
Point-Polygon Topological Relationship Query using
Hierarchical Indices

Tianyu Zhou Hong Wei Heng Zhang
Shanghai Jiao Tong University

Shanghai, China
{zhoutianyu007,keith.collens,shinedark}

@sjtu.edu.cn

Yin Wang
Facebook

Menlo Park, CA, USA
yinwang@fb.com

Yanmin Zhu Haibing Guan
Haibo Chen

Shanghai Jiao Tong University
Shanghai, China

{yzhu,hbguan,haibochen}
@sjtu.edu.cn

ABSTRACT
This paper describes a point-polygon query program we sub-
mitted to the ACM SIGSPATIAL Cup 2013. Point-polygon
topological relationship query is one of the core functions for
commercial spatial databases, and also an active research
topic in academia. Spatial indices are the key to achieve top
performance. However, di↵erent datasets or query patterns
require di↵erent indices for optimal performance. Based on
the patterns of the training dataset, we build a hierarchy
of indices, including polygon index, edge index, and interval
index, which help find polygons near a point, calculate the
distance from a point to a polygon, and determine whether
a point is inside a polygon, respectively. Using the provided
training dataset, these three indices reduce the computa-
tion time of “WITHIN n” query by 90%, 10%, and 50%,
respectively. We build a large dataset with more than 1 mil-
lion samples and 520 polygons by cloning and o↵setting the
training dataset 15 and 13 times, respectively. Our program
finishes the “WITHIN 1000” query in only one second on a
4-core 3.3GHz Xeon Processor.

Categories and Subject Descriptors
H.2.8 [Database Management]: Applications—Spatial

databases and GIS

General Terms
Algorithms, Experimentation, Performance

Keywords
point-in-polygon, spatial index, spatial query

1. INTRODUCTION AND OVERVIEW
Querying whether a point is inside a polygon, often called

point-in-polygon query in the literature, or the “INSIDE”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
Copyright is held by the owner/author(s).
SIGSPATIAL’13, Nov 05-08 2013, Orlando, FL, USA
ACM 978-1-4503-2521-9/13/11. http://dx.doi.org/10.1145/2525314.2527263

Figure 1: Visualization of the training dataset.
Black points and traces represent points and their
“movement”. Polygons are shown in color.

query of this competition, is one of the fundamental geo-
metric problems. The two classical algorithms are the ray
casting algorithm, which tests how many times a ray, start-
ing from the point and going any fixed direction, intersects
the edges of the polygon, and the winding number algorithm,
which computes the given point’s winding number with re-
spect to the polygon [7]. If a point is not inside a polygon,
we may want to calculate its distance to the polygon, re-
ferred to as “WITHIN n” query of this competition. This
can be done by calculating the distance between the point
and each edge of the polygon, and returning the minimum
value.

While the complexity (both average and worst case) of all
the above algorithms is O(n) (n being the number of edges
of the polygon), in practice spatial indices are the key to
achieving optimal performance, especially when querying a
large dataset [4, 5]. However, di↵erent datasets and di↵er-
ent query patterns may require di↵erent indices for the best
performance. For example, if we query each point and each
polygon just once, there is no need to build any index at
all. On the other hand, if we want to find the relationship
between a set of points and a set of polygons, we can index
either points or the polygons, e.g., depending on which set
is smaller.

Therefore, we first analyze the training dataset to deter-
mine the optimal indices to use. Figure 1 visualizes the



points and polygons in the provided training dataset. There
are way more points, up to one million, than polygons, up to
500, so it is apparent that we should index polygons rather
than points, using their minimum bounding rectangles; see
Figure 2. Another crucial observation is that each polygon
has lots of edges, 226 on average in the training dataset.
The O(n) complexity for the “INSIDE” or “WITHIN” query
is not acceptable. We therefore build one edge index for
each polygon using the minimum bounding rectangles of the
edges, as shown in Figure 3. Therefore, “WITHIN n” query
now only needs to iterate over those edges whose envelopes
are within n to the given point. Finally, to speed up “IN-
SIDE” query, we build one interval index for each polygon
that includes all the projected intervals of its edges on the
y-axis, as shown in Figure 4. Then, using the ray casting al-
gorithm with a horizontal ray along the x-axis, we just need
to consider those edges whose projected intervals contain y
for a given point (x, y).

We note that the above-mentioned one million points and
500 polygons both may include multiple versions (or times-
tamps) of the same point or polygon ID, and it is required
that each version of each point ID be queried against the lat-
est versions of all polygon IDs (thinking of it as a location-
based service where people move around and buildings relo-
cate or reshape over time). Since the number of polygons,
even including multiple versions, is several orders of magni-
tude smaller than the number of points, we build all three
indices for each version of each polygon statically, and then
filter out older versions during the query process. Compar-
ing with the implementation that changes the index as the
time progresses, our static indices allow simpler and more
e�cient implementation for concurrent queries using multi-
threading.

In summary, our point-polygon relationship query algo-
rithm consists of the following steps:

1. for each point P , query the polygon index to find poly-
gons whose envelopes contain P (or within n to P if it
is “WITHIN n” query). For each polygon returned by
the query, perform the following steps in sequence;

2. skip if the polygon is not the latest version with respect
to P ’s timestamp;

3. query whether P is inside the polygon using ray casting
and the interval index;

4. for “WITHIN n” query, if P is not inside the polygon,
calculate their distance using the edge index.

We discuss our hierarchy of indices and other optimiza-
tion techniques in Section 2 and our experimental result in
Section 3. Section 4 concludes this paper.

2. HIERARCHICAL INDICES
R-tree [3] and its variants are commonly used to index

various geometric shapes by their minimum bounding rect-
angles. Minimization of both coverage and overlap is crucial
to the performance of R-trees. Coverage is the entire area
covered by tree nodes, and overlap is the area covered by two
or more nodes. Minimizing coverage reduces the amount of
“dead space” covered by the R-tree, and minimal overlap
reduces the set of search paths to the leaves. Di↵erent R-
tree variants employ di↵erent heuristics to split overflowing
nodes, trying to minimize coverage and overlapping [6].

A

C
B

P

Figure 2: Polygon index example

a

e

b

c

d

P

Figure 3: Edge index example

a

b

c

e

d

de

c
b

a

Y

P

Figure 4: Interval index example



polygon-index edge-index
R-tree with insert query insert query
linear splitting 1 980 159 2,459
quadratic splitting 1 928 256 2,446
R* splitting 6 810 774 2,437

Table 1: Computation time (ms) of R-tree variants
using the large dataset we constructed.

Since the competition considers the overall computation
time, we need to calculate both the tree construction and
the query time. Intuitively, more advanced heuristics take
longer time for tree construction but less for query. We com-
pare di↵erent splitting strategies using the training dataset
and select the best performers for our polygon index and
edge index, respectively. For our interval index, we use in-

terval tree which is essentially a degenerated R-tree for one
dimension.

2.1 Polygon Index
Figure 2 illustrates our polygon index using the minimum

bounding rectangle of each polygon. For “INSIDE” queries,
we need to find all polygons whose bounding boxes contain
the given point. For “WITHIN n” queries, we construct a
2n ⇥ 2n square centered at the given point, shown in the
figure, and find all polygons whose bounding boxes intersect
the square. For example in Figure 2, no polygon needs to
be further examined for the “INSIDE”query of point P , and
polygons A and B must be considered for the “WITHIN n”
query.

We compare three node splitting strategies implemented
in boost C++ library 1.54, linear split, quadratic split [3],
and R*-tree topological split [1]. Table 1 shows the tree
building time and the query time using our large dataset (see
Section 3.1), which is consistent with the example computa-
tion time shown on boost documentation website, i.e., insert
time increases in the order of linear splitting, quadratic split-
ting, and R*-tree splitting, while the query time decreases
in the same order. However, the di↵erence of tree building
time among all three algorithms is negligible compared to
the query time for the polygon index, because we have sev-
eral orders of magnitude more points than polygons. It is
worth the time to find as optimal splitting strategy as pos-
sible during tree construction in order to save query time.
Therefore we use R*-tree for our polygon index.

2.2 Edge Index
Figure 3 shows our edge index using the minimum bound-

ing rectangle of each edge. Again we construct a 2n ⇥ 2n
square to query all edges whose minimum bounding boxes
intersect it. In this example, we only edge a is returned by
the query for the given point P . We build one edge index for
each version of each polygon to minimize the index building
and query time.

Table 1 shows the total time for building all edge indices
and queries using di↵erent splitting strategies. In this case,
on the other hand, the di↵erence of query time among di↵er-
ent strategies is negligible compared to the insert time. We
suspect the reason is that the edges of a polygon are much
more evenly distributed over the space and there is very lit-
tle overlapping. All three splitting strategies work well and
therefore the query time is similar. R*-tree splitting spent
more time on optimizing but the benefit is marginal. We

use R-tree with linear splitting for our edge index.

2.3 Interval Index
Given a point and a polygon, the ray casting algorithm

draws a ray from the point, going along any fixed direc-
tion, and tests how many times it intersects the edges of the
polygon. If the point is not on any edge of the polygon, the
point is inside the polygon if the number of crossings is an
odd number, or outside if it is even. The result holds for
polygons with one or more inner rings.

To simplify the calculation, it is common to construct the
ray in parallel with the positive x-axis. The interval index
is employed to quickly find edges whose projected intervals
on y-axis contain the y coordinate of the point. Edges not
returned by the query are either above or below the ray,
and therefore do not intersect. (Here we define “contain” as
such that one endpoint of the edge must be below the given
point P and the other endpoint must be equal to or above
P , which handles the corner case where the ray intersects a
vertex of the polygon or completely overlaps an edge.) For
example in Figure 4, we consider only edges a and d for the
“INSIDE” query of point P .

Interval tree is an ordered binary tree data structure for
storing and retrieving intervals. More specifically, it allows
e�cient query of intervals that overlap with any given inter-
val or point. We use centered interval tree that is a binary
tree where each node stores all intervals intersecting a center

point. All intervals completely to the left of the center point
are stored on the left subtree, and intervals to the right of
the point are stored on the right subtree [2]. We build one
interval tree for each version of each polygon. The inter-
vals inserted into the tree are the projections of its edges
to the y-axis, i.e., the y coordinates of the two endpoints
of each edge, called y-intervals. For a given point P , the
query returns all y-intervals that intersect its y coordinate.
Edges whose y-intervals do not intersect the y coordinate
of P are either above or below the x-parallel ray from P ,
and therefore excluded from the intersection counting. For
those edges returned by the query, we further filter out edges
whose x coordinates of both endpoints are less than the x
coordinate of P , which are completely on the left of the ray.
Likewise, edges whose x coordinates are both greater than
x must intersect the ray so there is no need to perform the
expensive intersection calculation either. Only those edges
whose endpoints are on both sides of P with respect to x
coordinates are included in the intersection calculation. For
example in Figure 4, first our interval index filters out edges
b, c, e, and then we skip edge a since it is on the left of
P . The intersection calculation between edge d and the x-
parallel ray from P returns true so the intersection count of
P is one, and therefore it is inside the polygon.

2.4 Other Optimizations
In addition to the hierarchy of indices, we use multithread-

ing for input parsing, index building, and query processing.
For input parsing, we read the entire file at once and each
thread is responsible for a portion of the file. These threads
also build the edge and interval indices in parallel as they
parse the input. Only the polygon index is built with a
single thread, but its construction time is negligible as illus-
trated in Table 1. As mentioned in Section 1, all our indices
are static (read-only) since we filter out older versions of
polygons in the query results. Therefore concurrent query



is straightforward to implement using a work queue.
There are other minor optimization techniques. For ex-

ample, we simply scan and skip a fixed number of characters
for each input line to find the coordinate strings, based on
the training data format. This is at least an order of mag-
nitude more e�cient than a full-XML or GML compatible
parser. For each coordinate string, we use our customized
double parser instead of atof for faster conversion [8].

3. EVALUATION
We built our program in C++ with the boost library for

R-tree index implementation. Our evaluation focuses on the
computation time comparison and analysis since the accu-
racy is always 100% for the training dataset. The evaluation
was performed on a 4-core 3.3 GHz Xeon E3-1230 processor,
running 64-bit Windows 7.

3.1 Large Training Dataset
The provided training dataset is rather small for our pro-

gram. Using only one thread, our program finishes both“IN-
SIDE” and “WITHIN 1000” queries for the points1000.txt
and poly15.txt dataset in less than a half second. There-
fore we built our customized large dataset by cloning and
o↵setting the the training dataset multiple times. We chose
cloning with o↵setting instead of a custom-built random gen-
erator because we want to ensure the dataset has the same
pattern such that the index performance would be simi-
lar. Since we are informed that the testing dataset will
not exceed one million points or 500 polygons, we clone
1000points.txt (with 69,619 point instances) 15 times and
15poly.txt (with 40 polygon instances) 13 times, resulting
in a dataset with 1.04 million points and 520 polygons.

3.2 Index Performance
Table 2 shows the program execution time with di↵erent

indices, using both the provided training dataset of points
1000.txt and poly15.txt, and our large dataset. We use
only a single thread and turn o↵ other optimizations in order
to measure the di↵erence more accurately.

From this table, we can see the largest performance gain
is from the polygon index, reducing computation time by
more than 60% for “INSIDE” queries and more than 90%
for “WITHIN 1000” queries. We found that at most five or
seven polygons are returned by “INSIDE” and “WITHIN”
queries, respectively, which is a significant reduction from
the total number of polygons that need to be examined oth-
erwise. The edge index is used by “WITHIN” queries only
and it reduces the computation time by 10% on the provided
training dataset. The interval index reduces the computa-
tion time by another 50% on the provided training dataset.
Using our cloned large dataset, the e↵ect of the polygon in-
dex is more prominent because the polygons are naturally
divided by di↵erent clone copies, which the R-tree index can
exploit for better node splitting.

With our parsing optimization, the computation time us-
ing a single thread for the “WITHIN 1000” query reduces to
4.8 second for our large dataset. We obtained the measure-
ment by running the program multiple times so the input
data is fully cached in memory to eliminate the disk read
variance. Table 3 shows the scaling e�ciency of our pro-
gram using multiple threads. There are various serialized
execution sections of our program which prevent linear scal-
ing, including input reading and output writing, polygon

dataset indices INSIDE WITHIN 1000
none 2.97 8.53

poly15 + polygon 0.66 0.80
points1000 polygon + edge 0.66 0.71

all three 0.30 0.34
none 347.50 1,085.00

poly520 + polygon 13.89 37.56
points1M polygon + edge 14.04 20.45

all three 8.25 13.75

Table 2: Total execution time (sec) with di↵erent in-
dices using both the provided and our large datasets
(single thread, without parsing optimization).

threads 1 2 3 4 5 6 7 8
time (s) 4.80 2.71 1.93 1.64 1.39 1.25 1.09 1.03

Table 3: Multithreading for “WITHIN 1000” query
using our large dataset (with parsing optimization)

index building, and work queue construction and consump-
tion. In addition, there are four physical cores and four
hyperthreading cores, so the performance gain beyond four
threads is marginal.

4. CONCLUSION
By analyzing the patterns of the training dataset and the

performance of di↵erent indices, we found that indices are
the key to top performance, and it is worthwhile to build
a hierarchy of indices in exchange for the optimal query
performance. We first filter out distant polygons using an
R*-tree based polygon index, and then filter out distant or
irrelevant edges using both an R-tree index and an inter-
val tree index. Together with parsing optimizations and
multithreading, our program computes the “WITHIN 1000”
query for the provided dataset in less than 100ms and for
our customized large dataset with one million points and
520 polygons in just one second, on a 4-core 3.3GHz Xeon
Processor.

5. REFERENCES
[1] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.

The R*-tree: an e�cient and robust access method for

points and rectangles, volume 19. 1990.
[2] M. De Berg, M. Van Kreveld, M. Overmars, and O. C.

Schwarzkopf. Computational geometry. Springer, 2000.
[3] A. Guttman. R-trees: A dynamic index structure for spatial

searching, volume 14. ACM, 1984.
[4] Y. Hu, S. Ravada, and R. Anderson. Geodetic

point-in-polygon query processing in oracle spatial. In
International Conference on Advances in Spatial and

Temporal Databases. 2011.
[5] Y. Hu, S. Ravada, R. Anderson, and B. Bamba. Topological

relationship query processing for complex regions in oracle
spatial. In SIGSPATIAL GIS, 2012.

[6] A. Nanopoulos, A. N. Papadopoulos, and Y. Theodoridis.
R-trees: Theory and Applications. Springer, 2006.

[7] I. E. Sutherland, R. F. Sproull, and R. A. Schumacker. A
characterization of ten hidden-surface algorithms. ACM

Comput. Surv., 6(1):1–55, Mar. 1974.
[8] H. Wei, Y. Wang, G. Forman, Y. Zhu, and H. Guan. Fast

Viterbi map matching with tunable weight functions. In
GIS, 2012. (SIGSPATIAL Cup).


