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Abstract
The emergence of AI workloads has placed rigorous band-
width requirements on cloud storage, which are challenging to
meet due to inherent hardware restrictions in cost-efficient dis-
aggregated storage architectures, as well as the non-triviality
of implementing application-tailored optimizations.

This paper presents AITURBO, a cloud storage system for
AI jobs with high bandwidth demands. AITURBO first uti-
lizes the high-bandwidth compute fabric between accelerators
to meet AI applications’ bandwidth demands without incur-
ring additional storage cost. AITURBO further introduces a
simple yet powerful grouped I/O API that allows AITURBO
to automatically derive optimized read and write plans at the
storage layer. These plans enable optimizations that are com-
parable or better than application-level ones, because they
capture common I/O patterns in AI workloads and have a
holistic view from the storage layer’s perspective. Under com-
mon AI workloads such as checkpoint reads and writes and
KV-cache reads, AITURBO achieves comparable or better
performance than state-of-the-art systems, with and without
application-level optimizations, including systems such as
Megatron, Gemini, and Mooncake, typically with minimal
application-level code changes. AITURBO has been deployed
in training jobs in HUAWEI’s production cloud to support
efficient training workloads.

1 Introduction
Large AI models like GPT have revolutionized the computing
industry [15, 36, 22, 37, 44], shifting cloud workloads toward
AI model training and inference. This shift has changed cloud
storage bandwidth usage: at HUAWEI cloud—a top-10 world-
wide cloud provider—we observed that AI jobs now consume
more than 10 % of cloud storage bandwidth in a local datacen-
ter. For training, the most bandwidth-intensive storage I/Os re-
sult from writing checkpoints periodically for fault tolerance
and debugging [51]. In inference, bandwidth usage mainly
stems from reading checkpoints for autoscaling [21, 52] and
accessing KVCache [40, 45]—the intermediate results of
LLM inference—to accelerate inference performance.

A key characteristic of storage I/O in these AI jobs is

�Ting Yao and Xingda Wei are the corresponding authors.

the high demand for storage bandwidth. Operations such as
checkpointing and KVCache access involve files of at least
tens of megabytes (see §2.3). Consequently, limited storage
bandwidth significantly degrades end-to-end job performance.
However, meeting this bandwidth demand introduces two
challenges for cloud storage systems.

First, the disaggregated storage architecture (see §2.1) em-
ployed by most modern cloud vendors makes it challenging
to improve storage bandwidth in a cost-efficient way. This
architecture, designed for efficiency, decouples storage from
compute servers that host AI accelerators (XPUs, such as
GPUs and NPUs) to a dedicated fleet of storage servers that
compute servers access over a network fabric [54, 35, 30, 12].
Therefore, improving storage bandwidth requires deploying
sufficient storage servers for a specific job, which increases
monetary costs proportionally. Moreover, the network con-
necting compute and storage servers has a hard bandwidth
limit that is challenging to overcome, because the cluster’s
fabric prioritizes the networking between XPUs (compute fab-
ric) rather than between compute and storage servers (storage
fabric).

Second, optimizing storage time requires effectively identi-
fying duplicate chunks in the read/write data as well as careful
planning of I/O between compute and storage fabrics. Cur-
rently, this demands extensive application-level optimizations.
For example, Megatron [8], the leading training framework,
dedicates a quarter of its codebase to optimizing checkpoint
read/write operations. However, its performance remains sub-
optimal because it fails to account for the complex disag-
gregated nature of cloud storage. Similarly, recent training
frameworks for emerging workloads like multimodal train-
ing (e.g., OpenSora [48]) still lack adequate checkpointing
optimizations. Since cloud providers may serve diverse AI
jobs, we seek to transparently optimize I/O operations without
requiring significant application modifications.

We present AITURBO—a cloud storage system that effi-
ciently supports the large bandwidth requirements for AI jobs
without extensive application-level optimizations. AITURBO
builds upon existing cloud storage infrastructure and boosts
common AI applications’ I/O with typically a few modifica-
tions to the application code. Our performance is comparable
to or faster than that of heavily optimized application-level



I/O implementations.
AITURBO builds upon two insights. First, host DRAM and

compute fabric are underutilized in AI jobs; therefore, cloud
storage can holistically exploit them as a fast staging buffer
to mediate data transfer between XPUs and storage servers
when storage bandwidth is insufficient. Similar observations
are also mentioned by other works [25], and we argue that
this generally holds in AI clusters, because the clusters are
designed for AI jobs with different memory and network re-
quirements. For instance, for recommendation model serving
in our production cluster, the DRAM is fully utilized. How-
ever, if we use the same hardware for training, the DRAM is
underutilized. A challenge to this staging buffer design is that
AI jobs stall until writes complete due to the compute-I/O
dependency. Thus, the computation is still bottlenecked by
slow storage. This issue can be addressed by caching writes
at the buffer—trading write durability for performance. This
trade-off is reasonable for write operations in common AI
jobs like checkpointing: any lost data can be tolerated either
through replication [51] or by the application itself, e.g., using
the last checkpoint since checkpoints are written periodically.

Second, the storage system can automatically derive opti-
mizations such as deduplication [49] and load-balanced read-
write planning through a simple yet powerful API: grouped
read/write API. Inspired by group communicators commonly
used in AI jobs [34], each client not only specifies the file to
read or write, but also indicates the group of clients that will
participate in the operation. Since the API captures more I/O
patterns compared to existing singleton file reads and writes,
and the API implementation provider—the cloud storage—
understands its storage architecture better than the application
developers, we can transparently derive an optimized I/O plan
that outperforms existing application-level I/O optimizations.
Moreover, we found that such APIs are easy to integrate with
existing frameworks (see §5.4), e.g., with only hundreds of
lines of code changes, which is orders of magnitude less than
existing (less performant) application-level optimizations.

Based on these two insights, AITURBO introduces a job
controller that holistically coordinates grouped I/O operations
issued by a group of XPUs. This controller derives efficient
deduplicated write (§4.1) and read (§4.2) plans that optimize
the use of both the available storage fabric and the compute
fabric bandwidth for efficient I/O between XPUs and stor-
age servers. Specifically, a write plan specifies how writes
are deduplicated, staged in the host DRAM, and flushed to
storage servers. We formulate this as a bilinear programming
problem and solve it using heuristics commonly found in
storage systems. Conversely, a read plan specifies how reads
are fetched from storage servers, staged in the host DRAM,
and broadcast to XPUs. We adopt a similar planning approach
as writes to first stage the data from storage servers to the
host DRAM, and utilize efficient compute-fabric-based broad-
cast [52] to disseminate the data to requesters. We also present
our design choices for supporting system mechanisms such
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Figure 1: (a) An overview of compute node architecture, (b)
the network fabric for computation and storage, and (c) shard
storage pricing across performance tiers. C-NIC: the NIC for
communication between computation XPUs. S-NIC: the NIC
linked to storage nodes.

as communication library (§4.3).
AITURBO has been deployed in HUAWEI’s production

cloud to support checkpoint reading and writing for a variety
of AI frameworks. Its current use case centers on training
jobs, with extensions to inference workloads underway. For
training jobs, AITURBO is 3.9–58.8× faster than the cur-
rent general-purpose cloud storage system—SFSTURBO (a
system similar to 3FS [45]) when writing checkpoints. It
further outperforms systems with extensive application op-
timizations like Gemini [51] by up to 5.9×. We have also
evaluated its effectiveness for inference jobs—including au-
toscaling and KVCache reads—showing performance up to
1.28× faster than specialized systems like Mooncake [40].
AITURBO achieves these improvements requiring only a few
lines of code changes in different frameworks.

Discussion and limitation. First, AITURBO focuses on ac-
celerating bulk transfers between XPUs; its techniques may
not benefit small transfers. Second, we simply use the avail-
able hardware compute fabric QoS for performance isolation.
More advanced isolation methods for complex scenarios—
such as jobs co-located on the same XPU—are left for future
work.

2 Cloud Storage and AI Jobs Characteristics
2.1 The hardware setup for AI jobs on the cloud

AITURBO operates on an AI cluster (hosted in a local dat-
acenter) designed for running AI applications in the cloud.
Existing cloud infrastructures commonly follow a compute-
storage disaggregated architecture [54, 35, 30, 12] with dedi-
cated hardware for computation and storage servers. Figure 1
presents an overview with the following key components:

Compute servers. Each compute server contains several



XPUs1 (e.g., eight) for accelerating computations. These
XPUs are interconnected through intra-node high-speed links
(e.g., 600 GBps) such as NVLink. Each XPU communicates
with the server’s CPUs via relatively low-speed PCIe (e.g.,
256 Gbps).

Storage servers. The cloud infrastructure employs a ded-
icated server fleet for cloud storage, where each server pro-
vides a slower storage bandwidth backed by SSDs. The files
of each AI job are sharded into chunks and distributed across
these servers. The detailed distribution strategy depends on
the bandwidth provisioned to the jobs.

Compute fabric. XPUs across servers typically commu-
nicate with a dedicated high-speed compute fabric (e.g.,
200 Gbps per-XPU RDMA) [35]: a compute NIC (c-NIC)
is attached to each XPU, which is linked with dedicated
high-bandwidth switches.
Storage fabric. Each server also has NICs (termed S-NICs)
for communicating with the storage servers. Similar to previ-
ous work like 3FS [12], it is a common setup to use RDMA
for transferring data between compute and storage servers.
As a disaggregated architecture, S-NICs connect to switches
separate from the compute fabric, with a slower per-server
bandwidth (e.g., 100 Gbps) shared by all XPUs on the server.
Without loss of generality, we term the aggregated bandwidth
of all S-NICs of an application as the frontend storage band-
width, while the aggregated bandwidth of all storage servers
provisioned for the application as the backend storage band-
width.

2.2 Bandwidth-intensive AI jobs

There are two common types of AI jobs currently: training
and inference, both of which may utilize the cloud storage
bandwidth intensively. For training jobs, the AI model is de-
ployed on a set of XPUs and these XPUs train the model
through many iterations of bulk synchronous parallel compu-
tations. For inference jobs, the job deploys pre-trained models
on a set of XPUs and executes computations on the requests
submitted by different users. As the models used are large,
each job is deployed on a dedicated set of XPUs across multi-
ple compute servers, and no other jobs are colocated on these
servers.

The detailed usage scenarios of the aforementioned jobs
are as follows:

Checkpoint write. To ensure fault tolerance as well as de-
bugging possibly improper training configurations, the train-
ing jobs periodically write the model parameters and their
optimizer states (together termed checkpoints) to cloud stor-
age [53, 49, 19]. Due to the scaling law, the model is becom-
ing larger so is the checkpoint [26], resulting in hundreds of
GBs of data written to the storage per checkpoint write.

1AITURBO works for all AI accelerators like GPU, NPU and TPU. Thus, we
use the general term XPU to refer to them collectively.

Checkpoint read. Besides training, inference jobs may fre-
quently read the model checkpoint to adjust the number of
serving jobs based on the request load [21, 52]. For exam-
ple, when the request load is higher than the capacity of the
deployed serving jobs, the operators need to scale out the serv-
ing jobs by allocating more XPUs, where jobs on the newly
allocated XPUs need to read the model checkpoints from the
storage quickly [21, 52]. Note that checkpoint reading is also
required when recovering from a failure of the training jobs.

KVCache read. Besides checkpoints, modern inference jobs
also frequently read precomputed data (termed KVCache)
from storage to improve serving efficiency. Specifically, for
LLM inference, requests sharing the same prefix have iden-
tical computed results (KVCache). By storing precomputed
KVCache in storage, the inference process can read them to
skip these computations, thereby optimizing both latency and
throughput [50, 40]. KVCache is typically stored in storage
by vendors such as DeepSeek [45] when scarce XPU HBM
or CPU DRAM is insufficient. Moreover, since requests with
precomputed KVCache are less computationally expensive,
vendors provide interfaces allowing users to specify which
KVCache should be stored in storage [17, 38], so there are
cases where jobs must read KVCache from storage.

2.3 I/O characteristics of AI jobs

Bulk I/O. The granularity of each I/O in AI jobs is large.
Take checkpoint as an example: each checkpoint write stores
at least the entire model parameters and optimizer states, with
hundreds of GB of data in total (hundreds of MB to tens
of GB per file). The left of Figure 3 shows the distribution
of the file read and write sizes in an AI cluster of a large
cloud provider, where the majority of the I/O operations are
larger than 1 GB with the top-1% of the files as 326 MB. As
these files are mostly sequentially written and read, the I/O
characteristics of AI jobs are essentially bulk I/O, which is
bottlenecked by the bandwidth of the storage fabric (see the
right of Figure 3).

Asynchronous I/O. The I/O time in AI jobs can typically be
hidden via asynchronous I/O. Figure 2 illustrates this for our
targeted scenarios. For training, when writing checkpoints of
a training iteration to the storage, the XPUs can concurrently
perform the computation—i.e., the forward and backward
pass—to generate the update to the checkpoint. For reading
checkpoints during training or inference, since the model
(and its checkpoint) is partitioned by layers, upon reading
the checkpoint of layer j from the storage, the XPUs can
directly compute the forward pass of layer j, while the job
can asynchronously read the checkpoint of layer j+1 from the
storage. Reading KVCache is similar to reading checkpoints
because computing the forward pass of layer j only requires
the corresponding KVCache at j.

Given the asynchronous and bulk I/O pattern of AI jobs,
as long as the storage bandwidth is sufficient to finish the
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Figure 2: An illustration of how different AI jobs interact with the cloud storage as well as possible costs introduced by
insufficiently fast storage I/O. F and B states abbreviate for forward and backward pass of a training job, respectively. The i in
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I/O before the computation, e.g., the checkpoint write is done
before the update, otherwise, the computation needs to wait
for the I/O to finish, which incurs overhead that impacts the
job completion time, e.g., a longer training iteration or a
longer inference latency.

Grouped I/O. Finally, AI jobs typically perform I/O in a
grouped manner, which means that many XPUs perform I/O
simultaneously. For training, all the XPUs involved in the
training form a group and write their data to the checkpoints,
because the model parameters and their accompanying opti-
mizer states are partitioned across XPUs.

Grouped storage I/O is also common in scaling inference
jobs. For example, when using autoscaling to handle bursts,
the operators may start multiple inference jobs simultaneously,
where these jobs all need to read the same model checkpoint
in a grouped manner. Figure 4 analyzes the number of jobs
required to serve a real-world trace from Azure [16]. To mea-
sure how many jobs are needed, we follow prior work [52]
that calculates the minimal number of jobs required to finish
the requests within the service level agreement. We can see
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that at the 200th second, we need to scale the number of jobs
from 1 to 3, where all these three jobs need to read the same
model checkpoint.

Finally, reading KVCache also exhibits a grouped I/O pat-
tern for recently evolved agent workloads. Specifically, LLM
agents are computational programs that execute specific tasks
(e.g., language translation) by sending inference requests to
the LLM model [29]. For each task category, the agent request
comprises a shared prefix (i.e., system prompt), followed by
task arguments. Since the agent may spawn tasks at the same
time, the XPUs executing these tasks can read the KVCache
simultaneously in a grouped manner.

3 Design Rational and AITURBO

3.1 Design rational and challenges

Goal: minimized storage overhead. We term the storage
overhead as the time when computing jobs running on the
XPU need to wait for the storage I/O to complete. The goal is
to minimize the storage overhead, as it directly impacts the
job completion time, as shown in Figure 2.

Based on our analysis of the I/O characteristics of AI jobs
in §2.3, we can approximately formulate the overhead as a
function directly related to the I/O time—dividing the I/O
payload (e.g., the size of checkpoint or KVCache files) by
the storage I/O bandwidth, as shown in Figure 5. The I/O
payload is the aggregated I/O of a specific job for a given time
(e.g., all the XPUs’ checkpoint writes in one iteration), while
the I/O bandwidth is the minimum of the frontend storage
bandwidth and the backend storage bandwidth described in
the last paragraph of §2.1.

Given the above formulation, minimizing the storage over-
head translates to minimizing the I/O time. Note that we can
approximate storage time by the bandwidth, ignoring other
storage overheads like metadata operations, because the I/O
pattern is bulk read/write.
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Challenge #1: Increasing storage bandwidth without in-
creased monetary cost and constrained frontend band-
width. An intuitive way to increase the storage bandwidth
is to purchase additional backend bandwidth from cloud ven-
dors. Such an approach has two drawbacks: First, the in-
creased bandwidth incurs additional monetary cost: As shown
in Figure 1 (c), increasing the bandwidth from 1.6 GBps to
80 GBps results in a 16× increase in per-GB monetary cost
on HUAWEI’s cloud. The monetary cost arises from the fact
that vendors need to provision more storage servers to im-
prove the backend bandwidth for a server. Thus, one challenge
tackled by AITURBO is to increase the observable storage
bandwidth without increasing the monetary cost.

Even with sufficient backend bandwidth, each XPU
server’s storage bandwidth is further constrained by the fron-
tend bandwidth, i.e., the aggregated bandwidth of all its S-
NICs (Figure 1 (a)). Consequently, increasing the backend
bandwidth alone may remain insufficient to achieve the re-
quired performance targets. AITURBO needs to minimize
the I/O time in case the frontend bandwidth becomes the
bottleneck.

Challenge #2: Efficiently deduplicated I/O plan without
application cooperation. Since the improvement space for
the storage bandwidth is limited—either constrained by the
monetary cost or the frontend bandwidth, another approach is
to reduce the I/O payload. It is possible to do so in AI jobs,
especially under grouped I/O, because there are duplicated
payloads across XPUs. For example, in data parallel training,
all XPUs share the same copy of parameters in their check-
point [32], so we can deduplicate these parameters to reduce
storage I/O during checkpointing. Reading checkpoints is
similar. Interestingly, KVCache reads also exhibit duplicated
I/O especially in agent workloads, i.e., due to shared system
prompts for requests within the same task category. Figure 6
analyzes the shared KVCache reads in a real-world agent
trace [50]. We can see that there exists batched KVCache
access that could be shared with one KVCache read—without
deduplication, the storage I/O time would increase propor-
tionally to the number of involved XPUs2.

However, one particular challenge of deduplication in AI
jobs is that there are diverse duplication patterns, so relying on

2We could also send all these requests to the same XPU to avoid duplicated
KVCache reads. However, it not only adds scheduling complexity but also
underutilizes XPUs if multiple XPUs are available.

Parameter Optimizer
DP = 1 ✗ ✗

DP >1 ✓ (DP) ✓ (DP)
DP >1 + ZeRO 1/2 ✓ (DP) ✗

DP >1 + ZeRO 3 ✗ ✗

Table 1: An analysis of the duplication in checkpoint write with
different training configurations. ZeRO 1/2 and ZeRO 3 are param-
eter sharding strategies described in DeepSpeed [41]. DP is the
abbreviation of data parallelism. ✓ and ✗ stand for whether the pa-
rameter/optimizer states are duplicated in the checkpoint write. The
value in parentheses following ✓ denotes the replication factor.

from aistorage import all
 
 ## Initialization 
 client = aistorage.client(...)
 group  = group(...)
 
 
 ## Read path 
 tensor = client.getfile(Bucket="...",  key="...").to_tensor()
 tensor = client.group_getfile(Bucket="...",  
                               key="..." ,group).to_tensor()

 
 ## Write path 
 future = client.putfile(Bucket="...",  key="..." ,tensor, buffer)
 future_0,future1 = client.group_putfile(Bucket="...",  
                               key="...", group, tensor, buffer)
 await future_0 ## Wait for the write to be stored at the buffer
 await future_1 ## Wait for the write to be stored at the storage
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def save_ckpt():
    model_dict.save()
    model_dict = xxx

    aiturbo.need_barrier()
    for tensor in model dict:
        aiturbo.put_file(tensor.to_file())
    aiturbo.ack_barrier()

New APIs introduced 

Figure 7: AITURBO API.

applications to deduplicate is not always feasible, especially
for a cloud storage system that may serve arbitrary AI jobs.
Table 1 presents the deduplication ratios for various configura-
tions. Effectively handling all these configurations contributes
to one quarter of the codebase of Megatron [8], and the sup-
port has only been recently adopted in its codebase [1]. Worse
still, even knowing which payload to deduplicate, generating
an efficient read/write plan—how to write the deduplicated
payload to the storage—is non-trivial because we should prop-
erly distribute the I/O to all nodes to best utilize the available
bandwidth.

3.2 Overview of AITURBO

Approach overview and system API. To tackle the above
challenges, we argue that cloud storage can provide grouped
I/O APIs to capture a complete picture of the I/O semantics
of AI jobs. Afterward, the storage provider can leverage its
knowledge of the underlying disaggregated storage architec-
ture, including the utilization of compute fabric, to efficiently
serve the I/O.

Figure 7 illustrates the detailed grouped read and write
APIs exposed by AITURBO. Take group_getfile as an
example: its abstraction is the same as the original getfile
except that the cloud storage knows that a group of clients
are issuing the reads (to one or multiple files) together. This
essentially informs the storage that a batch of read/write op-
erations are issued together, so the storage can optimize the
read/write plan holistically. Such planning is not possible with
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the vanilla getfile or putfile API because the storage
layer cannot predict future I/O requests in advance. Note that
the group must be explicitly specified by the application using
our API, and is typically trivial to set; for example, in training
jobs, all processes are in the same group.

Besides the group semantic, AITURBO also exposes APIs
with futures [4] to enable asynchronous I/O. Specifically, a fu-
ture is a handle representing an event that may complete in the
future, which the caller can wait for via await. AITURBO
provides two futures for writes: a future (future_0) indicat-
ing that the data has been stored in the CPU DRAM buffer3

and a future (future_1) indicating that the data has been
durably stored in the backend storage. These two futures are
convenient for AI jobs like writing checkpoints in training:
after the checkpoint has been written to the DRAM, the XPU
can proceed to the next iteration (see Figure 2 (a)).

Note that if a failure occurs before future_1 is ready,
AITURBO treats the associated files as broken, and the appli-
cation needs to handle it. AITURBO covers failures as much
as possible by replicating data in multiple servers’ DRAM,
similar to Gemini [51], and only reports a failure when all
replicas are lost. The broken files can be detected by setting a
flag after AITURBO ensures that all future_1 operations
are ready for the files.

System architecture. Figure 8 presents the system architec-
ture of AITURBO: we introduced three components to support
efficient grouped I/O: a staging buffer manager holistically
manages the idle DRAM across servers to store temporal data
during grouped I/O operations, a communicator issues data
transfers over compute fabric (§4.3), and most importantly, a
job controller that plans the reads and writes (control plane)
before each XPU individually conducts the actual data trans-
fer (data plane). The data plane holistically utilizes both the
storage and the compute fabric

3AITURBO leverages all idle CPU DRAM across servers to store the tempo-
rary data.
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Figure 9: (a) The logical view of grouped write I/O in
AITURBO and (b) an overview of how the grouped write
I/O is physically executed. S and D stand for Source and
Destination respectively, e.g., S0 is the first sending node.

4 Detailed Design of AITURBO

4.1 Grouped write I/O

Overview of the physical execution of the plan. From a
logical perspective for the application developers that use
AITURBO, the grouped write API writes a set of files stored
in the compute nodes to the storage, as shown in Figure 9
(a). Behind the API, AITURBO generates a concrete physical
write plan that guides the execution of how these files are
written, i.e., how data chunks in files from XPUs are written
to the storage servers. For ease of presentation, we assume
that the cloud storage has done the resource allocation, a task
that has been well studied [45, 11], so we focus on how the
data is written to the storage servers.

To minimize I/O time, our write plan executes a three-step
process: ❶ avoids duplicated storage writes by identifying
duplicated chunks from the files involved in the group write,
❷ generate a load-balanced write plan that writes the dedu-
plicated payload to the available CPU DRAM on nodes, and
finally ❸ write the data from CPU DRAM back to the storage
servers. Note that ❷ and ❸ may be optional: if the applica-
tions cannot proceed until the data is persistent, ❷ is skipped.
Meanwhile, if the applications do not need to persist the data,
e.g., they only want to write the checkpoint for fault tolerance
but not debugging [51, 53]. ❸ is skipped.

(1) Deduplication. To deduplicate at the storage layer, be-
fore conducting the grouped write, our job controller first
gather metadata from all involved XPUs to identify duplica-
tion, as shown in Figure 9 (❶). We leverage checksum—a
classic technique in storage systems to detect duplication: the
XPUs individually compute the checksums of files to be writ-
ten in chunk granularity, and send the checksums along with
the file metadata (e.g., tensor name) to the job controller. The
job controller identifies the duplicated chunks based on the
checksums, generates an appropriate write plan (described
below), and sends the plan back to the XPUs.

To accelerate deduplication, we first compute BLAKE3
checksums [14] on files using optimized XPU kernels.
AITURBO supports a range of detection granularities: from
4 MB file chunks to per-file detection. In general, we prefer a
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cated grouped write [48], (b) the time of its execution and (c)
the improved load-balanced write plan.

larger detection granularity because it reduces the complex-
ity of finding an optimal read/write plan (described below).
Thanks to our efficient kernel implementation, the time to
checksum a 1 GB file from 35.6 ms on the CPU (Intel Xeon
E5-2650 v4) to just 7.8 ms on an XPU (NVIDIA Tesla V100).
Second, observing that the duplication factor remains con-
stant across grouped writes in AI jobs, e.g., the parameters of
models do not change across each checkpoint write, we cache
the deduplication metadata at the job controller during the
entire job lifetime. This allows AITURBO to accept a user-
provided hint to bypass repeated checksum calculations for
subsequent grouped writes by reusing the cached information.

(2) + (3) Generate a load-balanced write plan. Given the
identified duplicated data chunks, the controller generates the
write plan for (2) and (3) sequentially. A key rationale for
generating an efficient plan is to minimize the I/O time by
balancing write loads across source and destination nodes.
Figure 10 shows a concrete example of why load balancing is
important. The code in (a) is obtained from OpenSora [48],
a popular training framework for multimodal models. It first
deduplicates the write operation by writing checkpoints at
only one node (rank 0), and then writes to the cloud storage
using the standard write API. The write time is shown in (b),
which doubles the time required to write the same amount
of data in an optimal setup with the duplication factor of
2 (c), because (c) utilizes the storage bandwidth from both
storage servers. Note that in (b), even though S0 can connect
to both D0 and D1, the write time is still doubled because it
is bottlenecked by the outbound bandwidth of S0. The case
for the compute fabric is similar.

Both ❷ and ❸ can be formulated as the same bilinear
programming problem (with two different solutions since
the source and destination nodes are different). Note that for
simplicity, we only formulate each phase separately. While it
is possible to formulate them jointly to improve performance,
e.g., allowing the data payload to be first scattered to multiple
nodes and then written back to storage to fully utilize all the
S-NICs, we found it is too complex and less useful in our use
cases like checkpoint write, because most time the in-memory

checkpoint written by ❷ is sufficient to ensure fault tolerance.
We formulate the write plan generation problem as follows:

Given a set of source nodes (S0, S1, . . . , indexed by i) that
send data to a set of destination nodes (D0, D1, . . . , indexed
by j). In ❷ the source and destination nodes are both com-
puting servers involved in the grouped write, while in ❸ the
source nodes are the computing servers while the destinations
are storage servers. The total payload has K chunks to write,
and each chunk need to be replicated R times for fault toler-
ance. bk is the size of k-th chunk, and cik is a 0-1 constant
that indicates i-th node produces k-th chunk. Each source
contains a set of chunks, and each chunk may be duplicated
among multiple sources.

The variables determined by our bilinear programming are:
TxRijk, the speed of sending the k-th chunk from the i-th
node to the j-th node, and t is the time to execute the grouped
write plan for all nodes. Our objective is to minimize t—the
end-to-end transfer time instead of the bandwidth utilization.
As a result, the plan could leave some links unused, which
is benign because using these links won’t make the transfer
faster (otherwise the plan would use it). Optimizing this plan
needs to satisfy the following constraints:

minimize t subject to

∀k. t ·
∑
i

∑
j

TxRijk = R · bk (1)

∀i, k. t ·
∑
j

TxRijk ≤ R · cik · bk (2)

∀j, k. t ·
∑
i

TxRijk ≤ bk (3)

∀i.
∑
j

∑
k

TxRijk ≤ BwOi (4)

∀j.
∑
i

∑
k

TxRijk ≤ BwIj (5)

∀i, j.
∑
k

TxRijk ≤ BwNij (6)

∀j. t ·
∑
i

∑
k

TxRijk ≤ MemCapj (7)

(1) formulates the relationship between the time and as-
signed bandwidth of the write plan, ensuring that the time
is sufficient to write all chunks to the buffer. Note that the
strict equality avoids unnecessary duplicated transfers (up
to R duplications for fault tolerance). (2) constrains that for
each source, it cannot send chunks not belonging to itself.
(3) ensures that for each destination, it cannot receive more
than one replica, which avoids writing duplicate chunks to
the same destination. (4) and (5) bound the outbound and
inbound bandwidth of each device and node, where BwOi
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denotes the outbound bandwidth of device i, BwIj denotes
the inbound bandwidth of node j, and BwNij is the network
link bandwidth between the sender/receiver pair i and j. All
these are constants and known to the cloud storage provider.
(6) bounds the pairwise network link bandwidth. Finally, (7)
constrains that the total size of the chunks stored at one des-
tination does not exceed its available buffer capacity. For all
constraints, bk and cik are constants obtained via ❶.

The problem is an instance of a bilinear programming
problem [9] because it has a linear objective, with quadratic
constraints, and all variables (TxRijk and t) are non-negative
real numbers. Although general bilinear programming prob-
lems are hard to solve due to non-convexity and non-linearity,
our problem can be solved efficiently in practice because: one
argument of each quadratic form (i.e., (2), (3), and (7)) is t,
the same scalar variable. Since t—the I/O time has a clear
lower and upper bound, e.g., the lower bound is the trans-
mission time being no less than the payload divided by the
aggregated inbound/outbound bandwidth, and an upper bound
can be derived from an an arbitrary write plan, e.g., randomly
assigning the bandwidth to each pair of source and destina-
tion. Thus, we can iteratively fix t and solve the reduced linear
feasibility (LF) problem4. If the feasible region is found (or
not found), we determine a tighter upper (or lower) bound
of t. This procedure is indeed the famous branch and bound
algorithm [10] used to solve programming problems. In a
38 B training trace on 64 XPUs (with one merged checkpoint
files written per XPU), our planning based on an unoptimized
single-threaded Python solver can find the plan in 4 seconds.

Plan caching and pipelined write. Although our plan can
be solved quickly, generating the plan may still take consider-
able time, especially for large-scale training jobs. Fortunately,
since these jobs issue grouped writes iteratively and different
iterations share the same write pattern, we cache the write
plan generated during the first grouped write and reuse the
generated plan for subsequent writes. One corner case we
encountered is that even for iterative training, the cached plan
cannot be reused for the first few iterations, because the op-
timizer states tend to be all zero, which could lead to false
deduplication. Fortunately, after a few iterations, the dedupli-
cation pattern stabilizes, so the cached plan can be reused for

4LF and LP problem are equivalent in terms of complexity, as both can be
solved in P-Time.
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the remainder of the training.
Another optimization we enabled is pipelined transfer—a

classic storage technique. As shown in Figure 11, when a
chunk has been sent to the host DRAM, we immediately for-
ward it to the storage to minimize the overall time, considering
steps ❶ and ❷, if the plans for them are known.

Discussion: hash collisions. One potential concern of
checksum-based deduplication is the possibility of hash col-
lisions, i.e., two distinct data chunks producing the same
checksum. While hash collisions are theoretically possible,
their probability is negligible in practice when using cryp-
tographically strong hash functions such as BLAKE3. For
our chosen BLAKE3’s 256-bit output, the probability of ob-
serving at least one collision among n hashed objects can be
approximated by 1− e−n(n−1)/2257 under the standard birth-
day bound. Given the scale of n in our system, this probability
is vanishingly small.

4.2 Grouped read I/O

Grouped read method. Similar to grouped write, a grouped
read API reads a set of files stored in the cloud storage to a
group of XPUs, as shown in Figure 12 (a). AITURBO gener-
ates a physical plan guiding how data is read from the storage
servers to the compute nodes, as well as avoiding duplicated
transfers from the storage.

To reduce read time, for duplicated reads in a batch of
read requests, we utilize the compute fabric to broadcast
these data to all nodes that need them, which operates in two
stages as illustrated in Figure 12 (b): First, we only fetch one
copy of each duplicated chunk/file from the storage servers
to one node to avoid duplicated storage transfer (❶), in our
example, suppose block 0 and 1 is duplicated in the files, e.g.,
shared tensors. We only transfer 0 to S0 and 1 to S1 from
the storage servers. Afterward, we utilize the compute fabric



to forward the fetched chunks to all node requiring it (❷).
Note that read deduplication is typically simpler than write
deduplication because (1) the deduplication can be performed
offline, and (2) sometimes we can directly leverage the file
name for deduplication, as two clients may read the same file
in a grouped read.

For the detailed plan generation method of ❶, we use a
similar planning method described in §4.1, because the plan
of reading chunks from sources to the destination nodes can
be viewed as writing chunks from the destination nodes to
the source nodes. Due to space limitations, we omit a detailed
description. For ❷, we reuse the broadcast method described
in BlitzScale [52] that serially forwards the data from one
node to another using the computing fabric, based on the
observation that a serial forwarding chain is near-optimal for
large bulk data transfer like checkpoint reads. Finally, both
phases are pipelined to minimize the overall read time.

Compute-fabric-utilized distributed caching. One opti-
mization enabled by our group read API is that it provides a
larger cache space for the storage. Specifically, suppose two
nodes (D0 and D1) perform a grouped read. If D0’s data has
been cached in D1, we can directly fetch the data from D1
through the fast compute fabric, bypassing the slow storage.
Thus, we also implemented a distributed caching mechanism
with our grouped read API to further enhance read perfor-
mance.

4.3 System mechanisms for grouped I/O

Tensor-native file type. To avoid serialization and dese-
rialization overhead when transferring data between XPUs,
CPUs, and storage nodes, we provide a tensor-native file type
in AITURBO that decouples the tensor metadata (shape, type)
and real data (arrays of numbers) [47, 46]. This allows data to
be transferred directly from XPU memory to CPU memory,
or from CPU memory to storage servers without serialization
and deserialization. A tensor file is sufficient for our use cases
such as checkpoint and KVCache reads and writes.

Buffer managemet on CPUs. To enable compute-fabric-
based transfer, AITURBO leverage host DRAM as the staging
buffer to store the data to/from the storage. The size of the
staging buffer can be configured by the developers or can
be determined based on the job profiling: e.g., using Linux
cgroup [3]. The buffer does not need to be too large as long
as it can hold the staged data. For example, for checkpoint
writes, it only needs to hold the checkpoint data to completely
eliminate the overhead of writing to storage.

Communication library. AITURBO builds on existing
cloud storage systems so we can leverage the off-the-shelf
storage frontend-backend library, e.g., AWS S3 SDK [11] to
utilize the storage fabric efficiently. Thus, we focus on the de-
scription of utilizing the compute fabric with our customized
communication library. One intuitive design is to leverage
the group communicator library provided by the XPU ven-

dors, e.g., NCCL [34] to transfer data between XPUs and
staging buffers. Though simple, such a design introduces two
problems: the coldstart overhead and the lack of performance
interference control.

Point-to-point (P2P) network based network connection
establishment. Specifically, vendors typically implement so-
phisticated algorithms [42] to establish group communication
between XPUs, which we found unnecessary for our use case.
For example, creating an NCCL communicator from scratch
takes seconds or even minutes on Megatron. This cost may
be acceptable for long-running training jobs, because the cre-
ation of a communicator at the beginning of the training can
be amortized over the entire training period. However, it is
sub-optimal for inference cases, since the jobs that partic-
ipate in the I/O can be dynamically created. For example,
when scaling multiple serving jobs on XPUs, the communica-
tor must be created from scratch, which is inefficient using
NCCL.

To accelerate compute fabric network connection establish-
ment in AITURBO, our key observation is that since the read
plan is decoupled from the communicator libraries, we do not
need to execute the vendor’s group communication initializa-
tion algorithms, which derive an optimized communication
plan for all possible group communications (e.g., allreduce).
Thus, we manually create the point-to-point connections be-
tween XPUs and CPUs that participate in the data transfer.
This will dramatically reduce the connection time, because
establishing RDMA connections (QPs) between two nodes
is 15 ms and such time can be further overlapped with the
storage initialization.

Performance isolation. Our focus is on optimizing stor-
age performance with the computing fabric, while we ac-
knowledge that borrowing the fabric for storage I/O may
interfere with the AI jobs, causing performance degradation.
To isolate network usage between the storage and comput-
ing jobs, we currently leverage a simple design that uses the
available off-the-shelf hardware performance isolation mecha-
nism provided e.g., RoCE’s QoS [7]. Specifically, RoCE QoS
provides three isolation levels: Strict Priority, which priori-
tizes traffic strictly based on class and may cause starvation
of lower-priority queues; Enhanced Transmission Selection
(ETS), which guarantees a minimum bandwidth share for
each traffic class; and Default policy, which does not pro-
vide performance isolation. AITURBO sets the QP used by
AITURBO to the lowest priority to use the compute fabric in
a best-effort manner.

One issue of using only the hardware-based solution is
that, in extreme cases, the AI jobs happen to utilize most of
the bandwidth of the compute fabric during the entire data
transfer. In such cases, a software profile-based solution that
isolates the send speed in the software [51] may address the
issue, but we find the hardware solution works fine in all our
cases and we leave a more advanced solution for future work.

Fault tolerance of the Job controller. Since the job con-
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Figure 13: The end-to-end checkpoint time when using dif-
ferent storage systems.

troller is stateless, i.e., all its states like cached plans can be
recomputed on-the-fly or persisted in the storage, we only
need to restart or deploy multiple replicas of the job controller
to tolerate controller failures.

5 Evaluation
Testbed. We conducted our experiments on two clusters with
up to 64 XPUs: one cluster is equipped with Ascend 910B
NPU with 64 GB HBM, whose computational efficiency is
similar to NVIDIA A100 GPU, and one cluster is equipped
with NVIDIA A800 GPU with 80 GB HBM. Eight XPUs are
attached to the same computing node with 192 CPU cores
and 1.5 TB of host DRAM. The compute fabric supports
200 Gbps intra-node XPU interconnect while each node has
one 100 Gbps S-NIC connected to the storage nodes. We
provisioned up to 30 GBps backend storage bandwidth shared
among XPUs.

5.1 Application performance: checkpoint write

Setups and baselines. We choose checkpointing in dis-
tributed training to evaluate the effectiveness of AITURBO’s
grouped write. The training periodically writes the param-
eters and optimizer states to the XPUs. We evaluated three
representative model scales: 1.5 B parameters with tensor par-
allelism (TP) and pipeline parallelism (PP) both set to 1; 13 B
with TP=8 and PP=1; and a 38 B model with TP=8 and PP=4.
Each model is trained under two configurations: either with or
without ZeRO [41]. This yields a total of six different dupli-
cation configurations, allowing us to analyze how AITURBO
performs under various write patterns.

We compare Megatron [32]—the widely used training
framework with different storage backends. SFSTURBO is
the general-purpose cloud storage system in HUAWEI that
shares a similar design to 3FS [45]. Specifically, SFSTURBO
adopts a full-SSD disaggregated storage architecture with an
extremely efficient metadata layer to provide high throughput;
as a result, a 1 MB file end-to-end read time is 0.2–1 ms, so
the metadata overhead is negligible in AI workloads with
GB-level I/O. Gemini [51] is the state-of-the-art checkpoint
writing system with extensive framework-level optimizations.
Since Gemini is closed-source and does not support our eval-

uated XPU, we implemented its main techniques (saving
checkpoints to DRAM in compute nodes with compute fab-
ric) on Megatron for comparison. Our baseline Megatron
commit version is cac60ce, future versions do not support
our XPU. Megatron has added deduplication in our evalu-
ated commit, but it does not leverage the compute fabric as a
staging buffer to mitigate the storage bandwidth bottleneck.
Gemini—though it leverages the compute fabric to write
checkpoints to DRAM to avoid the storage overhead, it fails
to consider deduplication as well as the optimized write plan
enabled by AITURBO.

Checkpoint time. Figure 13 presents the end-to-end check-
point time for various systems under different training config-
urations. First, we see that both Gemini and AITURBO outper-
form Megatron, achieving lower checkpoint times across all
evaluated scenarios (up to 58× faster). This is primarily due
to the fact that both Gemini and AITURBO leverage the com-
pute fabric and local DRAM to conduct in-memory check-
pointing, while Megatron relies solely on remote storage.
Moreover, for common setups with duplicated checkpoint
writes across nodes, e.g., when ZeRO is disabled, AITURBO
further achieves up to 5.9× faster performance than Gem-
ini by effectively deduplicating and balancing writes across
nodes. Gemini by default does not implement deduplication
and write plan optimization.

Wasted XPU time. Since the checkpointing time does not
directly reflect the end-to-end application-level overhead
introduced to the training job, because developers could
choose a low checkpointing frequency to amortize slow
checkpointing—at the cost of extra XPU time used to recom-
pute lost progress in case of failures. Therefore, we further
evaluated the end-to-end wasted XPU time due to checkpoint-
ing under the optimal checkpoint frequency using the formula
described in [23]. The formula considers both the check-
pointing overhead and the recovery time due to infrequent
checkpointing. We set the failure rate to one XPU per hour,
which is commonly found in production clusters [53, 31].

Figure 16 presents the wasted XPU time of different sys-
tems. We can see that AITURBO consistently reduces more
wasted XPU time than other baselines, whose trends are sim-
ilar to the checkpoint time because a faster checkpoint typ-
ically implies reduced wasted XPU time as it could enable
more frequent checkpointing. Compared with SFSTURBO,
AITURBO achieves up to 6% fewer wasted XPU hours. The
wasted metric is smaller than the checkpoint time because
the overhead is amortized across training, and although the
number is smaller, it still may save huge monetary cost for
cloud users running for hours and days.

Factor analysis. Figure 14 shows a factor analysis of the con-
tributions of each technique used by AITURBO. First, lever-
aging computing fabric can significantly reduce the check-
pointing time because checkpointing is a bandwidth-bound
operation (+Buffer). Second, adding deduplication (+Dedup)
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Figure 14: A factor analysis of the contributions of each our techniques to the improved checkpoint time.
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Figure 15: A factor analysis of the contributions of each our techniques to the reduced wasted XPU time.
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Figure 16: The end-to-end wasted XPU time for various
checkpointing systems.

further reduces the checkpointing time by 4.3–47.2% for
models run with data parallelism (e.g., 1.5B without ZeRO)
because it reduced the amount of data written. Moreover,
detecting deduplication at the storage level (+Transparent
dedup) adds negligible additional checkpoint time because it
is only done at the first time in AITURBO with cached write
plan. Finally, adding optimized write plan with load balance
(+Write plan) further reduces the checkpointing time by up
to 76 % thanks to the better utilization of the compute fabric.
Like deduplication, load balancing is mostly effective when
there are duplications among checkpoint files because we can
holistically utilize all the bandwidth of computing nodes.

Figure 15 further reports the factor analysis of the wasted
GPU time. As its trend is similar to the checkpoint time, we
omit a detailed discussion for brevity.

A close look at the deduplicated content. Figure 19 shows
a profile of the deduplicated content detected by our dedupli-
cation in the group write, which is the same as that detected
at the framework level. The profiled setup is a 1.5B model
training workload with both TP and DP set to 2 using 4 XPUs.
If two blocks share the same color, they are duplicated tensors
and will be optimized by AITURBO. Note that the sizes of
the tensors are different.

5.2 Application performance: checkpoint read

Setups and baselines. We evaluate the performance of
checkpoint read by comparing the speed of approaches for
loading checkpoints from storage to XPUs. Such a workload
is required both in training and inference as described in §2.2.
We choose Qwen 72 B and 32 B QwQ—two recent advanced
foundation models covering different configurations. Besides
different models, we also measure the read performance with
varied load instances—the minimal number of XPUs to hold
a complete copy of the model and the provisioned storage
bandwidth.

We compared with ServerlessLLM [21], the state-of-the-art
system for optimizing checkpoint loading. AITURBO builds
a customized loading pipeline, aiming to fully utilize the
storage bandwidth for reading checkpoints from the storage.
We configured ServerlessLLM to use our SFSTURBO as the
backend since the cloud in HUAWEI is SSD-less. We have
carefully tuned ServerlessLLM to ensure it can saturate the
storage bandwidth provisioned on each node.

Performance. Figure 17 shows the end-to-end checkpoint
read time when loading different models on different numbers
of XPUs. For Qwen 72 B, a copy of the model parameters
requires at least 8 XPUs, while QwQ requires four. We eval-
uate the storage provisioned bandwidth from 1 to 30 GBps.
First, we can see that AITURBO achieves the fastest check-
point read time when a copy of the checkpoint is cached
(ServerlessLLM (AIStorage w/ cache)), i.e., the checkpoint
has been read once and is cached in the host DRAM of the
nodes involved. AITURBO only requires 2.25 seconds to de-
ploy the Qwen 72B model on 64 XPUs. On the other hand,
if AITURBO needs to read the checkpoint from the storage,
it—like other systems—is bottlenecked by the storage: all
systems read the 135 GB Qwen 72 B checkpoint on 8 XPUs
in 173 seconds when the provisioned bandwidth is 1 GBps.
Nevertheless, once a single copy of the checkpoint has been
loaded, AITURBO leverages the compute-fabric-based broad-
cast to quickly distribute the checkpoint to all instances, so
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Figure 17: A comparison of checkpoint read speed under different cloud storage bandwidth, read scale and model configurations.
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Figure 19: A profile of the duplication detected via our
grouped write.

the load time is nearly independent of the number of XPUs be-
cause with more XPUs, the more compute fabric bandwidth is
available. In comparison, ServerlessLLM still requires 1,384
seconds to distribute the checkpoints through the relative slow
SFSTURBO.

5.3 Application performance: KVCache read

Setups and baselines. To evaluate the performance of
AITURBO in KVCache read, we measure the KVCache read
bandwidth and the mean time to first token (TTFT) of re-
quests when serving a Qwen-14B model on 8 XPUs with a
real-world KVCache trace, Qwen-Bailian [50]. TTFT is a de
facto metric for measuring LLM serving performance. We
choose 8 XPUs because the trace is sampled for such a scale5.

We compare AITURBO with Mooncake [40], the state-
of-the-art KVCache system for LLM inference. Mooncake
utilizes the compute fabric to build a distributed in-memory
KVCache. Upon cache misses, it falls back to reading from
storage. In its current implementation (commit 206d52e1),
the KVCache data read from storage is not re-cached in the
KVCache layer. Therefore, when XPUs execute requests shar-
ing the same KVCache blocks, they still need to read from
the (relatively slow) storage. We evaluate Mooncake with the
following setups: (1) Mooncake + SFSTURBO—the unmodi-
fied Mooncake that utilizes a slow storage backend, and (2)
Mooncake + AITURBO—which replaces the storage read
5Confirmed with the authors releasing the trace.

Megatron +AITURBO Mooncake ∆

LoC 2,228 286 44

Table 2: A comparison of the lines of code (LoC) for supporting
fast checkpointing and KVCache read. ∆ means the LoC modified
for Mooncake.

with AITURBO.

Performance. Figure 18 (a) shows the mean time TTFT
of requests when running the 30-minute trace. Moon-
cake+AITURBO reduces TTFT by 23% compared to Moon-
cake thanks to transferring KVCache through the fast com-
pute fabric when cache misses occur. Figure 18 (b) further
plots the per-XPU KVCache read throughput of different sys-
tems, where we break down the usage into the compute fabric
and storage for ease of analysis. We can see that Mooncake
initially maintains relatively low storage read throughput;
however, once enough KVCache blocks with long reuse dis-
tance are evicted from DRAM to the storage, storage read
throughput rapidly increases and slows down the overall sys-
tem throughput. In comparison, when the storage layer fully
utilizes the compute fabric, the effective storage bandwidth is
increased.

5.4 Development efforts and group coordination over-
head analysis

Development efforts. Table 2 compares the lines of code
(LoC) required to use AITURBO with different systems.
AITURBO only requires Megatron to implement an addi-
tional 286 LoC to achieve better checkpoint performance than
its original 2,228 LoC application-level optimizations, which
include 1,759 LoC for distributed communication and coordi-
nation as well as 469 LoC for optimizing file system accesses.
Besides, the modifications to Mooncake are also minor. Note
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that we should mention that for Mooncake, we do not uti-
lize the group API because it is challenging to synchronize
running inference instances; nevertheless, AITURBO still im-
proves serving performance.

Coordination overhead of the group API. One potential
drawback of our grouped I/O API is the extra coordination
overhead with the job controller. Figure 20 profiles the over-
head when compared to the I/O time for writing checkpoints
with various numbers of XPUs in training two models, where
we evaluated the largest scale (64 XPUs). We observe a max-
imum of 45 ms coordination overhead for 64 XPUs, which
is negligible even compared to our optimized I/O time. Note
that such coordination can be skipped if the application can
use the cached read/write plan, a common case especially for
writing checkpoints.

6 Related work
Storage system for AI jobs. AITURBO continues the
line of research in building a faster storage system for AI
jobs [45, 12, 39, 28, 55, 13, 18, 27], with a particular focus on
common bandwidth-intensive group I/O patterns. Works like
Quiver [28] provide intelligent caching mechanisms to im-
prove cache hit rates for AI jobs across jobs, while AITURBO
focuses on improving the read and write bandwidth for a
single job.

To the best of our knowledge, our grouped I/O API dif-
fers from parallel/collective I/O mechanisms [45, 24, 2, 5, 6]
in distributed and parallel file systems in two key aspects.
First, our API allows different ranks to write multiple files
to capture more application-level I/O semantics and more
importantly, we further transparent deduplication and load
balancing optimizations to improve bandwidth utilization,
which is critical for AI jobs, while collective I/O requires
developers to perform them.

Framework-level I/O optimizations for AI jobs. To reduce
storage overhead, many existing systems optimize storage
usage at the framework-level [49, 51, 39, 31, 20, 23, 43, 21,
33, 40]. For example, Gemini [51] extended DeepSpeed [41]
with Zero-3 for efficient in-memory checkpointing, but it
does not support other parallel configurations and does not
support optimized write plans. ByteCheckpoint [49] supports
optimized write plans, but it needs to modify each framework
for support. AITURBO complements these works and shows
that common application-level storage optimizations, such as

in-memory checkpointing [51], deduplication [49], and opti-
mized broadcasting [52], can be transparently achieved at the
storage layer with our grouped API. Moreover, being closer
to the cloud storage infrastructure, AITURBO can achieve
a better performance than framework-level solutions with a
much lower engineering effort.

7 Conclusion
Cloud storage is a key pillar for various AI workloads. We
present two key designs to meet the high bandwidth require-
ments of AI workloads: First, we holistically utilize the avail-
able DRAM and compute fabric to increase the effective stor-
age bandwidth without incurring additional monetary costs.
Second, we transparently optimize the read and write opera-
tions to improve bandwidth utilization by exposing a simple
yet powerful grouped I/O API. AITURBO achieves perfor-
mance comparable to or better than state-of-the-art systems,
whether they require significant application modifications or
not, and AITURBO has been used in HUAWEI’s production
cloud supporting training jobs with support for inference jobs
underway.

Acknowledgment
We would like to thank FAST reviewers and our shepherd
Haiyu Mao for the insightful feedback. This work was sup-
ported in part by the National Natural Science Foundation of
China (No. 62572302, 62272291) and Fundamental and In-
terdisciplinary Disciplines Breakthrough Plan of the Ministry
of Education of China (JYB2025XDXM113). This work was
also supported by a research grant from Huawei Cloud.

References
[1] Implement fully parallelized distopt save/load.

https://github.com/NVIDIA/Megatron-
LM/commit/daa7610, 2024.

[2] Ceph file system. https://docs.ceph.com/en/
reef/cephfs/, 2025.

[3] Control group v2. https://docs.kernel.org/
admin-guide/cgroup-v2.html, 2025.

[4] Futures and the async syntax. https://doc.rust-lang.
org/book/ch17-01-futures-and-syntax.html,
2025.

[5] Hdfs architecture guide. https://hadoop.apache.
org/docs/r1.2.1/hdfs_design.html, 2025.

[6] Lustre file system. https://www.lustre.org, 2025.

[7] Quality of service (qos). https://docs.nvidia.
com/networking/display/mlnxofedv24100700/
quality+of+service+(qos), 2025.

[8] [question] asynchronous checkpoint saving. https://
github.com/NVIDIA/Megatron-LM/issues/964,
2025.

https://github.com/NVIDIA/Megatron-LM/commit/daa7610
https://github.com/NVIDIA/Megatron-LM/commit/daa7610
https://docs.ceph.com/en/reef/cephfs/
https://docs.ceph.com/en/reef/cephfs/
https://docs.kernel.org/admin-guide/cgroup-v2.html
https://docs.kernel.org/admin-guide/cgroup-v2.html
https://doc.rust-lang.org/book/ch17-01-futures-and-syntax.html
https://doc.rust-lang.org/book/ch17-01-futures-and-syntax.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://www.lustre.org
https://docs.nvidia.com/networking/display/mlnxofedv24100700/quality+of+service+(qos)
https://docs.nvidia.com/networking/display/mlnxofedv24100700/quality+of+service+(qos)
https://docs.nvidia.com/networking/display/mlnxofedv24100700/quality+of+service+(qos)
https://github.com/NVIDIA/Megatron-LM/issues/964
https://github.com/NVIDIA/Megatron-LM/issues/964


[9] AL-KHAYYAL, F. A. Generalized bilinear programming: Part
i. models, applications and linear programming relaxation.
European Journal of Operational Research 60, 3 (1992), 306–
314.

[10] AL-KHAYYAL, F. A., HORST, R., AND PARDALOS, P. M.
Global optimization of concave functions subject to quadratic
constraints: An application in nonlinear bilevel programming.
Annals of Operations Research 34, 1 (1992).

[11] AMAZON. Amazon simple storage service. https:
//docs.aws.amazon.com/AmazonS3/latest/
API/Welcome.html, 2025.

[12] AN, W., BI, X., CHEN, G., CHEN, S., DENG, C., DING, H.,
DONG, K., DU, Q., GAO, W., GUAN, K., GUO, J., GUO,
Y., FU, Z., HE, Y., HUANG, P., LI, J., LIANG, W., LIU, X.,
LIU, X., LIU, Y., LIU, Y., LU, S., LU, X., NIE, X., PEI, T.,
QIU, J., QU, H., REN, Z., SHA, Z., SU, X., SUN, X., TAN,
Y., TANG, M., WANG, S., WANG, Y., WANG, Y., XIE, Z.,
XIONG, Y., XU, Y., YE, S., YU, S., ZHA, Y., ZHANG, L.,
ZHANG, H., ZHANG, M., ZHANG, W., ZHANG, Y., ZHAO,
C., ZHAO, Y., ZHOU, S., ZHOU, S., AND ZOU, Y. Fire-flyer
AI-HPC: A cost-effective software-hardware co-design for
deep learning. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage, and
Analysis, SC 2024, Atlanta, GA, USA, November 17-22, 2024
(2024), IEEE, p. 83.

[13] ANANTHANARAYANAN, G., GHODSI, A., WARFIELD, A.,
BORTHAKUR, D., KANDULA, S., SHENKER, S., AND STO-
ICA, I. Pacman: Coordinated memory caching for parallel jobs.
In Proceedings of the 9th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2012, San Jose, CA,
USA, April 25-27, 2012 (2012), S. D. Gribble and D. Katabi,
Eds., USENIX Association, pp. 267–280.

[14] AUMASSON, J.-P., MEIER, W., PHAN, R. C.-W., AND HEN-
ZEN, L. The hash function blake.

[15] AWS. Amazon rekognition. https://aws.amazon.
com/en/rekognition/, 2024.

[16] AZURE. Azure llm inference traces. https://github.
com/Azure/AzurePublicDataset, 2024.

[17] DEEPSEEK. Context caching. https://api-docs.
deepseek.com/guides/kv_cache, 2025.

[18] DRYDEN, N., BÖHRINGER, R., BEN-NUN, T., AND HOE-
FLER, T. Clairvoyant prefetching for distributed machine
learning I/O. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage, and
Analysis (SC) (2021).

[19] DUBEY, A., JAUHRI, A., PANDEY, A., KADIAN, A.,
AL-DAHLE, A., LETMAN, A., MATHUR, A., SCHELTEN,
A., YANG, A., FAN, A., GOYAL, A., HARTSHORN, A.,
YANG, A., MITRA, A., SRAVANKUMAR, A., KORENEV, A.,
HINSVARK, A., RAO, A., ZHANG, A., RODRIGUEZ, A.,
GREGERSON, A., SPATARU, A., ROZIÈRE, B., BIRON, B.,
TANG, B., CHERN, B., CAUCHETEUX, C., NAYAK, C., BI,
C., MARRA, C., MCCONNELL, C., KELLER, C., TOURET,
C., WU, C., WONG, C., FERRER, C. C., NIKOLAIDIS,
C., ALLONSIUS, D., SONG, D., PINTZ, D., LIVSHITS, D.,

ESIOBU, D., CHOUDHARY, D., MAHAJAN, D., GARCIA-
OLANO, D., PERINO, D., HUPKES, D., LAKOMKIN, E., AL-
BADAWY, E., LOBANOVA, E., DINAN, E., SMITH, E. M.,
RADENOVIC, F., ZHANG, F., SYNNAEVE, G., LEE, G., AN-
DERSON, G. L., NAIL, G., MIALON, G., PANG, G., CU-
CURELL, G., NGUYEN, H., KOREVAAR, H., XU, H., TOU-
VRON, H., ZAROV, I., IBARRA, I. A., KLOUMANN, I. M.,
MISRA, I., EVTIMOV, I., COPET, J., LEE, J., GEFFERT,
J., VRANES, J., PARK, J., MAHADEOKAR, J., SHAH, J.,
VAN DER LINDE, J., BILLOCK, J., HONG, J., LEE, J., FU,
J., CHI, J., HUANG, J., LIU, J., WANG, J., YU, J., BITTON,
J., SPISAK, J., PARK, J., ROCCA, J., JOHNSTUN, J., SAXE,
J., JIA, J., ALWALA, K. V., UPASANI, K., PLAWIAK, K., LI,
K., HEAFIELD, K., STONE, K., AND ET AL. The llama 3
herd of models. CoRR abs/2407.21783 (2024).

[20] EISENMAN, A., MATAM, K. K., INGRAM, S., MUDIGERE,
D., KRISHNAMOORTHI, R., NAIR, K., SMELYANSKIY, M.,
AND ANNAVARAM, M. Check-n-run: a checkpointing system
for training deep learning recommendation models. In 19th
USENIX Symposium on Networked Systems Design and Im-
plementation, NSDI 2022, Renton, WA, USA, April 4-6, 2022
(2022), A. Phanishayee and V. Sekar, Eds., USENIX Associa-
tion, pp. 929–943.

[21] FU, Y., XUE, L., HUANG, Y., BRABETE, A., USTIUGOV,
D., PATEL, Y., AND MAI, L. Serverlessllm: Locality-
enhanced serverless inference for large language models.
CoRR abs/2401.14351 (2024).

[22] GITHUB. Accelerate your development speed with copilot.
https://copilot.github.com, 2024.

[23] GUPTA, T., KRISHNAN, S., KUMAR, R., VIJEEV, A., GULA-
VANI, B. S., KWATRA, N., RAMJEE, R., AND SIVATHANU,
M. Just-in-time checkpointing: Low cost error recovery
from deep learning training failures. In Proceedings of the
Nineteenth European Conference on Computer Systems, Eu-
roSys 2024, Athens, Greece, April 22-25, 2024 (2024), ACM,
pp. 1110–1125.

[24] HEICHLER, J. An introduction to beegfs. Introductionto
BeeGFS by ThinkParQ. pdf (2014).

[25] HU, Q., YE, Z., WANG, Z., WANG, G., ZHANG, M., CHEN,
Q., SUN, P., LIN, D., WANG, X., LUO, Y., WEN, Y., AND

ZHANG, T. Characterization of large language model devel-
opment in the datacenter. In 21st USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2024,
Santa Clara, CA, April 15-17, 2024 (2024), L. Vanbever and
I. Zhang, Eds., USENIX Association, pp. 709–729.

[26] KAPLAN, J., MCCANDLISH, S., HENIGHAN, T., BROWN,
T. B., CHESS, B., CHILD, R., GRAY, S., RADFORD, A., WU,
J., AND AMODEI, D. Scaling laws for neural language models.
CoRR abs/2001.08361 (2020).

[27] KHAN, R. I. S., YAZDANI, A. H., FU, Y., PAUL, A. K.,
JI, B., JIAN, X., CHENG, Y., AND BUTT, A. R. SHADE:
enable fundamental cacheability for distributed deep learning
training. In 21st USENIX Conference on File and Storage
Technologies, FAST 2023, Santa Clara, CA, USA, February
21-23, 2023 (2023), A. Goel and D. Naor, Eds., USENIX
Association, pp. 135–152.

https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://aws.amazon.com/en/rekognition/
https://aws.amazon.com/en/rekognition/
https://github.com/Azure/AzurePublicDataset
https://github.com/Azure/AzurePublicDataset
https://api-docs.deepseek.com/guides/kv_cache
https://api-docs.deepseek.com/guides/kv_cache
https://copilot.github.com


[28] KUMAR, A. V., AND SIVATHANU, M. Quiver: An informed
storage cache for deep learning. In 18th USENIX Conference
on File and Storage Technologies, FAST 2020, Santa Clara, CA,
USA, February 24-27, 2020 (2020), S. H. Noh and B. Welch,
Eds., USENIX Association, pp. 283–296.

[29] LUO, J., ZHANG, W., YUAN, Y., ZHAO, Y., YANG, J., GU,
Y., WU, B., CHEN, B., QIAO, Z., LONG, Q., TU, R., LUO,
X., JU, W., XIAO, Z., WANG, Y., XIAO, M., LIU, C., YUAN,
J., ZHANG, S., JIN, Y., ZHANG, F., WU, X., ZHAO, H., TAO,
D., YU, P. S., AND ZHANG, M. Large language model agent:
A survey on methodology, applications and challenges. CoRR
abs/2503.21460 (2025).

[30] MIAO, R., ZHU, L., MA, S., QIAN, K., ZHUANG, S., LI,
B., CHENG, S., GAO, J., ZHUANG, Y., ZHANG, P., LIU,
R., SHI, C., FU, B., ZHU, J., WU, J., CAI, D., AND LIU,
H. H. From luna to solar: the evolutions of the compute-to-
storage networks in alibaba cloud. In SIGCOMM ’22: ACM
SIGCOMM 2022 Conference, Amsterdam, The Netherlands,
August 22 - 26, 2022 (2022), F. Kuipers and A. Orda, Eds.,
ACM, pp. 753–766.

[31] MOHAN, J., PHANISHAYEE, A., AND CHIDAMBARAM, V.
Checkfreq: Frequent, fine-grained DNN checkpointing. In
19th USENIX Conference on File and Storage Technologies,
FAST 2021, February 23-25, 2021 (2021), M. K. Aguilera and
G. Yadgar, Eds., USENIX Association, pp. 203–216.

[32] NARAYANAN, D., SHOEYBI, M., CASPER, J., LEGRES-
LEY, P., PATWARY, M., KORTHIKANTI, V., VAINBRAND, D.,
KASHINKUNTI, P., BERNAUER, J., CATANZARO, B., ET AL.
Efficient large-scale language model training on gpu clusters
using megatron-lm. In Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage
and Analysis (2021), pp. 1–15.

[33] NICOLAE, B., LI, J., WOZNIAK, J. M., BOSILCA, G.,
DORIER, M., AND CAPPELLO, F. Deepfreeze: Towards scal-
able asynchronous checkpointing of deep learning models. In
20th IEEE/ACM International Symposium on Cluster, Cloud
and Internet Computing, CCGRID 2020, Melbourne, Australia,
May 11-14, 2020 (2020), IEEE, pp. 172–181.

[34] NVIDIA. Nvidia collective communications library (nccl).
https://developer.nvidia.com/nccl, 2025.

[35] NVIDIA. Nvidia dgx superpod: Next generation scalable
infrastructure for ai leadership, 2025.

[36] OPENAI. Chatgpt. https://chatgpt.com, 2024.

[37] OPENAI. Creating video from text. https://openai.
com/index/sora/, 2024.

[38] OPENAI. Prompt caching in the api. https://openai.
com/index/api-prompt-caching/, 2025.

[39] PAN, S., STAVRINOS, T., ZHANG, Y., SIKARIA, A., ZA-
KHAROV, P., SHARMA, A., P, S. S., SHUEY, M., WAREING,
R., GANGAPURAM, M., CAO, G., PRESEAU, C., SINGH,
P., PATIEJUNAS, K., TIPTON, J., KATZ-BASSETT, E., AND

LLOYD, W. Facebook’s tectonic filesystem: Efficiency from
exascale. In 19th USENIX Conference on File and Storage

Technologies (FAST 21) (Feb. 2021), USENIX Association,
pp. 217–231.

[40] QIN, R., LI, Z., HE, W., CUI, J., REN, F., ZHANG, M., WU,
Y., ZHENG, W., AND XU, X. Mooncake: Trading more stor-
age for less computation — a KVCache-centric architecture
for serving LLM chatbot. In 23rd USENIX Conference on File
and Storage Technologies (FAST 25) (Santa Clara, CA, Feb.
2025), USENIX Association, pp. 155–170.

[41] RAJBHANDARI, S., RASLEY, J., RUWASE, O., AND HE, Y.
Zero: memory optimizations toward training trillion parameter
models. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analy-
sis, SC 2020, Virtual Event / Atlanta, Georgia, USA, November
9-19, 2020 (2020), C. Cuicchi, I. Qualters, and W. T. Kramer,
Eds., IEEE/ACM, p. 20.

[42] SHAH, A., CHIDAMBARAM, V., COWAN, M., MALEKI, S.,
MUSUVATHI, M., MYTKOWICZ, T., NELSON, J., SAARIKIVI,
O., AND SINGH, R. TACCL: Guiding collective algorithm
synthesis using communication sketches. In 20th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 23) (Boston, MA, Apr. 2023), USENIX Association,
pp. 593–612.

[43] SHUKLA, D., SIVATHANU, M., VISWANATHA, S., GULA-
VANI, B. S., NEHME, R., AGRAWAL, A., CHEN, C., KWA-
TRA, N., RAMJEE, R., SHARMA, P., KATIYAR, A., MODI,
V., SHARMA, V., SINGH, A., SINGHAL, S., WELANKAR,
K., XUN, L., ANUPINDI, R., ELANGOVAN, K., RAHMAN,
H., LIN, Z., SEETHARAMAN, R., XU, C., AILIJIANG, E.,
KRISHNAPPA, S., AND RUSSINOVICH, M. Singularity: Planet-
scale, preemptive and elastic scheduling of AI workloads.
CoRR abs/2202.07848 (2022).

[44] STABILITY.AI. Activating humanity’s potential through gener-
ative ai. https://stability.ai, 2024.

[45] TEAM, D. Fire-flyer file system. https://github.com/
deepseek-ai/3FS, 2025.

[46] TEAM., M. Dist checkpointing package. https:
//docs.nvidia.com/megatron-core/
developer-guide/latest/api-guide/dist_
checkpointing.html, 2024.

[47] TEAM., P. Getting started with Distributed Checkpoint (DCP).
https://pytorch.org/tutorials/recipes/
distributed_checkpoint_recipe.html, 2023.

[48] TECH, H.-A. Open-sora: Democratizing efficient video pro-
duction for all. https://github.com/hpcaitech/
Open-Sora, 2025.

[49] WAN, B., HAN, M., SHENG, Y., PENG, Y., LIN, H., ZHANG,
M., LAI, Z., YU, M., ZHANG, J., SONG, Z., LIU, X., AND

WU, C. Bytecheckpoint: A unified checkpointing system
for large foundation model development. In 22nd USENIX
Symposium on Networked Systems Design and Implementation,
NSDI 2025, Philadelphia, PA, USA, April 28-30, 2025 (2025),
T. A. Benson and R. N. Mysore, Eds., USENIX Association,
pp. 559–578.

https://developer.nvidia.com/nccl
https://chatgpt.com
https://openai.com/index/sora/
https://openai.com/index/sora/
https://openai.com/index/api-prompt-caching/
https://openai.com/index/api-prompt-caching/
https://stability.ai
https://github.com/deepseek-ai/3FS
https://github.com/deepseek-ai/3FS
https://docs.nvidia.com/megatron-core/developer-guide/latest/api-guide/dist_checkpointing.html
https://docs.nvidia.com/megatron-core/developer-guide/latest/api-guide/dist_checkpointing.html
https://docs.nvidia.com/megatron-core/developer-guide/latest/api-guide/dist_checkpointing.html
https://docs.nvidia.com/megatron-core/developer-guide/latest/api-guide/dist_checkpointing.html
https://pytorch.org/tutorials/recipes/distributed_checkpoint_recipe.html
https://pytorch.org/tutorials/recipes/distributed_checkpoint_recipe.html
https://github.com/hpcaitech/Open-Sora
https://github.com/hpcaitech/Open-Sora


[50] WANG, J., HAN, J., WEI, X., SHEN, S., ZHANG, D., FANG,
C., CHEN, R., YU, W., AND CHEN, H. Kvcache cache in the
wild: Characterizing and optimizing kvcache cache at a large
cloud provider. In Proceedings of the 2025 USENIX Annual
Technical Conference, USENIX ATC 2025, Boston, MA, USA,
July 7-9, 2025 (2025), D. Altinbüken and R. Stutsman, Eds.,
USENIX Association, pp. 465–482.

[51] WANG, Z., JIA, Z., ZHENG, S., ZHANG, Z., FU, X., NG,
T. S. E., AND WANG, Y. GEMINI: fast failure recovery in
distributed training with in-memory checkpoints. In Proceed-
ings of the 29th Symposium on Operating Systems Principles,
SOSP 2023, Koblenz, Germany, October 23-26, 2023 (2023),
J. Flinn, M. I. Seltzer, P. Druschel, A. Kaufmann, and J. Mace,
Eds., ACM, pp. 364–381.

[52] ZHANG, D., WANG, H., LIU, Y., WEI, X., SHAN, Y., CHEN,
R., AND CHEN, H. Blitzscale: Fast and live large model au-
toscaling with O(1) host caching. In 19th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 2025,
Boston, MA, USA, July 7-9, 2025 (2025), L. Zhou and Y. Zhou,
Eds., USENIX Association, pp. 275–293.

[53] ZHANG, S., ROLLER, S., GOYAL, N., ARTETXE, M., CHEN,

M., CHEN, S., DEWAN, C., DIAB, M. T., LI, X., LIN,
X. V., MIHAYLOV, T., OTT, M., SHLEIFER, S., SHUSTER,
K., SIMIG, D., KOURA, P. S., SRIDHAR, A., WANG, T.,
AND ZETTLEMOYER, L. OPT: open pre-trained transformer
language models. CoRR abs/2205.01068 (2022).

[54] ZHANG, W., XU, E., WANG, Q., ZHANG, X., GU, Y., LU,
Z., OUYANG, T., DAI, G., PENG, W., XU, Z., ZHANG, S.,
WU, D., PENG, Y., WANG, T., ZHANG, H., WANG, J., YAN,
W., DONG, Y., YAO, W., WU, Z., ZHU, L., SHI, C., WANG,
Y., LIU, R., WU, J., ZHU, J., AND WU, J. What’s the story
in EBS glory: Evolutions and lessons in building cloud block
store. In 22nd USENIX Conference on File and Storage Tech-
nologies (FAST 24) (Santa Clara, CA, Feb. 2024), USENIX
Association, pp. 277–291.

[55] ZHU, Y., CHOWDHURY, F., FU, H., MOODY, A., MOHROR,
K. M., SATO, K., AND YU, W. Entropy-aware I/O pipelining
for large-scale deep learning on HPC systems. In 26th IEEE
International Symposium on Modeling, Analysis, and Simula-
tion of Computer and Telecommunication Systems, MASCOTS
2018, Milwaukee, WI, USA, September 25-28, 2018 (2018),
IEEE Computer Society, pp. 145–156.


	Introduction
	Cloud Storage and AI Jobs Characteristics
	The hardware setup for AI jobs on the cloud
	Bandwidth-intensive AI jobs
	I/O characteristics of AI jobs

	Design Rational and AITurbo
	Design rational and challenges
	Overview of AITurbo

	Detailed Design of AITurbo
	Grouped write I/O 
	Grouped read I/O 
	System mechanisms for grouped I/O

	Evaluation
	Application performance: checkpoint write
	Application performance: checkpoint read
	Application performance: KVCache read
	Development efforts and group coordination overhead analysis

	Related work
	Conclusion

