock
owner (function 2). On receiving the acquiring request, function
2 sends related states (in objects) together with the lock to the
server. Since the server has maintained the address mapping for
all functions, it translates the object addresses from function 2 to
function 1 and finally responds to function 1 for both lock granting
and heap synchronization. Although this design involves the server
for each synchronization, it avoids computing and maintaining
address mappings in individual FaaS functions, which are volatile
and can be destroyed by the FaaS platform. In our evaluation, we
show that the overhead is acceptable given the low frequency of
synchronizations.

Faa$S func1 Faa$ func2
remote Iocal
I
(5] heap sync @ acquire(x) @ forward-acquire(x) 3] heap sync
[~

owner
ob]ect X
header data

Mapping 2
Local |Remote| @translate Local | Remote
x [ox200 | ox110 x [ox200 | oxa00

Server JVM

Mapping 1

Figure 6: Lock-based synchronization in BeeHive

The remaining issue is to determine which objects should be sent
for each synchronization. First, we only need to consider objects in
the closure as they are shareable with other endpoints. To further
reduce the data size for each synchronization, BeeHive instruments
write operations to maintain a dirty object list for each endpoint
and only send them upon synchronization. The instrumented in-
structions are also simple and induce moderate overhead.

4.3 Root Method Selection

The initial closure for offloading is constructed from a root method.
Once selected, BeeHive recursively traverses code and data likely
used by the root method and packs them as an initial closure. How-
ever, due to the complexity of monolithic web applications, it is
difficult to determine which method should be chosen as the root to
construct the initial closure. A strawman design would be relying
on the dynamic profiling module embedded in JVM’s interpreters

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

to find suitable methods according to their invocation count and
frequency. Unfortunately, web development frameworks like Spring
introduce call stubs, or interceptors, to manage user-provided meth-
ods. Those interceptors are frequently invoked, but they contain
many possible target methods, so offloading them would induce
a large closure and unsatisfying performance. Therefore, BeeHive
needs to filter out those framework-related methods before selec-
tion.

To capture the business logic, web development frameworks
require users to annotate their methods (for example, comment
in pybbs) so that they can be instrumented and managed. Simi-
lar annotations are commonly supported in various frameworks
regardless of language, such as Java Struts, Python Django, and
Node]JS Express. We find that they can be used to distinguish user-
provided methods from framework-generated ones without any
modifications to applications. To this end, we introduce the no-
tion of offloading candidates, which consists of methods already
annotated by users during development. Only those candidates can
be chosen as root methods and constructed as offloadable initial
closures.

The profiler in BeeHive is implemented via a Java agent, which
records the invocation count and the accumulated execution time
for each candidate method through code instrumentation. BeeHive
leverages two heuristics to choose offloaded methods. First, the
accumulated execution time should be large. Second, the average
execution time should not be short (e.g., less than one millisecond)
to avoid large execution overhead. Although simple, this policy
can pick out suitable root methods for offloading and mitigate the
pressure on the server. Advanced root method selection policies
taking method behavior (e.g., synchronization operations) into con-
sideration may result in better decisions. We left the policy design
as our future work.

4.4 Memory Management

After offloading code snippets to FaaS for execution, BeeHive is
responsible for managing memory resources for both servers and
FaaS$ instances. Fortunately, the execution model of FaaS functions
in BeeHive is clearly defined, which makes it simple to implement
a collector with short pauses. As illustrated in Section 3.1, the
execution of all FaaS functions in BeeHive starts from an initial
closure. BeeHive assumes all objects in the initial closure are useful
for function execution, so none of them is collected or moved unless
the Faa$ instance is destroyed. Similarly, if a remote object is fetched
from the server or other FaaS functions, it is also treated as alive.
In contrast, objects created during execution are only useful in
the context of a single invocation. When the function finishes its
execution, those objects can be collected.

Considering the different lifecycles of objects, BeeHive imple-
ments a two-space garbage collector for FaaS functions. It first
constructs a closure space for the initial closure, and objects fetched
from remote are also added to the closure space. As for other newly
created objects, BeeHive uses an allocation space to serve normal
heap allocation. The closure space and allocation space resemble
the old-young heap layout in traditional generational collectors,
except that closure space is never collected as all objects are treated
alive. When the allocation space is exhausted, BeeHive traverses

81

Ziming Zhao, Mingyu Wu, Jiawei Tang, Binyu Zang, Zhaoguo Wang, and Haibo Chen

the heap from roots on the stack and the closure space to reclaim
dead objects. After GC, the allocation space becomes nearly empty
and thus ready for subsequent allocation requests. To avoid costly
scanning on the whole closure space during GC, BeeHive inherits
the card table design from generational GC and marks a range of
memory (512 bytes in BeeHive) as dirty if a cross-space reference
exists. When GC is triggered, only the part marked as dirty should
be scanned, so the performance overhead is trivial. As shown in
Section 5.6, the pause time for BeeHive’s GC is only several mil-
liseconds, and can be further hided by overlapping with network
communications.

As for the server, its GC should consider the shared states with
FaasS functions. Since BeeHive has maintained object mapping tables
in the server to track shared objects, it only needs to add objects in
the tables to the root set when GC starts, and other phases (such
as mark and copy) remain unchanged. If a shared object is moved
by the server, the corresponding mapping table should also be
updated. Since the closure space for each Faa$S function is not large,
keeping those objects alive only introduces moderate overhead for
the server.

4.5 Failure Recovery

The Semi-FaaS execution in BeeHive turns normal function calls in
monolithic applications into remote invocations to FaaS, which in-
creases the risk of failure. To this end, BeeHive provides an optional
failure recovery mechanism to handle failed invocations.

Since the visible states of a FaaS function include shared memory
with the server and persistent data on external storage, BeeHive
needs to handle them upon recovery. Since prior work [66] has
proposed methods to reach exactly-once execution for external
storage, BeeHive can directly leverage it to ensure data consistency.
Nevertheless, if a FaaS function has made its memory states visible
by synchronization with the server, those states should be handled
separately.

Since states on FaaS can only become visible via synchroniza-
tions, BeeHive embraces a re-execution mechanism to handle fail-
ures. When a synchronization operation is triggered, BeeHive asks
for the function instance to send its execution stack, all objects
referenced by the stack, and updated shared objects back to the
server. Such a mechanism introduces moderate overhead since the
size of the Java stack and related objects are usually restricted
(several KBs). The stack information is stored together with the
object mapping table for each function. If an invocation to FaaS
fails, BeeHive sends the latest stack information together with the
closure so that the Faa$S function can resume its execution from the
last synchronization point. The re-execution does not violate JMM
as it only defers the execution of a remote FaaS function at other
endpoints’ views.

As for the server, since its role is the same as that of a monolithic
web application, BeeHive does not need to add extra failure recovery
mechanisms.

5 EVALUATION

5.1 Experiment Setup

We implement BeeHive on the HotSpot JVM of Open]DK 8u265-ga.
To evaluate the Semi-FaaS execution supported by BeeHive, we

BeeHive: Sub-second Elasticity for Web Services with Semi-FaaS Execution

have compared it with other scaling solutions from AWS, including
on-demand instances, burstable instances, and Fargate. We also
assume a perfect burst handler to immediately forward requests
with pre-defined policies once a burst happens. More complicated
policies are out of this paper’s scope and left as our future work.

We leverage two platforms to deploy BeeHive. OpenWhisk [14]
is a prevalent open-source FaaS platform used by IBM Cloud Func-
tions [37]. We launch OpenWhisk on a control node to manage all
other EC2 instances in the us-east-1 region. Furthermore, we also
deploy BeeHive on AWS Lambda, a commercialized FaaS platform,
to study its performance. To leverage Lambda, we create a Semi-
FaaS$ template as a container image, which only contains BeeHive’s
JVM for the function to connect with the server. When facing re-
quest bursts, the server JVM sends requests to launch functions on
Lambda from the Semi-FaaS template. Afterward, FaaS functions
automatically connect with the server to receive user requests and
closures for execution.

Since the CPUs used in Fargate and Lambda are Xeon vCPUs
with 2.50GHz, we choose similar configurations for other instances.
The on-demand instances are m4.xlarge (4 vCPUs/2.30GHz, 16GB
DRAM), and the burstable instances are t3.xlarge (4 vCPUs/3.10GHz,
16GB DRAM). Instances used in Fargate also have 4 vCPUs and
16GB DRAM. Since BeeHive only handles one request at a time
in each instance, those used by OpenWhisk are m4.large (2 vC-
PUs/2.30GHz, 8GB DRAM), and the DRAM size for Lambda in-
stances is 1GB (0.6 vCPUs) or 2GB (1.2 vCPUs). As for the database,
if the instance is small, it would become a performance bottleneck
for all scaling solutions. To this end, we launch the database on an
m4.10xlarge instance (40 vCPUs/2.40GHz, 160GB DRAM).

As for applications, we leverage the following web services for
evaluation.

Image processing. This application simulates a web server that
generates thumbnails for images (abbreviated as thumbnail here-
after). It is developed by ourselves with Spring [59] and used as a
micro-benchmark to show how BeeHive performs with computation-
intensive workloads. Since the thumbnail application requires more
computation resources, its Lambda instance has 2GB DRAM while
others have 1GB.

pybbs. An open-source forum containing 24692 classes. We use
its comment request (containing both I/O and computation work-
load) for evaluation.

SpringBlog [9]. An open-source blogging system containing
18493 classes in all (abbreviated as blog hereafter). We leverage its
archive request for evaluation, which fetches a large number of
records from databases and thus becomes I/O-intensive.

5.2 Burst Reduction

We first evaluate the time required to stabilize tail latency when
facing bursts. In this evaluation, the normal workload is generated
by concurrent clients sending requests repetitively (the number
of clients is chosen to reach nearly peak throughput), while the
workload for bursts is twice as heavy and lasts from the 60th second
to the end. Once new instances become ready, the burst handler
immediately forwards half of the workload to them. Figure 7 shows
the per-second tail latency in 3 minutes for applications. The ideal

82

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

case is the burstable instance, which keeps an always-on idle in-
stance and leverages it immediately after a burst happens, so the tail
latency remains relatively stable, but it results in idle resources with-
out bursts. The EC2 reserved instance has a similar performance
and thus does not show in the figure. In contrast, EC2 on-demand
and Fargate instances require more time for resource provision
and result in severe latency fluctuation. Although their preparation
time is similar (mentioned in Section 2.1), on-demand instances
suffer from a slower startup and require more time to launch ap-
plications. Since BeeHive only offloads lightweight code snippets
to Faa$ for execution, it reacts to request bursts more quickly. For
the OpenWhisk configuration (BeeHiveO), the average duration to
reach stable latency for all three applications is 9.33 seconds, which
is 11.25% and 6.32x smaller than EC2 on-demand and Fargate, re-
spectively. As for Lambda (BeeHiveL), since each instance has fewer
CPU resources, it requires more time to warm up the JVM, and the
average duration for stable latency is 16.33s (6.43% and 3.61X better
than EC2 and Fargate).

Meanwhile, since Faa$S platforms can keep function instances
alive to reduce cold boot frequency (also known as warm boot),
we also evaluate the case when cached instances are available on
Faa$. In this case, BeeHive can reach sub-second resource provi-
sion for both OpenWhisk and Lambda and only take 632.78ms and
668.56ms on average to stabilize request latency for evaluated ap-
plications, which are two orders of magnitude better than other
scaling solutions.

Although effective in reducing request bursts, the Semi-FaaS ap-
proach also introduces performance overhead. As shown in Figure 7,
the stabilized p99 latency is larger than other scaling alternatives
(by 15.0% compared with EC2 on-demand instances on average).
The slowdown is mainly caused by fallbacks, barriers, and proxies.
As for Lambda, the overhead becomes larger (averaging 31.0% com-
pared with EC2). We find the performance difference mainly comes
from larger network latency between Lambda function instances
and EC2 servers even when they are configured in the same vir-
tual private cloud (recommended by AWS to reach short network
latency). Since pybbs and blog require frequent network commu-
nication with the database server, their performance significantly
degrades compared with those on OpenWhisk. We further config-
ure instances in OpenWhisk into different AWS available zones
and the resulting overhead increases to 23.2% on average, which
suggests the importance of network latency.

5.3 Throughput Analysis

We also study BeeHive’s throughput by comparing it with the vanilla
JVM running on an always-on m4.xlarge server. Figure 8 shows
that when running on the same server, BeeHive causes a 7.14% drop
in peak throughput for pybbs. The overhead mainly comes from
barriers to maintain dirty objects, and it can be further eliminated
through recompilation if offloading is never required. As for blog
and thumbnail, the peak throughput is almost the same. Meanwhile,
the always-on configuration cannot further scale when its server is
saturated, while BeeHive can easily scale to higher throughput by
offloading more requests and creating more instances on the FaaS
side. The saturated throughput on OpenWhisk is 840, 640, and 920
requests per second for thumbnail, pybbs, and blog, respectively,

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

— EC2 i : ! : :
— --- Fargate i | | 1 1
2 Burstabl : ‘ | : :
50.12_ ursta e” : 7777%777
c | BeeHiveO ' ' '
0 1 1 1
T —= BeeHivelL i i i
- : : i
o B S ety ol e /|
- | '
a ' '
0.06-+- LT 4Rt A RUF S
\} %0 400 450
Elapse Time (s)
(a) thumbnail
os0o— EC2 i LR S ooeendend
- --- Fargate e
2 Burstable i 1
> 0.25- urstable_ _ &
2 ------ BeeHiveO I Ay |
Q [
© —— BeeHivelL '
8 0.12] eeriver N
o
o
0.064-r-- Ty
\] %0 400 4%0
Elapse Time (s)
(b) pybbs
1oy [C T 1T P R
— EC2 : : : : :
— --- Fargate --43li-ooiooo.
() : H
: == Burstable 1
go025] ... el REREEEE
c :
2 :
] —— BeeHivel ut [| I
-
o
o
Q 0.064-- --

Elapse Time (s)

(c) blog

Figure 7: Tail latency under dynamic workload

which averages 9.41x larger compared with the always-on config-
uration. As for Lambda, the saturated throughput is smaller for
pybbs and blog due to its execution overhead, but it is still 9.11x
better than the baseline. The maximum throughput of BeeHive is
limited by the centralized server, and it can be further resolved by
externalizing the contended shared states to distributed storage.

5.4 Cost Analysis

We also show the end-to-end financial cost of scaling solutions in
Figure 7. For BeeHive’s OpenWhisk configuration, we assume the

Ziming Zhao, Mingyu Wu, Jiawei Tang, Binyu Zang, Zhaoguo Wang, and Haibo Chen

83

% 0.081
E
>
o
5 0.054
© [
-
=] ‘ ‘ :
[« 1 ' '
. 0.021 - Vanilla = BeeHiveO 1 i]
| -+ BeeHive-Single +— BeeHiveL ' | |
0 200 400 600 800
Requests per Second
(a) thumbnail
_0.081
C)
>
o
[=
D 0.054-:- '
(1]
- :
m 1
[« '
o Lo
0.02]" -e Vanilla -= BeeHiveO ~ i
—A- BeeHive-Single +— BeeHivelL
100 200 300 400 500 600
Requests per Second
(b) pybbs
0.06
“w
)
9 0.041
[3)
- 1
© '
- :
o :
8 :
0.021° o~ vanilla = BeeHiveO | .
-+ BeeHive-Single —— BeeHiveL !

250 500 750
Requests per Second

(c) blog

Figure 8: Latency under various throughput settings

price of each instance is equal to EC2 on-demand ones. Since other
scaling solutions always use one more instance for scaling, their
cost remains the same among applications. As shown in Table 3,
the overall cost ($) of BeeHive is larger than others. Since each
FaaS instance contains a full-fledged JVM, BeeHive introduces more
overhead on issues like dynamic compilation and thus requires
more computation resources.

Nevertheless, when the frequency of bursts becomes lower, the
cost of BeeHive declines. Take pybbs as an example: Figure 9 shows
the per-hour cost of scaling solutions when varying the burst ratio

BeeHive: Sub-second Elasticity for Web Services with Semi-FaaS Execution

Table 3: Financial cost for scaling in Figure 7

Scaling solutions thumbnail pybbs blog
EC2 0.007 0.007 0.007
Fargate 0.008 0.008 0.008
Burstable 0.005 0.005 0.005
BeeHiveO 0.010 0.017 0.013
BeeHiveL 0.012 0.010 0.008

(the duration of bursts in an hour) while the burst workload is the
same as Figure 7b. Since the burstable instance is reserved for a
long time, its cost remains constant regardless of the burst ratio.
When the ratio is 67% (the vertical line in Figure 9), the scenario
is the same as that in Figure 7 and BeeHive introduces more cost.
But when it drops to 30%, the per-hour cost of BeeHive on Lambda
is smaller than the always-on burstable configuration. When it
reaches 10%, BeeHive can achieve 3.47X cost reduction with Lambda
(2.08% for OpenWhisk). The Other two applications show similar
results on the 10% burst ratio: the Lambda configuration reaches
4.33% and 2.89x cost reduction for blog and thumbnail (2.60x and
3.47%x on OpenWhisk). The results suggest that BeeHive would be
cost-effective especially when the frequency of bursts is relatively
low.

When compared to other on-demand scaling methods (EC2 on-
demand and Fargate), the cost of BeeHive is always higher since it
takes more computation resources due to the offloading overhead.
However, the additional cost brings a faster reaction to request
burst. Besides, the cost can be further eliminated by combining
BeeHive with other scaling solutions, as discussed in Section 5.7.

0.5
-o- EC2

0.4 - Fargate
g03_ - BeeHivel
& 77| + Burstable
§02 & BeeHiveO
3o

0.14-++

0.0

Burst Ratio

Figure 9: Cost with various burst ratios

Table 4: Minimal tail latency under a fixed throughput

Scaling solutions thumbnail pybbs blog
Vanilla 41.41 3477 26.72
BeeHiveO 41.99 43.81 29.69
BeeHiveL 41.00 68.30 42.56

5.5 Performance under Various SLOs

Since the tail latency of BeeHive increases, we also study how it
meets the latency requirements (specified by service-level objects

84

ASPLOS 23, March 25-29, 2023,

Vancouver, BC, Canada

oosf e

0 ””””””””””” O

Y : :] : : :

Sooa e BN et S

[' ' ' j '

- ' ' ' ' '

[} ' ' ' ' '

§ 3 3 | - Vanilla
003 AL R T - BeeHiveO |

‘ ; ; '\ -m= BeeHivel

0.04 0.05

SLO Requirement (s)

Figure 10: Tail latency under various SLOs

or SLOs). Table 4 shows the minimal tail latency of BeeHive under a
fixed throughput (50, 170, 130 for thumbnail, pybbs, and blog). Com-
pared with vanilla JVMs running on m4.xlarge instances (the same
baseline for throughput analysis), the best achieved p99 latency is
12.8% larger on average for OpenWhisk (51.6% for Lambda). Fig-
ure 10 further shows the tail latency under various SLOs with blog
as an example. When the SLO becomes lower, all scaling solutions
continuously offload more requests until it is satisfied. However,
BeeHive fails to meet strict SLOs as the vanilla setting due to its
execution overhead.

5.6 Breakdown Analysis

Memory consumption and GC. Since each FaaS instance only
handles one request at a time, the memory consumption is relatively
small. By using the GC mechanism introduced in Section 4.4, the
peak heap memory consumption for each function is restricted
and remains stable (about 3MB, 29MB, and 22MB for thumbnail,
pybbs, and blog, respectively). The memory consumption on the
server side is also moderate: a per-function address mapping table
only occupies hundreds of KBs. Besides, the median GC pause time
for the FaaS instance is 0.92ms, 2.64ms, and 1.42ms, respectively,
which can be overlapped when waiting for the next request from
the server (about 3ms) and cause trivial overhead for the end-to-end
request latency.

Fallback overhead. Table 5 analyzes the fallback overhead of
BeeHive when offloading requests to OpenWhisk. Although BeeHive
induces many fallbacks during shadow execution, the number soon
decreases with more invocations. After the first few invocations,
the largest average number of fallbacks per invocation is only seven
in pybbs, and all of them are synchronization-related. Since fall-
backs are rarely triggered, the resulting overhead on Lambda is
only slightly worse (e.g., 6.29ms for pybbs). The number of updated
objects is much larger than that of synchronization fallbacks be-
cause applications guarantee that most shared objects can only be
exclusively accessed.

Shadow execution. BeeHive’s current implementation only shad-
ows the first invocation to FaaS for each function. The duration
for shadow execution on OpenWhisk is 2.50s on average, which
mainly contains four parts: initialization, remote fetching for code
or data, inter-endpoint synchronization, and normal execution. The
initialization part contains launching container instances and a

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Table 5: Fallback analysis on OpenWhisk

Metrics (Avg.) thumbnail pybbs blog
Fallbacks 1 7 3
Fallback overhead (ms) 0.51 4.15 1.87
Remote fetching 0 0 0
Synchronized objects 5 88 29
Fallbacks (shadow) 64 1525 348
Remote fetching (shadow) 63 1518 345
Fetching overhead (shadow) (ms) 207.75 695.51 246.60

JVM to execute functions (cold boot), whose duration is similar
among applications (about 1s). Note that the time for computing
initial closures is also included in this part, but the duration is
133.66ms on average and can fully overlap with the cold boot phase.
Since the initial closure is not complete, shadow execution also
takes a considerable portion of time to fetch code and data remotely
(shown in Table 5). Thanks to the Packageable interface and proxies
provided by BeeHive, no fallbacks related to native invocations or
network communication are triggered. Finally, the overhead for
synchronization is also trivial (2.84ms on average), given its low
trigger frequency. After shadow execution, the request latency dra-
matically decreases, which helps to reduce the worse case latency
by 6.45X on average and thus mitigate the long tail problem.

5.7 Discussion

Limitations of Semi-FaaS. Although the Semi-FaaS execution
model can provide rapid resource provision, it also introduces per-
formance overhead and costs more when bursts frequently happen.
Therefore, applications satisfying the following requirements are
more suitable for Semi-FaaS. First, the overall execution time should
be at least at the millisecond level considering the performance
overhead. Second, the number of fallbacks should be restricted
during Semi-Faa$S execution, which suggests applications should
induce infrequent synchronizations, limited remote code and data
fetching, and inevitable native fallbacks (e.g., accessing local files).
Third, the request burst should not happen frequently so the cost
of Faa$ execution is acceptable. Finally, the offloading candidate
selection mechanism in BeeHive can perform better if applications
have annotated their critical methods.

Combination of Semi-Faa$ and other scaling solutions. Bee-
Hive can be further combined with other scaling solutions. As men-
tioned in Section 3.1, BeeHive maintains an offloading ratio to scale
in and out. Therefore, applications can scale out with BeeHive be-
fore on-demand instances are launched. When instances are ready,
BeeHive can set the ratio to zero to stop offloading to FaaS. With
this solution, applications can achieve rapid resource provisioning
and less performance overhead when facing bursts.

6 RELATED WORK
6.1 Stateful Support for FaaS

Although FaaS is originally designed for stateless execution, prior
work has made proposals to support stateful applications. Cru-
cial [54] and Faasm [58] propose annotating objects for sharing
through functions via a distributed data store. Azure Durable Func-
tions [22] enables stateful workflows atop Azure’s Faa$S platforms.

85

Ziming Zhao, Mingyu Wu, Jiawei Tang, Binyu Zang, Zhaoguo Wang, and Haibo Chen

AFT [60] and Beldi [66] provide transactional support for FaaS ap-
plications, while Boki [38] further optimizes their performance with
a distributed shared log. BeeHive also allows stateful applications
to execute on Faa$S, but with its Semi-FaaS execution model.

6.2 Runtime Optimizations for FaaS

Although appealing for applications with large parallelism and dy-
namic workload, FaaS also shows disadvantages like large startup
time (cold boot) and prohibitive communication overhead. There-
fore, prior work has proposed many different solutions to reduce
the frequency of cold boots [3, 26, 57, 62], shorten the launch
time [10, 23, 33, 50-52, 61], and improve inter-function commu-
nication [11, 30, 41, 42, 45].

High-level languages like JavaScript and Java are intensively
used in FaaS, which stimulates specialized language runtime sup-
port. ReplayableJVM [63] checkpoints an initialized JVM image
to accelerate the startup time for Java FaaS functions, while Cat-
alyzer [26] uses a similar mechanism for the Go runtime. Pho-
tons [27] allows co-executing multiple functions in the same JVM
and improves memory consumption and startup latency. Shred-
der [67] and CloudFlare [20] use lightweight JavaScript V8 contexts
to execute FaaS functions. GraalVM Native Image [21, 65] lever-
ages ahead-of-time compilation to improve the startup time of Java
applications, while JWarmup [68] integrates other techniques like
class data sharing (CDS) [53] for further optimizations. BeeHive
also encounters problems like cold boot in Faa$S offloading and it
proposes solutions like shadow execution to mitigate them.

6.3 Language-Assisted Offloading

Offloading is a general approach to leveraging distributed compu-
tation resources. Prior work has relied on programming languages
to offload or migrate objects in a distributed environment. Emer-
ald [19] provides distribution support with a uniform object model,
where objects can be transparently moved among distributed nodes.
Argus [43] introduces actions to allow concurrent execution on dis-
tributed objects. Gallifrey [48] proposes restrictions to safely share
objects among distributed clients. BeeHive transparently migrates
objects to Faa$ for distributed execution, but it is mainly designed
for a popular programming language (Java) and requires no modi-
fications to applications. Cloud Haskell [28] and Scala spores [49]
help to capture more information before sending closures for re-
mote execution. BeeHive has a similar goal, but it further considers
capturing native states to avoid fallbacks due to native method
invocations.

Another line of work designs the offloading mechanism atop
language runtimes due to their ability to track application behav-
iors with acceptable overhead. JESSICA [44, 69] and cJVM [16]
propose a distributed Java virtual machine abstraction so that ap-
plication threads can be transparently offloaded. Hera-JVM [46]
allows task offloading in a heterogeneous environment. MAUI [25]
and CloneCloud [24] offload energy-consuming code from mobile
devices to servers. COMET [34] has a similar goal, but it builds a
DSM model among servers and mobile devices and relies on the Java
memory model to support inter-thread synchronizations. BeeHive
instead aims at the FaaS scenario and proposes a partial, transparent,
and dynamic offloading mechanism atop language runtimes.

BeeHive: Sub-second Elasticity for Web Services with Semi-FaaS Execution

7

CONCLUSION

This paper presents BeeHive, a partial, automatic, and dynamic of-
floading framework for web applications to leverage FaaS. BeeHive
automatically extracts fine-grained code snippets from web appli-
cations and leverages a fallback-based mechanism to synchronize
with the original server. BeeHive also conducts a series of opti-
mizations to improve the performance of offloaded functions and
provides runtime support in a distributed execution environment.
The evaluation result shows that BeeHive improves the startup time
by up to two orders of magnitude compared with other scaling
alternatives.

ACKNOWLEDGMENTS

We sincerely thank the anonymous ASPLOS 23 reviewers for their
insightful suggestions. This work was supported in part by the Na-
tional Natural Science Foundation of China (No. 62172272, 62132014,
61925206). Corresponding author: Mingyu Wu (mingyuwu@sjtu.

edu.cn).
REFERENCES
[1] 2015. Target and PayPal Sites Report Problems on Cyber Monday.

(2]

[11

[12]

[13

[14

[15]

[16

jpanpun
oot

[19]

https://www.nytimes.com/2015/12/01/technology/target-paypal-website-
cyber-monday.html.

2018. Amazon’s website crashed as soon as Prime Day began.
https://www.theverge.com/2018/7/16/17577654/amazon- prime- day-website-
down-deals-service-disruption.

2019. AWS Lambda announces Provisioned Concurrency. https:
//aws.amazon.com/cn/about-aws/whats-new/2019/12/aws-lambda-announces-
provisioned-concurrency/.

2019. The Not-So-Straightforward Road from Microservices to Serverless. https:
//www.infoq.com/presentations/microservices- to-serverless/.

2021. HikariCP: A solid, high-performance, JDBC connection pool at last. https:
//github.com/brettwooldridge/HikariCP.

2021. MyBatis. https://mybatis.org/mybatis-3/.

2021. MyBatis-Plus: Born to Simplify Development. https://baomidou.com/en/.
2021. Pybbs: Better use of Java development community (forum). https://github.
com/tomoya92/pybbs.

2021. Springblog: A simple blogging system implemented with Spring Boot +
Hibernate + MySQL + Bootstrap4. https://github.com/Raysmond/SpringBlog.
Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf
Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Firecracker: Light-
weight Virtualization for Serverless Applications. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20). 419-434.

Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,
Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND: Towards High-
performance Serverless Computing. In Proceedings of the 2018 USENIX Conference
on Usenix Annual Technical Conference (Boston, MA, USA) (USENIX ATC ’18).
USENIX Association, Berkeley, CA, USA, 923-935. http://dl.acm.org/citation.
cfm?id=3277355.3277444

Alibaba Cloud. 2021. Function Compute. https://www.alibabacloud.com/product/
function-compute.

Anastasios Antoniadis, Nikos Filippakis, Paddy Krishnan, Raghavendra Ramesh,
Nicholas Allen, and Yannis Smaragdakis. 2020. Static Analysis of Java Enterprise
Applications: Frameworks and Caches, the Elephants in the Room. In Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation (London, UK) (PLDI 2020). Association for Computing Machinery,
New York, NY, USA, 794-807. https://doi.org/10.1145/3385412.3386026
Apache. 2020. Apache OpenWhisk runtimes for java. https://github.com/apache/
openwhisk-runtime-java.

Apache OpenWhisk. 2020. Apache OpenWhisk - Open Source Serverless Cloud
Platform. https://openwhisk.apache.org/.

Yariv Aridor, Michael Factor, and Avi Teperman. 1999. cJVM: A Single System
Image of a JVM on a Cluster. In Proceedings of the International Conference on
Parallel Processing 1999, ICPP 1999, Wakamatsu, Japan, September 21-24, 1999.
IEEE Computer Society, 4-11. https://doi.org/10.1109/ICPP.1999.797382

AWS. 2020. AWS Lambda. https://aws.amazon.com/lambda/.

AWS. 2022. Amazon EC2 Reserved Instances Pricing. https://aws.amazon.com/
ec2/pricing/reserved-instances/pricing/.

Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry Carter.
1987. Distrbution and abstract types in emerald. IEEE transactions on software

86

[20

[21

[22

~
=

[24]

[25

[26

[27

[29

[30

(32

[33

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

engineering 1 (1987), 65-76. https://doi.org/10.1109/TSE.1987.232836

Zack Bloom. 2018. Cloud Computing without Containers. https://blog.cloudflare.
com/cloud-computing-without-containers/.

Daniele Bonetta. 2018. GraalVM: Metaprogramming inside a Polyglot System
(Invited Talk). In Proceedings of the 3rd ACM SIGPLAN International Workshop on
Meta-Programming Techniques and Reflection (Boston, MA, USA) (META 2018).
Association for Computing Machinery, New York, NY, USA, 3-4. https://doi.
org/10.1145/3281074.3284935

Sebastian Burckhardt, Chris Gillum, David Justo, Konstantinos Kallas, Connor
McMahon, and Christopher S. Meiklejohn. 2021. Durable Functions: Semantics
for Stateful Serverless. Proc. ACM Program. Lang. 5, OOPSLA, Article 133 (oct
2021), 27 pages. https://doi.org/10.1145/3485510

James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger, and
Jonathan Appavoo. 2020. SEUSS: Skip Redundant Paths to Make Serverless
Fast. In Proceedings of the Fifteenth European Conference on Computer Systems
(Heraklion, Greece) (EuroSys "20). Association for Computing Machinery, New
York, NY, USA, Article 32, 15 pages. https://doi.org/10.1145/3342195.3392698
Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin
Patti. 2011. CloneCloud: Elastic Execution between Mobile Device and Cloud.
In Proceedings of the Sixth Conference on Computer Systems (Salzburg, Austria)
(EuroSys '11). Association for Computing Machinery, New York, NY, USA, 301-314.
https://doi.org/10.1145/1966445.1966473

Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan
Saroiu, Ranveer Chandra, and Paramvir Bahl. 2010. MAUI: Making Smartphones
Last Longer with Code Offload. In Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services (San Francisco, California, USA)
(MobiSys °10). Association for Computing Machinery, New York, NY, USA, 49-62.
https://doi.org/10.1145/1814433.1814441

Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin,
Qixuan Wu, and Haibo Chen. 2020. Catalyzer: Sub-Millisecond Startup for
Serverless Computing with Initialization-Less Booting. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS °20). As-
sociation for Computing Machinery, New York, NY, USA, 467-481. https:
//doi.org/10.1145/3373376.3378512

Vojislav Dukic, Rodrigo Bruno, Ankit Singla, and Gustavo Alonso. 2020. Photons:
Lambdas on a Diet. In Proceedings of the 11th ACM Symposium on Cloud Computing
(Virtual Event, USA) (SoCC ’20). Association for Computing Machinery, New
York, NY, USA, 45-59. https://doi.org/10.1145/3419111.3421297

Jeff Epstein, Andrew P Black, and Simon Peyton-Jones. 2011. Towards Haskell
in the cloud. In Proceedings of the 4th ACM symposium on Haskell. 118-129.
https://doi.org/10.1145/2034675.2034690

Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Christos
Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From Laptop to Lambda:
Outsourcing Everyday Jobs to Thousands of Transient Functional Containers. In
Proceedings of the 2019 USENIX Conference on Usenix Annual Technical Conference
(Renton, WA, USA) (USENIX ATC ’19). USENIX Association, Berkeley, CA, USA,
475-488. http://dl.acm.org/citation.cfm?id=3358807.3358848

Sadjad Fouladi, Riad S Wahby, Brennan Shacklett, Karthikeyan Vasuki Balasubra-
maniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. 2017. Encoding, fast and slow: Low-latency video processing us-
ing thousands of tiny threads. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17). 363-376.

Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung,
Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake
Padilla, and Christina Delimitrou. 2019. An Open-Source Benchmark Suite for
Microservices and Their Hardware-Software Implications for Cloud & Edge Sys-
tems. In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems (Providence, RI, USA)
(ASPLOS ’19). Association for Computing Machinery, New York, NY, USA, 3-18.
https://doi.org/10.1145/3297858.3304013

Google. 2020. Cloud Functions - Google Cloud. https://cloud.google.com/
functions/.

Google. 2020. gvisor: A container sandbox runtime focused on security, efficiency,
and ease of use. https://gvisor.dev/.

Mark S Gordon, D Anoushe Jamshidi, Scott Mahlke, Z Morley Mao, and Xu Chen.
2012. {COMET}: Code Offload by Migrating Execution Transparently. In 10th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
12). 93-106.

James Gosling, Bill Joy, Guy L. Steele, Gilad Bracha, and Alex Buckley. 2014. The
Java Language Specification, Java SE 8 Edition. (2014).

IBM. 2020. IBM Cloud Functions. https://www.ibm.com/cloud/functions.

IBM Developer. 2022. About Apache OpenWhisk. https://developer.ibm.com/
components/apache-openwhisk/.

Zhipeng Jia and Emmett Witchel. 2021. Boki: Stateful Serverless Computing with
Shared Logs. In Proceedings of the ACM SIGOPS 28th Symposium on Operating

https://www.nytimes.com/2015/12/01/technology/target-paypal-website-cyber-monday.html
https://www.nytimes.com/2015/12/01/technology/target-paypal-website-cyber-monday.html
https://www.theverge.com/2018/7/16/17577654/amazon-prime-day-website-down-deals-service-disruption
https://www.theverge.com/2018/7/16/17577654/amazon-prime-day-website-down-deals-service-disruption
https://aws.amazon.com/cn/about-aws/whats-new/2019/12/aws-lambda-announces-provisioned-concurrency/
https://aws.amazon.com/cn/about-aws/whats-new/2019/12/aws-lambda-announces-provisioned-concurrency/
https://aws.amazon.com/cn/about-aws/whats-new/2019/12/aws-lambda-announces-provisioned-concurrency/
https://www.infoq.com/presentations/microservices-to-serverless/
https://www.infoq.com/presentations/microservices-to-serverless/
https://github.com/brettwooldridge/HikariCP
https://github.com/brettwooldridge/HikariCP
https://mybatis.org/mybatis-3/
https://baomidou.com/en/
https://github.com/tomoya92/pybbs
https://github.com/tomoya92/pybbs
https://github.com/Raysmond/SpringBlog
http://dl.acm.org/citation.cfm?id=3277355.3277444
http://dl.acm.org/citation.cfm?id=3277355.3277444
https://www.alibabacloud.com/product/function-compute
https://www.alibabacloud.com/product/function-compute
https://doi.org/10.1145/3385412.3386026
https://github.com/apache/openwhisk-runtime-java
https://github.com/apache/openwhisk-runtime-java
https://openwhisk.apache.org/
https://doi.org/10.1109/ICPP.1999.797382
https://aws.amazon.com/lambda/
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://doi.org/10.1109/TSE.1987.232836
https://blog.cloudflare.com/cloud-computing-without-containers/
https://blog.cloudflare.com/cloud-computing-without-containers/
https://doi.org/10.1145/3281074.3284935
https://doi.org/10.1145/3281074.3284935
https://doi.org/10.1145/3485510
https://doi.org/10.1145/3342195.3392698
https://doi.org/10.1145/1966445.1966473
https://doi.org/10.1145/1814433.1814441
https://doi.org/10.1145/3373376.3378512
https://doi.org/10.1145/3373376.3378512
https://doi.org/10.1145/3419111.3421297
https://doi.org/10.1145/2034675.2034690
http://dl.acm.org/citation.cfm?id=3358807.3358848
https://doi.org/10.1145/3297858.3304013
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://www.ibm.com/cloud/functions
https://developer.ibm.com/components/apache-openwhisk/
https://developer.ibm.com/components/apache-openwhisk/

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

[39

[40]

[41]

[42]

[43]

[44

[45]

[46

[47]

[49

[50]

[51]

[52]

Systems Principles (Virtual Event, Germany) (SOSP °21). Association for Comput-
ing Machinery, New York, NY, USA, 691-707. https://doi.org/10.1145/3477132.
3483541

Zhipeng Jia and Emmett Witchel. 2021. Nightcore: efficient and scalable
serverless computing for latency-sensitive, interactive microservices. In ASPLOS
'21: 26th ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Virtual Event, USA, April 19-23, 2021,
Tim Sherwood, Emery Berger, and Christos Kozyrakis (Eds.). ACM, 152-166.
https://doi.org/10.1145/3445814.3446701

Zewen Jin, Yiming Zhu, Jiaan Zhu, Dongbo Yu, Cheng Li, Ruichuan Chen,
Istemi Ekin Akkus, and Yinlong Xu. 2021. Lessons Learned from Migrating
Complex Stateful Applications onto Serverless Platforms. In Proceedings of the
12th ACM SIGOPS Asia-Pacific Workshop on Systems (Hong Kong, China) (AP-
Sys °21). Association for Computing Machinery, New York, NY, USA, 89-96.
https://doi.org/10.1145/3476886.3477510

Ana Klimovic, Yawen Wang, Christos Kozyrakis, Patrick Stuedi, Jonas Pfefferle,
and Animesh Trivedi. 2018. Understanding Ephemeral Storage for Serverless An-
alytics. In Proceedings of the 2018 USENIX Conference on Usenix Annual Technical
Conference (Boston, MA, USA) (USENIX ATC ’18). USENIX Association, Berkeley,
CA, USA, 789-794. http://dl.acm.org/citation.cfm?id=3277355.3277431

Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,
and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Storage for Serverless
Analytics. In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation (Carlsbad, CA, USA) (OSDI'18). USENIX Association,
Berkeley, CA, USA, 427-444. http://dl.acm.org/citation.cfm?id=3291168.3291200
Barbara Liskov. 1988. Distributed Programming in Argus. Commun. ACM 31, 3
(mar 1988), 300-312. https://doi.org/10.1145/42392.42399

Matchy J.M. Ma, Cho-Li Wang, and Francis C.M. Lau. 2000. JESSICA: Java-
Enabled Single-System-Image Computing Architecture. J. Parallel and Distrib.
Comput. 60, 10 (2000), 1194-1222. https://doi.org/10.1006/jpdc.2000.1650
Ashraf Mahgoub, Karthick Shankar, Subrata Mitra, Ana Klimovic, Somali Chaterji,
and Saurabh Bagchi. 2021. SONIC: Application-aware Data Passing for Chained
Serverless Applications. In 2021 USENIX Annual Technical Conference, USENIX
ATC 2021, July 14-16, 2021, Irina Calciu and Geoff Kuenning (Eds.). USENIX
Association, 285-301. https://www.usenix.org/conference/atc21/presentation/
mahgoub

Ross Mcllroy and Joe Sventek. 2010. Hera-JVM: A Runtime System for Hetero-
geneous Multi-Core Architectures. (2010), 205-222. https://doi.org/10.1145/
1869459.1869478

Microsoft. 2020. Microsoft Azure Functions. https://azure.microsoft.com/services/
functions/.

Mae Milano, Rolph Recto, Tom Magrino, and Andrew C. Myers. 2019. A Tour
of Gallifrey, a Language for Geodistributed Programming. In 3rd Summit on
Advances in Programming Languages, SNAPL 2019, May 16-17, 2019, Providence,
RI, USA (LIPIcs), Benjamin S. Lerner, Rastislav Bodik, and Shriram Krishnamurthi
(Eds.), Vol. 136. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 11:1-11:19.
https://doi.org/10.4230/LIPIcs. SNAPL.2019.11

Heather Miller, Philipp Haller, and Martin Odersky. 2014. Spores: A Type-Based
Foundation for Closures in the Age of Concurrency and Distribution. In ECOOP
2014 - Object-Oriented Programming - 28th European Conference, Uppsala, Sweden,
FJuly 28 - August 1, 2014. Proceedings (Lecture Notes in Computer Science), Richard E.
Jones (Ed.), Vol. 8586. Springer, 308-333. https://doi.org/10.1007/978-3-662-
44202-9_13

Anup Mohan, Harshad S. Sane, Kshitij Doshi, Saikrishna Edupuganti, Naren
Nayak, and Vadim Sukhomlinov. 2019. Agile Cold Starts for Scalable Serverless. In
11th USENIX Workshop on Hot Topics in Cloud Computing, HotCloud 2019, Renton,
WA, USA, July 8, 2019, Christina Delimitrou and Dan R. K. Ports (Eds.). USENIX As-
sociation. https://www.usenix.org/conference/hotcloud19/presentation/mohan
Edward Oakes, Leon Yang, Kevin Houck, Tyler Harter, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. 2017. Pipsqueak: Lean Lambdas with Large
Libraries. In 37th IEEE International Conference on Distributed Computing Sys-
tems Workshops, ICDCS Workshops 2017, Atlanta, GA, USA, June 5-8, 2017, Aibek
Musaev, Jodo Eduardo Ferreira, and Teruo Higashino (Eds.). IEEE Computer
Society, 395-400. https://doi.org/10.1109/ICDCSW.2017.32

Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2018. SOCK: Rapid
Task Provisioning with Serverless-optimized Containers. In Proceedings of the
2018 USENIX Conference on Usenix Annual Technical Conference (Boston, MA,
USA) (USENIX ATC ’18). USENIX Association, Berkeley, CA, USA, 57-69. http:
//dl.acm.org/citation.cfm?id=3277355.3277362

87

[53

[54]

[58

[62

[63

[64

(65

(66

[67

(68

[69

Ziming Zhao, Mingyu Wu, Jiawei Tang, Binyu Zang, Zhaoguo Wang, and Haibo Chen

OpenJDK. 2018. JEP 310: Application Class-Data Sharing. https://openjdk java.
net/jeps/310

Daniel Barcelona Pons, Marc Sanchez Artigas, Gerard Paris, Pierre Sutra, and
Pedro Garcia Lopez. 2019. On the FaaS Track: Building Stateful Distributed
Applications with Serverless Architectures. In Proceedings of the 20th International
Middleware Conference, Middleware 2019, Davis, CA, USA, December 9-13, 2019.

ACM, 41-54. https://doi.org/10.1145/3361525.3361535
Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling, fast and slow:

Scalable analytics on serverless infrastructure. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). 193-206.

Qubole. 2017. Spark-on-Lambda. https://github.com/qubole/spark-on-lambda/.
Mohammad Shahrad, Rodrigo Fonseca, Ifiigo Goiri, Gohar Chaudhry, Paul Batum,
Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. 2020. Serverless in the Wild: Characterizing and Optimizing the
Serverless Workload at a Large Cloud Provider. In 2020 USENIX Annual Technical
Conference, USENIX ATC 2020, July 15-17, 2020, Ada Gavrilovska and Erez Zadok
(Eds.). USENIX Association, 205-218. https://www.usenix.org/conference/atc20/
presentation/shahrad

Simon Shillaker and Peter R. Pietzuch. 2020. Faasm: Lightweight Isolation for
Efficient Stateful Serverless Computing. In 2020 USENIX Annual Technical Con-
ference, USENIX ATC 2020, July 15-17, 2020, Ada Gavrilovska and Erez Zadok
(Eds.). USENIX Association, 419-433. https://www.usenix.org/conference/atc20/
presentation/shillaker

Spring. 2021. Spring makes Java productive. https://spring.io/.

Vikram Sreekanti, Chenggang Wu, Saurav Chhatrapati, Joseph E. Gonzalez,
Joseph M. Hellerstein, and Jose M. Faleiro. 2020. A fault-tolerance shim for
serverless computing. In EuroSys "20: Fifteenth EuroSys Conference 2020, Heraklion,
Greece, April 27-30, 2020, Angelos Bilas, Kostas Magoutis, Evangelos P. Markatos,
Dejan Kostic, and Margo I. Seltzer (Eds.). ACM, 15:1-15:15. https://doi.org/10.
1145/3342195.3387535

Shelby Thomas, Lixiang Ao, Geoffrey M. Voelker, and George Porter. 2020.
Particle: ephemeral endpoints for serverless networking. In SoCC °20: ACM
Symposium on Cloud Computing, Virtual Event, USA, October 19-21, 2020, Ro-
drigo Fonseca, Christina Delimitrou, and Beng Chin Ooi (Eds.). ACM, 16-29.
https://doi.org/10.1145/3419111.3421275

Markus Thommes. 2017. Squeezing the milliseconds: How to make serverless
platforms blazing fast.

Kai-Ting Amy Wang, Rayson Ho, and Peng Wu. 2019. Replayable Execution
Optimized for Page Sharing for a Managed Runtime Environment. In Proceedings
of the Fourteenth EuroSys Conference 2019, Dresden, Germany, March 25-28, 2019,
George Candea, Robbert van Renesse, and Christof Fetzer (Eds.). ACM, 39:1-39:16.
https://doi.org/10.1145/3302424.3303978

Liang Wang, Mengyuan Li, Yingian Zhang, Thomas Ristenpart, and Michael
Swift. 2018. Peeking Behind the Curtains of Serverless Platforms. In Proceedings
of the 2018 USENIX Conference on Usenix Annual Technical Conference (Boston,
MA, USA) (USENIX ATC ’18). USENIX Association, Berkeley, CA, USA, 133-145.
http://dl.acm.org/citation.cfm?id=3277355.3277369

Christian Wimmer, Codrut Stancu, Peter Hofer, Vojin Jovanovic, Paul Wogerer,
Peter B. Kessler, Oleg Pliss, and Thomas Wiirthinger. 2019. Initialize once, start
fast: application initialization at build time. Proc. ACM Program. Lang. 3, OOPSLA
(2019), 184:1-184:29. https://doi.org/10.1145/3360610

Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel, and Vincent
Liu. 2020. Fault-tolerant and transactional stateful serverless workflows. In
14th USENIX Symposium on Operating Systems Design and Implementation, OSDI
2020, Virtual Event, November 4-6, 2020. USENIX Association, 1187-1204. https:
//www.usenix.org/conference/osdi20/presentation/zhang-haoran

Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman. 2019. Narrowing the Gap
Between Serverless and its State with Storage Functions. In Proceedings of the
ACM Symposium on Cloud Computing, SoCC 2019, Santa Cruz, CA, USA, November
20-23, 2019. ACM, 1-12. https://doi.org/10.1145/3357223.3362723

Yifei Zhang, Tianxiao Gu, Xiaolin Zheng, Lei Yu, Wei Kuai, and Sanhong Li. 2021.
Towards a Serverless Java Runtime. In 36th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2021, Melbourne, Australia, November
15-19, 2021. IEEE, 1156-1160. https://doi.org/10.1109/ASE51524.2021.9678709
Wenzhang Zhu, Cho-Li Wang, and Francis C. M. Lau. 2002. JESSICA2: A
Distributed Java Virtual Machine with Transparent Thread Migration Sup-
port. In 2002 IEEE International Conference on Cluster Computing (CLUSTER
2002), 23-26 September 2002, Chicago, IL, USA. IEEE Computer Society, 381-388.
https://doi.org/10.1109/CLUSTR.2002.1137770

Received 2022-07-07; accepted 2022-09-22

https://doi.org/10.1145/3477132.3483541
https://doi.org/10.1145/3477132.3483541
https://doi.org/10.1145/3445814.3446701
https://doi.org/10.1145/3476886.3477510
http://dl.acm.org/citation.cfm?id=3277355.3277431
http://dl.acm.org/citation.cfm?id=3291168.3291200
https://doi.org/10.1145/42392.42399
https://doi.org/10.1006/jpdc.2000.1650
https://www.usenix.org/conference/atc21/presentation/mahgoub
https://www.usenix.org/conference/atc21/presentation/mahgoub
https://doi.org/10.1145/1869459.1869478
https://doi.org/10.1145/1869459.1869478
https://azure.microsoft.com/services/functions/
https://azure.microsoft.com/services/functions/
https://doi.org/10.4230/LIPIcs.SNAPL.2019.11
https://doi.org/10.1007/978-3-662-44202-9_13
https://doi.org/10.1007/978-3-662-44202-9_13
https://www.usenix.org/conference/hotcloud19/presentation/mohan
https://doi.org/10.1109/ICDCSW.2017.32
http://dl.acm.org/citation.cfm?id=3277355.3277362
http://dl.acm.org/citation.cfm?id=3277355.3277362
https://openjdk.java.net/jeps/310
https://openjdk.java.net/jeps/310
https://doi.org/10.1145/3361525.3361535
https://github.com/qubole/spark-on-lambda/
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shillaker
https://www.usenix.org/conference/atc20/presentation/shillaker
https://spring.io/
https://doi.org/10.1145/3342195.3387535
https://doi.org/10.1145/3342195.3387535
https://doi.org/10.1145/3419111.3421275
https://doi.org/10.1145/3302424.3303978
http://dl.acm.org/citation.cfm?id=3277355.3277369
https://doi.org/10.1145/3360610
https://www.usenix.org/conference/osdi20/presentation/zhang-haoran
https://www.usenix.org/conference/osdi20/presentation/zhang-haoran
https://doi.org/10.1145/3357223.3362723
https://doi.org/10.1109/ASE51524.2021.9678709
https://doi.org/10.1109/CLUSTR.2002.1137770

	Abstract
	1 Introduction
	2 Analysis and Motivation
	2.1 Tackling Request Bursts with FaaS
	2.2 Implications of Applying FaaS to Web Applications
	2.3 Design Principles of Semi-FaaS

	3 Offloading-based Semi-FaaS with Beehive
	3.1 Overview
	3.2 Handling Native Invocations
	3.3 Proxy-Based Connection Management
	3.4 Hiding Warmup with Shadow Execution

	4 The Beehive runtime system
	4.1 Distributed Object Sharing
	4.2 Shared State Synchronization
	4.3 Root Method Selection
	4.4 Memory Management
	4.5 Failure Recovery

	5 Evaluation
	5.1 Experiment Setup
	5.2 Burst Reduction
	5.3 Throughput Analysis
	5.4 Cost Analysis
	5.5 Performance under Various SLOs
	5.6 Breakdown Analysis
	5.7 Discussion

	6 Related Work
	6.1 Stateful Support for FaaS
	6.2 Runtime Optimizations for FaaS
	6.3 Language-Assisted Offloading

	7 Conclusion
	Acknowledgments
	References

