
AtoMig: Automatically Migrating Millions Lines of Code
from TSO to WMM

Martin Beck
Huawei Dresden Research Center,
Huawei Central Software Institute

Dresden, Germany

Koustubha Bhat
Huawei Dresden Research Center,
Huawei Central Software Institute

Dresden, Germany

Lazar Stričević
Huawei Dresden Research Center,
Huawei Central Software Institute

Dresden, Germany

Geng Chen
Huawei Fundamental Software
Innovation Lab, Huawei Central

Software Institute
Shenzhen, China

Diogo Behrens
Huawei Dresden Research Center,
Huawei Central Software Institute

Dresden, Germany

Ming Fu∗
Huawei Dresden Research Center,
Huawei Central Software Institute

Dresden, Germany

Viktor Vafeiadis
Max Planck Institute for Software

Systems (MPI-SWS)
Kaiserslautern, Germany

Haibo Chen
Huawei Central Software Institute

Shenzhen, China
Shanghai Jiao Tong University

Shanghai, China

Hermann Härtig
Technische Universität Dresden

Dresden, Germany

ABSTRACT

CPUs with weak memory-consistency models (WMMs), such as
Arm and RISC-V, are rapidly increasing their market share. Porting
legacy x86 applications to such CPUs requires introducing extra
synchronization to preventWMM-related concurrency bugs—a task
often left to human experts.

Given the rarity of such experts and the enormous size of legacy
applications, we develop AtoMig, an effective, fully automated tool
for porting large, real-world applications to WMM CPU architec-
tures. AtoMig detects shared memory access patterns with novel
static analysis strategies and performs program transformations to
properly protect them from WMM effects. In the absence of suffi-
ciently scalable verification methods, AtoMig shows practicality
of focusing on code patterns more prone to WMM faults, trading
off completeness for scalability.

We validate the correctness of AtoMig’s transformations on sev-
eral small concurrent benchmarks via model checking. We demon-
strate the scalability and performance of our approach by applying
AtoMig to popular real-world large code bases with up to millions
of lines of code, viz., MariaDB, PostgreSQL, SQLite, LevelDB, and
Memcached. As part of this work, we also found a WMM bug in
MariaDB, which AtoMig fixes automatically.

CCS CONCEPTS

• Software and its engineering → Consistency; Automated

static analysis; • Theory of computation→ Concurrency.
∗Ming Fu (ming.fu@huawei.com) is the corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9916-6/23/03.
https://doi.org/10.1145/3575693.3579849

KEYWORDS

memory consistency models, parallelism and concurrency, static
analysis, sustainability

ACM Reference Format:

Martin Beck, Koustubha Bhat, Lazar Stričević, Geng Chen, Diogo Behrens,
Ming Fu, Viktor Vafeiadis, Haibo Chen, and Hermann Härtig. 2023. AtoMig:
Automatically Migrating Millions Lines of Code from TSO to WMM. In
Proceedings of the 28th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, Volume 2 (ASPLOS
’23), March 25–29, 2023, Vancouver, BC, Canada. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3575693.3579849

1 INTRODUCTION

CPU families with weak memory-consistency models (WMMs)
like Arm and RISC-V are becoming increasingly pervasive [20,
33]. Besides mobile devices, Arm cores are now powering com-
pute instances in the AWS cloud [19], supercomputers [59], high-
performance servers [39], Microsoft Surface laptops [67], and sev-
eral Apple end-user devices [68]. Although not as prominent as
Arm, RISC-V market share is also steadily increasing and is pro-
jected to reach 6% by 2025 [33].

Given the pervasiveness of WMM CPUs, an important need has
risen in the industry for an easy and automated way of porting
existing applications to them.

Our motivation for this work largely stems from a big indus-
try software project that was developed and ran for years on x86
machines. Much later, a business need arose to run that software
on Arm-based servers. The software had a critical dependency on
DPDK [29] library. This library was so deeply integrated within the
software that it was no longer straightforward to replace it with its
newer, correctly ported version for Arm servers. The engineers re-
sorted to manually port the software. Consequently, several WMM
bugs surfaced when this was deployed. Despite several person-
years of fixing efforts to finally make those WMM bugs disappear,
it still turned out that they were incorrectly fixed.

61

mailto:ming.fu@huawei.com
https://doi.org/10.1145/3575693.3579849
https://doi.org/10.1145/3575693.3579849
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3575693.3579849&domain=pdf&date_stamp=2023-01-30

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada M. Beck, K. Bhat, L. Stričević, G. Chen, D. Behrens, M. Fu, V. Vafeiadis, H. Chen, and H. Härtig

int flag, msg = 0;

// reader

while(flag == 0);

assert(msg == 1);

// writer

msg = 1;

flag = 1;

Figure 1: Message passing example.

Automatically porting and fixing such WMM bugs, however, is
not easy. Legacy concurrent applications were neither designed nor
tested forWMMs, but for an older, fairly strong memorymodel: x86-
TSO [62]. WMMs allow many more reorderings among memory
operations than TSO (e.g., stores to different memory addresses).
These additional reorderings adversely affect thread synchroniza-
tion, while the rest of the code base typically works out of the
box, with appropriate instruction translation to the target archi-
tecture. For example, without extra care, the standard “message
passing” pattern (as in Figure 1), where a writer thread initializes
and publishes an object, and another thread reads it, can lead to
reading corrupt data. To prevent such erroneous behaviors, one
has to enforce some ordering among memory operations. To this
end, WMMs provide barriers, which are either stand-alone explicit
barriers, also called fences (e.g., DMB on Arm) or implicit barriers
attached to memory operations (e.g., LDAR and STLR on Arm).

Placing such barriers inside the code is non-trivial. On one hand,
they are necessary for reestablishing the orderings required by the
algorithm. On the other hand, unnecessary or overly-constrained
barriers degrade the performance of the complete system because
concurrent code often lies on the critical path. For example, a single
unnecessary barrier in the spinlock of Linux reduced the perfor-
mance of the whole kernel by 4% [1].

Currently, the placement of barriers is typically handled by hu-
man experts, who spend a lot of time and effort in identifying the
key memory operations that need to be executed in order, and
optimizing the usage of barriers accordingly [26, 49–51, 70]. Unfor-
tunately, this is an error-prone task, even for experts. For example,
the optimization of the barriers in Linux’s qspinlock introduced a
bug [49] that remained unfixed for three years [26].

More importantly, manual porting cannot scale for large code
bases, such as databases and web servers, due to the lack of suffi-
ciently many experts who understand both WMMs and the system
in detail. A telling story revolves around a WMM bug in Mari-
aDB [5], a large open-source database system. The errors resulting
from that bug were recognized, but misunderstood. Instead of fixing
the WMM bug, the elements of a data structure were reordered and
some volatile annotations removed, which led an optimization
pass of the compiler to combine two loads of successive members
of that data structure into a single instruction, thereby hiding the
bug. On non-optimized builds, however, the bug still frequently
occurred. Since no test case existed for this scenario, the non-fix
was accepted as a fix for the WMM bug.

The state of the art in automated barrier placement is also
not yet suitable for the task. Approaches based on model check-
ing [12, 14, 17, 25, 41–44] do not scale because of the well-known
state explosion problem. Approaches based on overapproxima-
tion [16, 60] require expensive inter-procedural static analyses

and/or yield poor performance. Testing-based approaches [61] re-
quire substantial human input in terms of curated test harnesses.

Our Solution. In response, we develop AtoMig, the first highly-
performant static approach for porting real-world large-scale ap-
plications from x86-TSO to WMMs. We demonstrate AtoMig’s
scalability and performance by applying it to popular real-world
large code bases with millions of lines of code, viz., MariaDB, Post-
greSQL [10], SQLite [11], LevelDB [8] and Memcached [9]. It suc-
cessfully ports them to Arm with a performance overhead of 1.8%
within minutes, which is roughly the same time it takes to compile
the applications.

The key challenge in porting a program from x86 to WMMs is to
detect its set of concurrent memory accesses that are not adequately
protected by locks and/or other explicit synchronization constructs.
One cannot rely purely on annotations like volatile declarations
in C because programmers often forget to annotate all concurrent
accesses. Once this set is detected, we can insert appropriate barri-
ers to prevent reorderings among these accesses and between them
and other memory accesses, thereby implementing TSO seman-
tics. Where possible, our approach uses implicit instead of explicit
barriers, because implicit barriers tend to be much faster [48].

Our key idea to find those missing accesses is to look for code
patterns that (1) correlate highly with the presence of concurrent
synchronization accesses and (2) can be detected efficiently by
intra-procedural analysis with very few false positives. The latter
is crucial to achieve scalability and high performance. We thus
focus our attention to spinloops, which not only can be detected
efficiently, but are also the places where WMM bugs are the most
likely to occur in real-world systems given the fairly low observed
probability of WMM behaviors in general [18]. From those detected
spinloops, AtoMig employs a simple scalable alias analysis to find
all other accesses to the same memory locations, thereby repairing
also the code in concurrency patterns that are difficult to detect
effectively.

In the absence of scalable verification tools, we present a practi-
cal trade-off in the spectrum between poorly efficient but formally
correct porting and, highly efficient porting with limited correct-
ness guarantees. AtoMig, being heuristic-based, provides no formal
correctness guarantees (in fact, similar to widely applied manual
porting for large applications). We validate AtoMig’s correctness
on smaller concurrent benchmarks which are within the reach of
automatic verification techniques, including widely used data struc-
tures from the Concurrency Kit library [15]. Moreover, AtoMigwas
instrumental in exposing and (automatically) fixing a WMM bug in
a critical hash-table implementation in the MariaDB database, with
the fix merged into its current code base [4].

In summary, we claim that AtoMig is the first practical software-
based approach to porting large code bases from x86-TSO to WMM
because

(1) it scales to millions of lines of code,
(2) achieves a very low (1.8%) performance overhead,
(3) does not require any user input, and
(4) automatically fixes WMM bugs that matter.

Its design is based on a novel use of spinloops as entry points for
scalably detecting shared memory accesses and protecting them
from undesirable WMM effects.

62

AtoMig: Automatically Migrating Millions Lines of Code from TSO to WMM ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

2 BACKGROUND

2.1 Weak Memory Models

Memory models define the semantics of memory accesses in multi-
threaded programs at the level of hardware architectures like Intel
x86, Power, or Armv8 or at the level of programming languages
like C11 and Java. They define which accesses may be executed
or have their effects propagated out of order, and what primitives
— explicit or implicit barriers — exist to prevent such reorderings.

The strongest memory model is sequential consistency (SC) [47],
which guarantees memory accesses to happen in program order. A
slightly weaker model is Total Store Order (TSO) [62], which relaxes
the store-to-load order, thereby allowing the weak “store buffering”
behavior. TSO is commonly used to describe the Intel x86 memory
order for pages whose attribute is set to “write-back” (the default
mode for user-space applications).

Weak Memory Models (WMMs) like the ones of Power, Arm,
RISC-V, C11, Java, etc., further relax the execution order between in-
structions, allowing CPUs to execute independent memory accesses
completely out of order. This additional implementation flexibility
translates into better performance, less energy consumption, but
also more weak behaviors, especially in programs containing the
“load buffering” and “message passing” patterns.

As Intel x86 was the prevalent architecture for several decades,
most concurrent software is written for the TSO memory model,
and it is very important to be able to port them to run correctly
and efficiently on WMM machines.

2.2 The Porting Problem

Porting software written for the TSO memory model to a WMM ar-
chitecture is sadly not simply a matter of recompiling the program.
Doing so can easily lead to hard-to-spot weak memory model con-
sistency bugs, since the additional reorderings allowed by WMMs
can generate unintended program behaviors. To prevent such harm-
ful behaviors, one has to introduce memory barriers and/or similar
synchronization constructs at appropriate points.

Finding exactly where to introduce such barriers is a non-trivial
task. Inserting too many barriers can incur a significant perfor-
mance penalty, while not having enough barriers can lead to pro-
gram errors. This has opened up a problem space with many pro-
posed approaches over the last decades. In Table 1, we review the
existing solutions for porting software from TSO to a WMM. We
compare the solutions in terms of Safety i.e., final result is guar-
anteed to be safe; Efficiency i.e., final result has low performance
overhead; Scalability i.e., number of lines of code that the method
can be applied on; and Practicality i.e., whether it can easily be
used on a variety of existing applications without requiring a lot
of domain knowledge (client code, a curated test suite, etc.). We
denote if the proposed solution (mostly) fulfills the property with a
✓, with a ✗ if it (mostly) does not fulfill the property and if that the
proposed solution partly fulfills the property with a =.

Naïve Solution. The simplest solution is to make all memory ac-
cesses SC by using Arm’s implicit SC barriers or by inserting a
strong memory barrier between every pair of shared memory ac-
cesses. This solution fulfills our safety, scalability, and practicality
requirements, but introduces significantly high runtime overhead.

Table 1: Comparison of Porting Approaches

Approach Safe Efficient Scalable Practical
Naïve ✓ ✗ ✓ ✓

Hardware ✓ = ✓ =
Expert = ✓ ✗ ✗

VSync [57] ✓ ✓ ✗ ✗

Musketeer [16] ✓ = = ✗

Lasagne [60] ✓ ✗ ✓ ✗

TSan [61] ✗ = = ✗

AtoMig = ✓ ✓ ✓

Among the choice of using implicit or explicit SC memory barriers,
the former is observed to offer higher performance.

Hardware-Based Solutions. Some CPUs support multiple memory
orderings. For example, the Armv8-based CPU cores on Apple M1
SoC support code execution in WMM or TSO modes. In combi-
nation with Rosetta 2 dynamic binary translation [7], TSO mode
enables running legacy x86-64 macOS programs on the new Armv8
platform. The solution is safe and scalable. On the other hand, it is
highly platform-specific and not all applications can be translated
in this way [27] (e.g., AVX instructions are not supported [7]). Also,
its performance is not ideal. To evaluate, we ran both x86 [32] and
native [31] versions of Geekbench [30] for macOS on the same
machine. The x86 version achieved about 22% lower Geekbench
score.

Relying on Experts. Another (non-)solution is to rely on human
experts to manually introduce any additional barriers in the code
base, which is historically how most porting efforts have proceeded.
While this approach can yield excellent performance, it is neither
practical nor scalable: it requires experts who have a very good
and detailed understanding of the target software and the memory
model to be ported to.

Verification-Backed Approaches. Another approach, followed by
projects like VSync [57], is to construct a candidate placement of
memory barriers and to use verification tools (typically, model
checkers) to prove the correctness of the barrier assignment, re-
fining the assignment depending on the verification output. The
major problem with this approach is scalability: model checkers
examine all possible distinct program executions and cannot verify
programs larger than a few thousand lines of code. A secondary
problem is that of practicality in that these verification tools often
require manual code curation or annotations before they can be
applied.

Barrier Insertion Approaches. Another approach is to employ static
analysis to detect programming patterns that require memory barri-
ers to avoid weak behaviors on a given WMM architecture. Muske-
teer [16] does so by generating abstract event graphs of the possible
executions of a program, applying axiomatic rules checking for
memory consistency bugs and inserting barriers to fix them. The
main problems with this approach are its practicality and scalability:
the analysis depends on client code coverage and hits a scalability
bottleneck due to its heavy reliance on precise alias analysis.

63

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada M. Beck, K. Bhat, L. Stričević, G. Chen, D. Behrens, M. Fu, V. Vafeiadis, H. Chen, and H. Härtig

ATOMIG

Detecting
implicit

synchronization
patterns

Marked
LLVM IR

Ported
application

Alias
exploration

Program
transformations

Analyzing
explicit

annotations

Application
source

Compile to
LLVM IR

Link to
binary

Figure 2: AtoMig’s workflow

Barrier Removal Approaches. Lasagne [60] is the converse approach.
It starts by making the whole application SC and then detects
patterns provably unrelated to synchronization to eliminate un-
necessary barriers. While its analysis scales well, it often does not
manage to remove many barriers and so it introduces a high per-
formance overhead. The use of explicit memory barriers instead of
implicit SC barriers also impacts performance. Further, it is built
into the static binary translation tool mctoll [71], which comes with
its own limitations. It only supports a subset of the x86 instruc-
tion set and needs function prototypes to be input for all called
functions in a program. Prototypes of so many functions cannot
easily be extracted from large application binaries. The need for
source code to obtain function prototypes renders it less practical
for binary-only settings. The overall practicality of the solution is
also limited by mctoll’s limitations.

Dynamic Race Detection. Another possible approach is to employ a
probabilistic data race detection tool like TSan [61] to detect racy
memory accesses and to transform them into atomic sequentially
consistent accesses. Its major drawbacks, however, are that of safety
and practicality. It requires test cases to cover all the relevant code
paths to work, which in turn requires a significant amount of user
input/guidance. Moreover, the safety of the final result is limited
by the tests that were actually run.

AtoMig: Practical Pattern-Based Porting. As we have seen, all these
approaches either do not scale to larger software or incur a signifi-
cant performance penalty, which opens up the problem space of
this work. It is of high interest to find a solution, which helps in
porting software designed for TSO to a WMM architecture. Specifi-
cally, the solution needs to be a) scalable to millions lines of code;
b) fix typical concurrency bugs occurring on WMM architectures,
c) be automatically applicable without manual test case curation,
dynamic execution of the target software or change of the appli-
cation source code and d) have better performance than the naïve
conversion and state-of-the-art software solutions.

3 DESIGN AND IMPLEMENTATION OF

ATOMIG

Our approach is to detect any memory accesses that are used for
synchronization statically and to convert them to C/C++ sequen-
tially consistent atomics to be turned into Arm’s release/acquire
atomic accesses that contain implicit barriers and avoid WMM be-
haviors. As previous work in this domain indicates that implicit
barriers issued by atomic memory accesses are faster than explicit

barriers [48], we use implicit barriers as often as possible and only
fall back to explicit barriers at necessary places.

3.1 Overall Structure of AtoMig

We implement AtoMig as a set of LLVM link-time compiler passes,
and integrate in the LLVM compilation/build chain, as depicted in
Figure 2.

The application to be ported is initially compiled using its stan-
dard build system. We configure the build system via environment
variables to use LLVM tools like clang, llvm-ar, llvm-ranlib and so
on. The initial compilation is done exactly the way these applica-
tions are meant to be built, except that we use no optimizations
“-O0” for the compilation to LLVM IR and pass some additional op-
tions to these tools in order to extract the LLVM IR from the linker
to get a complete module for each build target. This initial run of
the build system is as fast as the normal build of the application, if
not faster, since no optimizations are performed.

When this initial compilation phase is finished, we run our anal-
yses to detect synchronization accesses at the level of LLVM IR. We
perform three major analysis passes: (1) explicit annotation analysis,
(2) implicit synchronization pattern detection, and (3) alias explo-
ration. AtoMig uses the result of these steps to mark the IR and
transform the code to turn all detected racy memory accesses into
atomic accesses. Once the transformation is complete, we apply
any outstanding optimizations (e.g., -O2 or -O3) and perform a final
linking step to produce the ported binary. We describe each of these
passes below.

3.2 Analyzing Explicit Annotations

As a first step, we look for any existing annotations at the appli-
cation’s source code, which hint at the use of shared memory to
synchronize between threads. There are three such types of anno-
tations we cover: (1) uses of C/C++11 atomic accesses, (2) uses of
C/C++ volatile qualifier, (3) uses of inline assembly code.

The first kind is the easiest to deal with. Any atomic operations
already found in the program invariably indicate the presence of
concurrent accesses on them. Since, however, on TSO, most of the
attached memory orders on accesses — relaxed, consume, acquire,
release, and even SC for anything other than a write — are indistin-
guishable, it is frequent for code to use insufficiently strongmemory
orders. To ensure correctness under WMM, we therefore turn all of
these memory orders into SC.

The second kind is arguably the most common means of indicat-
ing shared-memory accesses in legacy code. Developers typically

64

AtoMig: Automatically Migrating Millions Lines of Code from TSO to WMM ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

annotate shared variables with the volatile qualifier in order to
suppress compiler optimizations on them and preserve intended
concurrent behavior. By default, standard compiler optimizations
(e.g., CSE) assume the program is sequential, and can easily break
concurrent code, whose variables are not annotated as volatile
or atomic. Unlike atomics, the volatile qualifier, however, has
no influence on how the hardware treats those accesses. Unless we
make them atomic accesses, say, using the compiler built-ins or
using atomic instructions, the hardware does not provide any extra
consistency guarantees for concurrent accesses on them. We there-
fore convert all accesses to volatile variables into sequentially
consistent atomic accesses.

Variables are generally marked as volatile because they are
subject to concurrent accesses either (1) from the program itself or
(2) from its environment, e.g., from peripheral hardware devices, in
the case of interrupted executions like signal handlers and device
drivers. Since we are only interested in accesses of the first kind, to
avoid additional overheads, we can exclude the latter kind from our
transformation through blacklisting. Throughout all experiments
that we performed, blacklisting of volatile variables was never
necessary.

Finally, developers often implement synchronization barriers
with architecture-specific assembly instructions, for performance
reasons or because there was no other way to introduce barriers
when the code was first written. Porting such inline assembly code
segments to a different architecture is particularly challenging be-
cause one needs a mapping to the new architecture not only of the
compiler’s IR but also of all the x86 instructions. Further, it remains
out of reach of our static analysis at the IR level. To address these
challenges, we develop a compiler frontend pass that analyzes all
uses of x86 inline assembly implementing synchronization patterns
in the source code and replaces them with their compiler builtin
counterparts. Compiler built-ins are amenable to LLVM-based static
analysis and for porting, we can simply let the compiler generate
target specific instructions.

If all racy accesses are already correctly annotated, applying
these steps will result in a correctly ported application without
WMM consistency bugs. Sadly, this is rarely the case in large appli-
cations. We therefore need another step to detect synchronization
accesses that the developers ‘forgot’ to annotate.

3.3 Detecting Implicit Synchronization Patterns

To find unannotated potentially racy accesses, AtoMig detects
synchronization code patterns and transforms them. In the figures,
wemark AtoMig transformations in orange, with –> SC for adding
an implicit memory barrier and FENCE SC for an
explicit barrier.

Spinloops. The most basic pattern is that of a spinloop, where a
thread waits in a loop for some condition to hold, which is not
updated by the loop itself. So, the only way to exit a spinloop is if
some other thread changes the program state and invalidates the
spinloop’s wait condition. That is, a spinloop is a loop where all
its exit conditions depend on operations external to the current
thread.

Let us formalize these notions a bit. A loop is identified by its loop
header, a node in a program’s control-flow graph (CFG) that has

int flag = WAIT, turns = 7;

void spinloop_examples() {

int l_flag, l_turns = 7;

// Spinloop 1

while(flag != DONE) ; // non-local dep.

// Spinloop 2

do {

l_flag = DONE; // constant store

} while (l_flag != flag); // non-local dep.

// Spinloop 3

do {

l_flag = flag & F_MASK; // non-local dep.

} while (l_flag != READY); // in-loop dep.

// Non-spinloop: has local exit condition

for (int i=0; i < 100; i++)

if (flag == DONE) break;

// Non-spinloop: exit depends on local store

for (int i=0; i < turns; i++) ;

}

Figure 3: Examples of spinloops and non-spinloops

an incoming backedge, and contains all nodes that are dominated
by the loop header and which have a path back to the loop header.
A loop exit condition is any condition on a branch that exits the
loop. A memory access is non-local in a function if it may also
be accessed from outside that function; e.g., a global variable, a
function argument passed by reference, or a stack variable whose
address is taken and escapes the function scope. A CFG node has a
non-local dependency if it depends on some non-local access either
directly or indirectly (i.e., by using a variable whose definition
has a non-local dependency). A loop is a spinloop if (1) all its exit
conditions have non-local dependencies, and (2) all the stores in the
loop without non-local dependencies do not influence the loop exit
conditions.

Figure 3 presents some examples and non-examples of spinloops.
The first loop is clearly a spinloop because its exit condition de-
pends solely on the value of a global integer, flag and there are no
operations within the loop that affect its exit condition. Similarly,
the exit condition of second loop has a non-local dependency on
flag. The store inside the loop cannot influence the exit condition,
because although the condition depends on it, it always writes the
same constant value to l_flag. The third loop’s exit condition has
an indirect non-local dependency through l_flag, and is therefore
also a spinloop.

Next, consider two non-spinloop examples. The first for loop
contains two exit conditions, one with the non-local dependency
on flag but also one without any non-local dependencies. The
second for loop’s exit condition has a non-local dependency on the
global variable turns, but is also affected by the i++ store inside
the loop, which has only local dependencies. Therefore, neither

65

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada M. Beck, K. Bhat, L. Stričević, G. Chen, D. Behrens, M. Fu, V. Vafeiadis, H. Chen, and H. Härtig

int locked = 0;

void lock() {

while(!cmpxchg(locked –> SC,

0, 1));

}

void unlock() {

locked = 0; –> SC

}

Figure 4: Test-and-set mutual exclusion lock.

of these loops are spinloops. Both these loops are guaranteed to
eventually terminate regardless of what other threads do. In the
first case, the loop will run for at most 100 iterations. While in the
second case another thread can delay the termination of the for
loop. Eventually the thread increasing i will catch up and exit the
loop.

For each spinloop, AtoMig performs a static instruction-influence
analysis to identify all non-local memory accesses that influence
the loop exit conditions and marks all those non-local memory
accesses (as opposed to accesses on their copies on the local stack)
as spin controls, which in a subsequent pass will be transformed
into sequentially consistent atomic operations.

Once Atomic, Always Atomic. Transforming only the accesses de-
tected within spinloops to SC-atomics is not sufficient. We must
also transform all the accesses to spin control-variables to atomics,
whether they appear inside a loop or not. We illustrate this point
with two examples.

Figure 4 presents a trivial test-and-set lock. To acquire the lock,
a thread repeatedly performs an atomic compare-exchange in a
spinloop. The compare-exchange updates the locked variable to
1 and returns the old value, i.e., the loop exits when the lock was
previously free. To release the lock, a thread unlocks by simply
setting locked to 0. This lock implementation works on an x86
machine because TSO guarantees that all operations of a critical
section remain ordered between the compare-exchange and the
store of the lock release. This guarantee, however, is not provided
by WMM CPUs. If we only make the lock acquisition SC-atomic,
the operations of a critical section may be executed after the release
of the lock, which is clearly wrong. For a correct operation, we
therefore also need to make the locked=0 store atomic.

As a second example, consider “message passing” pattern in
Figure 5, which appears very frequently in concurrent code. For
example, the MCS lock [55] uses such a loop to wait for other
threads.

Since the order of execution on stores is preserved on x86, the
update to DONE on flag always executes after the writer writes to
message. So, if the reader reads DONE in flag and exits the loop,
the value of message read will be the correct value, as expected.
WMM CPUs, however, allow the reordering not only of the loads
within the while loop and the load from message on the reader
side and, but also of the two stores on the writer side. To prevent
undesirable reordering of loads and stores, we can again make the

int flag = WAIT;

int msg;

// reader

int data;

while(

flag –> SC

!= DONE);

data = msg;

// writer

msg = get_msg();

flag = DONE; –> SC

Figure 5: Message passing using a spinloop.

flag variable atomic (sequentially consistent) throughout the whole
program. On the reader side, the atomic loads of flag prevents the
subsequent loads to be executed before the loop and on the writer
side, the atomic flag=DONE write prevents the write to message
from executing after it.

Optimistic Accesses. The transformations described so far work
for plain spinloops, but are insufficient for code with optimistic
concurrency control [34, 35, 45], such as sequence locks [53]. Con-
sider the code in Figure 6. The writer increases a sequence counter
flag, writes to message, and increases the sequence counter again,
while the reader continuously reads the message and the sequence
counter in a spinloop and exits whenever it manages to read twice
the sequence count holding the same even value. The scheme helps
in improving performance by reducing the points of synchroniza-
tion among the concurrent threads. Since the ordering between
stores and between loads is preserved on x86-TSO, reading twice the
same even value means that the writer did not update the message
variable concurrently, and so the read’s in-between load of message
returned the latest value.

Under WMM, however, neither of these orderings are preserved,
and so this optimistic scheme is broken. Moreover, even if we
make all accesses of flag SC-atomic (e.g., by running the spinloop-
detection phase as described earlier), the optimistic scheme remains
incorrect because the read of message can be reordered after the
subsequent SC-atomic load of the flag variable.

Let us now see how such loops with optimistic concurrency
control — optimistic loops, for short — can be detected. The general
pattern for such loops is to optimistically read certain other shared
variables besides their spin controls, and for those optimistic reads
to be used after the loop. In the case of sequence counting, these
optimistic reads, moreover, appear between repetitive reads to the
spin controls. More formally, a spinloop is called an optimistic loop
if it contains a read of a non-local variable different from all the spin
controls that is used by some operation outside the loop. We mark
all the spin controls of an optimistic loop as optimistic controls.

Optimistic accesses to non-local memory sources must execute
within the spinloop it belongs to. At the exit conditions of an opti-
mistic loop, we can find loads to the optimistic controls of the loop.
Since an optimistic loop is a spinloop, the optimistic controls are
already slated to be sequentially consistent atomic accesses. We also
insert an explicit memory barrier before their loads to force all the

66

AtoMig: Automatically Migrating Millions Lines of Code from TSO to WMM ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

volatile int flag = 0;

int msg;

// reader

int i, data;

do {

FENCE SC

i = flag –> SC ;

data = msg;

FENCE SC

} while(i%2 != 0 ||

i != flag –> SC);

process(data);

// writer

flag++; –> SC

FENCE SC

msg = get_msg();

flag++; –> SC

FENCE SC

Figure 6: Sequence count

uncontrolled reads to non-local memory within the loop to execute
before exiting the loop. At the writer side, the stores to the uncon-
trolled non-local source must execute after the store to optimistic
control (the first flag++) and there should not be any reordering
with any instructions that follow the write to optimistic control.
Therefore, we add a sequentially consistent explicit barrier after the
store to the optimistic control. Ensuring that the optimistic reads
stay within the spinloop and writes to the optimistically accessed
memory locations execute after the update to the optimistic con-
trols, protects the programmer intended order of such concurrent
executions.

In summary, AtoMig detects spinloops and adds spin control
marks to their non-local exit dependencies. It then checks all spin-
loops for optimistic accesses and if so, marks those spin controls as
optimistic controls. It turns all spin control and optimistic control
memory accesses into atomic SC accesses. For the latter, it also
inserts an explicit barrier before each optimistic control read within
optimistic loops and after all optimistic control stores.

3.4 Alias Exploration

As already said, AtoMig’s transformations apply not only to the
spin controls and optimistic controls within spinloops, but through-
out the entire program. To implement this transformation, we per-
form a complete link-time pass at the program’s module scope
to detect all atomic accesses. For each detected atomic access, we
statically look for other instances of accesses to these identified
memory locations and mark them as their sticky buddies. Finding
sticky buddies of accesses to global variables is straightforward
but pointer based accesses to global and heap memory locations is
not. For the latter, we apply a type based detection scheme. These
accesses are to the following kinds of memory locations: struct
typed entities or member fields and arrays. LLVM represents such
accesses using the getelementptr instruction. This instruction
tells us the type of the access along with its offset information.
We find their sticky buddies by finding all other getelementptr
instructions in the program that have the same type and offsets.

Alternatively, we can apply alias analysis to detect sticky buddies of
pointer-based accesses in the program. While both the approaches
can report false positives, alias analysis needs inter-procedural
analysis and can easily result in memory exhaustion [16] for large
code bases. Therefore, we choose a type-based detection scheme
in the interest of scalability. If synchronization involves generic
data types, our type-based alias analysis can result in larger sets of
sticky-buddies. However, typically synchronization points involve
simpler data types designed for concurrent updates (e.g., to update
flags, values or pointers). Finally, we turn all sticky buddies into
SC-atomic accesses. Similarly, we also find sticky buddies of all de-
tected spin controls and optimistic controls and perform the same
respective transformations for their sticky buddies. In other words,
sticky buddies of spin controls turn into SC-atomic operations and
the sticky buddies of optimistic controls additionally get explicit
barriers depending on where they are in the code base.

While existing annotation and implicit synchronization pattern
detection marks the start of our static exploration of synchroniza-
tion code in a target application, finding sticky buddies expands
our purview to the rest of the code base, allowing us to automati-
cally prevent undesirable reorderings of instructions on a WMM
architecture.

3.5 Static Analysis Challenges

We need AtoMig’s compiler-based static analyses to be efficient to
scale for large code bases. Both the time taken for instrumenting
an application and the overall memory usage must remain rea-
sonable for practical integration with existing build infrastructure.
We discuss below how we address the challenges in the design of
AtoMig.

Instruction Influence Analysis. All schemes that AtoMig employs
to detect susceptible patterns, heavily rely on detecting dependen-
cies between memory locations, their scopes and their influence
on dependencies among instructions in the target program. For
example, for spinloop detection, we must chase all the loads of
loop compare instructions, and check scopes of the accessed mem-
ory locations if they are function-local or not. Some stores may
affect the memory locations that the load instructions load from,
expanding the set of dependent instructions and hence the set of
memory sources that have influence on the compare instructions.
Trivially following the dependencies across the entire application
and frequently doing so, will be highly expensive. Owing to our
choice of spinloops as entry point to synchronization detection and
all the susceptible patterns from there on, we only need fine-grained
memory dependency analysis, i.e., scoped within a few specified
basic blocks, a loop or at most within a function. We exploit this
to implement an intra-procedural static data flow analysis across
loads and stores to memory locations (technique akin to memory
dependence analysis [6] albeit finer-grained) for extracting scope
and instruction-influence information within the specified program
regions. AtoMig applies such fine-grained scoping wherever ap-
propriate. For example, to find influence of intra-loop stores on the
loop compare instructions, it is sufficient to scope the analysis to
just within the loop. Moreover, AtoMig’s static transformations do
not invalidate these existing dependencies that we detect. There-
fore, we also cache the results to speed up any further queries of

67

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada M. Beck, K. Bhat, L. Stričević, G. Chen, D. Behrens, M. Fu, V. Vafeiadis, H. Chen, and H. Härtig

memory sources, their scope information and instruction influence
relations.

Type-Based Pointer Alias Analysis. Inherent limitations of static
analyses (including pointer alias analysis) can cause memory ex-
haustion. AtoMig avoids them by applying a type-based pointer
alias analysis, to find all memory accesses to a specific memory
location to implement sticky atomics. We use the type, base and
offsets of getelementptr instructions in the LLVM intermediate
representation of the program and create a module-wide map of
all such memory accesses. Finding similar memory accesses thus
reduces to a constant time access to this map. Since our transforma-
tions do not change any relations between memory accesses, we
only have to populate this map once during initialization. Further,
a memory access instruction, once stickied, remains so forever. So,
we mark them to prevent processing them repetitively.

Loops Spanning Multiple Functions. Loops that span across several
functions pose a harder challenge for static analysis. To avoid the
inherent precision limitations of inter-procedural analysis, we inline
functions where possible beforehand. This offers a better practical
trade-off between performance, scalability and correctness.

False Negatives and Positives. False negatives are critical for the
application correctness. In AtoMig they can mostly arise when a
synchronization point is using plain reads and writes and is not
detected by any other employed heuristic.

There are not many common lock-free data structures or syn-
chronization patterns that can be constructed using only read/write
registers. It is shown [36] that for wait-free algorithms, a read-
modify-write register is necessary to construct non-trivial synchro-
nization algorithms. While this result limits the construction of
wait-free algorithms, typical implementations of lock-free algo-
rithms are using read-modify-write operations to a large extent.
For example in CK [15] more than 80% of the algorithms use read-
modify-write operations. Any use of an atomic read-modify-write
operation will be detected and propagated. False negatives also
likely decrease with bigger code bases due to alias exploration be-
coming more effective since it gets easier to find at least one atomic
access to each shared memory location. Further, there are higher
chances of our pattern detection to catch at least one of the loops
that depend on a specific shared variable. Alias exploration can
transform the rest. However, false negatives of alias exploration
due to dynamically changing addresses hinder its effectiveness.

Our choice of spinloop defition wasmotivated by the fact that the
overall goal is to reach a practical trade-off between performance
and correctness. We are aware that other definitions of a spinloop
exist in literature, however, they are more restrictive compared to
our definition, therefore we assume that using these definitions
would result in fewer detected synchronization points and thus a
less correct ported application.

False positives can only affect the performance of the application,
not its correctness. Typically, threads of a well-designed concurrent
application spend most of their CPU cycles performing concurrent
work, rather than synchronizing with other threads. AtoMig mainly
introduces overhead in parts of the code that perform synchroniza-
tion, which in turn are shorter and (hopefully) constitute a small
fraction of the total execution time. Even though incorporating a

Table 2: Verification results on ck and lf-hash

Original Expl. Spin AtoMig

ck_ring ✗ ✓ ✓ ✓

ck_spinlock_cas ✗ ✓ ✓ ✓

ck_spinlock_mcs ✗ ✗ ✓ ✓

ck_sequence ✗ ✗ ✗ ✓

lf-hash ✗ ✗ ✗ ✓

precise inter-procedural data flow analysis would reduce the num-
ber of false positives, the end-to-end performance is unlikely to be
affected significantly. Moreover, such a precise data-flow analysis
could limit the scalability of our tool to large code bases.

4 EVALUATION

In this section, we evaluate AtoMig for correctness, scalability, and
performance.

4.1 Correctness

To evaluate the correctness of AtoMig transformations, we em-
ploy GenMC [42], a state-of-the-art stateless model checker that
exposes weak memory model concurrency issues in the target ap-
plications. Since model checking does not scale to large code bases,
we use smaller benchmarks for our evaluation and make necessary
adaptations to run GenMC on them (e.g., creating client programs
exercising the module). Specifically, we choose as benchmarks:

(1) a few concurrent benchmarks from Concurrency Kit [15], a
widely-used library implementing efficient concurrent data
structures, which supports different memory models for ap-
propriate placement of barriers;

(2) the lock-free hash-table [63] (lf-hash), a key component in
MariaDB, whose correctness is paramount to everything that
is built around it.

We report the results of our evaluation in Table 2. We run GenMC
on original (x86-TSO) and AtoMig-instrumented variants of these
benchmarks, and check whether an assertion violation is reported.
We also run GenMC on versions of the benchmarks generated by
AtoMig by switching off certain parts of its detection of synchro-
nization patterns: Expl. uses the explicit annotations, Spin also uses
spinloop detection, while AtoMig also uses optimistic loop detec-
tion. As it can be seen, explicit annotations are rarely sufficient for
correct porting, spinloop detection works correctly for a few more
cases, while AtoMig handles all the benchmarks correctly.

MariaDB Hash-Table Bug. We remark that while evaluating the
AtoMig-port of the lock-free hash-table benchmark, we also found
a serious WMM concurrency bug in MariaDB’s implementation,
which was manually ported from the x86 to WMMs.

Figure 7 abstracts the bug. One thread operates on a node within
l_find, while another thread operates on the same node within
l_delete. Two problematic reorderings are possible on a WMM
architecture like Armv8.Within l_find, the load of node->key can
be reordered with the subsequent load of node->state, possibly
using an old value of state with an updated value of key. On
Armv8, a cmpxchg consists of two memory accesses, a load and

68

AtoMig: Automatically Migrating Millions Lines of Code from TSO to WMM ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Table 3: AtoMig statistics for large applications showing synchronization pattern detection, time taken for original build &

AtoMig and explicit(𝐵𝐸𝑥𝑝𝑙) & implicit(𝐵𝐼𝑚𝑝𝑙) barriers present (SLOC: source lines of code).

Build Time Original AtoMig Naïve
Applications # SLOC # Spinloops # Optiloops Original AtoMig # 𝐵𝐸𝑥𝑝𝑙 # 𝐵𝐼𝑚𝑝 # 𝐵𝐸𝑥𝑝𝑙 # 𝐵𝐼𝑚𝑝𝑙 # 𝐵𝐼𝑚𝑝𝑙

MariaDB 3,124,265 12,880 1,970 20m 51s 40m 21s 0 968 12,361 66,347 366,774
PostgreSQL 880,400 1,750 544 4m 59s 10m 40s 104 340 3,455 42,744 243,790
LevelDB 82,725 458 263 1m 17s 3m 21s 0 390 2,798 11,128 65,042
Memcached 28,957 75 20 17s 30s 2 0 231 1,564 11,515
SQLite 263,125 1,057 254 4m 1s 11m 54s 1 28 4,016 44,860 122,611

Table 4: AtoMig statistics on Memcached for number of dy-

namically executed barriers.

Memcached Original AtoMig

non-atomic loads 376,833,638 357,562,200
non-atomic stores 127,279,768 117,914,988
atomic loads 0 19,975,815
atomic stores 0 5,458,192

l_find() {

do {

FENCE SC

state = node->state –> SC ;

key = node->key;

FENCE SC

} while (state != node->state –> SC &&

state == INVALID);

assert(key != NULL);

}

l_delete() {

if (cmpxchg(node->state, VALID, INVALID)) {

FENCE SC

node->key = NULL;

}

}

Figure 7: lf-hash WMM bug in MariaDB

store with acquire/release semantics. As the store release can be
reordered with subsequent memory operations, the relaxed store
to node->key within l_delete can be visible before the cmpxchg
store.

To fix this algorithm, all operations on node->state should
follow acquire/release semantics and thus the loads in l_find
are made atomic SC by AtoMig. In addition, all operations on
node->key should have acquire/release semantics. As our frame-
work detects such optimistic load patterns and marks node->state
as an optimistic control, it introduces explicit barriers to protect
against reorderings of optimistic loads and belonging stores. These
explicit barriers also protect against reorderings of memory ac-
cesses that could not be detected statically, i.e., dynamic addresses
calculated at runtime through pointer arithmetic.

Upon confirming the bug using GenMC and reporting the bug,
our proposed fix has been accepted and merged into the current
MariaDB code base [4].

4.2 Scalability

For evaluating scalability, we apply AtoMig to a collection of popu-
lar large-scale applications that are widely deployed as critical com-
ponents of larger infrastructure viz., MariaDB [5], PostgreSQL [10],
LevelDB [8], Memcached [9] and SQLite [11].

Table 3 reports the number of patterns AtoMig detected and
transformed in each of the large-scale applications, as well as the
AtoMig porting time. A first observation from this table is that
these large applications contain a very large number of synchro-
nization patterns, which goes beyond the limits of what can be
analyzed effectively by human experts. Secondly, applying AtoMig
to a project increases the build time by a factor between 2 and 3 com-
pared to the original build time. For example, building the complete,
default MariaDB project with parallel compilation, takes around
20 minutes on our test infrastructure. Applying AtoMig to it took
in total about 40 minutes. Maximum RAM usage during AtoMig
builds still comes from compilation, optimization and linking steps,
so AtoMig does not increase maximum memory usage.

We also report the number of implicit barriers added by AtoMig.
These are explained by the number of spinloops found in the code
base in combination with alias exploration to make all occurrences
of spin control accesses atomic. Interestingly, even such a high
number of implicit barriers does not cause a large performance
impact, likely due to the higher performance of implicit barriers
compared to explicit barriers [48]. Similarly, the number of explicit
barriers relates to the detected optimistic loops and alias exploration
thereon. Much less explicit barriers are added compared to implicit
barriers, which follows nicely from our design decision. The table
also reports the number of explicit and implicit barriers present in
the original code base before application of AtoMig.

For comparison, we have also measured the numbers of dynam-
ically executed barriers during the Memcached benchmark, and
presented them in Table 4. The measurement was performed for
the original and AtoMig version of Memcached.

4.3 Performance

We next evaluate the impact on performance by the barriers intro-
duced by AtoMig to restore correctness underWMMs.We compare
our tool with the only other similarly scalable strategy, namely the
naïve strategy of making all global memory accesses SC-atomic.

69

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada M. Beck, K. Bhat, L. Stričević, G. Chen, D. Behrens, M. Fu, V. Vafeiadis, H. Chen, and H. Härtig

Table 5: Performance impact comparing Naïve and AtoMig

variants, normalized with the original versions.

+
The originals for CLHT have no WMM corrections.

Naïve AtoMig

MariaDB [5] 1.27 1.01
PostgreSQL [10] 1.35 1.04
LevelDB [8] 1.66 1.01
Memcached [9] 1.01 1.00
SQLite [11] 2.49 1.03
ck_ring 4.43 0.85
ck_sequence 5.35 0.91
ck_spinlock_cas 3.75 0.63
ck_spinlock_mcs 5.29 0.64
lf-hash 3.05 1.01
clht_lb+ 1.89 1.10
clht_lf+ 2.01 1.40

Our performance evaluation experiments compare aarch64 binaries
produced by these two approaches. We report the slowdown with
respect to their original aarch64 binaries compiled from sources,
applying standard optimizations. We measure their performance
on a 96-core server with 2 x HiSilicon Kunpeng 920 (Armv8.2)
2.6 GHz CPUs, 128 GiB RAM, running OpenEuler 20.03 [3] Linux
distribution.

As benchmarks for the comparison, we choose:
• the large-scale applications used for demonstrating scalabil-
ity of our approach;

• the smaller concurrent data structures used in the correct-
ness evaluation; and

• CLHT [24], a concurrent hash-table library developed solely
for x86, in order to demonstrate the possibility of end-to-end
porting to aarch64 with AtoMig.

To evaluate performance on MariaDB, we use the tests from its
mtr framework to record their run times. For PostgreSQL, we use its
pgbench tool and for LevelDB, we use its db_bench tool included
in its source distribution. For Memcached, we use the Memtier-
benchmark [2]. For CK, we use micro-benchmarks that perform
parallel operations on the same set of data structures used for
correctness evaluation and compare performance of AtoMig with
expert porting, by comparing AtoMig instrumented TSO aarch64
builds with their weak memory aarch64 counterparts. To evaluate
performance of the extracted lf-hash data structure, we use a client
that performs parallel searches, insertions and deletions upon the
hash map. Finally, for CLHT, we use the lock-based and lock-free
versions of its test_mem benchmark. Since CLHT does not have
a version of the code that is ported for Arm, as a baseline we
simply recompile the source code to aarch64 without making any
adjustments whatsoever for the weak memory model, which is
bound to exhibit undesirable WMM effects.

Table 5 summarizes our performance results. As we can see,
AtoMig provides very low performance overhead on the large
benchmarks (0%–4%, 1.8% on average), while the naïve strategy has
substantially higher overhead, except on Memcached. The Concur-
rency Kit benchmarks exhibit some unintuitive behavior, where the

Table 6: Performance results for the Phoenix benchmark.

Results are normalized to the original performance of each

benchmark. They are given as a factor of slowdown.

Naïve Lasagne AtoMig

histogram 2.80 2.51 1.00
kmeans 1.07 1.60 1.03
linear_regression 1.02 1.90 1.00
matrix_multiply 1.01 1.49 1.01
string_match 1.70 1.35 1.01

geometric mean 1.39 1.73 1.01

AtoMig-ported binary performs repeatably much better than the
native expert-ported WMM implementation. This happens because
AtoMig adds implicit barriers to the TSO version, whereas the
expert-ported version uses explicit barriers, which are substantially
slower. Observing that for these CK benchmarks, the AtoMig-
generated version has been formally verified for its correctness,
one might reasonably argue porting should be left to machines
rather than to humans. Our evaluation certainly backs that claim.
Also note that the naïve strategy performs especially poorly for
these CK benchmarks. Finally, the larger performance overhead of
AtoMig on CLHT can be attributed to the fact that CLHT bench-
mark does not have an appropriate WMM version, so we use an
incorrect version as a baseline.

Comparison with Lasagne. We finally compare the performance of
AtoMig against Lasagne [60]. Due to difficulties in running Lasagne
on our benchmarks, we use the Phoenix 2.0 benchmark suite, which
was used in Lasagne’s artifact and consists of map-reduce programs
that are widely used to benchmark parallel executions.

Table 6 compares the normalized performance impact of AtoMig
with the naïve approach and Lasagne [60]. The naïve scheme of
protecting all memory accesses with implicit barriers has a signifi-
cant performance impact. In these parallel benchmarks, however,
almost all of these implicit barriers are unnecessary. The threads in
these programs generally only synchronize using pthread based
barriers (i.e., not based on shared memory accesses) in between
performing trivially parallel tasks, which makes AtoMig’s pattern-
based strategy exhibit an almost negligible performance impact.
Quite remarkably, however, Lasagne performs substantially worse
than the naïve solution (16% slower on average). The reason for
this is that Lasagne performs binary lifting to insert explicit bar-
riers between memory operations and then applies a sequence of
formally verified barrier optimizations to remove any provably re-
dundant barriers. For this benchmark suite, however, these barrier
elimination optimizations are not sufficient for compensating for
the much higher cost incurred by using explicit barriers instead of
implicit ones, as used by the naïve approach and AtoMig.

In summary, the results clearly shows that our approach is scal-
able to large code bases like MariaDB with several million lines of
code as shown in Table 3 and induces low runtime performance
impact, much lower than an naïve approach, while still fixing real
world concurrency bugs, as depicted in the correctness evaluation.

70

AtoMig: Automatically Migrating Millions Lines of Code from TSO to WMM ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

5 RELATEDWORK

Dynamic Binary Translation. There are several dynamic binary
translation techniques that support cross-architecture execution
of programs [23, 28, 38, 65, 69]. However, they focus on efficient
ISA-level translations and often remain oblivious to memory model
differences between the two architectures. Apple’s Rosetta 2 [7, 56]
performs dynamic binary translation to run x86 programs on the
current generation of Apple’s Arm-based CPUs. For the difference
in memory models, it relies rather on the CPU’s ability to switch to
TSO mode. While proprietary software and hardware dependencies
limit its wider applicability, AtoMig is completely a software so-
lution that is suitable for any WMM-based platform. On the other
hand, ArMOR [52] performs dynamic memory-model translations.
It provides architecture-independent expression of memory-model
differences and applies it to dynamically inject barriers when run-
ning cross-memory model programs in a heterogeneous architec-
ture setting. Its significantly higher performance overhead is due
to rather conservative insertion of many barriers.

Static Approaches. Prior research on preserving SC in compiler op-
timizations [54] and also in the hardware [64], eliminate WMM
problems by design. In contrast, we turn detected concurrent code
to SC for running correctly on WMM hardware. There are other ap-
proaches that use static analysis to apply checks based on axiomatic
rules [16] or robustness checking [21] to find WMM bugs and per-
form barrier insertion. Inherent limitations of static analysis and
imprecise alias analysis, limits scalability of these static approaches.
Lasagne [60] lifts an x86 binary to LLVM IR and inserts barriers for
correct execution on Arm. Limitations of binary lifting hinders its
applicability on large applications and the limited opportunities for
barrier removal in a binary-only setting, adds higher performance
overhead than AtoMig.

Model Checking. VSync [57] performs verified and optimized place-
ment of memory ordering enforcements for synchronization prim-
itives for WMM, by employing model checking on barrier mu-
tations. However, model checking does not scale for large pro-
grams. While stateful model checkers [13, 22, 37, 40, 46, 58, 72]
quickly run into state explosion problems, even stateless model
checkers [12, 14, 17, 25, 41–44] cannot scale for code sizes larger
than a few thousand lines.

6 DISCUSSION AND CONCLUSIONS

In this paper, we have presented AtoMig, which is the first practical
software-based approach to porting large applications from x86-
TSO toWMM.Motivated by the needs of the industry, our approach
sacrifices formal correctness guarantees in order to scale to millions
of lines of code and achieve very low performance overheads. We
argue that this trade-off is worth taking because existing approaches
that provide correctness guarantees do not scale [16, 57] and/or
generate code with a high performance overhead [60]. Moreover,
to the point that it can be formally evaluated, AtoMig generates
correct code on practical use cases (cf. §4.1).

We note that there is a subtle balance between detecting too
many synchronization patterns, which will in turn introduce too
many barriers hampering performance, and too few, which can pro-
duce incorrect code. Our focus on loop-induced synchronization is

motivated by the fact that (1) loop patterns are much more common,
(2) are easier to detect with a low false positivity rate than patterns
on straight-line code, (3) more frequently experience WMM issues.
The latter point follows both from the relative infrequency ofWMM
effects [18] and from our own experience with WMM-related bug
reports. As such, our implementation does not currently find other
synchronization points that cannot be traced back to a variable used
in a spinloop. Possible examples of such synchronization points
could be shared memory accesses mixed with timing-based polling
or asynchronous methods like signals or system calls akin to sleep
semantics. Locating code segments around specific system calls or
external library functions that offer wait semantics can help in their
detection, and can easily be integrated in our approach. Another
idea worth exploring is to use the placement of compiler barriers
(which are turned into NOPs in the generated assembly code) as
additional entry points for detecting synchronization points.

Note, moreover, that our spinloop definition is conservative in
that it covers only loops that require external help to terminate.
Yet, there are often synchronizing loops that choose to terminate
after a fixed number of iterations for various efficiency reasons,
resembling the non-spinloop examples in Figure 3. The problem is
that designating such loops as spinloops generates a huge number
of false positives, since all loops with an exit condition influenced
by a global variable (e.g., sequential search algorithms) would be
treated as spinloops. Moreover, in practice, directly detecting such
synchronization loops is completely unnecessary in the common
case when their variables are also used in normal spinloops. In such
cases, alias exploration covers them.

One final limitation of our approach (along with all other exist-
ing software-based approaches) is that we require the application
source code to be available and, moreover, the application should be
capable of being built with LLVM/clang. This is generally the case
for open-source C/C++ projects, but not necessarily so for large-
scale industrial code bases. To handle such scenarios, in the future,
we plan to integrate our approach with a static binary translation
tool like mctoll [71].

AtoMig serves as a framework that we plan to extend with
further patterns to detect other synchronization points. We want
to experiment with other efficient alias analysis algorithms, like
those included in the LLVM distribution or SVF [66].

REFERENCES

[1] 1999. spin_unlock optimization(i386). https://marc.info/?l=linux-kernel&m=943
18921016232&w=2. Accessed: 2022-07-06.

[2] 2013. Throughput Benchmarking Tool for Redis & Memcached. https://redis.
com/blog/memtier_benchmark-a-high-throughput-benchmarking-tool-for-
redis-memcached/. Accessed: 2022-07-06.

[3] 2020. openEuler. https://openeuler.org. Accessed: 2022-07-06.
[4] 2021. Lock-free hash table bug fix in MariaDB. https://jira.mariadb.org/browse/

MDEV-27088. Accessed: 2022-07-06.
[5] 2021. MariadB. https://mariadb.com. Accessed: 2022-07-06.
[6] 2022. -memdep: Memory Dependence Analysis. https://llvm.org/docs/Passes.h

tml#memdep-memory-dependence-analysis. https://llvm.org/docs/Passes.htm
l#memdep-memory-dependence-analysis Accessed: 2022-07-05.

[7] 2022. About the Rosetta Translation Environment. https://developer.apple.co
m/documentation/apple-silicon/about-the-rosetta-translation-environment.
https://developer.apple.com/documentation/apple-silicon/about-the-rosetta-
translation-environment Accessed: 2022-07-06.

[8] 2022. Google LevelDB. https://github.com/google/leveldb. Accessed: 2022-07-06.
[9] 2022. Memcached. https://memcached.org. Accessed: 2022-07-06.
[10] 2022. PostgreSQL. https://www.postgresql.org. Accessed: 2022-07-06.
[11] 2022. SQLite. https://www.sqlite.org. Accessed: 2022-07-06.

71

https://marc.info/?l=linux-kernel&m=94318921016232&w=2
https://marc.info/?l=linux-kernel&m=94318921016232&w=2
https://redis.com/blog/memtier_benchmark-a-high-throughput-benchmarking-tool-for-redis-memcached/
https://redis.com/blog/memtier_benchmark-a-high-throughput-benchmarking-tool-for-redis-memcached/
https://redis.com/blog/memtier_benchmark-a-high-throughput-benchmarking-tool-for-redis-memcached/
https://openeuler.org
https://jira.mariadb.org/browse/MDEV-27088
https://jira.mariadb.org/browse/MDEV-27088
https://mariadb.com
https://llvm.org/docs/Passes.html#memdep-memory-dependence-analysis
https://llvm.org/docs/Passes.html#memdep-memory-dependence-analysis
https://llvm.org/docs/Passes.html#memdep-memory-dependence-analysis
https://llvm.org/docs/Passes.html#memdep-memory-dependence-analysis
https://developer.apple.com/documentation/apple-silicon/about-the-rosetta-translation-environment
https://developer.apple.com/documentation/apple-silicon/about-the-rosetta-translation-environment
https://developer.apple.com/documentation/apple-silicon/about-the-rosetta-translation-environment
https://developer.apple.com/documentation/apple-silicon/about-the-rosetta-translation-environment
https://github.com/google/leveldb
https://memcached.org
https://www.postgresql.org
https://www.sqlite.org

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada M. Beck, K. Bhat, L. Stričević, G. Chen, D. Behrens, M. Fu, V. Vafeiadis, H. Chen, and H. Härtig

[12] Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson, Carl
Leonardsson, and Konstantinos Sagonas. 2017. Stateless model checking for TSO
and PSO. Acta Informatica 54, 8 (2017), 789–818. https://doi.org/10.1007/978-3-
662-46681-0_28

[13] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, and Tuan Phong
Ngo. 2017. Context-Bounded Analysis for POWER. In Proceedings, Part II, of the
23rd International Conference on Tools and Algorithms for the Construction and
Analysis of Systems - Volume 10206. Springer-Verlag, Berlin, Heidelberg, 56–74.
https://doi.org/10.1007/978-3-662-54580-5_4

[14] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Carl Leonardsson.
2016. Stateless model checking for POWER. In Computer Aided Verification,
Swarat Chaudhuri and Azadeh Farzan (Eds.). Springer International Publishing,
Cham, 134–156. https://doi.org/10.1007/978-3-319-41540-6_8

[15] Samy Al Bahra. 2015. Concurrency kit. https://github.com/concurrencykit/ck.
https://github.com/concurrencykit/ck Accessed: 2022-07-06.

[16] Jade Alglave, Daniel Kroening, Vincent Nimal, and Daniel Poetzl. 2014. Don’t Sit
on the Fence. In Computer Aided Verification, Armin Biere and Roderick Bloem
(Eds.). Springer International Publishing, Cham, 508–524. https://doi.org/10.100
7/978-3-319-08867-9_33

[17] Jade Alglave, Daniel Kroening, and Michael Tautschnig. 2013. Partial orders
for efficient bounded model checking of concurrent software. In International
Conference on Computer Aided Verification. Springer, 141–157. https://doi.org/10
.1007/978-3-642-39799-8_9

[18] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2011. Litmus:
Running Tests against Hardware. In Tools and Algorithms for the Construction and
Analysis of Systems, Parosh Aziz Abdulla and K. Rustan M. Leino (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 41–44. https://doi.org/10.1007/978-3-642-
19835-9_5

[19] Amazon Web Services. 2020. AWS Graviton Processor – Enabling the best price
performance in Amazon EC2. https://aws.amazon.com/ec2/graviton. Accessed:
2022-07-06.

[20] Arm. 2019. Introducing the Arm architecture, ARM062-948681440-3277. https:
//developer.arm.com/architectures/learn-the-architecture/introducing-the-
arm-architecture/about-the-arm-architecture. Accessed: 2022-07-06.

[21] Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer. 2014. Robustness against
Relaxed Memory Models. In Software Engineering (LNI, Vol. P-227). GI, 85–86.

[22] Sebastian Burckhardt. 2007. Memory model sensitive analysis of concurrent data
types. Dissertations available from ProQuest (01 2007).

[23] Emilio G. Cota, Paolo Bonzini, Alex Bennée, and Luca P. Carloni. 2017. Cross-ISA
machine emulation for multicores. In 2017 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO). 210–220. https://doi.org/10.1109/
CGO.2017.7863741

[24] Tudor Alexandru David, Rachid Guerraoui, Tong Che, and Vasileios Trigonakis.
2014. Designing ASCY-compliant Concurrent Search Data Structures. (2014), 23.
http://infoscience.epfl.ch/record/203822

[25] Hernán Ponce de León, Florian Furbach, Keijo Heljanko, and Roland Meyer. 2018.
BMC with Memory Models as Modules. In FMCAD 2018. IEEE, 1–9. https:
//doi.org/10.23919/FMCAD.2018.8603021

[26] Will Deacon. Feb 13, 2018. locking/qspinlock: Ensure node is initialized before
updating prev->next. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/l
inux.git/commit/?id=95bcade33a8a. Accessed: 2022-07-06.

[27] Abdullah Diaa. 2022. Is Apple Silicon ready? https://isapplesiliconready.com.
https://isapplesiliconready.com Accessed: 2022-07-06.

[28] Jiun-Hung Ding, Po-Chun Chang, Wei-Chung Hsu, and Yeh-Ching Chung. 2011.
PQEMU: A Parallel System Emulator Based on QEMU. In 2011 IEEE 17th In-
ternational Conference on Parallel and Distributed Systems. 276–283. https:
//doi.org/10.1109/ICPADS.2011.102

[29] Linux Foundation. 2015. Data Plane Development Kit (DPDK). http://www.dp
dk.org Accessed: 2022-07-06.

[30] Geekbench. 2021. Geekbench 5 - Cross-Platform Benchmark. https://geekbench.
com. Accessed: 2022-07-06.

[31] Geekbench. 2021. Geekbench 5.4.1 Tryout for macOS AArch64. https://browser.
geekbench.com/v5/cpu/8239789. Accessed: 2022-07-06.

[32] Geekbench. 2021. Geekbench 5.4.1 Tryout for macOS x86 (64-bit). https://brow
ser.geekbench.com/v5/cpu/8252865. Accessed: 2022-07-06.

[33] Samuel Greengard. 2020. Will RISC-V Revolutionize Computing? Commun. ACM
63, 5 (April 2020), 30–32. https://doi.org/10.1145/3386377

[34] Theo Härder. 1984. Observations on optimistic concurrency control schemes.
Information Systems 9, 2 (1984), 111–120. https://doi.org/10.1016/0306-4379(84)9
0020-6

[35] Maurice Herlihy. 1986. Optimistic concurrency control for abstract data types.
In Proceedings of the fifth annual ACM symposium on Principles of distributed
computing. 206–217. https://doi.org/10.1145/10590.10608

[36] Maurice Herlihy. 1991. Wait-Free Synchronization. ACM Trans. Program. Lang.
Syst. 13, 1 (jan 1991), 124–149. https://doi.org/10.1145/114005.102808

[37] Gerard J Holzmann and William Slattery Lieberman. 1991. Design and validation
of computer protocols. Vol. 512. Prentice hall Englewood Cliffs. https://dl.acm.o
rg/doi/10.5555/95422

[38] Ding-Yong Hong, Chun-Chen Hsu, Pen-Chung Yew, Jan-Jan Wu, Wei-Chung
Hsu, Pangfeng Liu, Chien-Min Wang, and Yeh-Ching Chung. 2012. HQEMU: A
Multi-Threaded and Retargetable Dynamic Binary Translator on Multicores. In
Proceedings of the Tenth International Symposium on Code Generation and Opti-
mization (San Jose, California) (CGO ’12). Association for Computing Machinery,
New York, NY, USA, 104–113. https://doi.org/10.1145/2259016.2259030

[39] Huawei. 2019. Huawei Unveils Industry’s Highest-Performance ARM-based
CPU. https://www.huawei.com/en/news/2019/1/huawei-unveils-highest-
performance-arm-based-cpu. Accessed: 2022-07-06.

[40] Bengt Jonsson. 2009. State-Space Exploration for Concurrent Algorithms under
Weak Memory Orderings: (Preliminary Version). SIGARCH Comput. Archit. News
36, 5 (June 2009), 65–71. https://doi.org/10.1145/1556444.1556453

[41] Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019. Effective Lock
Handling in Stateless Model Checking. Proceedings of the ACM on Programming
Languages 3, OOPSLA, Article 173 (Oct. 2019), 26 pages. https://doi.org/10.1145/
3360599

[42] Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019. Model Check-
ing for Weakly Consistent Libraries. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Phoenix, AZ,
USA) (PLDI 2019). Association for Computing Machinery, New York, NY, USA,
96–110. https://doi.org/10.1145/3314221.3314609

[43] Michalis Kokologiannakis and Konstantinos Sagonas. 2017. Stateless Model
Checking of the Linux Kernel’s Hierarchical Read-Copy-Update (Tree RCU). In
Proceedings of the 24th ACM SIGSOFT International SPIN Symposium on Model
Checking of Software (Santa Barbara, CA, USA) (SPIN 2017). Association for
Computing Machinery, New York, NY, USA, 172–181. https://doi.org/10.1145/30
92282.3092287

[44] Michalis Kokologiannakis and Viktor Vafeiadis. 2020. HMC: Model Checking for
HardwareMemoryModels. In Proceedings of the Twenty-Fifth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(Lausanne, Switzerland) (ASPLOS ’20). Association for Computing Machinery,
New York, NY, USA, 1157–1171. https://doi.org/10.1145/3373376.3378480

[45] Hsiang-Tsung Kung and John T Robinson. 1981. On optimistic methods for
concurrency control. ACM Transactions on Database Systems (TODS) 6, 2 (1981),
213–226. https://doi.org/10.1145/319566.319567

[46] Michael Kuperstein, Martin Vechev, and Eran Yahav. 2012. Automatic Inference
of Memory Fences. SIGACT News 43, 2 (June 2012), 108–123. https://doi.org/10
.1145/2261417.2261438

[47] Leslie Lamport. 1979. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Transactions on Computers c-28 9 (1979),
690–691. https://doi.org/0.1109/TC.1979.1675439

[48] Nian Liu, Binyu Zang, and Haibo Chen. 2020. No Barrier in the Road: A Compre-
hensive Study and Optimization of ARM Barriers. Association for Computing Ma-
chinery, New York, NY, USA, 348–361. https://doi.org/10.1145/3332466.3374535

[49] Waiman Long. Nov 10, 2015. locking/qspinlock: Use _acquire/_release() versions
of cmpxchg() & xchg(). https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/l
inux.git/commit/?id=64d816cba06c. Accessed: 2022-07-06.

[50] Waiman Long and Peter Zijlstra. 2015. qspinlock code at version 4.4 of Linux
Kernel. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/ke
rnel/locking/qspinlock.c?h=v4.4. Accessed: 2022-07-06.

[51] Waiman Long and Peter Zijlstra. 2020. qspinlock code at version 5.6 of Linux
Kernel. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/ke
rnel/locking/qspinlock.c?h=v5.6. Accessed: 2022-07-06.

[52] Daniel Lustig, Caroline Trippel, Michael Pellauer, and Margaret Martonosi.
2015. ArMOR: Defending against Memory Consistency Model Mismatches
in Heterogeneous Architectures. In Proceedings of the 42nd Annual Interna-
tional Symposium on Computer Architecture (Portland, Oregon) (ISCA ’15). As-
sociation for Computing Machinery, New York, NY, USA, 388–400. https:
//doi.org/10.1145/2749469.2750378

[53] LWN. 2003. Driver porting: mutual exclusion with seqlocks. https://lwn.net/Arti
cles/22818. Accessed: 2022-07-06.

[54] Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal Musuvathi, and
Satish Narayanasamy. 2011. A case for an SC-preserving compiler. ACM SIGPLAN
Notices 46, 6 (2011), 199–210. https://doi.org/10.1145/1993498.1993522

[55] John M. Mellor-Crummey and Michael L. Scott. 1991. Algorithms for Scalable
Synchronization on Shared-Memory Multiprocessors. ACM Trans. Comput. Syst.
9, 1 (Feb. 1991), 21–65. https://doi.org/10.1145/103727.103729

[56] Koh Nakagawa. 2021. Reverse-engineering rosetta 2 PART1: Analyzing AOT
files and the Rosetta 2 runtime. https://ffri.github.io/ProjectChampollion/part1/

[57] Jonas Oberhauser, Rafael Lourenco de Lima Chehab, Diogo Behrens, Ming
Fu, Antonio Paolillo, Lilith Oberhauser, Koustubha Bhat, Yuzhong Wen, Haibo
Chen, Jaeho Kim, and Viktor Vafeiadis. 2021. VSync: Push-Button Verification
and Optimization for Synchronization Primitives on Weak Memory Models.
In Proceedings of the 26th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (Virtual, USA) (ASP-
LOS ’21). Association for Computing Machinery, New York, NY, USA. https:
//doi.org/10.1145/3445814.3446748

72

https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-662-54580-5_4
https://doi.org/10.1007/978-3-319-41540-6_8
https://github.com/concurrencykit/ck
https://github.com/concurrencykit/ck
https://doi.org/10.1007/978-3-319-08867-9_33
https://doi.org/10.1007/978-3-319-08867-9_33
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-642-19835-9_5
https://doi.org/10.1007/978-3-642-19835-9_5
https://aws.amazon.com/ec2/graviton
https://developer.arm.com/architectures/learn-the-architecture/introducing-the-arm-architecture/about-the-arm-architecture
https://developer.arm.com/architectures/learn-the-architecture/introducing-the-arm-architecture/about-the-arm-architecture
https://developer.arm.com/architectures/learn-the-architecture/introducing-the-arm-architecture/about-the-arm-architecture
https://doi.org/10.1109/CGO.2017.7863741
https://doi.org/10.1109/CGO.2017.7863741
http://infoscience.epfl.ch/record/203822
https://doi.org/10.23919/FMCAD.2018.8603021
https://doi.org/10.23919/FMCAD.2018.8603021
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=95bcade33a8a
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=95bcade33a8a
https://isapplesiliconready.com
https://isapplesiliconready.com
https://doi.org/10.1109/ICPADS.2011.102
https://doi.org/10.1109/ICPADS.2011.102
http://www.dpdk.org
http://www.dpdk.org
https://geekbench.com
https://geekbench.com
https://browser.geekbench.com/v5/cpu/8239789
https://browser.geekbench.com/v5/cpu/8239789
https://browser.geekbench.com/v5/cpu/8252865
https://browser.geekbench.com/v5/cpu/8252865
https://doi.org/10.1145/3386377
https://doi.org/10.1016/0306-4379(84)90020-6
https://doi.org/10.1016/0306-4379(84)90020-6
https://doi.org/10.1145/10590.10608
https://doi.org/10.1145/114005.102808
https://dl.acm.org/doi/10.5555/95422
https://dl.acm.org/doi/10.5555/95422
https://doi.org/10.1145/2259016.2259030
https://www.huawei.com/en/news/2019/1/huawei-unveils-highest-performance-arm-based-cpu
https://www.huawei.com/en/news/2019/1/huawei-unveils-highest-performance-arm-based-cpu
https://doi.org/10.1145/1556444.1556453
https://doi.org/10.1145/3360599
https://doi.org/10.1145/3360599
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1145/3092282.3092287
https://doi.org/10.1145/3092282.3092287
https://doi.org/10.1145/3373376.3378480
https://doi.org/10.1145/319566.319567
https://doi.org/10.1145/2261417.2261438
https://doi.org/10.1145/2261417.2261438
https://doi.org/0.1109/TC.1979.1675439
https://doi.org/10.1145/3332466.3374535
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=64d816cba06c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=64d816cba06c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/locking/qspinlock.c?h=v4.4
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/locking/qspinlock.c?h=v4.4
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/locking/qspinlock.c?h=v5.6
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/locking/qspinlock.c?h=v5.6
https://doi.org/10.1145/2749469.2750378
https://doi.org/10.1145/2749469.2750378
https://lwn.net/Articles/22818
https://lwn.net/Articles/22818
https://doi.org/10.1145/1993498.1993522
https://doi.org/10.1145/103727.103729
https://ffri.github.io/ProjectChampollion/part1/
https://doi.org/10.1145/3445814.3446748
https://doi.org/10.1145/3445814.3446748

AtoMig: Automatically Migrating Millions Lines of Code from TSO to WMM ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

[58] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and
Peter Sewell. 2017. Simplifying ARM Concurrency: Multicopy-Atomic Axiomatic
and Operational Models for ARMv8. Proceedings of the ACM on Programming
Languages 2, POPL, Article 19 (Dec. 2017), 29 pages. https://doi.org/10.1145/31
58107

[59] RIKEN Center for Computational Science (R-CCS), Japan. 2020. Fugaku super-
computer. https://www.r-ccs.riken.jp/en/fugaku/project. Accessed: 2022-07-06.

[60] Rodrigo C. O. Rocha, Dennis Sprokholt, Martin Fink, Redha Gouicem, Tom
Spink, Soham Chakraborty, and Pramod Bhatotia. 2022. Lasagne: A Static Binary
Translator for Weak Memory Model Architectures. In Proceedings of the 43rd
ACM SIGPLAN International Conference on Programming Language Design and
Implementation (San Diego, CA, USA) (PLDI 2022). Association for Computing
Machinery, New York, NY, USA, 888–902. https://doi.org/10.1145/3519939.3523
719

[61] Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSanitizer: data race
detection in practice. In Proceedings of the workshop on binary instrumentation
and applications. 62–71. https://doi.org/10.1145/1791194.1791203

[62] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Mag-
nus O. Myreen. 2010. X86-TSO: A Rigorous and Usable Programmer’s Model
for X86 Multiprocessors. Commun. ACM 53, 7 (July 2010), 89–97. https:
//doi.org/10.1145/1785414.1785443

[63] Ori Shalev and Nir Shavit. 2006. Split-Ordered Lists: Lock-Free Extensible Hash
Tables. J. ACM 53, 3 (May 2006), 379–405. https://doi.org/10.1145/1147954.1147
958

[64] Abhayendra Singh, Satish Narayanasamy, Daniel Marino, Todd Millstein, and
Madanlal Musuvathi. 2012. End-to-end sequential consistency. In 2012 39th
Annual International Symposium on Computer Architecture (ISCA). IEEE, 524–535.
https://doi.org/10.1145/2366231.2337220

[65] Tom Spink, HarryWagstaff, and Björn Franke. 2019. A Retargetable System-Level
DBT Hypervisor. In 2019 USENIX Annual Technical Conference (USENIX ATC 19).

USENIX Association, Renton, WA, 505–520. https://www.usenix.org/conferenc
e/atc19/presentation/spink

[66] Yulei Sui and Jingling Xue. 2016. Source Code Analysis with Static Value-Flow.
https://svf-tools.github.io/SVF/ Accessed: 2022-10-03.

[67] Techcrunch.com. 2020. Microsoft updates its Arm-based Surface Pro X tablet
with a faster CPU. https://techcrunch.com/2020/10/01/microsoft-updates-its-
arm-based-surface-pro-x-tablet-with-a-faster-cpu/. Accessed: 2022-07-06.

[68] The Guardian. 2020. Apple ditches Intel for ARM processors in Mac computers
with Big Sur. https://www.theguardian.com/technology/2020/jun/22/apple-
ditches-intel-for-arm-processors-in-big-sur-computers. Accessed: 2022-07-06.

[69] Zhaoguo Wang, Ran Liu, Yufei Chen, Xi Wu, Haibo Chen, Weihua Zhang, and
Binyu Zang. 2011. COREMU: A Scalable and Portable Parallel Full-System Emula-
tor. In Proceedings of the 16th ACM Symposium on Principles and Practice of Parallel
Programming (San Antonio, TX, USA) (PPoPP ’11). Association for ComputingMa-
chinery, New York, NY, USA, 213–222. https://doi.org/10.1145/1941553.1941583

[70] Pan Xinhui. Jun 3, 2016. locking/qspinlock: Use atomic_sub_return_release() in
queued_spin_unlock(). https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/l
inux.git/commit/?id=ca50e426f96c. Accessed: 2022-07-06.

[71] S. Bharadwaj Yadavalli and Aaron Smith. 2019. Raising Binaries to LLVM IR
with MCTOLL (WIP Paper). In Proceedings of the 20th ACM SIGPLAN/SIGBED
International Conference on Languages, Compilers, and Tools for Embedded Systems
(Phoenix, AZ, USA) (LCTES 2019). Association for Computing Machinery, New
York, NY, USA, 213–218. https://doi.org/10.1145/3316482.3326354

[72] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. 1999. Model checking TLA+
specifications. In Advanced Research Working Conference on Correct Hardware
Design and Verification Methods. Springer, 54–66. https://doi.org/10.1007/3-540-
48153-2_6

Received 2022-07-07; accepted 2022-09-22

73

https://doi.org/10.1145/3158107
https://doi.org/10.1145/3158107
https://www.r-ccs.riken.jp/en/fugaku/project
https://doi.org/10.1145/3519939.3523719
https://doi.org/10.1145/3519939.3523719
https://doi.org/10.1145/1791194.1791203
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1147954.1147958
https://doi.org/10.1145/1147954.1147958
https://doi.org/10.1145/2366231.2337220
https://www.usenix.org/conference/atc19/presentation/spink
https://www.usenix.org/conference/atc19/presentation/spink
https://svf-tools.github.io/SVF/
https://techcrunch.com/2020/10/01/microsoft-updates-its-arm-based-surface-pro-x-tablet-with-a-faster-cpu/
https://techcrunch.com/2020/10/01/microsoft-updates-its-arm-based-surface-pro-x-tablet-with-a-faster-cpu/
https://www.theguardian.com/technology/2020/jun/22/apple-ditches-intel-for-arm-processors-in-big-sur-computers
https://www.theguardian.com/technology/2020/jun/22/apple-ditches-intel-for-arm-processors-in-big-sur-computers
https://doi.org/10.1145/1941553.1941583
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ca50e426f96c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ca50e426f96c
https://doi.org/10.1145/3316482.3326354
https://doi.org/10.1007/3-540-48153-2_6
https://doi.org/10.1007/3-540-48153-2_6

	Abstract
	1 Introduction
	2 Background
	2.1 Weak Memory Models
	2.2 The Porting Problem

	3 Design and Implementation of AtoMig
	3.1 Overall Structure of AtoMig
	3.2 Analyzing Explicit Annotations
	3.3 Detecting Implicit Synchronization Patterns
	3.4 Alias Exploration
	3.5 Static Analysis Challenges

	4 Evaluation
	4.1 Correctness
	4.2 Scalability
	4.3 Performance

	5 Related Work
	6 Discussion and Conclusions
	References

