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Fast In-Memory Transaction Processing Using RDMA and HTM
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DrTM is a fast in-memory transaction processing system that exploits advanced hardware features such as
remote direct memory access (RDMA) and hardware transactional memory (HTM). To achieve high efficiency,
it mostly offloads concurrency control such as tracking read/write accesses and conflict detection into HTM
in a local machine and leverages the strong consistency between RDMA and HTM to ensure serializability
among concurrent transactions across machines. To mitigate the high probability of HTM aborts for large
transactions, we design and implement an optimized transaction chopping algorithm to decompose a set of
large transactions into smaller pieces such that HTM is only required to protect each piece. We further build
an efficient hash table for DrTM by leveraging HTM and RDMA to simplify the design and notably improve
the performance. We describe how DrTM supports common database features like read-only transactions
and logging for durability. Evaluation using typical OLTP workloads including TPC-C and SmallBank shows
that DrTM has better single-node efficiency and scales well on a six-node cluster; it achieves greater than
1.51, 34 and 5.24, 138 million transactions per second for TPC-C and SmallBank on a single node and
the cluster, respectively. Such numbers outperform a state-of-the-art single-node system (i.e., Silo) and a
distributed transaction system (i.e., Calvin) by at least 1.9X and 29.6X for TPC-C.
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1. INTRODUCTION

Fast in-memory transaction is a key pillar for many systems like Web service, stock
exchange, and e-commerce. A common way to support transaction processing over a
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large volume of data is through partitioning data into many shards and spreading
the shards over multiple machines. However, this usually necessitates distributed
transactions, which are notoriously slow due to the cost of coordination among multiple
nodes.

This article tries to answer a natural question: with advanced processor features
and fast interconnects, can we build a transaction processing system that is at least
one order of magnitude faster than the state-of-the-art systems without using such
features? To answer this question, we present the design and implementation of DrTM,
a fast in-memory transaction processing system that exploits HTM and RDMA to run
distributed transactions on a modern cluster.

The commercial availability of Intel’s Haswell processor suggests that hardware
transactional memory (HTM) [Herlihy and Moss 1993], a technique inspired by
database transactions, is likely to be widely exploited for in-memory databases in
the near future [Wang et al. 2014; Leis et al. 2014]. Its features, such as hardware-
maintained read/write sets and automatic conflict detection, naturally put forward
an opportunity on leveraging HTM to support concurrency control for fast in-memory
transaction processing. HTM usually comes with strong atomicity with respect to non-
transactional code: any conflicting nontransactional memory operation will uncondi-
tionally abort an HTM transaction.

Meanwhile, remote direct memory access (RDMA), which provides direct memory
access (DMA) to the memory of a remote machine, has recently gained considerable
interest in the systems community [Mitchell et al. 2013; Dragojević et al. 2014; Kalia
et al. 2014]. In addition to the provided low-latency remote accesses, a promising feature
of RDMA is its strong consistency with respect to the memory operations in the target
CPU: an RDMA operation is cache coherent with such memory operations. Thus, when
combined with the strong atomicity of HTM, an RDMA operation will unconditionally
abort a conflicting HTM transaction1 in the target machine.

Based on the preceding features, DrTM mainly leverages HTM to do most parts of
concurrency control like tracking read/write accesses and detecting conflicting ones in
a local machine. However, naively enclosing transactions using HTM may cause high
abort rate and thus low transaction efficiency for workloads with relatively large work-
ing sets. To this end, we extend traditional transaction chopping [Shasha et al. 1995;
Zhang et al. 2013] with several optimizations, such as a publish-subscribe mechanism
to chop a set of large transactions into smaller pieces while preserving serializability.
Hence, DrTM only needs to use HTM to protect each piece, which can better fit into the
working set of HTM and thus reduces transaction abort rate.

To further preserve serializability among concurrent transactions across multiple
machines, DrTM provides the first design and implementation of distributed trans-
actions using HTM by leveraging the strong consistency feature of RDMA to glue
multiple HTM transactions together. One main challenge of supporting distributed
transactions is the fact that no I/O operations including RDMA are allowed within
an HTM region. DrTM addresses this with a concurrency control protocol that com-
bines HTM and two-phase locking (2PL) [Bernstein and Goodman 1981] to preserve
serializability. Specifically, DrTM uses RDMA-based compare-and-swap (CAS) to lock
and fetch the corresponding database records from remote machines before starting
an HTM transaction. Thanks to the strong consistency of RDMA and the strong atom-
icity of HTM, any concurrent conflicting transactions on a remote machine will be

1This article uses the HTM/restricted transactional memory (RTM) transaction or HTM/RTM region to
describe the transaction code executed under HTM/RTM’s protection and uses transaction to denote the
original user-written transaction.
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aborted. DrTM leverages this property to preserve serializability among distributed
transactions. To guarantee forward progress, DrTM further provides contention man-
agement by leveraging the fallback handler of HTM to prevent possible deadlock and
livelock.

As there is no effective way to detect local writes and remote reads, a simple approach
is using RDMA to lock a remote record even if a transaction only needs to read that
record. This, however, may significantly limit the parallelism. DrTM addresses this
issue by using a lease-based scheme [Gray and Cheriton 1989] to unleash parallelism.
To allow read-read sharing of database records among transactions across machines,
DrTM uses RDMA to atomically acquire a lease of a database record from a remote
machine instead of simply locking it such that other readers can still read-share this
record.

Although RDMA-friendly hash tables have been intensively studied recently
[Mitchell et al. 2013; Dragojević et al. 2014; Kalia et al. 2014], we find that the combi-
nation of HTM and RDMA opens new opportunities for a more efficient design that fits
the distributed transaction processing in DrTM. Specifically, our RDMA-friendly hash
table leverages HTM to simplify race detection among local and remote read to reduce
the overhead of local operations and to save spaces for hash entries. In addition, based
on the observation that structural changes of indexes are usually rare, DrTM provides
a host-transparent cache that only caches the addresses of database records as well
as an incarnation checking [Dragojević et al. 2014] mechanism to detect invalidation.
The cache is very space efficient (caching locations instead of values) and significantly
reduces RDMA operations for searching a key-value pair.

We have implemented DrTM, which uses logging for durability [Tu et al. 2013; Wang
et al. 2014; Zheng et al. 2014] to support full ACID transactions. This is done by lever-
aging the power provided by an uninterruptible power supply (UPS) in each machine
to persist inflight logs under power outages. To demonstrate the efficiency of DrTM, we
have conducted a set of evaluations on DrTM’s performance using a six-node cluster
connected by InfiniBand NIC with RDMA. Each machine of the cluster has two 10-core
RTM-enabled Intel Xeon processors. Using three popular OLTP workloads including
TPC-C [The Transaction Processing Council 2001] and SmallBank [The H-Store Team
2015b], we show that DrTM can perform more than 5.24 and 138 million transac-
tions per second, respectively. The single-node version of DrTM also outperforms Silo,
a state-of-the-art multicore database, by 1.9X on 20 cores. A simulation of running
multiple logical nodes over each machine shows that DrTM may be able to scale out to
a larger scale cluster with tens of nodes. A comparison with a state-of-the-art multicore
(i.e., Silo) and distributed transaction systems (i.e., Calvin) shows that DrTM is at least
1.9X and 29.6X faster for TPC-C, respectively.

In summary, the contributions of this work are the following:

—The first design and implementation of exploiting the combination of HTM and
RDMA to boost distributed transaction processing systems (Section 3)

—An optimized transaction chopping algorithm that provides finer-grain chopping of
a set of transactions such as TPC-C (Section 4)

—A concurrency control scheme using HTM and 2PL that glues together multiple
concurrent transactions across machines and a lease-based scheme that enables
read-read sharing across machines (Section 5)

—An HTM/RDMA-friendly hash table that exploits HTM and RDMA to simplify the
design and improve performance as well as a location-based cache to further reduce
RDMA operations (Section 6)

—A set of evaluations that confirm the extremely high performance of DrTM
(Section 8).
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2. BACKGROUND

This section first briefly describes the necessary background on HTM and RDMA, then
presents performance measurement of naively deploying HTM for database transac-
tions, as well as the RDMA performance characteristics.

2.1. Hardware Transactional Memory

To mitigate the challenge of writing efficient multithreaded code with fine-grain lock-
ing, HTM was proposed as an alternative with the goal of providing comparable perfor-
mance with less complexity compared to fine-grain locking. As an embodiment of HTM
in the mass market, Intel’s restricted transactional memory (RTM) provides strong
atomicity [Blundell et al. 2006] within a single machine, where nontransactional code
will unconditionally abort a concurrent transaction when their accesses conflict. RTM
uses the first-level cache to track the read/write accesses and an implementation-
specific structure to further track additional read accesses; in addition, it relies on the
cache coherence protocol to detect conflicts. Upon a conflict, at least one transaction
will be aborted. RTM provides a set of programming interfaces including XBEGIN, XEND,
and XABORT, which will begin, end, and abort a transaction, respectively.

As a practical hardware mechanism, the usage of RTM has several restrictions [Wang
et al. 2013, 2014]. First, the read/write set of an RTM transaction must be limited
in size, as the underlying CPU uses private caches and various buffers to track the
accesses for reads and writes. The abort rate of an RTM transaction will increase
significantly with the increase of the working set. Beyond the hardware capacity,
the transaction will be always aborted. Second, some instructions and system events
such as network I/O may abort the RTM transaction as well. Third, RTM provides no
progress guarantees about transactional execution, which implies that a nontransac-
tional fallback path is required when the number of RTM transaction aborts exceeds
some threshold. Last but not least, RTM is only a compelling hardware feature for a
single machine platform, which limits a distributed transaction system from getting
profit from it. Note that although this work mainly uses Intel’s RTM as an example
to implement DrTM, we believe that it should work similarly for other HTM systems.
Specifically, HTM implementations that can deal with HTM regions with a large work-
ing set would perform extremely well under DrTM.

Direct deployment of HTM. The most straightforward way of using HTM to build
a database is to put the whole transaction into an HTM transaction region. This,
however, may result in suboptimal performance due to a high HTM abort rate, which
will waste substantial time to retry the transaction or degrade to a fallback path with
coarse-grain locking.

For Intel’s RTM, transaction aborts occur for several reasons. System events such as
context switches and interrupts are not allowed in RTM transactions, which leads to
an HTM abort (called a system abort). Further, RTM tracks the read/write accesses of
a transaction during execution at the granularity of a cache line. The RTM transaction
may experience a conflict abort if there is a conflicting cache line access. As the on-chip
storage is limited, an RTM transaction accessing too much memory may also cause a
transaction abort (called a capacity abort).

We first study a case of directly applying HTM (Naive) to typical OLTP transactions
(i.e., SmallBank [The H-Store Team 2015b] and TPC-C [The Transaction Processing
Council 2001]) compared to Silo [Tu et al. 2013] and DBX [Wang et al. 2014], two
state-of-the-art multicore databases. Both use the optimistic concurrency control (OCC)
protocol [Kung and Robinson 1981], which first optimistically executes a transaction
to collect the read/write set and then validates if the transaction can be committed by
checking if records in the read/write set have been changed or not; if the validation
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Fig. 1. Throughput of standard-mix in SmallBank and TPC-C with the increase of threads. Naive stands
for naively applying an HTM transaction.

Table I. Working Set Size (in Bytes) of Transactions in SmallBank and TPC-C

SmallBank READ WRITE F-PATH
SP 905 396 0.0%

AMG 1,432 437 0.0%
BLA 902 286 0.0%
DC 684 322 0.0%
WC 967 347 0.0%
TS 640 323 0.0%

TPC-C READ WRITE F-PATH CAP
NEW 6,757 1,174 97.2% 99.9%
PAY 1,040 646 58.2% 0.8%
DLY 12,216 2,378 100.0% 95.4%
OS 2,186 715 45.0% 43.0%
SL 38,516 838 100.0% 91.6%

Note: F-PATH stands for the percentage of transaction execution in the fallback path, and CAP stands for
the percentage of fallback execution due to capacity abort.

passes, the transaction can be committed. Whereas Silo uses fine-grained locking to
lock each object during the validation and commit phases, DBX uses HTM to guarantee
the atomicity of these two phases.

As shown in Figure 1, the notable improvement for SmallBank (as we expected) is
from the elimination of the cost for explicitly tracking read/write accesses and detecting
conflicting ones. However, the performance on TPC-C by directly applying HTM is
dramatically poor and not scalable due to excessive HTM transaction aborts and thus
execution in the fallback path. The fallback handler usually acquires a coarse-grain
exclusive lock to guarantee forward progress, which leads to almost serial execution of
transactions.

Our further analysis reveals that three types of transactions in TPC-C (i.e., NEW,
DLY, and SL) mainly execute in the fallback path due to capacity abort. However, the
transactions in SmallBank rarely execute in the fallback path. Table I also lists the
average size of read/write set for each type of transaction in both SmallBank and TPC-
C. This result is well matched with the relationship between the HTM abort rate and
the working set size (Figure 2).

Figure 2(a) shows the HTM abort rate with the growing of working set by sequential
accesses. Due to the restricted size of L1 cache (i.e., 32KB), the abort rate increases dras-
tically when the size of write set exceeds the hardware capacity. However, a database
transaction may access memory in a random way, which may further increase the size
of read/write set in practice. Apart from the size limit, capacity aborts may be caused by
accessing more than N cache lines in one cache set (N is the cache associativity). This
is likely to happen with random accessing. To confirm this, we conduct an evaluation
using random accesses and observe that an RTM transaction will definitely abort after
it writes 768 bytes (see Figure 2(b)).
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Fig. 2. Abort rate of an HTM transaction with the increase of working set size for sequential and random
accesses.

Fig. 3. Throughput (a) and latency (b) of random reads using one-sided RDMA READ and TCP/IP with
different payload sizes specified in the x-axis.

2.2. Remote Direct Memory Access

RDMA is a networking technology that provides cross-machine accesses with high
speed, low latency, and low CPU overhead. Much prior work has demonstrated the
benefit of using RDMA for in-memory stores [Mitchell et al. 2013; Kalia et al. 2014]
and computing platforms [Murray et al. 2013; Dragojević et al. 2014]. RDMA provides
three communication options with different interfaces and performance. First, IPoIB
emulates IP over InfiniBand, which can be directly used by existing socket-based code
without modification. Yet its performance is poor due to the intensive OS involvement.
Second, SEND/RECV Verbs provide a message-passing interface and implement mes-
sage exchanges in user space through bypassing kernel; the communication between
machines is two sided, as each SEND operation requires a RECV operation as a re-
sponse. Third, the one-sided RDMA allows one machine to directly access the memory
of another machine without involving the host CPU, which provides very good perfor-
mance [Mitchell et al. 2013; Dragojević et al. 2014; Kalia et al. 2014] but much limited
interfaces: read, write, and two atomic operations (fetch-and-add and CAS).

We ran a microbenchmark to compare the throughput and the latency of random
reads using one-sided RDMA READ and TCP/IP on a six-node cluster connected by a
Mellanox ConnectX-3 56GB/sec InfiniBand NIC and 40GB/sec InfiniBand Switch.2 Fig-
ure 3(a) shows the peak throughput with different sizes of payload. The configuration
is that a single machine runs eight server threads on distinct physical cores of the same
socket, and the remaining five machines run up to eight client threads each. The TCP
settings are mostly the default ones in Linux kernel (with interrupt coalescing on) with
TCP read/write buffer sizes as follows: minimal, 4KB; initial, 1MB; and maximum,

2The detailed setting can be found in Section 6.4.
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Fig. 4. Architecture overview of DrTM.

Table II. Summary of the Challenges and the Corresponding Designs Used
in DrTM as Well as Their Benefits

Challenges Designs Benefits Section
Limited HTM
working set Optimized transaction chopping Reduced working set

for HTM regions 4

HTM cannot
cross machines

RDMA-based locking leveraging
strong atomicity of HTM and
strong consistency of RDMA

Cross-machine
HTM-based

serializable transactions
5

Limited expressiveness
of one-sided RDMA
ops for shared locks

Use lease for shared locks Allow read sharing of
records across machines 5.2

No durability for HTM Cooperative logging
with residual power from UPS

Full ACID transactions
that are recoverable
from power outages

5.6

No efficient memory
store leveraging
HTM and RDMA

HTM/RDMA-friendly hash table
with location-based caching

Simplified design with
better performance with

transaction support
6

4MBs. The throughput of one-sided RDMA READ outperforms that of TCP/IP by more
than 20X for payload sizes between 8 and 128 bytes, which is consistent with a prior
evaluation [Dragojević et al. 2014]. Nevertheless, with the increase of payload size,
the difference decreases due to the bottleneck on the bit rate. One-sided RDMA READ
achieves a bit rate of nearly 34GB/sec with 2KB request sizes. Figure 3(b) further
shows the average latency between two machines with different sizes of payload. The
latency of one-sided RDMA READ is up to 47X lower than that of TCP/IP.

3. OVERVIEW

Setting. DrTM is an in-memory transaction processing system that targets OLTP work-
loads over a large volume of data. It aims at leveraging emerging processor (HTM) and
network (RDMA) features to efficiently run transactions on a modern cluster. DrTM
scales by partitioning data into many shards spreading across multiple machines con-
nected by high-performance networking with RDMA support. For each machine with
n cores, DrTM employs n worker threads, each of which executes and commits a single
transaction at a time, synchronizing with other threads using the HTM transactions.

Approach overview. We build DrTM out of two independent components: transaction
layer and memory store. Figure 4 illustrates the execution of local and distributed
transactions in DrTM. Like other systems [Dragojević et al. 2014], DrTM exposes a
partitioned global address space [Charles et al. 2005; Coarfa et al. 2005], where all
memory in a cluster is exposed as a shared address space, but a process needs to
explicitly distinguish between local and remote accesses. A remote access in DrTM
is mainly done using one-sided RDMA operations for efficiency. DrTM uses a set of
designs to improve the performance, as shown in Table II.
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On each machine, DrTM utilizes HTM to provide transaction support. When a trans-
action’s size is too large to fit into the working set of HTM or leads to a high abort rate,
DrTM leverages transaction chopping [Zhang et al. 2013; Shasha et al. 1995] with op-
timizations (see Section 4) to decompose larger transactions into smaller pieces. In this
case, there is a restriction such that only the first piece may contain a user-initiated
abort, as in prior work [Zhang et al. 2013].

DrTM is further designed with a concurrency control scheme to glue all transac-
tions together while preserving strict serializability. Typical systems mostly either use
2PL [Bernstein and Goodman 1981] or OCC [Kung and Robinson 1981]. HTM relies
on hardware (CPU) to do concurrency control for local transactions, which is hard to
be aborted and rolled back by software. Therefore, to preserve serializability among
conflicting transactions on multiple nodes, we designed a HTM-friendly 2PL-like pro-
tocol to coordinate accesses to the same database records from local and remote worker
threads. To bridge HTM (which essentially uses OCC) and 2PL, DrTM implements the
exclusive and lease-based shared locks using one-sided RDMA operations, which are
cache coherent with local accesses and thus provide strong consistency with HTM.

Beneath the transaction layer, DrTM implements a memory store that provides a
general key-value interface. We design and implement an HTM/RDMA-friendly hash
table, which uses one-sided RDMA operations to perform both read and write to remote
key-value pairs and provides an RDMA-friendly, location-based, and host-transparent
cache.

Limitation. DrTM currently has three main limitations. First, similar to some prior
work [Thomson et al. 2012; Aguilera et al. 2007], DrTM requires advance knowledge of
read/write sets of transactions for proper locking to implement the 2PL-like protocol.
Second, DrTM only provides an HTM/RDMA-friendly key-value store for the unordered
store using a hash table and still requires SEND/RECV Verbs for remote accesses of the
ordered stores. Finally, DrTM currently preserves durability rather than availability in
case of machine failures, as done in recent in-memory databases [Tu et al. 2013; Wang
et al. 2014; Zheng et al. 2014]. We plan to address these issues in our future work.

4. REFINING DATABASE TRANSACTIONS FOR HTM

The nice properties like atomicity, consistency, and isolation of HTM make it an ideal
alternative to ensure the transactional semantics of each transaction. This is because
HTM has already provided supports to tracking the read/write accesses of a transaction,
as well as to detecting conflicting accesses. Nevertheless, naive applications of HTM
to database transactions may result in poor performance due to excessive HTM aborts
(see Figure 1). Hence, it is critical to reduce the HTM-protected regions for a database
transaction.

This section describes how to leverage the theory of transaction chopping [Shasha
et al. 1995; Zhang et al. 2013], a classical technique to decompose transactions, to reduce
the HTM regions for single-machine transaction processing. Specifically, it leverages
static analysis [Bernstein and Shipman 1980] to chop a set of preknown transactions
into smaller pieces and then constructs a chopping graph to analyze cyclic conflicts
(i.e., SC-cycles) between transactions. However, trivially applying transaction chopping
can usually only chop very few transactions into smaller pieces due to the excessive
existence of cyclic conflicts in real-world transaction workloads like TPC-C.

This section first describes chopping graph, the sole algorithm of transaction chop-
ping to preserve the serializability of chopped transactions, as well as a set of com-
mon optimizations to expose more chopping opportunities. It then presents two new
workload-inspired optimizations to avoid SC- cycles and reduce the working set size
of HTM transactions. Note that such optimizations, along with transaction chopping,

ACM Transactions on Computer Systems, Vol. 35, No. 1, Article 3, Publication date: July 2017.



Fast In-Memory Transaction Processing Using RDMA and HTM 3:9

Fig. 5. Example of transaction chopping using two instances of TX1 and TX2; the S-edge within an SC-cycle
is merged.

not only benefit concurrency control using HTM but also other concurrency control
approaches due to the parallelism unleashed. Finally, this section describes how to
handle read-only transactions.

4.1. Chopping Graph

A chopping graph is an undirected graph with a set of transaction operations connected
with sibling edges (S-edges) and conflicting edges (C-edges) [Shasha et al. 1995]. The
steps of building a chopping graph are as follows. All transactions are first chopped into
pieces. Each piece contains one operation and is represented by a vertex in the chopping
graph. Two consecutive pieces in one transaction are connected with an S-edge. Two
conflicting pieces from different transactions are connected with a C-edge. If there is
an SC-cycle (a cycle containing both S-edges and C-edges), it should be removed by
merging pieces connected with S-edges in the cycle. The construction of the chopping
graph is not finished until there is no SC-cycle in the graph. At runtime, each piece in
the chopping graph is executed atomically, just as a single transaction.

In practice, transactions are chopped at the granularity of accesses to database tables.
During static analysis, the actual records accessed at runtime are unknown. When two
pieces access the same table, and at least one of them contains write operations, they
are considered to be conflicting, unless they are commutative. As there may be multiple
instances of a transaction executing simultaneously, it is a common practice to construct
a chopping graph by using two instances of each transaction [Zhang et al. 2013].

Figure 5 shows an example of transaction chopping. There are two types of transac-
tions in total. Each transaction is chopped into two pieces connected with an S-edge,
as it contains two operations. Two instances of Transaction 1 (TX1) conflict on Table A,
and thus there is a C-edge between the first pieces of the two transactions that access
Table A. Similarly, three C-edges are added due to conflicts on Table B. The pieces from
the two instances of TX1 and TX2 form an SC-cycle, leading to the merging of pieces
from the same transaction instance. After merging, both instances of TX1 contain only
one piece with two operations.

Prior approaches have already described a set of optimizations to reduce SC-cycles
and the size of pieces [Shasha et al. 1995; Garcia-Molina 1983; Zhang et al. 2013; Mu
et al. 2014], which we adopt as well.

Reordering of independent operations. After transaction chopping, the result of a
piece can be visible to other transactions after its completion at runtime. There may
be a dirty read if the user aborts the transaction later. To avoid such an inconsistency,
the pieces containing user-initiated aborts must be merged into or reordered before the
first conflicting piece of the chopped transaction. Other pieces are merged to remove
SC-cycles in the chopping graph. However, it is not necessary to include pieces that
have no C-edges in the merged pieces. As long as there is no dependence between
pieces, they can be reordered to reduce the size of pieces.

For example, the new-order (NEW) transaction in TPC-C has three pieces that
do not conflict with the others and can be removed from the conflicting piece of the
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new-order transaction through reordering. Among them, the piece accessing the ITEM
table contains a user-initiated abort, so it is reordered to the first piece to execute.

Identifying commutativity. Some pieces update the same table, but their execution
order does not affect the consistency and the constraint rules are always satisfied.
We say that these pieces are commutative. In such a case, the C-edges among them
can be removed. For example, TPC-C contains two commutative operations in the
payment (PAY) transaction: the year-to-date balance of a local warehouse and district
are increased atomically.

4.2. Recovering Commutativity with Deferred Execution

Transaction chopping may improve parallelism by decomposing transactions into small
pieces, which may be executed in parallel and may have smaller HTM regions. How-
ever, traditional analysis may result in multiple SC-cycles to be merged and hence
transaction pieces that are still relatively large, which may still cause excessive HTM
aborts. This section describes how to further refine the SC-graph by removing SC-cycles
by recovering commutativity.

Two pieces are commutative not only if their database operations are commutative
but also if their results do not need to be visible by other transactions. For example,
the delivery (DLY) transaction in TPC-C increases the balance of a customer, which is
commutative between two instances of the delivery transaction. However, the payment
(PAY) transaction will read the customer’s balance, which turns it into a noncommuta-
tive but conflicting operation.

We convert such noncommutative operations into commutative ones by proposing
a new publish-subscribe scheme. Specifically, the publisher transactions (e.g., DLY)
aggregate the commutative updates locally and only publish the results after a period
of time (i.e., an epoch). Hence, the subscriber transactions (e.g., PAY) may only conflict
with the publisher transactions at the publishing time. To further remove such a
conflict, we enforce a barrier during publishing such that all publisher transactions
are serialized before the ongoing subscriber transactions. This essentially defers the
execution of publisher transactions until the barrier and the subscriber transactions
may only see the results after the barrier. Note that this barrier also enforces a serial
order among subscriber transactions: a subscriber transaction cannot read a published
record until all subscriber transactions that read the earlier published record commit.

The key premise of this deferring scheme is that there is no other C-path (i.e., a
path containing only C-edges) connecting the publisher and the subscriber transactions
(possibly involving other transactions) in the chopping graph after applying the scheme.
Otherwise, the subscriber may still be able to observe the publisher’s immediate states
through other dependence. Under this premise, we only need to include the conflicting
operations between the two transactions in a separate piece and defer it while letting
the results of other pieces be immediately visible to other transactions.

To implement this scheme, the database periodically (e.g., 20ms in the current imple-
mentation) increases a global epoch number and only publishes the local updates when
the global epoch number increases. At this time, each thread will first snapshot the
publisher’s local results to a predefined location and then synchronize its local epoch
number with the global one. A new subscriber transaction will first check if the global
epoch number has been changed or not. If so, it will wait until the local epoch numbers
of all other threads (may include the publisher transactions) have been synchronized
as the global epoch number. Next, it collects all pending results and applies them to
the database tables. Afterward, it can start its own operations. This essentially serial-
izes all subscriber transactions that observe the new global snapshot number after the
pending publisher transactions and all subscriber transactions that do not observe the
new global snapshot number before the pending publisher transactions.
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Fig. 6. Recovering commutative operations between delivery and payment transactions in TPC-C using the
publish-subscribe scheme.

Figure 6 shows the chopping graph after applying the publish-subscribe optimization.
As a by-product, the accesses to the ORDER and ORDERLINE tables can also be removed
from the conflicting piece.

4.3. Split Searching on Indexing

A transaction may frequently access the database tables, which usually involves a
large working set as it may first need to search and update the table. During the
static analysis, we find that the records in some tables are stationary during execution
without insertion or deletion. Consequently, searching the underlying data structures
of these tables will not cause conflicts and can be safely removed from the HTM region
protecting the corresponding piece (e.g., DISTICTIDX).

4.4. Read-Only Transactions

The read-only transaction plays an important role in OLTP workloads and usually
has a very large read set that may cause much high-capacity abort and increase the
likelihood of SC-cycles when transaction chopping. To remedy this, the single-machine
version of DrTM provides a two-round scheme, similar to ROCOCO [Mu et al. 2014],
to execute read-only transactions without HTM and chopping.

At the first round, DrTM waits for all pieces of conflicting transactions to become
finished and then reads all records. After that, DrTM issues a second round to confirm
that all records are identical to that of the first round and the record set has not
been changed (i.e., there is no structural change). Each record is associated with a
version field, which is increased by each update. The read-only transaction is considered
successful if both rounds get the same version of all records. If two versions of any
record do not match, DrTM simply restarts the transaction at a random point within
an interval.

To put it all together, Figure 7 illustrates the default and optimized chopping graphs
of TPC-C. The traditional chopping algorithm can chop very few transactions into
smaller pieces and thus can hardly reduce the working set of HTM transactions.
Instead, we can successfully chop transactions into much smaller pieces due to the
preceding optimizations.

5. SUPPORTING DISTRIBUTED TRANSACTIONS

DrTM uses HTM to provide transaction support within a single machine and further
designs an HTM/RDMA-friendly 2PL protocol to coordinate accesses to remote records
for distributed transactions.

5.1. Coordinating Local and Distributed Transactions

Since an HTM transaction provides strong atomicity and one-sided RDMA operations
are cache coherent, DrTM uses them to bridge the HTM and 2PL protocol. The one-
sided RDMA operations present as nontransactional accesses for remote records in
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Fig. 7. Default (top half) and optimized (bottom half) chopping graphs of TPC-C. The original NewOrder
(NEW) transaction contains four pieces, each query or update tables including WAREHOUSE (W), ITEM
(I), CUSTOMER (C), DISTRICT (D), ORDER (O), STOCK (S), ORDERLINE (L), and NEWORDER (N).
Similarly, Delivery (DLY), Payment (PAY), OrderStatus (OS), and StockLevel (SL) transactions query or
update these tables as well as the HISTORY (H) table. As stated in Section 4.3, we separate index searching
from the actual table update. Hence, we also split the table operations for such tables (e.g., DISTRICT-IDX,
ORDER-IDX, and CUSTOMER-IDX).

Fig. 8. Various cases of conflicts between local and remote accesses in transactions.

distributed transactions, which can directly abort the conflicting HTM transactions
running on the target machine.

However, any RDMA operation inside an HTM transaction will unconditionally cause
an HTM abort, and thus we cannot directly access remote records through RDMA
within HTM transactions. To this end, DrTM uses 2PL to safely accumulate all remote
records into a local buffer prior to the actual execution in an HTM transaction and
write back the remote updates to other machines until the local commit of the HTM
transaction or discard temporary updates after an HTM abort.

DrTM provides serializable transactions, which are organized into three phases:
Start, LocalTX, and Commit (Figure 8(a)). In the Start phase, a transaction locks and
prefetches required remote records in advance and then runs XBEGIN to launch an HTM
transaction. In the LocalTX phase, the HTM transaction provides transactional read
and write for all local records. In the Commit phase, the distributed transaction first
commits the HTM transaction using XEND and then updates and unlocks all remote
records. Figure 9(a) shows the pseudocode of the main transaction interfaces provided
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Fig. 9. Pseudocode of the transaction interface and exclusive/shared lock in DrTM.

by DrTM. The confirmation of all leases (lines 1 through 3) in the Commit phase will
be further explained in Section 5.3.

Similar to prior work [Thomson et al. 2012; Aguilera et al. 2007], DrTM requires
advanced knowledge of read/write sets of transactions for locking and prefetching in
the Start phase. Fortunately, this is the case for typical OLTP transactions like TPC-C,3
SmallBank [Alomari et al. 2008; The H-Store Team 2015b], Article [The H-Store Team
2013], and SEATS [The H-Store Team 2015a]. For workloads that do not satisfy this
requirement, we can add a read-only reconnaissance query to discover the read/write
set of a particular transaction and check again if the set has been changed during the
transaction [Thomson et al. 2012].

Since we use different mechanisms to protect local accesses by HTM and distributed
accesses by 2PL, the same type of accesses can correctly cooperate with each other.
For example, as shown in Figure 8(e), the transaction on machine 1 (M1) will lock
the remote records on machine 2 (M2) to prevent another transaction on machine 3
(M3) from accessing the same record. However, the remote accesses protected by a
software mechanism (i.e., 2PL) cannot directly work with the local accesses protected
by a hardware mechanism (i.e., HTM). Since the RDMA operations on remote records
are presented as nontransactional accesses, they can directly abort transactions that
also locally access the same records earlier within an HTM region (see Figure 8(b)).
Unfortunately, if the local accesses happen later than the remote ones, the conflicting
transaction will incorrectly commit (see Figure 8(c) and (d)). To this end, DrTM further
checks the state of records inside local read and write operations of an HTM transaction
and explicitly aborts the HTM transaction if a conflict is detected. Further details will
be presented in Section 5.3.

3Section 7.4 illustrates how transform TPC-C to satisfy this requirement.
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5.2. Exclusive and Shared Lock

The implementation of the 2PL protocol relies on read/write locks to provide exclusive
and shared accesses. The lack of expressiveness for one-sided RDMA operations (e.g.,
only READ/WRITE/CAS) becomes a major challenge.

RDMA provides one-sided atomic CAS, which makes it easy to implement the exclu-
sive lock. The semantic of RDMA CAS is equal to the normal CAS instruction (i.e., local
CAS), which atomically swaps the current value with a new value if the current value is
equal to the expected value. However, there is an atomicity issue between local CAS and
RDMA CAS operations. The atomicity of RDMA CAS is hardware specific [Mellanox
Technologies 2015], which can implement each of the three levels: IBV_ATOMIC_NONE,
IBV_ATOMIC_HCA, and IBV_ATOMIC_GLOB. The RDMA CAS can only correctly work with
local CAS under IBV_ATOMIC_GLOB level, whereas our InfiniBand NIC4 only provides
the IBV_ATOMIC_HCA level of atomicity. This means that remote RDMA CASs cannot
guarantee atomicity with local CASs. Fortunately, the lock will only be acquired and
released by remote accesses using RDMA CASs. The local access will only check the
state of locks, which can correctly work with RDMA CAS due to the cache coherence of
RDMA memory.

Compared to the exclusive lock, the shared lock requires extremely complicated op-
erations to handle both sharing and exclusive semantics, which exceeds the expressive-
ness of one-sided RDMA operations. DrTM uses a variant of lease [Gray and Cheriton
1989] to implement the shared lock. The lease is a contract that grants some rights
to the lock holder in a time period, which is a good alternative to implement shared
locking using RDMA due to no requirement of explicit releasing or invalidation.

The lease-based shared lock is only acquired by remote transactional read to safely
read the remote records in a time period, whereas the local transactional read can
directly overlook the shared lock due to the protection from HTM. All local and remote
transactional write will actively check the state of the shared lock and abort its belonged
transaction when the lease is not expired. Further, to ensure the validation of leases
up to the commit point, an additional confirmation is inserted into the Commit phase
(lines 1 through 3) before the commitment of a local HTM transaction (i.e., XEND).
Note that the lease-based shared lock is not specific to DrTM but may be beneficial to
other systems that require read sharing of remote records, such as a distributed lock
manager.

5.3. Transactional Read and Write

Figure 9(b) illustrates the data structure of the state, which combines exclusive (write)
and shared (read) locks into a 64-byte word. The first (least significant) bit is used to
present whether the record is exclusively locked or not, the 8-bit owner_id is reserved
to store the owner machine ID of each exclusive lock for durability (see Section 5.6),
and the rest of the 55-bit read_lease is used to store the end time of a lease for sharing
the record. We used the end time instead of the duration of the lease since it will be
easy to make all leases of different remote reads expire in the same time, which can
simplify the confirmation of leases (see COMMIT in Figure 9(a)). The duration of the read
lease may impact on parallelism and the abort rate in DrTM. Finding the best duration
of a lease is outside the scope of this article and is part of our future work. Currently,
DrTM simply fixes the lease duration as 1.0ms for read-only transactions and 0.4ms
for the rest of the transactions according to our cluster setting.

The initial state is INIT (i.e., 0x0), and the state will be set to W_LOCKED, which is
piggybacked with a machine ID for exclusively locking the record. The record is validly

4Mellanox ConnectX-3 MCX353A 56GB/sec InfiniBand NIC.
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Fig. 10. Pseudocode of remote and local accesses and read-only transaction interface in DrTM.

shared among readers only if the first bit is zero and the current time (i.e., now) is
earlier than the end time of its lease. The DELTA is used to tolerate the time bias among
machines, which depends on the accuracy of synchronized time (see Section 7.1).

Figure 10 shows the pseudocode of remote read and write. The one-sided RDMA CAS
is used to lock remote records. For remote read (i.e., REMOTE_READ), if the state is INIT
(lines 3 through 5) or has been locked in shared locked with an unexpired lease (lines
12 through 14), the record will be successfully locked in shared mode with expected or
original end time. An additional RDMA READ will fetch the value of a record into a
local cache, and the end time is returned. If the state has been locked in shared mode
with an expired lease (lines 9 through 11), the remote read will retry RDMA CAS to
lock the record with the correct current state by RDMA CAS. If the record has been
locked in the exclusive mode (lines 6 and 7), DrTM will directly abort its belonged
transaction. Similarly, the beginning of a remote write (i.e., REMOTE_WRITE) will also
use RDMA CAS to lock the remote record but with the state LOCKED. Another difference
is that the remote write will abort its belonged transaction if the state is locked in
shared mode and the lease is not expired (lines 11 and 12). The ending of a remote
write (i.e., REMOTE_WRITE_BACK) will write back the update to the remote record and
release the lock. Note that the abort (i.e., ABORT) needs to explicitly release all owned
exclusive locks, and the transaction needs to retry. To simplify the exposition, we skip
such details in the pseudocode.

As shown in Figure 10(b), before actual accesses to the record, the local read (i.e.,
LOCAL_READ) needs to ensure that the state is not locked in the exclusive mode. For
the local write (i.e., LOCAL_WRITE), it must further consider that the state is also not
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Table III. Impact of Local and Remote Operations to the State
and the Value of Record

L RD L WR R RD R WR R WB

State RS RS WR WR WR

Value RS WS RD RD WR

Note: Respectively, L and R stand for local and remote; RD,
WR, and WB stand for read, write, and write back; and RS
and WS stand for read set and write set.

Table IV. Conflict State Between Accesses to the Same Record
with Different Types and Interleavings

Figure 8(b) Figure 8(c) Figure 8(d)

L RD L WR L RD L WR L RD L WR

R RD C C S C S C

R WR C C C C C C

Note: Respectively, L and R stand for local and remote; RD and WR
stand for read and write; and S and C stand for share and conflict.

locked with an unexpired lease (lines 8 and 9). In addition, the expired lease will be
actively cleared in a local write to avoid an additional RDMA CAS in remote read and
write (lines 4 through 7). Since this optimization has a side effect that adds the state
of record into the write set of an HTM transaction, it will not be used in a local read,
avoiding the false abort due to concurrent local reads.

Table III lists the impact of local and remote operations to the state and the value of
the record. Despite read or write, local access will only read the state, whereas remote
access will write the state. The false write to the state by remote read may result in
false conflict with a local read (Table IV). Furthermore, even though HTM tracks the
read/write access at the cache-line granularity, we still contiguously store the state and
the value to reduce the working set. Because there is no false sharing between them,
they will always be accessed together.

Table IV further summarizes the conflict state between accesses to the same record
with different types and interleavings. The conflict involved in the remote write back
(R_WB) is ignored, as it always holds the exclusive lock. There is only one false conflict
under the interleaving, as shown in Figure 8(b). The remote read (R_RD) will incorrectly
abort the transactions that only locally read (L_RD) the same record earlier, as the state
in the read set of the transaction is written by the remote read for locking. Fortunately,
we observe that such a case is rare and has little impact on performance.

5.4. Read-Only Transactions

The read-only transaction is a special case that usually has a very large read set
involving up to hundreds or even thousands of records. Thus, it will likely abort an
HTM transaction. To remedy this, DrTM provides a separate scheme to execute read-
only transactions without HTM.

Figure 10(c) shows the pseudocode of the interface for read-only transactions. The
transaction first locks remote records in shared mode with the same end time and
prefetches the values into a local cache. Local records are read by using the way of han-
dling read-only transactions in the single-machine version of DrTM (see Section 4.4)—
that is, waiting for all pieces of conflicting transactions to finish before reading all
records and issuing a second round to confirm that all records are unchanged. In case
any records have been changed by a remote transaction, DrTM will redirect the exe-
cution to a fallback handler, where DrTM handles such records in the same manner
as remote records (i.e., using shared lock). After that, the transaction needs to confirm
the validation of all shared locks using the end time. As the use of a lease equals a
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read lock, this simple scheme ensures that a read-only transaction can always read a
consistent state.

This simple solution provides two key benefits. First, acquiring and holding shared
locks until all records are read can ensure that there are no inflight conflicting transac-
tions on any machine. This preserves serializability of DrTM. Second, prior work [Mu
et al. 2014] uses two-round execution to confirm the two rounds return the same re-
sults, which may be lengthy and lead to new conflicts. DrTM provides an efficient and
lightweight approach by directly checking the end time of shared locks.

5.5. Strict Serializability

This section gives an informal argument on the strict serializability of our hybrid con-
currency control protocol. We argue it by reduction that our protocol equals to the strict
two-phase locking (S2PL) [Gray and Reuter 1993]. S2PL complies with the following:
(1) all locks are acquired and no locks are released in the expanding phase, (2) all shared
(read) locks are released and no lock is acquired in the shrinking phase, and (3) all ex-
clusive (write) locks are released only after the transaction has committed or aborted.

First, we show that the behavior of an HTM region for local records to be written
and read is equivalent to the exclusive and shared lock, respectively. If both of the two
conflicting accesses are local and at least one is write, HTM ensures that at least one
of the transactions will abort. If one of the conflicting accesses is remote, HTM with
the help of the state of record can still correctly check the conflict and abort the local
transaction, as shown in Table IV. The false conflict between local and remote reads
only affects the performance, not the correctness.

Second, we also show that our lease-based shared lock is equivalent to a normal
shared lock. Suppose that one record is locked in shared mode with a lease by a
transaction before reading it. After that, other reads are able to share this lease,
whereas any write to the record will be rejected until the lease is expired. However, the
transaction will confirm the validation of lease before commitment and pessimistically
abort itself if the lease has expired.

Finally, we argue that all locks will be released at a right time. The “lock” for local
records will be released after the HTM transaction commits or aborts. The confirmation
after all execution of the transaction means that all shared locks are released in the
shrinking phase such that no lock will be acquired. After the HTM transaction commits,
the updates to local records have been committed, and the updates to remote records
will also eventually be committed. All exclusive locks will be released after that time.

5.6. Durability

DrTM currently preserves durability in case of machine failures (e.g., machine shut-
down due to power failures) and thus provides full ACID transactions, as done in recent
in-memory databases [Tu et al. 2013; Wang et al. 2014; Zheng et al. 2014]. How to pro-
vide availability, such as through efficiently replicated logging [Dragojević et al. 2014,
2015], will be our future work.

Failure model and assumptions. DrTM uses similar failure models as other
work [Narayanan and Hodson 2012; Dragojević et al. 2015], where each machine
has a UPS that provides power during an outage. It assumes the flush-on-failure
policy [Narayanan and Hodson 2012] and uses the power from the UPS to flush any
transient state in processor registers and cache lines to nonvolatile DRAM (NVRAM,
like NVDIMM [The Storage Networking Industry Association (SNIA) 2015]) and
finally to a persistent storage (e.g., SSD) upon a failure. A machine in a cluster may
crash at any time, but only in a fail-stop manner instead of arbitrary failures like
Byzantine failures [Castro and Liskov 1999; Kotla et al. 2007]. Currently, it only
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Fig. 11. Design of logging and recovery in DrTM, assuming Machine 1 (M1) failed and then recovered. The
upper left corner shows the execution flow of transaction with logging in DrTM. Parts (a) and (b) show how
the transaction on the failed machine (e.g., M1) unlocks the record on the surviving machines. Parts (c), (d),
and (e) show how the transaction on the surviving machines commits/rollbacks and unlocks the record on
the failed machine.

considers machine failures and not others caused by software bugs like operating
system crashes or bugs inside DrTM. DrTM also assumes that there is a reliable local
storage (e.g., RAID) in each machine such that the logs are durable once they are
persisted. DrTM uses a highly reliable external coordination service, Zookeeper [Hunt
et al. 2010], to detect machine failures through a heartbeat mechanism and to notify
surviving machines to assist the recovery of crashed machines. Zookeeper connects
DrTM over a separate 10GbE network to avoid rewriting it for RDMA.

Challenges. Using HTM and RDMA to implement distributed transactions raises two
new challenges for durability by logging. First, as all machines can immediately observe
the local updates after the commitment of a local HTM transaction (i.e., XEND), DrTM
needs to eventually commit the database transaction enclosing this HTM transaction,
even if this machine failed. Second, due to all records in each machine being available
to one-sided RDMA accesses without the involvement of this machine, a machine can
no longer log all accesses to its owned records.

Cooperative logging. DrTM uses cooperative logging and recovery for durability. In
each machine, in addition to logging local updates within an HTM transaction, DrTM
also logs remote updates through RDMA operations, including locking (RDMA CAS)
and updates (RDMA WRITE) to remote records. The upper left part of Figure 11 shows
that each transaction issues logging operations both before and within the HTM region.
Before the HTM region, a transaction first logs the chopping graph information (e.g.,
the remaining transaction pieces) if it is part of a larger parent transaction when
transaction chopping is applied. Such chopping information is used to instruct DrTM
on which transaction piece to execute after recovery from a crash. The transaction
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also logs its remote write set ahead of any exclusive locking (lock-ahead log) so that
DrTM knows which records need to be unlocked during recovery. Before committing
an HTM region, a transaction logs all updates of both local and remote records (write-
ahead log) to NVRAM. These can be used for recovery by writing such records on the
target machines. Note that each record piggybacks a version to decide the order of
updates from different transactions, which is initially zero by recording insertion and
is increased by each local and remote write.

Failure recovery. Since DrTM does not replicate its logs across machines, it must
wait until the crashed machine has recovered to proceed. DrTM checks the persistent
logs to determine how to do recovery, as shown in the right part of Figure 11. If the
machine crashes before the HTM commits (i.e., XEND), it implies that the transaction is
not committed and thus the write-ahead log will not appear in NVRAM due to the all-
or-nothing property of HTM. The lock-ahead log will be used to unlock remote records
during recovery when necessary (see Figure 11(a)). Note that several bits (e.g., 8) of
the state structure (see Figure 9(b)) are reserved to store the owner machine of each
exclusive lock, which can be used to identify the machine that locks the record at last. If
the machine crashes after the HTM transaction commits, it implies that the transaction
should be eventually committed and the write-ahead log in NVRAM can be used to write
back and unlock local and remote records when recovered (see Figure 11(b)).

From the perspective of surviving machines, their worker threads suspended their
transactions involving the remote records in the crashed machine and waited for the
notification from Zookeeper to assist the recovery. Currently, DrTM does not switch the
worker thread to run the next transaction for simplicity as well as for starting recovery
as soon as possible. Figure 11(c), (d), and (e) show three cases of related transactions in
a surviving machine to assist the recovery of a crashed machine, which correspond to
locking in REMOTE_WRITE, unlocking in ABORT, and updating in WRITE_BACK, respectively.

6. MEMORY STORE LAYER

The memory store layer of DrTM provides a general key-value store interface to the
upper transaction layer. The most common usage of this interface is to read or write
records by given keys. To optimize for different access patterns [Lindsay et al. 1987;
Batoory et al. 1988; Mammarella et al. 2009], DrTM provides both an ordered store in
the form of a B+ tree and an unordered store in the form of a hash table, following the
standard practices in commercial databases like Oracle and Microsoft SQL server. For
the ordered store, we use the B+ tree in DBX [Wang et al. 2014], which uses HTM to
protect the major B+ tree operations and was shown to have comparable performance
with state-of-the-art concurrent B+ tree [Mao et al. 2012]. For the unordered store, we
further design and implement a highly optimized hash table based on RDMA and HTM.
For ordered store, since there is no inevitable remote access to such database tables in
our workloads (i.e., TPC-C and SmallBank), we currently do not provide RDMA-based
optimization for such tables. Actually, how to implement a highly efficient RDMA-
friendly B+ tree is still a challenge.

6.1. Design Spaces and Overview

There have been several designs that leverage RDMA to optimize hash tables, as
shown in Table V. For example, Pilaf [Mitchell et al. 2013] uses one-sided RDMA
READs to perform GETs (i.e., READ) but requires two-sided RDMA SEND/RECV Verbs
to ship update requests to the host for PUTs (i.e., INSERT/WRITE/DELETE). It uses two
checksums to detect races among concurrent reads and writes and provides no trans-
action support. Cuckoo hashing [Pagh and Rodler 2004] is used to reduce the number
of RDMA operations required to perform GETs. Similarly, the key-value store on top
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Table V. Summary of Various RDMA-Friendly Hash Table–Based Key-Value Stores

Pilaf FaRM HERD DrTM
Hashing Cuckoo Hopscotch Lossy Index Cluster

Value Store Outside Out/Inside† Outside Outside
One-Sided RDMA Read Read — Read/Write

Race Detection Checksum Versioning Partitioning HTM/Locking
Transaction No Yes No Yes

Caching No No No Yes
†FaRM can put the small fixed-size value inside the header slot with the key to save one
RDMA READ but increase the size of RDMA READs.

of FaRM [Dragojević et al. 2014] (FaRM-KV) also uses one-sided RDMA READs to
perform GETs, whereas a circular buffer and receive-side polling instead of SEND/RECV
Verbs are used to support bidirectional accesses for PUTs. Multiple versions, lock, and
incarnation fields are piggybacked to the key-value pair for race detection. A variant
of Hopscotch hashing [Herlihy et al. 2008] is used to balance the trade-off between the
number and the size of RDMA operations. Another design alternative is HERD [Kalia
et al. 2014], which focuses on reducing network round trips. HERD uses a mix of RDMA
WRITE and SEND/RECV Verbs to deliver all requests to the host [Lim et al. 2014] for
both GETs and PUTs, which requires nontrivial host CPU involvement. DrTM demands a
symmetry memory store layer to support transaction processing on a cluster, in which
all machines are busy processing transactions and accessing both local and remote
memory stores. Therefore, we do not consider the design of HERD.

Prior designs have successfully demonstrated the benefit of RDMA for memory
stores; however, there is still room for improvement, and the combination of HTM
and RDMA provides a new design space. First, prior RDMA-friendly key-value stores
adopt a tightly coupled design, where the design of data accesses is restricted by the
race detection mechanism. For example, to avoid complex and expensive race detection
mechanisms, both Pilaf and FaRM-KV only use one-sided RDMA READ. This choice
sacrifices the throughput and latency of updates to remote key-value pairs, which are
also common operations in remote accesses for distributed transactions in typical OLTP
workloads (e.g., TPC-C).

Second, prior designs have a bias toward RDMA-based remote operations, which
increases the cost of local accesses as well. The race detection mechanisms (e.g., check-
sums [Mitchell et al. 2013] and versioning [Dragojević et al. 2014]) increase the pressure
on the system resources (CPU and memory). For example, Pilaf uses two 64-bit CRCs
to encode and decode hash table entries and key-value pairs, respectively, for write and
read operations. FaRM-KV adds a version field per cache line of the value for write
operationsand checks the consistency of versions when reading the value. Further, all
local operations, which commonly dominate the accesses, also have to follow the same
mechanism as the remote ones with additional overhead.

Finally, even using one-sided RDMA operations, accessing local memory is still an
order-of-magnitude faster than accessing remote memory. However, there is no efficient
RDMA-friendly caching scheme in prior work for both read and write operations, as
the traditional content-based cache has to perform strongly consistent read locally. A
write operation must synchronously invalidate every caches scattered across the entire
cluster to avoid stale reads, resulting in high write latency. The cache invalidation will
also incur new data race issues that require complex mechanisms to avoid, such as
lease [Wang et al. 2014].

Overview. DrTM leverages the strong atomicity of HTM and strong consistency of
RDMA to design an HTM/RDMA-friendly hash table. First, DrTM decouples the race
detection from the hash table by leveraging the strong atomicity of HTM, where all
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Fig. 12. Detailed design of the Cluster chaining hash table (upper left). The hash table comprises the main
headers, the indirect headers, and value entries. Each slot in the header bucket contains a 2-bit type (Type/2),
14-bit lossy incarnation (LI/14), 48-bit offset (Offset/48), and 64-bit key (Key/64). Each entry contains 64-bit
key (Key/64), 32-bit incarnation (I/32), 32-bit version (V/32), 64-bit state (State/64), and N-bit value field
(Value/N). The location-based cache (lower right corner) only caches the header buckets that have already
been accessed on each machine.

local operations (e.g., READ/WRITE/INSERT/DELETE) on key-value pairs are protected by
HTM transactions and thus any conflicting accesses will abort the HTM transaction.
This significantly simplifies the data structures and operations for race detection.
Second, DrTM uses one-sided RDMA operations to perform both READ and WRITE to
remote key-value pairs without involving the host machine.5 Finally, DrTM separates
keys and values as well as its metadata into decoupled memory regions, resulting in
two-level lookups like Pilaf [Mitchell et al. 2013]. This makes it efficient to leverage
one-sided RDMA READ for lookups, as one RDMA READ can fetch a cluster of keys.
Further, the separated key-value pair makes it possible to implement RDMA-friendly,
location-based, and host-transparent caching (see Section 6.3).

6.2. Cluster Hashing

DrTM uses Cluster chaining instead of Cuckoo [Mitchell et al. 2013] or Hop-
scotch [Dragojević et al. 2014] due to good locality and simple INSERT without moving
header slots, as the INSERT operation is implemented as an HTM transaction and thus
excessively moving header slots may exceed the HTM working set, resulting in HTM
aborts. Cluster hashing is similar to traditional chaining hashing with associativity
but uses a decoupled memory region and shares indirect headers to achieve high space
efficiency and fewer RDMA READs for lookups.

Figure 12 shows the design of the key-value store, which consists of three regions:
main header, indirect header, and entry. The main header and indirect header share
the same structure of buckets, each of which contains multiple header slots. The header
slot is fixed as 128 bits (16 bytes), consisting of 2-bit type, 14-bit lossy incarnation, 48-
bit offset, and 64-bit key. The lossy incarnation uses the 14 least significant bits of
the full-size incarnation, which is used to detect the liveness of entry [Treiber 1986].
Incarnation is initially zero and is monotonously increased by INSERT and DELETEwithin
an HTM region, which guarantees the consistency of lossy and full-size incarnations.
The offset can be located to an indirect header or entry according to the type. If the
main header is full of key-value pairs, the last header slot will link to a free indirect
header and change its type from Entry (T=10) to Header (T=01). The original resident
and new key-value pair will be added to the indirect header. To achieve good space

5The INSERT and DELETE will be shipped to the host machine using SEND/RECV Verbs and also locally
executed within an HTM transaction.
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efficiency even for a skewed key distribution, all indirect headers are shared by main
headers and can further link each other.

In addition to the key and value fields, the entry contains a 32-bit full-size incarna-
tion, 32-bit version, and 64-bit state. The version of a key-value pair is initially zero
and is monotonously increased by each WRITE, which is used to decide the order of
updates by applications. For example, DrTM uses it during recovery (see Section 5.6).
The state provides locking to ensure the strong consistency of remote writes for the
key-value pair. DrTM implements an exclusive and shared locks on it using RDMA
CAS (see Section 5.2).

6.3. Caching

With traditional content-based caching (e.g., replication), it is hard to perform strong-
consistent read and write locally, especially for RDMA. DrTM takes this fact into
account by building location-based caching for RDMA-friendly key-value stores, which
focuses on minimizing the lookup cost and retaining the full transparency to the host.

Compared to caching the content of a key-value pair, caching the location (i.e., offset)
of the key-value pair (i.e., entry) has several advantages. First, there is no need for
invalidation or synchronization on cache as long as the key-value pair is not deleted,
which is extremely rare compared to the read and write operations. Even if there
is a deletion, DrTM implements it logically by increasing its incarnation within an
HTM transaction. Consequently, it can be easily detected (e.g., incarnation checking
[Dragojević et al. 2014]) when reading the key-value pair via caching and treated as
a cache miss without worrying about stale reads. All of them are fully transparent
to the host. Second, the cached location of entry can be directly shared by multiple
client threads on the same machine, as all metadata (i.e., incarnation, version and
state) used by the concurrency control mechanisms are encoded in the key-value entry.
Finally, the size of cached data for the location-based mechanism (e.g., 16 bytes) is
independent to workload and usually much smaller than that of the key-value pair.
For example, a 16MB memory is enough to cache one million key-value pairs.

The lower right corner of Figure 12 shows the design of RDMA-friendly caching,
which maps to the key-value store on a single remote machine and is shared by all
client threads. The location cache adopts the same data structure as the header bucket
and stores almost the same content of main and indirect headers, which can be seen
as a partially stale snapshot.

The entire header bucket will be fetched when a certain slot of the bucket is read.
The Offset field in the header slot with Entry type (T=01) can be used to access the
key-value entry through RDMA operations. The cached header slot with Header type
(T=10) can help fetch the indirect header bucket, skipping the lookup of main header
bucket on the host. After caching the indirect header bucket, the original Offset field
will be refilled by the local virtual address of the cached bucket and the Type field will
also be changed to Cached (T=11). The following accesses to this indirect header bucket
will perform the lookup locally.

The buckets for indirect headers are assigned from a preallocated bucket pool. The
traditional cache replacement policy (e.g., LRU or reuse distance) can be used to limit
the size of the cache below a budget. Before reclaiming the evicted bucket, we first
recursively reclaim all buckets on the chain starting from the evict bucket and then
reset the header slot pointed to the evicted bucket with the recorded Offset field and
the Header type.

6.4. Performance Comparison

We compare our Cluster chaining hash table (DrTM-KV) against simplified implemen-
tations of two state-of-the-art RDMA-friendly hash tables in Pilaf [Mitchell et al. 2013]
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Table VI. Average Number of RDMA READs for Lookups at Different Occupancies

Cuckoo Hopscotch Cluster Cluster with Cache

Uniform
50% 1.348 1.000 1.008 0.204
75% 1.652 1.011 1.052 0.475
90% 1.956 1.044 1.100 0.587

Zipf
θ=0.99

50% 1.304 1.000 1.004 ≈0
75% 1.712 1.020 1.039 ≈0
90% 1.924 1.040 1.091 ≈0

and FaRM [Dragojević et al. 2014], respectively.6 Cuckoo hashing in Pilaf uses three
orthogonal hash functions, and each bucket contains one slot. The bucket size is fixed
to 32 bytes for the self-verifying data structure. Hopscotch hashing in FaRM-KV config-
ures the neighborhood with 8 and stores value (FaRM-KV/I) or its offset (FaRM-KV/O)
in the bucket. The Cluster hashing in DrTM-KV configures the associativity with 8,
and the bucket size is fixed to 128 bytes.

All experiments were conducted on a six-node cluster connected by Mellanox
ConnectX-3 56GB/sec InfiniBand, each machine having two 10-core Intel Xeon pro-
cessors and 64GB of DRAM.7 The machines run Ubuntu 14.04 with Mellanox OFED
v3.0-2.0.1 stack. To avoid significant performance degradation of RDMA due to exces-
sively fetching page table entries [Dragojević et al. 2014], we enable 1GB hugepage
to allocate physically contiguous memory registered for remote accesses via RDMA. A
single machine runs eight server threads on distinct physical cores of the same socket,
and remaining five machines run up to eight client threads each. We generate 20 mil-
lion key-value pairs with fixed 8-byte keys, occupying up to 40GB memory. Two types of
workloads, uniform and skewed, are used. Keys were chosen randomly with a uniform
distribution or a skewed Zipf distribution prescribed by YCSB [Cooper et al. 2010] with
θ=0.99.

Since only DrTM-KV implements writes using one-sided RDMA, our experiment
focuses on comparing the average number of RDMA READs for lookups, as well as the
throughput and latency of read operations. Finally, we study the impact of cache size
on the throughput of DrTM-KV.

Table VI lists the average number of RDMA READs for lookups at different occu-
pancies without caching. The results of Hopscotch hashing in FaRM-KV and Cluster
hashing in DrTM-KV are close and notably better than that of Cuckoo hashing in Pilaf
for both uniform and skewed workloads, as each RDMA READ in Hopscotch and Clus-
ter hashing can acquire up to eight candidates, whereas only one candidate is acquired
in Cuckoo hashing. The small advantage of Hopscotch hashing at high occupancy is
due to gradually refining the location of keys and fine-grain space sharing between dif-
ferent keys. Yet it makes the insertion operation much more complicated and hard to
be cached. However, location-based caching can significantly reduce the lookup cost of
Cluster hashing. For example, Cluster hashing with only a 20MB cache can eliminate
about 75% of RDMA READs under a skewed workload for 20 million key-value pairs,
even if the cache starts from empty.

We further compare the throughput and latency of read operations on different
key-value systems. DrTM-KV disables cache and DrTM-KV/$ starts from a 320MB
cold cache per machine shared by all client threads. FaRM-KV/I and FaRM-KV/O put
the key-value pairs inside and outside their header slots, respectively. Figure 13(a)
shows the throughput with different value sizes for a uniform workload. Since Pilaf,

6Their source code is not publicly available. Our simplified implementations may have better performance
than their original ones due to skipping some operations.
7Detailed machine configurations can be found in Section 8.1.
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Fig. 13. (a) The throughput comparison of read on uniform workloads with different value sizes. (b) The
latency comparison of read on uniform workload with a 64-byte value. (c) The impact of cache size on the
throughput with a 64-byte value for uniform and skewed (Zipf θ=0.99) workloads. Note that the size is in
the logarithmic scale.

FaRM-KV/O, and DrTM-KV all need an additional RDMA READ to read the key-
value pair after lookup, their throughput shows a similar trend. The difference of their
throughput for small value is mainly due to the difference of lookups cost (see Table VI).
Nevertheless, with the increase of value size, the difference decreases since the cost for
reading key-value pairs dominates the performance (see Figure 3). FaRM-KV/I has a
quite good throughput for a relatively small value due to avoiding an additional RDMA
READ, but the performance significantly degrades with the increase of value size due to
fetching eight times values and poor performance of RDMA READ for a large payload
(see Figure 3). DrTM-KV/$ has the best performance even compared to FaRM-KV/I
for small value size due to two reasons. First, DrTM-KV/$ fetches the entire bucket
(eight slots) at a time that increases the hit rate of location-based cache and decreases
the average number of RDMA READs for lookups to 0.178 even from cold cache. Sec-
ond, sharing the cache among client threads further accelerates the prefetching and
decreases the average cost for lookups to 0.024 for eight client threads per machine.
For up to a 128-byte value, DrTM-KV/$ can achieve more than 23 Mops/sec, which
outperforms FaRM-KV/O and Pilaf by up to 2.09X and 2.74X, respectively.

Figure 13(b) shows the average latencies of three systems with a 64-byte value for
a uniform workload. We varied the load on the server by first increasing the number
of client threads per machine from one to eight and then increasing the client ma-
chine from one to five until the throughout saturated. DrTM-KV is able to achieve
11.6 Mops/sec with approximately 6.3μs average latency, which is almost the same to
FaRM-KV/O and notably better than that of Pilaf (8.4 Mops/sec and 8.2μs). FaRM-KV/I
provides relatively lower average latency (4.5μs) but poor throughput (5.6 Mops/sec)
due to its design choice that saves one round trip but amplifies the read size. DrTM-
KV/$ can achieve both lowest latency (3.4μs) and highest throughput (23.4 Mops/sec)
due to its RDMA-friendly cache.

To study the impact of cache size, we evaluate DrTM-KV/$ with different cache
sizes using both uniform and skewed workloads. The location-based cache starts from
empty (/Cold) or after a 10-second warmup (/Warm). For 20 million key-value pairs,
a 320MB cache is enough to store the entire location information to thoroughly avoid
lookup via RDMA. Therefore, as shown in Figure 13(c), the throughput of DrTM-KV
with warmed-up cache can achieve 25.1 Mops for skewed workloads, which is very
close to the throughput of one-sided RDMA READ in Figure 3 (26.3 Mops). Since the
skewed workload is more friendly to cache, the throughput with only a 20MB cache still
achieves 19.1 Mops. However, the throughput for uniform workload rapidly drops from
24.9 to 11.2 Mops when reducing the cache size from 320 to 80MB, as it is the worst
case and we only use a simple directly mapping. How to improve the cache through
heuristic structure (e.g., associativity) and replacement mechanisms (e.g., LRU) will
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Fig. 14. False abort in transactions: (1) reading softtime within the HTM transaction will cause false abort
due to the strong atomicity (b); (2) reducing false aborts by enlarging the update interval of softtime, which,
however, increases the time skew and thus the DELTA; and (3) reducing false aborts by reusing stale softtime
to conservatively check the expiration of a lease (c).

be our future work. The performance of DrTM-KV with a cold or warmed-up cache is
close due to fetching the entire bucket at a time (eight slots) and sharing the cache
among clients (eight threads).

7. IMPLEMENTATION ISSUES

We have implemented DrTM based on Intel’s RTM and Mellanox ConnectX-3 56GB/sec
InfiniBand. This section describes some specific implementation issues.

7.1. Synchronized Time

DrTM will depend on synchronized time when enabling the lease-based shared lock op-
timization (see Section 5.2), as implementing lease requires synchronized time. Ideally,
one could use the TrueTime protocol in Spanner [Corbett et al. 2012] to get synchronized
time, which is, however, not available in our cluster. Instead, we use the precision time
protocol (PTP) [IEEE 2015], whose precision can reach 100ns under high-performance
networking and a precise local clock oscillator. In our cluster, the precision can be ex-
tremely stable at 30μs.8 Unfortunately, accessing such services inside an RTM region
will unconditionally abort RTM transactions. Instead, DrTM uses a timer thread to pe-
riodically update a global software time (i.e., softtime). This provides an approximately
synchronized time to all transactions.

The softtime will be read in the remote read and written in the Start phase, the local
read and write in the LocalTX phase, and the lease reconfirmation in the Commit phase.
The three phases can execute in an RTM region as they will not directly abort the
transaction. Yet, this may result in frequent false conflicts with the timer thread due
to the strong atomicity of RTM (see Figure 14(a)). However, as shown in Figure 14(b), a
long update interval of softtime can reduce false aborts due to the timer thread. Yet it
also increases the time skew and then increases the DELTA, resulting in failures when
lease confirmation, and thus transaction, aborts.

To remedy this, DrTM reuses the softtime acquired in the Start phase (outside the
RTM region) for all local read and write operations first and then only acquires softtime
for lease confirmation (Figure 14(c)). It will significantly narrow the conflict range of an
RTM transaction to the timer thread, as the confirmation is close to the commitment
of an RTM transaction. Further, the local transactions will never be aborted by timer
threads. Note that reusing stale softtime to conservatively check the expiration of a

8The average length of transactions in TPC-C under DrTM is 19μs.
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lease acquired by other transactions will not hurt the correctness but only incur some
false positives.

7.2. Fallback Handler and Contention Management

As a best-effort mechanism, an RTM transaction does not have guaranteed forward
progress even in the absence of conflicts. A fallback handler will be executed after
the number of RTM aborts exceeds a threshold. In traditional implementation, the
fallback handler first acquires a coarse-grain exclusive lock and then directly updates
all records. To cooperate with the fallback handler, the RTM transaction needs to check
this lock before entering its RTM region.

In DrTM, however, if the local record will also be remotely accessed by other transac-
tions, the fallback handler may inconsistently update the record out of an RTM region.
Therefore, we use remote read and write to access the local records in the fallback
handler. The fallback handler follows the 2PL protocol to access all records as well.
Further, to avoid deadlock, the fallback handler should release all owned remote locks
first and then acquires appropriate locks for all records in a global order (e.g., using
<table_id, key>). After that, the fallback handler should confirm the validation of
leases before any update to the records, as they cannot be rolled back by RTM again.
Since all shared locks are still released in the shrinking phase where no lock will be
acquired, the modification to the fallback handler still preserves the strict serializabil-
ity of DrTM. Finally, since the fallback handler will lock all of the records and update
them out of the HTM region, DrTM will perform logs ahead of updates for them as in
normal systems for durability.

7.3. Atomicity Issues

As mentioned in Section 5.2, even if RDMA CAS on our InfiniBand NIC cannot preserve
the atomicity with local CAS, it will not incur consistency issues in the normal execution
of transactions. However, in RTM’s fallback handler and read-only transactions, DrTM
has to lock both local and remote records. A simple solution is to uniformly use the
RDMA CAS for local records. However, the current performance of RDMA CAS is
two orders of magnitude slower than the local counterpart (14.5μs vs. 0.08μs). Using
RDMA CAS for all records in the RTM fallback handler results in about 15% slowdown
of throughput for DrTM. It leaves much room for performance improvement by simply
upgrading the NIC with GLOB-level atomicity (e.g., QLogic QLE series).

7.4. Dependent Transactions

A dependent transaction is a transaction whose records to access depend on the runtime
transaction execution. Hence, it is hard to know its read/write sets before executing
this transaction. We found that there are three dependent transactions in TPC-C:
order-status, new-order, and payment. Since the order-status transaction is read only,
DrTM will run it using a separate scheme without advanced knowledge of its read set
(see Section 5.4). For the NEW transaction, DrTM puts the update and the read of the
next_oid into one transaction piece (P6 in Figure 7). The piece is protected using HTM so
that the working set of the following piece is known before execution. In HTM’s fallback
handler, as the ORDERLINE table will not be accessed remotely, DrTM simply acquires a
coarse-grain lock (i.e., per-warehouse lock) instead of per-record locks. For the payment
transaction, transaction chopping (see Section 4) will transform dependent results of
secondary index lookup into input of subsequent transaction pieces.

7.5. Remote Range Query

DrTM only provides an HTM/RDMA-friendly hash table for unordered stores but still
requires SEND/RECV Verbs for ordered stores. Fortunately, we found that in TPC-C,
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Table VII. Transaction Mix Ratio in SmallBank and TPC-C

SmallBank SP AMG BLA DC WC TS
Ration 25% 15% 15% 15% 15% 15%
Type d+rw d+rw l+ro l+rw l+rw l+rw

TPC-C NEW PAY DLY OS SL
NEW 45% 43% 4% 4% 4%
PAY d+rw d+rw l+rw l+ro l+ro

Note: Respectively, d and l stand for distributed and local, and rw and ro stand for read-write and
read-only. The default probability of cross-warehouse accesses for SP, AMP, NEW, and PAY is 1%, 1%, 1%,
and 15%, respectively

the only transaction (i.e., payment) occasionally requiring remote accesses to an ordered
store (for range query) only requires local accesses to unordered stores. We optimize
this case by sending this transaction to the remote machine hosting the ordered store.
In this way, we convert this transaction to have local accesses to an ordered store and
remote accesses to unordered stores, which can enjoy the full benefit of RDMA.

8. EVALUATION

This section presents our evaluation on DrTM with the goal of answering the following
questions:

—How does the performance of DrTM with HTM and RDMA compare to that of the
state-of-the-art systems without using such features on a single node and a cluster,
respectively?

—Can DrTM scale out with the increase of threads and machines?
—How does each design decision affect the performance of DrTM?

8.1. Experimental Setup

All experiments were conducted on a small-scale cluster with six machines, each having
two 10-core RTM-enabled9 Intel Xeon E5-2650 v3 processors and 64GB of DRAM. Each
core has a private 32KB L1 cache and a private 256KB L2 cache, and all 10 cores on a
single processor share a 24MB L3 cache. We disabled hyperthreading on all machines.
Each machine is equipped with a ConnectX-3 MCX353A 56GB/sec InfiniBand NIC via
PCIe 3.0 x8 connected to a Mellanox IS5025 40GB/sec InfiniBand Switch and an Intel
X520 10GbE NIC connected to a Force10 S4810P 10/40GbE Switch. All machines run
Ubuntu 14.04 with Mellanox OFED v3.0-2.0.1 stack.

We evaluate DrTM using TPC-C [The Transaction Processing Council 2001] and
SmallBank [Alomari et al. 2008]. The TPC-C benchmark is built from scratch and con-
forms to the TPC-C specification; the SmallBank benchmark is ported from that in the
H-Store repository [Alomari et al. 2008]. TPC-C simulates a warehouse-centric order
processing application. It scales by partitioning a database into multiple warehouses
spreading across multiple machines. SmallBank models a simple banking application
where transactions perform simple read and write operations on user accounts. The
access patterns of transactions are skewed such that a few accounts receive most of the
requests. TPC-C is a mix of five types of transactions for new-order (NEW), payment
(PAY), order-status (OS), delivery (DLY), and stock-level (SL) procedures. SmallBank
is a mixture of six types of transactions for send-payment (SP), balance (BAL), deposit-
checking (DC), withdraw-from-checking (WC), transfer-to-savings (TS), and amalga-
mate (AMG) procedures. Table VII shows the percentage of each transaction type and
its access pattern in TPC-C and SmallBank. We chopped TPC-C to reduce the working
set while leaving all transactions in SmallBank unchopped, as their working set are
already small enough to fit into RTM with small abort rates. Note that we have already

9Although a recent hardware bug forced Intel to temporarily turn off this feature on a recent release of
processor series, we successfully reenabled it by configuring some model-specific registers.

ACM Transactions on Computer Systems, Vol. 35, No. 1, Article 3, Publication date: July 2017.



3:28 H. Chen et al.

Fig. 15. Throughput of standard-mix in SmallBank and TPC-C with the increase of threads for Silo, DBX,
and DrTM.

leveraged a cache-friendly memory allocator [Liu and Chen 2012] to avoid unnecessary
capacity cache misses.

Cross-system comparison between distributed systems is often hard due to various
setup requirements and configurations even for the same benchmark. We use the latest
Calvin [Thomson et al. 2012] (released in March 2015) in part of the experiments on
TPC-C. Calvin is a deterministic database that reduces contention costs of distributed
transactions through epoch-based execution such that all transactions are executed
in a deterministic order within each epoch. Calvin has reported a near-world record
transactional throughput for TPC-C (see the last sentence in Section 6.1 of Thomson
et al. [2012]). As Calvin is hard coded to use eight worker threads per machine, we
have to skip it from the experiment with varying numbers of threads. We run Calvin
on our InfiniBand network using IPoIB, as it was not designed to use RDMA.

In all experiments, we dedicate one processor to run up to eight worker threads. We
use the same machine to generate requests to avoid the impact of networking between
clients and servers as done in prior work [Tu et al. 2013; Wang et al. 2014; Thomson
et al. 2012]. All experimental results are the average of five runs. Unless mentioned,
logging is turned off for all systems and experiments. We separately evaluate the
performance overhead for logging in Section 8.7.

8.2. Single-Machine Transaction Performance

We use TPC-C and SmallBank to evaluate the throughput of DrTM compared to Silo [Tu
et al. 2013] and DBX [Wang et al. 2014]. Silo is a modern in-memory database that
utilizes OCC as DBX does. According to the DBX paper [Wang et al. 2014], Silo has the
overhead of encoding and memory copying of records compared to DBX, especially for
simple workloads (e.g., SmallBank). DrTM outperforms Silo and DBX for SmallBank
by up to 3.9X (from 3.1X) and 1.3X (from 1.2X), respectively, as shown in Figure 15.
This is because DrTM does not need a validation phase in software (which takes 8%
execution time of DBX) and the tracking of read/write accesses is done by hardware
rather than software.

For TPC-C, DrTM leverages optimized transaction chopping to mitigate RTM aborts.
The percentage of transaction execution in the fallback path for read-write transactions
in TPC-C (i.e., NEW, PAY, and DLY) decreases to 0.6%, 0.1%, and 1.8%, accordingly
(5.4%, 0.1%, and 21.4% for the largest piece of them). Moreover, the whole transaction
in Silo and DBX needs to be redone during a conflict in the validation phase of OCC. In
contrast, the use of transaction chopping leads to an early abort mechanism. Further,
only pieces are redone during a conflict, which reduces the cost for aborts. Thanks to
the preceding improvements, DrTM can outperform Silo and DBX by up to 2.3X (from
1.9X) and 1.8X (from 1.5X), respectively.
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Fig. 16. Throughput of standard-mix in TPC-C with the increase of machines (a) and threads (b) for Calvin
and DrTM.

8.3. Performance and Scalability

TPC-C. We first run TPC-C with the increase of machines to compare the performance
to Calvin. To align with the setting of Calvin, each machine runs 8 worker threads
and each of them hosts one warehouse with 10 districts. All warehouses in a single
machine share a memory store. Figure 16 shows the throughput of the TPC-C’s
standard-mix workload. As shown in Figure 16(a), DrTM outperforms Calvin from
29.6X (3.75 vs. 0.127 million transactions per second (txns/sec) with six nodes) to
32.9X (0.7 vs. 0.0217 million txns/sec at one node) using the same 8 worker threads.
This is due to exploiting advanced processor features (RTM) and fast interconnects
(RDMA). Even without sophisticated techniques to reduce the contention associated
with distributed transactions, DrTM can still scale well in term of the number of
machines by using our RDMA-friendly 2PL protocol. DrTM can process more than
1.69 million new-order and 3.75 million standard-mix transactions per second on six
machines, which is much faster than the result of Calvin on 100 machines reported
in Thomson et al. [2012] (less than 500,000 standard-mix transactions per second). To
fully exploit the hardware resources, we run DrTM with 16 worker threads on each
machine (8 worker threads on each socket). DrTM(16) achieves more than 2.36 million
new-order and 5.24 million standard-mix transactions per second on six machines
(more than 43,000 txns/sec per core).

We further study the scalability of DrTM with the increase of worker threads using
six machines. As shown in Figure 16(b), DrTM provides very good scalability before
8 threads such that the speedup of throughput reaches 5.62X over a single thread.
However, unlike the single-machine version, although it still scales to 16 threads,
the speedup is slightly less (i.e., 7.82X) for 16 worker threads for two reasons. First,
compared to the single-machine version, the distributed version involves some RDMA
operations, which is not scalable due to I/O NUMA effect since we only have one
RDMA NIC located at one NUMA node (i.e., socket). Second, the fallback handler
of the distributed version now needs to access local records using RDMA operations,
which further impact the performance and scalability. Note that there is only one data
point for Calvin using 8 threads, as it cannot run with other numbers of threads.

Emulating a larger cluster. To overcome the restriction of existing cluster size, we
scale separate logical nodes on a single machine to emulate the scalability experiment,
each of which has a fixed number of four worker threads. The interaction among logical
nodes sharing the same machine still uses our 2PL protocol via one-sided RDMA
operations. As shown in later in Figure 18(a), DrTM can scale out to 24 nodes, reaching
2.54 million new-order and 5.64 million standard-mix transactions per second.

SmallBank. We further study the performance and scalability of SmallBank with
varying probability of distributed transactions. Figure 17 shows the throughput of
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Fig. 17. Throughput of standard-mix in SmallBank with the increase of machines (a) and threads (b) using
a different probability of cross-machine accesses for SP and AMP.

Fig. 18. (a) The throughput of standard-mix in TPC-C with the increase of separate logical machines using
a fixed number of four threads. (b) The throughput of new-order transaction in TPC-C with increasing
cross-warehouse accesses on a six-node cluster using a fixed number of eight threads.

SmallBank on DrTM with the increase of machines and threads. For a low probability
of distributed transactions (1%), DrTM provides high performance and can scale well
in two dimensions. It achieves more than 138 million transactions per second using six
machines, and the speedup of throughput reaches 4.52X for six machines and 10.85X
for 16 threads, respectively. With the growing of distributed transactions, DrTM still
performs stable throughput increase from two machines and scale well within a single
socket.

8.4. Impact from Distributed Transactions

To investigate the performance of DrTM for distributed transactions, we adjust the
probability of cross-warehouse accesses for new-order transactions from 1% to 100%.
According to the TPC-C specification, the default setting is that there is 1% of accesses
to a remote warehouse. Since the average number of items accessed in the new-order
transaction is 10, 10% of cross-warehouse accesses will result in approximate 57.2% of
distributed transactions.

Figure 18(b) shows the throughput of the new-order transaction on DrTM with in-
creasing cross-warehouse accesses. The 100% cross-warehouse accesses results in about
85% slowdown, because all transactions are distributed and all accesses are remote
ones. Hence, DrTM cannot benefit from RTM in this case. However, the performance
slowdown for 5% cross-warehouse accesses (close to 35% distributed transaction) is
moderate (15%).
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Fig. 19. Per-node throughput of microbenchmarks (read-write (a) and hotspot transactions (b)) for DrTM
with or without read lease.

8.5. Read Lease

To study the benefit of read lease, we implement two microbenchmarks that share most
characteristics with the new-order transaction but are easier to adjust the execution
behavior. The probability of cross-warehouse accesses is 10%.

The first simplified transaction, namely read-write, accesses 10 records and does the
original tasks, except the parts of them will not write back the results, becoming a read
access to that record. We evaluate the throughput of this read-write transaction on
DrTM, as shown in Figure 19. Without read lease, all remote accesses need to acquire
the exclusive lock of record, regardless of whether the transaction writes the record or
not. Thus, the ratio of read operations has less impact on per-node throughput without
read lease. With the increase of read accesses, read lease exposes more concurrency
and notably improves the throughput.

In the second microbenchmark, the hotspot transaction also accesses 10 records
and does the original tasks, except one of 10 records is chosen from a much smaller
set of “hot” records and does read. Figure 19 shows the per-node throughput for this
transaction enabling read lease or not. The 120 hot records are evenly assigned to all
machines. With the increase of machines, the improvement from read lease increases
steadily, reaching up to 29% for six machines.

8.6. Benefit from HTM

To study how HTM improves distributed transaction processing, we implement a ver-
sion of DrTM (called DrTM-OCC) by mimicking the design of FaRM [Dragojević et al.
2015],10 a state-of-the-art distributed transaction processing system leveraging RDMA
features. DrTM-OCC follows the distributed OCC scheme of FaRM by leveraging one-
sided RDMA reads for remote data fetching (during the execution phase) and validation
(during the commit phase). It also leverages one-sided RDMA primitives to implement
a fast messaging channel [Dragojević et al. 2014] to commit transactions. DrTM-OCC
uses DrTM-KV as the underlying data store.

Figure 20(a) shows the performance of DrTM and DrTM-OCC on TPC-C with the
increase of machines while fixing eight worker threads on each server. DrTM-OCC
can process 0.49 million standard-mix transactions per second on a single machine,
which is slightly better than Silo [Tu et al. 2013] (0.42 million txns/sec) since the
underlying memory store is a little bit faster than that of Silo [Wang et al. 2014]. In
contrast, DrTM has around 1.5X performance speedup compared to that of DrTM-OCC

10Since FaRM is not publicly available, we implement DrTM-OCC by roughly following its design based on
the code base of DrTM.
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Fig. 20. Throughput of standard-mix in TPC-C with the increase of machines (a) and threads (b) for DrTM
and DrTM-OCC.

Table VIII. Impact of Durability on Throughput and Latency for TPC-C
on Six Machines with Eight Threads

Without Logging With Logging
Standard-Mix (txn/sec) 3,670,355 3,243,135

New-Order (txn/sec) 1,651,763 1,459,495

Latency (μs)
50% 6.55 7.02
90% 23.67 30.45
99% 86.96 91.14

Capacity Abort Rate (%) 39.26 43.68
Fallback Path Rate (%) 10.02 14.80

on a single machine, thanks to offloading most concurrency control operations to HTM,
such as buffering and validating the read/write sets (see Section 8.2).

With the increase of machines, both DrTM-OCC and DrTM scale out well. Yet DrTM
consistently outperforms DrTM-OCC by around 1.5X, with a slightly better scale fac-
tor (5.3X vs. 5.2X) on a six-node cluster. This confirms the benefit of using HTM for
concurrency across machines. When using 16 threads, DrTM outperforms DrTM-OCC
by up to 1.7X (from 1.3X), because by leveraging HTM, DrTM can reduce the overhead
of recording and validating local read/write sets of transactions (see Section 8.2).

8.7. Durability

To investigate the performance cost for durability, we evaluate TPC-C with durability
enabled. Currently, we directly use a dedicated region of DRAM to emulate battery-
backed NVRAM. Table VIII shows the performance difference on six machines with
eight threads. Due to additional writes to NVRAM, the throughput of the new-order
transaction on DrTM degrades by 11.6%, and the rate of capacity aborts and executing
the fallback handler increase by 4.42% and 4.78%, respectively. DrTM does not use
multiple versioning [Wang et al. 2014] or durability epoch [Zheng et al. 2014], and only
writes logs to NVRAM in critical path. Hence, the increase of latency with logging for
50%, 90%, and 99% transactions is less than 10μs compared to those without logging
respectively. Such latency is still two orders of magnitude better than that of Calvin
even without logging (6.04, 15.84, and 60.54 ms).

9. RELATED WORK

Distributed transactions. DrTM continues the line of research of providing fast trans-
actions for multicore and clusters [Cowling and Liskov 2012; Diaconu et al. 2013;
Thomson et al. 2012; Corbett et al. 2012; Tu et al. 2013; Zhang et al. 2013; Narula et al.
2014; Zheng et al. 2014; Xie et al. 2014; Lee et al. 2015; Dragojević et al. 2015; Zhang
et al. 2015; Aguilera et al. 2015; Xie et al. 2015] but explores an additional design
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dimension by demonstrating that advanced hardware features like HTM and RDMA
may be used together to provide notably fast ACID transactions with a local cluster.
FaRM [Dragojević et al. 2014] also leverages RDMA (but not HTM) to provide limited
transactions support using OCC and 2PC but lacks evaluation of general transactions.
DrTM steps further to combine HTM and S2PL with a set of optimizations to provide
fast transactions and was shown to be orders of magnitude faster than prior work for
OLTP workloads like TPC-C and SmallBank.

Distributed transactional memory. Researchers have started to investigate the use
of transactional memory abstraction for distributed systems. Herlihy and Sun [2005]
described a hierarchical cache coherence protocol that takes distance and locality into
account to support transactional memory in a cluster but has no actual implementa-
tion and evaluation. The hardware limitation forces researchers to switch to software
transactional memory [Shavit and Touitou 1995] and investigate how to scale it out
in a cluster environment [Manassiev et al. 2006; Bocchino et al. 2008; Carvalho et al.
2010]. DrTM instead leverages the strong consistency of RDMA and strong atomicity of
HTM to support fast database transactions by offloading main transaction operations
inside a hardware transaction.

Leveraging HTM for database transactions. The commercial availability of HTM has
stimulated several recent efforts of leveraging HTM to provide database transactions
on a multicore [Wang et al. 2014; Leis et al. 2014]. In a position paper, Tran et al. [2010]
conducted a performance comparison of implementing latches with spinlocks and HTM
for a disk-based database. However, the database is a much stripped down one with only
1,000 records, and it is not clear whether serializability is guaranteed or not. Wang et al.
[2014] and Leis et al. [2014] both leverage HTM to protect a portion of transactional
execution for in-memory databases. Specifically, Wang et al. [2014] use RTM to protect
the commit phase of a variant of OCC [Kung and Robinson 1981], whereas Leis et al.
[2014] use hardware lock elision to implement a variant of TSO [Bernstein et al. 1987].

Transaction chopping. Transaction chopping was proposed several decades
ago [Bernstein and Shipman 1980; Bernstein et al. 1999; Garcia-Molina 1983; Shasha
et al. 1995]. For example, Bernstein et al. describe a conflict graph to statically analyze
transaction conflicts such that the orders of transactions are predefined to preserve
serializability [Bernstein and Shipman 1980; Bernstein et al. 1999]. Garcia-Molina
[1983] further shows that there will be a safe interleaving if all pieces of a decomposed
transaction commute. Shasha et al. [1995] further propose using a chopping graph to
analyze transactions and show that serializability can be guaranteed when there is
no SC-cycle. Zhang et al. [2013] and Mu et al. [2014] further leverage static analysis
on a chopping graph to reduce latency and improve parallelism of distributed trans-
actions. Callas [Xie et al. 2015] and IC3 [Wang et al. 2016] have used transaction
chopping to allow constrained parallel execution among pieces for distributed and mul-
ticore databases accordingly. DrTM leverages static analysis and transaction chopping
to decompose a large transaction into smaller pieces with a set of workload-inspired
optimizations, which exposes notably more opportunities for decomposition. Hence, it
not only benefits DrTM but also other designs using transaction chopping. Further,
DrTM extends transaction chopping by leveraging RDMA and S2PL to support fast
cross-machine transactions.

Lease. Lease [Gray and Cheriton 1989] is widely used to improve read performance,
which is also used in DrTM to unleash concurrency among local and remote readers, as
well as to simply conflict checking for read-only transactions. Megastore [Baker et al.
2011] grants a read lease to all nodes. All reads can be handled locally, whereas the
involved writes invalidate all other replicas synchronously or just wait for the timeout
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of the lease before committing a write. Spanner [Corbett et al. 2012] uses the leader
lease [Chandra et al. 2007] and snapshot reads to save the performance of write by
relaxed consistency. Quorum leases [Moraru et al. 2014] allow a majority of replicas
to perform strongly consistent local reads, which substantially reduces read latency at
those replicas.

10. CONCLUSION

The emergence of advanced hardware features like HTM and RDMA exposed new
opportunities to rethink the design of transaction processing systems. This arti-
cle described DrTM, an in-memory transaction processing system that exploits the
strong atomicity of HTM and strong consistency of RDMA to provide orders of magni-
tude higher throughput and lower latency of in-memory transaction processing than
prior general designs. DrTM was built with a set of optimizations like leases and
HTM/RDMA-friendly hash table that expose more parallelism and reduced RDMA
operations. Evaluations using typical OLTP workloads like TPC-C and SmallBank
confirmed the benefit of designs in DrTM. The source code of DrTM is available at
http://ipads.se.sjtu.edu.cn/drtm.
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