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Abstract
In modern systems, memory copy remains a critical perfor-
mance bottleneck across various scenarios, playing a per-
vasive role in system-wide execution such as syscalls, IPC,
and user-mode applications. Numerous efforts have aimed
at optimizing copy performance, including zero-copy with
page remapping and hardware-accelerated copy. However,
they typically target specific use cases, such as Linux zero-
copy send() for messages of ≥10KB. This paper argues for
copy as a first-class OS service, offering three key benefits:
(1) with the asynchronous copy abstraction provided by the
service, applications can overlap their execution with copy;
(2) the service can effectively utilize hardware capabilities
to enhance copy performance; (3) the service’s global view
of copies further enables holistic optimization. To this end,
we introduce Copier, a new OS service of coordinated asyn-
chronous copy, to serve both user-mode applications and OS
services. We build Copier-Linux to demonstrate Copier’s
ability to improve performance for diverse use cases, includ-
ing Redis, Protobuf, network stack, proxy, etc. Evaluations
show that Copier achieves up to a 1.8× speedup for real-
world applications like Redis and a 1.6× improvement over
zIO, the state-of-the-art in optimizing copy efficiency. To
further facilitate adoption, we develop a toolchain to ease
the use of Copier. We also integrate Copier into a commer-
cial smartphone OS (HarmonyOS 5.0), achieving promising
results.

CCSConcepts: • Software and its engineering→Operat-
ing systems; Memory management; • Computer systems
organization→Multicore architectures.
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1 Introduction
Memory copy remains pervasive across modern OSes [1–
6] and apps [7]. It can introduce significant performance
costs for memory-intensive and I/O-intensive workloads like
KV store [7, 8], proxies [9, 10], and storage services [11, 12],
and is a common performance tax for various apps and OS
services [13]. One example is inter-process communication
(IPC), wheremessage-passing often becomes the primary bot-
tleneck [14], typically requiring one or more copies. Syscalls
constitute another example where cross-privilege switching
entails copy for security reasons and semantic gaps. De-
spite providing an easy-to-use abstraction, copy-based data
movement is known for its inefficiency [15–19], blocking
computation as shown in Fig.1-a.

Numerous efforts have been made to mitigate costs caused
by copy. One approach leverages hardware features, e.g.,
SIMD instructions [20, 21] and on-chip DMA [1, 22], to boost
copy performance. However, a significant limitation is that
the hardware capabilities usually cannot be fully utilized.
For example, while libc memcpy() adopts SIMD (e.g., x86
AVX [21, 23] and ARM SVE/NEON [20]) for better perfor-
mance, the Linux kernel does not utilize SIMD because of
the high costs of saving and restoring register states (up to
several KB). Conversely, while the kernel can utilize DMA to
improve copy performance and reduce CPU costs [1], such
privileged features can hardly be utilized by user apps.

Another common approach, zero-copy, reduces copy costs
through memory sharing or remapping, as shown in Fig.1-b.
However, state-of-the-art zero-copy methods face several
limitations for common cases, including page alignment re-
quirements, lack of support for scenarios requiring multiple
replicas (e.g., CoWhandler), and the susceptibility to Time-of-
check to Time-of-use (TOCTTOU) attacks [14]. Meanwhile,
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Figure 1. Comparison among different copy methods.
Copier achieves both low latency and an easy-to-use abstraction
by reorganizing tasks among processing units.

since the operations of remapping or sharing incur extra
costs, the performance benefits are conditional. For example,
the Linux kernel provides zero-copy send() and clarifies that
it can only benefit messages ≥10KB [24]. Similarly, zIO pro-
vides an on-demand way to achieve zero-copy, but requires
copy sizes ≥16KB to bring benefits [7].
This paper argues the necessity of making copy a first-

class OS service (like file systems and network), for three
reasons. First, asynchronous copy with the OS service.
Our study reveals that there is often a sufficient time window
between data being copied and used (§3), a period we refer
to as Time-of-Copy to Time-of-Use (Copy-Use) window. As
shown in Fig.1-c, the OS service can leverage the window to
hide copy latency while not blocking application’s execution.
Second, effective utilization of under-utilized hardware.
As an OS service, it can fully utilize hardware features like
SIMD and DMA, and provide the “best” copy performance to
apps and OS services. Third, holistic optimization of copy
tasks. The service has a global view of the copy requests, and
can bring holistic optimizations like absorbing unnecessary
intermediate copies and scheduling high-priority ones first.
We design Copier embodying the idea of copy as a first-

class OS service. Copier provides interfaces for both user apps
and kernel services, addressing the following challenges.
Challenge-1 (from sync to async): How to fully exploit
the performance benefits of asynchronous copy while
maintaining the semantics of synchronous copy?Async
copy can utilize the Copy-Use window to overlap data copy
and use. However, the performance gains are limited by (1)
the costs of submitting copy tasks for small copies, and (2) the
blocking latency to wait for the completion of large copies.
Besides, async copy complicates the programming model
and may impose a burden on developing or porting apps.
Challenge-2 (from function to OS service):How to fully
utilize hardware features and leverage the global view
for optimization with minimal extra cost? As an OS
service, Copier can exploit both user-space and kernel-space
hardware to accelerate copy. With the global view of copies,
Copier can eliminate unnecessary intermediate copies. How-
ever, they are not free lunches: (1) Heterogeneous copy units
have asymmetric performance, e.g., although DMA copy

does not consume CPU cycles, it is slower than AVX and
wastes cycles to submit DMA tasks and wait for completion.
(2) Eliminating copy based on global view is non-trivial, as
forming the global view requires correctly tracking depen-
dency among copies across privilege levels.
Challenge-3 (from single to multiple clients): How to
ensure resource isolation, fairness, and correctness?
Traditional sync copy (via functions) uses clients’ own time
slices, simplifying the fairness and isolation among clients.
As an OS service, however, clients may contend for Copier’s
service for copy. A further complication arises from the co-
ordination with other OS subsystems, e.g., memory manage-
ment supports features like CoW and on-demand paging,
which may trigger page faults during copy that Copier must
properly handle in its own address space and context.

To address the challenges, we propose the following tech-
niques. First, we design queue-based Copier abstractions.
Different from prior kernel abstractions [25–27], which up-
date a task’s status only after completion, and execute tasks
in a determined order, Copier abstractions highlight fine-
grained update of task status, and out-of-order execution.
Fine-grained update enables apps to use data without waiting
for the entire copy to complete, forming copy-use pipelines.
Out-of-order execution allows users to adjust the execution
order of tasks as needed, solving head-of-line blocking. We
introduce csync primitive to enable apps to check and con-
trol the progress of copy, and formally verify the semantic
equivalence between async copy with csync and sync copy.
Second, we design the piggyback-based dispatcher to

harmonize heterogeneous copy units. It piggybacks DMA
tasks onto AVX tasks and executes them in parallel, over-
lapping DMA copy with AVX copy without wasting cycles
on waiting for DMA to finish. Different from traditional
dispatchers [1, 28] partitioning a single copy to run on dif-
ferent units, which can only optimize large copies, Copier
leverages the queuing nature of async tasks to fuse several
copies and execute them in the same round of piggybacking,
benefiting relatively small copies. Copier supports efficient
tracking of copy dependency by utilizing system events (e.g.,
syscall trap and return) as indicators, thereby realizing copy
absorption, which merges redundant copies.

Last, recognizing copy can be treated as a resource, we de-
sign Copier scheduler and a cgroup extension taking copy
length as the resource unit to ensure fairness and isolation.
We propose proactive fault handling to proactively identify
and handle faults, instead of relying on hardware faults.
We design and implement Copier-Linux utilizing Copier

to improve the performance of apps and key kernel services.
We also integrate Copier into a commercial smartphone OS
(HarmonyOS 5.0 [4, 35]) experimentally. Evaluation shows
promising results. Specifically, for Redis [8], Copier achieves
a 1.8× speedup in latency compared with baseline, and a
1.6× speedup over zIO [7], the SOTA work in optimizing



Table 1. Overview of systems with copy optimizations. W/o alignment: whether the system requires buffers to be page-aligned.
Cross privilege/address space: whether the system can optimize cross-privileged/cross-address-space copies. No blocking: whether
copies will not block execution. Absorb copy: whether the system can eliminate unnecessary copies.

Systems Usability Performance

Type Name Insight Target
scenario

W/o
alignment

Cross
privilege

Cross
addr. space

Hardware
features

No
blocking

Absorb
copy

Baseline U-mode memcpy New hardware features Apps ✓ ✗ ✗ SIMD [23] ✗ ✗
K-mode memcpy Hardware w/o state costs Kernel ✓ ✓ ✓ ERMS [29] ✗ ✗

Copy
optimization

L4 [30] Temporary mapping IPC ✓ ✗ ✓ Page table ✗ Partial
Zero-copy socket [24] Shared pages ≥10KB/OS socket ✗ ✓ ✗ Page table ✓ ✗
Linux sendfile [31] Address transfer in kernel Copying files ✓ ✓ ✗ CPU ✗ Partial
Splice/vmsplice [32] Page moving (no copy) Pipe ✗ ✓ ✓ Page table ✓ ✗
Arrakis [33] Hardware demultiplexing I/O ✓ ✓ ✗ SR-IOV ✓ ✗
XRP [34] Offloading logic to kernel Storage ✓ ✓ ✗ CPU ✗ ✓
zIO [7] No unnecessary copy Copy ≥16KB Partial ✗ ✗ CPU ✓ ✓
Fastmove [1] DMA to save costs NVM Storage (OS) ✓ ✓ ✓ DMA ✗ ✗
Copier Async copy w/ OS service Kernel/Apps ≥0.5KB ✓ ✓ ✓ SIMD+DMA ✓ ✓
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Figure 2. Analysis of copy across apps and OSes.

copy efficiency. On phones, Copier reduces video decoding
latency by up to 10%. Copier also performs well in boosting
the performance of send() and recv() syscalls, Protobuf [36],
Binder IPC [37], CoW fault handling, etc.

2 Systematic Analysis of Copy in the Wild
2.1 Copy Performance is Still Critical
Copy has been studied for decades; however, its performance
remains critical for today’s apps and OSes.
Quantitative Analysis.We measure the cycle proportion
of copy for widely used apps and libraries (on Linux), as
shown in Fig.2-a1. Although they are carefully optimized,
1Detailed experimental settings. Fig.2-a is conducted on Linux (5.15.131)
servers and Fig.2-b is conducted on smartphones, with settings detailed in
§6. Redis SET/GET: Redis SET/GET commands; zlib: zlib [38] compressing
strings; OpenSSL: OpenSSL [39] receiving encrypted messages (SSL_read( ) ,
AES-GCM encrypted); Nginx: Nginx [10] proxying between echo servers/-
clients to forwardmessages; libpng: libpng [40] decoding PNG images stored
in an ext4 file system; ffmpeg: ffmpeg [41] encoding videos with libx265
encoder. The cycle proportions of copies are measured with perf [42]. The
16/256KB specifically corresponds to value sizes, string lengths, encrypted
message lengths, forwardedmessage lengths, image sizes, and video bitrates.

copy remains their main performance bottleneck, consuming
up to 66.2% of cycles. The copy includes kernel-mode copy
and user-mode copy. Copy is also the major bottleneck of
key scenarios on HarmonyOS 5.0 (smartphone), as shown in
Fig.2-b. Copy can be a significant challenge for apps, especially
for memory-intensive or I/O-intensive ones (Finding-1).
Prevalence of copy. Today’s copy acts as a common “perfor-
mance tax” — although it may not be the top-ranking bottle-
neck for specific apps, optimizing copy is valuable from the
whole system perspective, e.g., 4–5% of (whole) datacenter
cycles are consumed by copy in Google datacenters [16, 17].
However, copy is not easy to be eliminated. To illustrate

the challenges, we classify copy from a system perspective
into two types: intra-boundary copy and inter-boundary copy.
Boundary means the same address space and privilege level.
Although developers make significant efforts to mitigate

unnecessary intra-boundary copies, some still remain for
the following reasons: (1) Organizing memory, e.g., Redis
copies the key and value to new buffers after parsing a SET
request to avoid fragmentations caused by protocol and sep-
arators; (2) Bridging semantic gaps, e.g., userspace network
stacks [43, 44] use copy to concatenate packets into a con-
tinuous message in recv(); (3) Multi-replica requirement, e.g.,
CoW handler creates multiple replicas of the page.
Inter-boundary copy can be further grouped into cross-

privilege copy and cross-address-space copy, e.g., copies during
recv() and IPC. Optimizations for these cases are harder
compared with intra-boundary copy since OS support or app-
OS co-design is usually necessary. Optimizing copy is highly
valuable for the whole system, but challenging (Finding-2).

2.2 Existing Optimizations on Copy
Prior optimizations on copy [1, 7, 24, 30–34] still face chal-
lenging trade-offs. We present the comparison in Table.1.
Copy with hardware features. Although hardware pro-
vides support to optimize copy performance, we observe
that apps and the kernel usually cannot fully utilize these
hardware features. SIMD extensions [45] like AVX [23] can
move a large amount of data, which helps to accelerate copy.



These features have been adopted by user-mode apps (e.g.,
glibc [21]). However, the Linux kernel still cannot utilize
these features [46] because of the significant overhead of
saving and restoring SIMD-related registers (the total size
amounts to several KB). Another case is DMA, which can be
utilized to copy data without CPU costs, e.g., Fastmove [1]
utilizes Intel I/OAT [47] DMA to boost DRAM-NVM copy.
However, user apps usually cannot easily benefit from DMA
due to the requirement of privileged operations (e.g., MMIO).
Zero-copy. Prior efforts [48] exploit zero-copy methods,
which usually utilize page remapping or shared memory.
Linux vmsplice [32] and zero-copy socket [24] utilize page
tables to share buffers between apps and OS. Zero-copy has
its limitations. First, zero-copy-based kernel services have se-
curity issues as kernel operations on the buffer are visible to
apps (potential TOCTTOU attacks [14, 49]). Second, shared
buffers complicate memory ownership management, e.g., the
app using zero-copy send() has to use additional syscalls to
check the buffer’s status, and ensure not to reuse it before the
background transmission finishes. Third, zero-copy relying
on remapping requires the data to be page-aligned, which
is not feasible in many cases. Last, a common limitation for
zero-copy is that it only supports one instance of data, and
cannot support scenarios requiring multiple replicas.
zIO [7] utilizes a new observation that most copied data

will not be accessed, thus the copy can be avoided and de-
signs a page-fault-based on-demand copy method. It sup-
ports multiple data replicas; however, it still requires page
table remapping, leading to non-trivial overheads. As a result,
zIO requires≥16KB [7] size to bring benefits. This is common
for other zero-copy methods [24, 50], e.g., Linux zero-copy
send() is suggested only for payload size ≥10KB [24]. Zero-
copy is effective in scenarios with large copy (e.g., photo ser-
vices [51]). However, in many scenarios the medium or small
copies are the majority, e.g., our analysis of traces shows that
95.1% of Twitter memcached requests are ≤10KB [52], and
69.8% of AliCloud block service requests are 4KB–10KB [53].

Some systems leverage zero-copy (or remapping) to reduce
copy times but still support multiple replicas, e.g., L4 [30]
and Linux sendfile() [31]. They are designed only for specific
scenarios and still require blocking to move data.

3 Copy as an OS Service
3.1 Observations and Insights
Copier is inspired by two insights. First, observing that tra-
ditional approaches supporting copy as library functions
cannot fully utilize hardware capabilities, and that global
management of copies brings holistic optimization opportu-
nities.We claim that copy should be treated as a first-class
OS service (Insight-1). The OS service can effectively re-
solve the challenges in existing works: (1) it can fully utilize
hardware features. Apps and other OS services can benefit
from the enhanced copy performance. (2) it has a global view
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REP MOVSB/STOSB) [29] is the kernel’s copy method. The bars
show the Copy-Use window of data at x-axis position. The shaded
areas show the time needed to copy x-axis size. The root cause
of Copy-Use windows is that programs typically copy data
in bulk but use it piece by piece in fixed patterns. E.g., in
Protobuf, after copying data to userspace in recv(), the CPU has to
update socket status, return to userspace, initialize deserializing
context and deserialize the previous 8KB before it accesses the byte
at 8K. We obtain the data in the figure by modifying the apps and
recording the timestamps.

of copies, which can be utilized to intelligently schedule
copies and absorb unnecessary copies.

Second, we observe that a time-of-copy to time-of-use
(Copy-Use) window is common in copy-intensive apps and
kernel services, which can be utilized to hide copy latency
without compromising correctness and security (Insight-2).
The Copy-Use window refers to the time interval between
the completion of the copy and the first use of the data.
We evaluate the Copy-Use windows at different positions
during data usage for representative apps and kernel services.
Results (Fig.32) show that the Copy-Use window is mostly
sufficient to cover the time needed for data copy, and is
usually as high as 2–10x the time required for copy. The
substantial time window provides us with the opportunity
to overlap copy and computation, removing copy from the
critical path. Combined with the first insight, apps and kernel
services can non-blockingly (or asynchronously) submit a

2Detailed experimental settings. Send: sending 16KB messages using
send( ) syscall (§6.1.2); Chacha20/AES dec.: receiving 16KB encrypted mes-
sages with OpenSSL (§6.2.3); Redis: Redis SETs with 16KB values (§6.2.1);
Deflate: compressing 16KB strings with zlib (§6.2.3); Binder IPC: passing
16KB messages with Android Binder (§ 6.1.2); Protobuf: receiving 16KB
serialized messages with protobuf (§6.2.3); PNG decoding: decoding 16KB
images stored in an ext4 file system with libpng. For Send, we study the
copy from userspace to kernel; for Chacha20/AES dec., Redis, and Protobuf,
we study the copy in recv( ) ; for PNG decoding, we study the copy in read( ) ;
for Deflate, we study its internal userspace copy; for Binder, we study the
kernel copy in Binder driver. The environment settings are detailed in §6.



copy task to the global service (called Copier), and only
synchronize the status before use.

3.2 Copier Overview
Based on these insights, we present Copier, an OS service
for async copy, with the following designs.
Abstractions. Copier provides queue-based abstractions.
To make the most of Copy-Use windows, Copier achieves
fine-grained update of copy status with segment-based copy.
To mitigate head-of-line blocking, Copier supports out-of-
order execution with task promotion, which enables apps
to raise the priority of some async copies as needed (§4.1).
To ensure the correctness of async copies, and form the
global view, Copier tracks the order dependency of copies
with cross-queue barriers, which synchronize the queues
separated by privilege levels, and utilizes system events as
barrier indicators. Copier also tracks the data dependency of
copies to maintain correctness of the reordered tasks (§4.2).
Optimizations. To fully utilize hardware capabilities, we
design a dispatcher which piggybacks DMA tasks onto AVX
tasks and executes them in parallel to overlap DMA copy
with AVX copy (§ 4.3). Leveraging its global view, Copier
employs layered copy absorption to eliminate redundant in-
termediate copies in a fine-grained manner. Apps can further
exploit copy absorption with lazy copy semantics (§4.4).
Management.Copiermaintains fairness and isolation among
clients (user processes or OS services with standalone con-
texts [54]) with Copier scheduler and cgroup extension (§4.5).
Usages. Copier introduces two programming primitives:
amemcpy() and csync(). Apps perform async copy with
amemcpy(), and sync the data before usewith csync(). Copier
provides a toolchain to ease the use, including libraries, a de-
bug tool, and an experimental compiler. We present Copier’s
use cases for whole system copy optimization (§5) on two
OSes, where Copier is used to optimize copies in OS services,
frameworks, and apps.

4 Copier Design
4.1 Pipelined Copy-Use with Copier Abstraction
As shown in Fig.4 (left), Copier’s library provides two major
high-level interfaces: amemcpy (async_memcpy) and csync
(copy_sync). Clients can submit an async copy task with
amemcpy and ensure the data is ready before use with csync.
The detailed APIs and usage are described in §5.1.

From the OS API perspective, clients interact with Copier
through three types of (per-client) queues (CSH Queues):
Copy Queue, Sync Queue, and Handler Queue, which
are mapped to the client’s address space. These queues are
the underlying abstractions supporting high-level APIs, as
shown in Fig. 4 (right). Copier has its own context (e.g.,
kthread in Linux) and polls the queues to handle the requests

▶Existing copy and use
func copyUse(src, dst, n):
memcpy(dst, src, n);
free(src);
/* some work ... */
val = dst[0];
return val;

▶Copier programming model
func copyUse(src, dst, n):
amemcpy(dst, src, n,
handler={free, src});

/* some work ... */
csync(addr=dst, len=8);
val = dst[0];
return val;

▶Internal imp with CSH Queues
func amemcpy(dst, src, n, handler):
/* alloc desc, map copy to it */
desc = alloc_desc(dst, src, n);
enqueue(CopyQueue, {dst, src, n,

desc, handler, ..});

func csync(addr, n):
desc = lookup(addr);
if (!desc_ready(addr, n)):
enqueue(SyncQueue, {addr, n});
while(!desc_ready(addr, n)){};

/* Periodically invoked */
func post_handlers():
run(dequeue(HandlerQueue));

Figure 4. Programming model and interfaces.

(Fig.5). Queue-based abstractions offer non-blocking, async
operations, circumventing the overhead of syscalls [26, 55].
Asynchronous copy with Copy Queue (𝑄𝐶𝑜𝑝𝑦). Clients
enqueue Copy Tasks for copy via 𝑄𝐶𝑜𝑝𝑦 , as shown in Fig.5.
A Copy Task includes the source and destination, identified
by virtual addresses or pages (used by kernel), and the copy’s
length. 3 𝑄𝐶𝑜𝑝𝑦 handles multiple tasks in FIFO order, main-
taining copy order for consistency. While it covers basic
functionalities, it leads to a long waiting time for the comple-
tion of a big copy, affecting the effectiveness of asynchrony.
Copier introduces segment-based copy to mitigate the issue.
Fine-grained copy-use pipeline with segments.We ob-
serve that apps usually access copied data piece by piece in
a regular pattern (e.g., sequential). Therefore, it is not nec-
essary to complete the entire copy before use; ensuring the
availability of currently required data suffices. Based on this
observation, Copier abstractions enable the fine-grained up-
date of a task’s progress. Copier partitions a copy into several
segments, i.e., fixed-size regions, whose size is determined
by the granularity in Copy Task. Clients are required to spec-
ify the address of the task’s descriptor — a bitmap tracking
the copy status of each segment — which is checked by
clients to confirm the progress of the copy. Copier updates
descriptor’s relevant bit after finishing the copy to a segment.
This design facilitates copy-use pipelines, enabling parallel
data copy and use.
Task promotion with Sync Queue (𝑄𝑆𝑦𝑛𝑐 ). To prevent
the head-of-line blocking caused by FIFO-queue-based ab-
stractions [25–27] — with basic Copy Queue, preceding tasks
block subsequent ones even when the preceding data is not
used immediately, Copier introduces 𝑄𝑆𝑦𝑛𝑐 , which enables
apps to adjust the execution order of async tasks as needed,
i.e., out-of-order execution. When a client finds required seg-
ments unready, it submits a Sync Task with the required
address and length, as shown in Fig. 5 and csync in Fig. 4.

3Copier’s lib (§5.1) supports overlapping copy (memmove) by splitting it
into two tasks and first submitting the taskwhose sourcewill be overwritten.
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This raises the priority of corresponding segments and all
tasks it depends on, following data dependency in §4.2.
Delegation-based handler.A challenge for prior zero-copy
methods is post-copy handling, which involves immediate
actions on source buffers after copy, e.g., free in copyUse
(Fig.4). Linux zero-copy socket [24] relies on explicit syscalls
to check buffer’s ownership, while zIO [7] employs a garbage
collector to defer deallocation, introducing complexities and
limiting their usage. We propose delegation-based handling.
Specifically, we add the func field in Copy Task, encapsulat-
ing a function pointer and its arguments, designated to be
invoked upon copy completion. We use KFUNC for kernel
functions and UFUNC for user ones. Copier helps to execute
the KFUNCs. For UFUNCs, Copier submits a task including
the function to Handler Queue. Copier library (§5) checks the
queue and executes the handlers (post_handlers in Fig.4).

4.2 Async but not Chaotic with Dependency Tracking
Although the async abstractions move copy out of the critical
path, they introduce challenges in maintaining correctness.
Executing the async tasks in the correct order is challenging
for two reasons: (1) Separated async queues across privilege
levels lack efficient synchronization mechanisms. (2) Out-of-
order execution occurs because Sync Tasks prioritize some
copies. Copier tracks order dependency and data dependency
to address these challenges respectively.

4.2.1 Order Dependency. For kernel’s security, we main-
tain two sets of CSH Queues for each process by default:
user-mode (u-mode) queues for the app, and kernel-mode
(k-mode) queues for kernel services sharing the process’s
context (e.g., syscalls). It is necessary to monitor the submis-
sion order of tasks in u-mode and k-mode queues. E.g., the
kernel submits a task (A→B) to the k-mode 𝑄𝐶𝑜𝑝𝑦 during
recv, followed by the app submitting a task (B→C) to the
u-mode 𝑄𝐶𝑜𝑝𝑦 after recv returns. Copier must ensure A→B
occurs before B→C for correctness. This dependency is de-
fined as order dependency. The order dependency of tasks
within u-mode/k-mode queue is naturally determined by
their order in the queue, without explicit specification. How-
ever, as the queues are non-blocking and user’s timestamps
are untrustworthy, determining task order across u-mode
and k-mode queues poses a challenge.
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Cross-Queue Barrier.We observe that we can utilize trap
(e.g., syscall) and return events as indicators to track dependen-
cies, as shown in Fig.6-a. Specifically, we introduce Barrier
Tasks. Each time before kernel submitting the first Copy Task
after a trap, it submits a Barrier Task, recording current posi-
tion of user Copy Queue (and the times it is reused). Similarly,
kernel submits a Barrier Task before returning to userspace.
With the indicators, Copier knows the dependency between
the two queues: 𝐾1–𝐾4 before𝑈 5 and after𝑈 2.
A possible (corner) case in multi-threaded apps is that,

when kernel submits tasks, other threads may submit tasks
to user Copy Queue (𝑈 3–𝑈 4 in Fig.6-a). This concurrency
issue also exists in traditional sync copy, e.g., during kernel
performing copy_to_user, another concurrent thread per-
forms copy. Same as its original behavior, the order between
𝐾1–𝐾4 and𝑈 3–𝑈 4 is undetermined. Copier prioritizes tasks
in k-mode queues for simplicity, as shown in Fig.6-a (right).

4.2.2 Data Dependency. To process Sync Tasks and en-
able copy absorption (§4.4), Copier has to track data depen-
dency — whether a Copy Task’s involved data is dependent
on another due to overlapping memory regions. Data depen-
dency can be easily established by traversing Copy Tasks in
reverse using the tracked order (§4.2.1) and comparing the
regions (both sources and destinations).
In Fig.6-b, when processing the Sync Task which prior-

itizes 𝑈 3, Copier assesses the data dependency of 𝑈 3 and
finds it depends on 𝐾1. Then, Copier adjusts the copy order,
ensuring the essential tasks are done first. Notably, although
it differs from order dependency, re-ordering is safe as the
tasks are independent. Copier handles Sync Tasks in k-mode
Sync Queue first, and then the tasks in u-mode queue.

4.3 Harmonizing Copy Units with Task Piggybacking
Copier’s OS service role brings opportunities for copies to
benefit from full hardware capabilities. By saving AVX regis-
ter states only upon Copier’s activation and restoring them
just before it sleeps, we avoid the overhead of frequent state
saves and restores with each copy. We also employ parallel
copy with AVX and DMA [47] to enhance copy throughput.
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Challenges.AlthoughDMAcopieswithout consumingCPU
cycles and excels at large copies (≥4KB), it has lower through-
put than AVX2, especially for small copies, as shown in Fig.7-
a. Submitting DMA tasks and waiting for them to complete
also wastes cycles that could be used for copy. It remains
unclear how to integrate diverse hardware capabilities given
their varying characteristics.
CPU-DMAhybrid subtasks.DMA requires that both source
and destination of the copy have contiguous physical ad-
dresses. We define a subtask as the basic unit within a Copy
Task to execute copy in specific hardware, e.g., DMA or AVX,
which is the largest unit meeting the continuity requirement.
E.g., in Fig.7-b, non-contiguous pages divide the subtasks.

We observe that DMA is inefficient for small subtasks due
to the overhead of submitting DMA tasks, whose costs in
our server are sufficient to copy 1.4KB using AVX2. Based on
the observation, we propose hybrid subtasks — for a single
task, Copier considers its subtasks with sufficient sizes as
DMA candidates, e.g., S5/S7/S9, and uses CPU for others.
Piggyback-based hardware dispatcher.Copier introduces
the dispatcher to allocate subtasks between heterogeneous
copy units. As DMA is notably slower than AVX, improper
allocation may result in non-trivial waiting time within CPU
to enforce dependencies. We propose the piggyback mecha-
nism to pair and synchronize subtasks executed by CPU with
those performed by DMA. The dispatcher works in rounds,
it first schedules subtasks, and then executes them:
• Packed scheduling. Copier piggybacks DMA copy onto
AVX copy to overlap the DMA copy with AVX copy, avoiding
the CPU consumption to wait for DMA completion. Specif-
ically, (1) for a large task (≥12KB), Copier picks subtasks
from the DMA candidates within the task and assigns them
to DMA. It assigns other subtasks to AVX, as shown by i-
piggyback in Fig.7-c. Copier tries to ensure the completion
times of the subtasks on CPU and DMA are close based on
hardware metrics (Fig.7-a). (2) If the task’s length is below
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the threshold, Copier uses the e-piggyback method. Differ-
ent from i-piggyback, it picks subtasks from several adjacent
tasks in the queue, provided they have no data dependency.
Copier picks DMA subtasks from the task’s latter part (i-
piggyback), or the latter tasks (e-piggyback), as they typi-
cally have longer Copy-Use windows, e.g., although S1 and
S5 in Fig.7-c are DMA candidates, they are assigned to AVX.
• Parallel execution. Copier first submits DMA subtasks
(in batch) to the device queue, then executes AVX subtasks,
and finally confirms the completion of DMA subtasks.
The piggyback mechanism ensures high utilization of both
copy units without wasting cycles waiting for DMA comple-
tion. It can be applied to more heterogeneous units [56, 57].
Address Transfer Cache (ATCache). DMA requires trans-
lating virtual addresses (VAs) to physical addresses (~240
cycles/page). We note that apps’ copy addresses often demon-
strate high locality, as they tend to use recycled buffer pools
and fixed I/O buffers to minimize (de)allocation overhead,
e.g., the address recurrence in Redis surpasses 75%. We pro-
pose ATCache, which caches VA, pages, and length, to reduce
translation overhead. The memory subsystem will notify AT-
Cache to invalidate entries when the mappings change.

4.4 Merging Redundant Copy with Copy Absorption
Continuous copies, especially those across privilege levels,
are common in I/O-intensive apps, e.g., when Redis processes
a SET, the value is first copied from kernel buffer (𝐾 ) to input
I/O buffer (𝐼 ) through recv(), and then copied to the database
(𝐷) after parsing the request. In many cases, only a small
portion of the intermediate buffer (e.g., 𝐼 ) is accessed [7].
Copy absorption, by design, eliminates the unnecessary copy
(K→I) of untouched data and merges the copies into a “short-
circuit” copy (K→D). zIO [7] utilizes a similar observation
but is limited to user-mode. With order dependency tracking
(§4.2.1), the OS service role endows Copier the global view
of copies, thus enabling cross-privilege copy absorption.
Challenges. Fine-grained granularity brings challenges. Con-
sider two copies in the queue, A→B and B→C, when 𝐶 is
used, a naive design is to copy A→C directly. It is correct for
coarse-grained copy where 𝐵 must be fully copied once it is
used, but not for Copier’s fine-grained copy. A case (Fig.8-a)
is that after ❶ submitting A→B, the client ❷ modifies part of
the data in 𝐵, and then ❸ submits B→C.When ❹𝐶 is synced,
we cannot simply copy A→C as part of 𝐵 is modified.



Layered copy absorption. Recall the segment-based Copier
abstractions (§4.1), since clients sync the data before use, a
segment could not have been accessed if its bit in descriptor
is not marked. Conversely, it might be modified if its bit is
marked. We propose layered absorption — instead of copying
from one source, Copier copies from sources with the latest
data. In Fig.8-b, when 𝐶 is synced, Copier copies the first 3
segments from 𝐵 and others from 𝐴, as 𝐵’s 3 segments are
marked in the descriptor and might contain newer data.
Optimizationswith app semantics.We present Lazy Copy
Task to further exploit copy absorption. Clients can mark a
Copy Task as lazy in the type field. It has the lowest priority
and will be handled only when: a Copy/Sync Task depends
on it, or a specified period has elapsed. A Lazy Task usually is
not executed but acts as amediator in copy absorption, which
is beneficial in cases where the data is not accessed but just
moved. E.g., a proxy reads a message from kernel (K1→U),
and sends it out (U→K2) after redirecting. As the proxy only
uses a few data of the message (e.g., header), it can mark the
first task as lazy.With copy absorption, Copier performs copy
about K1→K2 during send(). A special Sync Task, abort, is
introduced to explicitly discard unnecessary Copy Tasks, e.g.,
the proxy can submit an abort task to discard K1→U (which
is still queued) after finishing sending the message. Notably,
Copier does not implicitly discard any tasks.

4.5 Fair and Isolated Multi-client Serving
As an OS service, Copier has its own (k)threads (called Copier
threads) to handle requests from clients. It needs to manage,
isolate, and schedule copy resources, and handle faults.

4.5.1 Copier Threads. Copier threads leverage and en-
hance existing async mechanisms within OS kernels to poll
requests from the queues. We implement it based on io_uring
(with SQPOLL) in Linux, where the io_uring kthreads poll the
clients’ queues. We introduce the following two extensions.
Scenario-driven polling.Copier supports two pollingmodes:
(1) NAPI mode [58] (default): Copier reuses io_uring’s NAPI
support [59] to balance performance and polling overhead.
(2) Scenario-driven mode: Copier thread is activated only
when a target scenario is detected and sleeps when the sce-
nario changes. This is particularly beneficial for devices with
limited cores and a critical focus on power consumption, e.g.,
our practice on commercial smartphones (§5.3).
Copier thread auto-scaling. We design an auto-scaling
mechanism to support dynamic loads, which keeps the aver-
age load between predefined low_load and high_load. Copier
launches more threads when sustained high loads are de-
tected, and puts threads to sleep when the load is low. Clients
are preferentially assigned to NUMA local Copier threads.

4.5.2 Resource Isolation with Extended Cgroup. With
Copier, copy is managed as a basic resource like CPU time and
memory. Based on this perspective, we extend Linux control

group (cgroup) [60] with a controller named copier. Users
can configure the share of Copier resources of each cgroup
(copier.shares). We do not use CPU slices used by Copier as
copy resources, acknowledging copies’ completion times can
vary due to cache and TLB states. Instead, Copier uses copy
length, the length copied, as the resources. The extension
is compatible with existing OSes, and can be easily used by
users and frameworks [61] to achieve resource isolation.

4.5.3 Scheduling. Each Copier thread schedules clients
following CFS [62] — the key consideration is fairness. Specif-
ically, Copier threads maintain a total copy length for each
process and select the process with the minimum total copy
length to serve each time it schedules, akin to CFS’s strategy.
Administrators can adjust Copier’s copy slice, defining the
maximum copy length upon each scheduling. The scheduler
works in each cgroup to maintain fairness and cooperates
with the copier controller to schedule among cgroups.

4.5.4 Multi-Address Spaces and Fault Handling. Serv-
ing multiple processes faces challenges with the memory
subsystem. The processes submit tasks with virtual addresses
(VAs) specific to their own address spaces, which cannot be
directly used by Copier. More complex still, these VAs might
not be backed by physical memory due to on-demand paging,
CoW, or even malicious behavior, triggering page faults that
are hard to handle in Copier’s context. A naive design is to
switch Copier’s page table to use the VAs directly; however,
it is costly and cannot effectively handle page faults.
Proactive fault handling. Copier adopts a proactive ap-
proach to handle the challenges. Instead of waiting for po-
tential faults, Copier proactively triggers and handles them.
Specifically, Copier uses VMAs [63] and page tables to con-
firm the VAs’ physical mapping and locks the mapping until
the copy is completed [64]. The address translation can be op-
timized with ATCache (§4.3). If some pages are not mapped,
Copier constructs exception parameters and invokes fault
handlers. Copier also applies security checks, e.g., address
boundary checks. If the faults cannot be resolved or the copy
has security issues (e.g., illegal kernel addresses), Copier
drops the task and signals the process as before (sigsegv).

4.6 Target Scenarios and Scope
Like other OS services [25, 54], Copier is not a silver bullet
for all cases. We summarize Copier’s target scenarios and
scope as follows. For the unsuitable cases, developers can
fall back to prior sync copy.
Copy size.With sufficient Copy-Use windows, Copier out-
performs a sync copy when the copy time exceeds the time
of task submission and csync, e.g., kernel copies of ≥ 0.3KB
and userspace copies of ≥ 0.5KB on our server. Due to bet-
ter utilization of hardware, Copier also benefits large copies
even without sufficient Copy-Use windows (e.g., CoW), e.g.,
kernel copies of ≥ 2KB and userspace copies of ≥ 12KB.



Table 2. Major APIs introduced by Copier.
Levels APIs Descriptions

libCopier
(high-level)

amemcpy(dst, src,
size); amemmove (..);

Async memcpy and memmove. They
use the per-process default queues.

csync(addr, size);
Ensures prior async copy is finished. It
submits Sync Task and polling waits if
some segments are not ready.

csync_all(void); Ensures all async copies and FUNCs
finish.

shm_descr_bind(shm,
descr, segment_len);

Bind descriptor (on shared memory) to
shared memory that apps use.

libCopier
(low-level)

_amemcpy(.., fd,
FUNC, desc, opts);
_amemmove(..);

Allows customized management of
descriptors, FUNCs, and lazy copy.
desc = descriptor. fd =file descriptor.

_csync(offset, size, fd,
descriptor, opts);

Allows customized descriptor
management. Set fd to -1 to use the
default queues.

copier_create_
mapped_queue(len);

Creates a client with user and kernel
queues, and mmaps the user queues.

OS
(Syscall)

copier_create_
queue(len);

Creates Copier queues, and returns a
fd on success.

set_copier_opt(opts); Sets global parameters.
copier_awaken(fd); Wakes the Copier thread during sleep.

Data access pattern.Copier is suitable for apps with regular
access patterns (e.g., sequential) and sufficient Copy-Use
windows, which is common in I/O-intensive and memory-
intensive apps (e.g., KV store, network protocol processing,
file I/O, IPC, etc.) [7]. It is unsuitable for apps that access
data randomly.
Sensitivity. Like other polling-based solutions [44, 65–67],
Copier may consume more CPU cycles. Copier is efficient
when there are underutilized cores (common in datacen-
ters [68, 69]). When CPU resources are fully utilized, it ben-
efits latency-critical apps but may hurt throughput-critical
apps. For apps with copy chains or large copies, copy absorp-
tion and hardware capabilities can save more cycles than
those consumed by polling, benefiting throughput-critical
apps evenwith fully utilized cores.We evaluate this in §6.3.4.

5 Practice of Copier
As with prior OS services [25, 54], Copier requires effort to
leverage its capabilities to bring benefits. We present the
toolchain that is designed to ease the use of Copier and the
guidelines (§5.1), and two OSes supporting Copier (§5.2 and
§ 5.3), with cases where we utilize Copier to optimize OS
services, frameworks, and apps.

5.1 Copier Toolchain
The toolchain includes three parts: libCopier to provide APIs
for development, CopierSanitizer to provide tools for debug-
ging, and CopierGen to automate the porting.

5.1.1 Development with libCopier. We design libCopier
with both high-level and low-level APIs, as documented in
Table.2. Most developers can use high-level APIs, e.g., amem-
cpy (async-memcpy), with similar interfaces as sync copy.

We introduce a new primitive, csync (copy-sync), which
simply requires an address and the size, used to ensure im-
mediate consistency and order. From an app’s view, it per-
forms copy as usual and syncs the data before use using
csync(). We also add csync_all() to sync all uncompleted
async copies.
Internal implementation. To keep the high-level APIs
simple, libCopier prepares and maintains default queues for
each process. To accelerate the creation of descriptors during
task submission, libCopier maintains a descriptor pool and
pre-allocates descriptors with different sizes. When libCopier
requires a descriptor, it fetches the proper one from the pool.
Optimizations with low-level APIs. libCopier provides
low-level APIs (e.g., _amemcpy) for expert developers for
better performance. These APIs are used to optimize frame-
works (e.g., Binder or gRPC) which can benefit many high-
level apps or a few significant apps. Specifically, low-level
APIs enable two optimizations: (1) customized descriptor man-
agement: developers can re-use the descriptor of the same
buffer (e.g., I/O buffers) to avoid costs of descriptor allocation
and recycling, and use pre-determined descriptors for _csync
to avoid table lookup costs. (2) multi-queue supports: devel-
opers can create per-thread queues for a process, and use the
specific queues with the fd. As Copier only tracks the depen-
dencies among paired kmode and umode queues, per-thread
queues are used by apps whose copies in different threads
do not have dependency, e.g., common web servers [70, 71].
Multithreading and concurrency. Copier utilizes a lock-
free ring buffer as the underlying implementation of CSH
Queues (§4.1). To submit a task, libCopier acquires a task
buffer by moving the queue head using fetch-and-add. After
filling the fields, it sets the task’s valid bit. Upon discovering a
valid task at the queue tail, Copier processes it and advances
the tail (the order of tasks follows the order of acquiring).
Csync guidelines.We summarize guidelines for csync in-
sertion based on practices. (1) Direct data access: sync before
reading/writing destinations (dst) and writing sources (src).
(2) Buffer free: sync before dst/src buffers are freed, or use
post-copy handler (§4.1). (3) Used by external lib/func: e.g.,
sync before passing the buffer to strchr. (4) Visible to (un-
modified) external threads: e.g., sync before updating page
table during CoW fault handling.
Correctness and semantic equivalence with formal ver-
ification.We have verified that: once csync is correctly added
according to the guidelines, the semantics of amemcpy refine
those of memcpy in both single-threaded and multi-threaded
contexts. 4 This means, Copier will not introduce any new
bugs (compared with memcpy) once csync is correctly used.
Shared memory. libCopier supports asynchronous copy to
shared memory. Processes exchanging data through shared
memory (shm) need to establish a dedicated shared buffer

4The formal proofs are attached in the appendix for reference.



(Dshm) for descriptors, and bind (shm_descr_bind) it with
the shared memory to use high-level csync. libCopier uses
data’s offset to the start of shm to locate the data’s descrip-
tor on Dshm. csync for shared memory will wait until the
descriptor is marked ready. Android Binder IPC, which we
discuss and evaluate in the paper, is a use case of Copier on
shared memory.

Although csync is lightweight, too frequent use of it (e.g.,
per-byte csync or sync the same data repeatedly) may lead to
performance degradation. However, in practice, its overhead
is limited. First, memory accesses in typical apps exhibit
locality, e.g., sequential/strided access, so apps can sync once
every one to fewKB of data used. Second, copied data in copy-
bottlenecked apps is often one-time use, e.g., in OpenSSL [39]
the data is never reused after being decrypted. Apps can sync
the whole copy before the first use to avoid excessive csyncs.

Based on our practice on 10 apps and kernel services, de-
velopers can port typical apps with acceptable efforts (§6.3.1).

5.1.2 Bug Detection with CopierSanitizer. Like other
services andAPIs, developersmaymisuse amemcpy or csync,
causing potential bugs. We develop CopierSanitizer, a bug
detection tool to help users find omitted or improper csyncs.
Key idea.Weutilize shadowmemory to detect Copier-related
bugs, which is widely used in prior industrial bug detec-
tion tools like AddressSanitizer [72], etc. [73, 74]. Specifically,
CopierSanitizer uses shadow memory to record the meta-
data of program memory, enabling the detection of errors by
tracking memory accesses and identifying illegal accesses. It
identifies memory accesses during compilation and inserts
lightweight instrumentation code to record the states and
detect the errors.
Internal implementation. We implement CopierSanitizer
based on AddressSanitizer [72]. Specifically, when a program
calls amemcpy (and amemmove, etc.), CopierSanitizermarks
the source and destination memory as “inaccessible” (“poi-
soned” [75]). After the program calls csync, it marks the re-
gion involved as “accessible”. In this way, memory accesses
and frees without csync will be captured and reported to
developers. CopierSanitizer supports multi-threaded apps.

CopierSanitizer now focuses on user-mode apps, and can
be extended to kernel by incorporating KASan [76].

5.1.3 Porting with CopierGen. To ease the burden of
porting existing apps, we explore the method of utilizing
compiler tools to automate the porting, following priorworks
like Mira [77]. The key insight is that IRs preserve high-level
abstractions like variables, but with data access constrained
to a few operations, e.g., load and store [78], providing inser-
tion points for csync. We design CopierGen with a series of
Passes [79], based on LLVM andMLIR [78]. Basically, Copier-
Gen identifies variables corresponding to sources and des-
tinations of copies, and inserts csync before access to them.
We implement and validate it for basic cases like arrays, but

leave handling complex issues (e.g., pointer passing) as future
work. Mira faces a similar problem (checking whether the
data is remote or local before access) to Copier and supports
complex apps, making us believe in CopierGen’s practicality.

5.2 The Cases of Copier in Linux

We implement Copier-Linux5 based on Linux-5.15.131. Copier
is used to boost the performance of OS components, frame-
works, and apps.
Network stack. We use Copier to optimize copies during
recv() and send(), where copy is used to transfer data be-
tween userspace and kernel. For recv(), the Copy-Use win-
dow exists between kernel copying data to userspace and
apps using the data. We modify the network stack to sub-
mit Copy Tasks with a descriptor provided by libCopier for
apps to check. The Copy Tasks include a KFUNC to reclaim
the socket buffers for reuse. For send(), the Copy-Use win-
dow exists between kernel copying data to socket buffers
and driver submitting the packets to hardware queues. With
checksum offloaded to NICs [80, 81], the TCP/IP layers no
longer require data access, but just use packet metadata. The
network stack submits Copy Tasks at the socket layer and
syncs the data before the driver enqueues packets into the
NIC TX queues.
Copy-On-Write fault handling. CoW enhances forking
efficiency but incurs runtime overhead from page fault han-
dling [82, 83], where copy is a notable bottleneck. In Copier-
Linux, kernel submits Copy Tasks after allocating a new
page, and syncs before updating the page table. Instead of
offloading the whole copy, Copier-Linux divides the work
between CoW handler and Copier to reduce the waiting time.
Android Binder IPC framework. Binder IPC [37] entails
a two-step data transfer: client’s data is copied to a kernel
buffer by Binder driver, then IPC server maps the kernel
buffer into its address space. Apps utilize Parcel [84] frame-
work to manage Binder IPC, which enables typed data writ-
ing into or reading from Binder messages. Copier optimizes
the copy with low-level APIs. Copier-Linux places the de-
scriptor at the front of messages (shared memory) and Parcel
utilizes _csync before use. The copy is hidden by Binder
driver’s processing (e.g., scheduling the server thread) and
server’s processing. As all the changes aremade inside Binder
and Parcel, apps can benefit without any modifications.

5.3 Practice of Copier on HarmonyOS
We integrate Copier with HarmonyOS 5.0 (HongMeng ker-
nel [4]) on smartphones experimentally. A significant chal-
lenge is that the energy sensitivity of smartphones makes un-
controlled polling unsuitable. In response to this, we use the
scenario-driven design (§4.5) and avoid long-term polling.

5The source code is available at https://github.com/SJTU-IPADS/Copier.

https://github.com/SJTU-IPADS/Copier
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Figure 9. Copy throughput. The benchmark submits sufficient
copy tasks and records the completion times. For the baselines,
we replace Copier’s copy method with glibc AVX-memcpy and
kernel-mode methods (ERMS, DMA).

Copier is utilized to enhance the performance of video record-
ing and playback, which involve numerous copies and are
critical scenarios for current smartphones.

6 Evaluation
In this section, we aim to clarify the following questions.
• How is the performance of Copier in handling copy re-
quests? (§6.1.1)
• How does Copier benefit other OS services? (§6.1.2)
• How does Copier benefit real-world applications? (§6.2)
• Is Copier effective and energy efficient in smartphone set-
tings? (§6.2.4)
• What are the development efforts to adopt applications to
Copier? (§6.3.1)
• Can Copier make benefits when the CPU cores are fully
utilized? (§6.3.4)
Experimental setup. The experiments on servers are con-
ducted on servers with 2 Xeon E5-2650 v4 CPUs [85] with a
constant 2.9GHz frequency and 128GBDDR4memory, unless
otherwise specified. The baselines are run on Linux-5.15.131,
which is the system Copier is based on. Linux 5.15.131 still
represents SOTA kernel copy implementations because, de-
spite some engineering improvements [86], the way Linux
performs memory copy (i.e., using the ERMS instructions)
has not changed in newer Linux versions. The experiments
on smartphones are conducted on Huawei Mate 60 Pro, with
Kirin 9000S CPU and HarmonyOS 5.0. In all experiments,
Copier uses one dedicated core to copy.
BaselinesWe compare Copier with the following state-of-
the-art works: Linux zero-copy socket [24], Userspace Bypass
(UB) [87], and zIO [7]. We set zIO’s threshold to 4KB, which
caps the minimum copy to apply it.

6.1 Micro Benchmarks

6.1.1 Copy Performance. We evaluate the throughput
of Copier to handle Copy Tasks of different sizes. Results
(Fig.9) show that the throughput of Copier, which uses AVX2
and DMA to copy in parallel, increases by up to 158% (55%
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Figure 10. Average latency of send() and recv() syscalls. The
load is generated by echo servers and clients. Zero-copy recv()
is not evaluated as it requires special NIC architecture [88, 89].
IOR-b = io_uring (batch).

for 4KB) compared to the default copy method in the kernel
(ERMS [29]), and by up to 38% (33% for 4KB) compared to
the userspace copy method (AVX2) when there is no buffer
repetition. When the rate of buffer repetition is 75%, Copier’s
throughput increases by up to 63% (53% for 4KB) compared
to ERMS, and by up to 32% (30% for 4KB) compared to AVX2;
the ATCache brings a 2%–11% higher throughput.

6.1.2 Performance of OS Services with Copier
Syscalls (send and recv). We compare Copier with the
following syscall optimization methods and systems:
• Kernel offloading (Case: UB [87]) reduces the number of
context switches by offloading userspace code into kernel.
• Asynchronous syscalls [26] (Case: io_uring [25]) paral-
lelize execution of syscalls and app to hide the overhead.
• Batch submitting and processing (Case: io_uring with
batching [25]) can reduce the number of context switches
and improve locality. The batch size is configured as 100.
• Zero-copy (Case: zero-copy socket [24]) reduces the copy
costs by sharing memory between kernel and apps.
Results (Fig.10) show that Copier reduces the latency of

send by 7%–37% compared to baseline (normal syscalls) and
by 27%–59% with io_uring batching. Copier reduces the la-
tency of recv by 16%–92% and by 55%–93% with batching.
UB’s effect diminishes as data size increases since copy dom-
inates the costs. Zero-copy send performs better than Copier
with large data (≥ 32KB), but has little effect for smaller data,
and introduces a non-trivial burden to manage the shared
buffers, as discussed in §2.2. io_uring does not reduce the
latency of syscall execution, and the optimization effect de-
pends on the apps. Batched io_uring improves performance
of both normal syscalls and syscalls with Copier, but its effect
diminishes as the data size increases for normal syscalls.
Android Binder IPC.We use a benchmark [14] to measure
the end-to-end latency for the IPC client to send a message
containing n strings of 1KB, the server to read these strings
one by one, and then send a reply to the client. This pattern
is widely present in data storage, image rendering, and au-
dio playback apps. Experimental results show that Copier
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Figure 11. Results of Redis GET and SET. Workload is gener-
ated by official redis-benchmark [90] with 8 parallel (closed-loop)
clients. For SETs, improvement diminishes for values of ≥64KB
due to the increased overhead of request sending. Redis version:
v6.2.14.

reduces the average end-to-end latency by 9.6%–35.5% when
n varies between 10–800.
CoW Handling. We use a benchmark that continuously
triggers CoWpage faults andmeasures the average latency of
fault handling. Results show that Copier reduces the average
thread blocking time per page fault by 71.8% for 2MB pages
and 8.0% for 4KB pages.

6.2 Application Benchmarks

6.2.1 Redis. Copier optimizes the 5 copies in Redis: (1)
copy of requests from kernel to I/O buffer in recv(); (2) when
processing SETs, copy of value from the I/O buffer to the
value’s buffer; (3) when processing GETs, copy of value from
the value’s buffer to the I/O buffer; (4) copy of replies from
I/O buffer to kernel in send(); (5) one of internal copies
during processing. Due to proactive fault handling, Copier
also moves page faults during copy out of the critical path.
Results (Fig.11) show that compared to baseline, Copier

reduces end-to-end average latency by 2.7%–43.4% for SETs
and 4.2%–42.5% for GETs. Copier reduces tail latency (P99) by
5.9%–33.4% for SETs, and 5.59%–47.8% for GETs. It improves
throughput by 2.4%–50.0% for SETs and 4.2%–32.0% for GETs.
We evaluate Linux zero-copy send(), which is only effi-

cient when the value length is ≥32KB due to its alignment
constraints, TLB flush costs, and additional syscalls for own-
ership management. We compare Copier with zIO [7] and
UB [87]. UB can only optimize SETs and GETs of ≤4KB be-
cause it slows down the program’s memory access. zIO re-
duces latency by up to 20.0% for GETs because it efficiently
eliminates one userspace copy. However, because Redis al-
ways reuses the input buffer and causes page faults, zIO is
only effective for SETs of ≥64KB (up to 6.1% improvement).
Copier outperforms these SOTA solutions because of its fea-
sibility and effectiveness in optimizing diverse copy cases.
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Figure 12. TinyProxy’s throughput. MPS: messages per sec-
ond. imp. = improvement. Load is generated by echo servers and
clients proxied by TinyProxy. Fig.-b is conducted on servers with
Xeon Gold 6238R CPUs [91]. TinyProxy version: v1.11.1.

6.2.2 TinyProxy. Network proxies are widely used in sce-
narios such as load balancing, reverse proxying, etc. [92]. We
observe that many proxy functions (e.g., redirecting, load
balancing, rate limiting, etc.) do not need to use most of
the data in a message, but typically only use the request
line and message headers. This presents opportunities to
apply copy absorption (and lazy copy). TinyProxy [9] is a
widely used lightweight proxy. It first reads the message and
uses the request line and header to decide on the upstream
server. Then it uses memcpy() to organize the message and
sends the message out. Copier can optimize the three copies
involved into a single (async) copy. We evaluate the through-
put when TinyProxy performs HTTP message forwarding
(Fig. 12-a). Compared with the baseline, Copier increases
the throughput by 7.2%–32.3%. zIO achieves up to an 11.6%
improvement compared with the baseline; it can only elim-
inate one userspace copy because of its inability to handle
inter-boundary copies. Furthermore, due to the use of page
remapping, zIO cannot optimize messages that do not occupy
entire pages and is effective only for messages of ≥16KB.

6.2.3 Frameworks and Libraries
Protobuf [36] is the serialization library used by gRPC [93].
The apps receive a serializedmessage from network and dese-
rialize it into an object with Protobuf. With Copier, copying
the message to userspace is executed in parallel with dese-
rialization. Copier reduces the average latency of receiving
and deserializing a message by 4%–33%, as shown in Fig.13-a.
OpenSSL [39] is a famous TLS/SSL library. On receiving a
message, it first copies it to userspace via recv() and then
decrypts it. Copier enables the copy to be executed in paral-
lel with decryption. Copier reduces the average latency of
SSL_read() (AES-GCM) by 1.4%–8.4%, as shown in Fig.13-b.
zlib [38, 94] is a widely used compression library. It uses a
sliding window as the interval for pattern matching, whose
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Figure 13. Results of libraries and HarmonyOS (smartphone). Since the maximum size of a TLS record is 16KB, the speedup of
OpenSSL with Copier remains stable for sizes ≥ 16KB. Copier reduces the average latency by up to 33%, 8.4%, 10% for the three scenarios,
respectively. Protobuf version: v4.23.0 OpenSSL version: v3.4.0.

movement relies on data copy. Copier enables copying data
to the sliding window to be executed in parallel with pat-
tern matching, and achieves up to an 18.8% speedup when
compressing (deflate_fast()) data under 256KB.

6.2.4 Copier on SmartphoneOS. Avcodec is HarmonyOS
5.0’s unified audio/video coder/decoder framework. It copies
data from inner buffers to the frame buffer after decoding.
Copier enables the copy to be performed in parallel with sub-
sequent logic before data usage (passing to rendering). We
use production benchmarks which decodes video for 300s.
Results (Fig.13-c, on Huawei Mate 60 Pro with Kirin 9000S
CPU) indicate that Copier reduces the decoding latency per
frame by 3%–10% with a 0.07%–0.29% increase in energy con-
sumption, which reduces frame drops during video playback
by up to 22%. Copier’s scenario-driven polling design saves
energy (§ 4.5.1), where Copier is activated only for copy-
intensive workloads, and sleeps when queues are empty.

6.3 Extended Studies

6.3.1 Efforts toAdaptApplications. The efforts for legacy
apps and OS services are moderate, as much complexity is
handled by libCopier, as shown in Table.3. CopierSanitizer
helps us locate positions to add csync and avoid omissions.
It took a graduate student 1-2 weeks to port complex apps
with many copies (e.g., Redis and TinyProxy), and 1-2 days
to port relatively simple apps (e.g., zlib and Protobuf).

App/OS Service LoC App/OS Service LoC App/OS Service LoC
recv( ) 58 Tinyproxy 27 Redis (SET&GET) 37
send( ) 56 Protobuf 14 CoW 42

zlib (deflate) 18 OpenSSL
(AES-GCM dec.)

31 Android Binder
IPC

55 driver,
48 ParcelAvcodec 94

Table 3. Development efforts to adapt 10 apps and OS
services evaluated.

6.3.2 Multi-threading Scalability. We evaluate Copier’s
scalability using Tinyproxy, with the default per-process
queues. Results (Fig.12-b) show that Copier scales well with
16 threads and more than 130K tasks submitted per queue
per second, thanks to Copier’s lock-free queue design.

6.3.3 Performance Breakdown. We analyze the impacts
of async copy (§4.1, §4.2), hardware capability (§4.3), and
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copy absorption (§4.4). Results (Fig.12-c) show that for small
copy (1KB), as it can be fully overlapped, async copy plays a
major role; for large copy (256KB) that is hard to be fully over-
lapped, hardware and absorption also matter significantly.

6.3.4 Whole System Resource Utilization. We evaluate
how Copier’s design of using dedicated cores affects the
system’s overall performance. We limit the total resources
to 4 cores and incrementally increase Redis instances until
all cores are fully utilized. Results (Fig.14) show that when
there are idle cores, Copier can optimize both latency and
throughput of the system. When resources are fully utilized,
Copier reduces the request latency (by 18.8% for 8KB values
and 17.4% for 16KB values). But as some cycles are used for
task submitting and polling, the overall throughput decreases
(by 4.3% for 8KB and 6.5% for 16KB). For apps with copy
chains or large copies, since Copier can utilize hardware
capabilities and copy absorption to reduce the CPU cycles
used by copy, using Copier can still increase the throughput,
e.g., for TinyProxy (§ 6.2.2, § 6.3.2) using equally 16 cores,
Copier increases the throughput by 7.7%.

6.3.5 Microarchitectural Impact of Copier. Copier can
mitigate pollution of the cache by decoupling large copy and
app execution, thus reducing cache miss rate, which aligns
with the observations of DPDK and glibc [95, 96]. When
performing a large copy, app’s hot data may be evicted from
the top-level cache, resulting in a higher cache miss rate
during execution. Copier reduces the eviction of hot data,
thus reducing cache miss rate and optimizing CPI (cycles
per instruction). Although Copier results in copied data not



being placed in top-level cache, processors have efficient
cache prefetching, and apps typically prefer access patterns
friendly to prefetching, e.g., sequential access. We record the
numbers of cycles and instructions for Redis processing 50K
SETs/GETs, and remove those of copy and polling. Copier
reduces the CPI of copy-irrelevant code by 4%–16% for SETs
and 6%–9% for GETs when value size varies between 4KB–
64KB. In cache-sensitive scenarios [97–99], apps can switch
to sync copy if Copier yields unfavorable results.

7 Discussion
The prospects of Copier as a hardware primitive. We
believe Copier can be further integrated as a CPU hardware
primitive to reduce CPU usage caused by polling and en-
hance the performance of async copy. Prior efforts [57, 100,
101] have integrated some memory copy optimizations to
ISA primitives or memory controller functions. Although
they do not provide async copy capabilities, they demon-
strate the feasibility of developing more efficient hardware
primitives for copy. Advanced AI accelerators, such as GPUs
(e.g., Nvidia Tensor Memory Accelerator [102]) and NPUs
(e.g., Ascend NPU Memory Transfer Engine [103]), provide
hardware primitives for async copy, but their domain-specific
(e.g., tensor-specific) primitives are difficult to adapt to the
complex software forms and copy requirements on CPUs.
The applicability of Copier in more OS services and
scenarios. Besides the OS services discussed (send/recv
syscalls, Binder IPC and page fault handler), we believe that
Copier can benefit more OS services, including file I/O, de-
vice virtualization, tiered memory management, etc. As a
unified OS service, Copier provides a general interface for
all OS services to asynchronously copy memory. We also
believe that Copier demonstrates potential applicability in
a wider range of scenarios, such as disaggregated memory
and tiered memory systems, etc.
The security of Copier. Copier avoids Time-of-Check-to-
Time-of-Use risks of zero-copy because, instead of sharing
the ownership, it ensures the data has been copied to private
buffers, which cannot be modified by attackers, before being
checked. In scenarios where components that need to trans-
fer data do not trust each other, Copier can provide a secure
and efficient data passing method. LionsOS [104] proposes
an OS copy service (also named Copier) to ensure secure
data transfer between untrusted components, but it does not
expose the opportunities of asynchrony and optimizations.

8 Related Work
Async syscalls and I/O parallelize OS and app execution,
e.g., FlexSC [26, 105], etc. [106, 107]. The multikernel [108]
proposes async messaging. Demikernel [55] proposes async
queue-based I/O abstractions. SKYROS [109] accelerates repli-
cated storage by making nil-externalizing operations async,

and Lazylog [110] abstraction makes log ordering async. We
are the first to utilize the async idea to copy as an OS service.
Zero-copy for specific scenarios. IX [111], etc.[112–115]
propose new APIs to achieve zero-copy I/O stack. Corn-
flakes [116] trades off between zero-copy serialization and
copy-based ones. They have similar issues as discussed in
§2.2, which can be mitigated with Copier.
Fast kernel-userspace communication.Queues and shared
memory achieve lightweight K-U communication [25–27].
𝜇SWITCH [117] proposes implicit context switching. mTCP
[115] consolidates syscalls into a shared memory access.
Copier adopts the same idea, and proposes copy-use pipeline
to further exploit async copy benefits.
Rearchitecting library-based solutions as system ser-
vices. mRPC [118] implements RPC marshaling as a system
service. Shenango et al. [119, 120] propose standalone sched-
uling services. FSP [121] rearchitects FS as a user process for
fast development. Copier follows this line but focuses on a
different challenge, how to copy memory efficiently.
Hardware-assisted copy optimizations.Mondrian [122,
123], etc. [124] share memory through hardware capability.
M3 [125] proposes DTU for effective copy. RowClone [57]
adds memcpy primitive to ISA.𝑀𝐶2 [100] and SDAM [101]
modify the memory controller to support lazy copy and
software-defined addressmapping. They require critical hard-
ware changes. DTO [28] provides a library to accelerate large
userspace copy with Intel DSA [56], but fails to maintain
fairness and isolation when multiple apps use DSA.

9 Conclusion
We present Copier, the first effort to reconstruct asynchro-
nous memory copy as a standalone OS service. Copier lever-
ages Copy-Use windows and its OS service role to optimize
copies throughout the entire system. Many novel design
spaces are explored, including OS abstractions, hardware
dispatcher mechanisms, copy absorption, management and
scheduling, and programming primitives. Our practices con-
firm Copier’s generality and efficiency.
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A Simulation Proof of the Equivalence
between Async Copy with csync and
Sync Copy 6

We prove at the protocol level that the semantics of async
copy contextually refine those of sync copy. Specifically,
we consider the refinement relation between two versions
of an arbitrary multi-threaded program (𝑃 def

= 𝐶1 ∥ . . . ∥𝐶𝑛),
one using memcpy, written as (𝑃𝑠𝑦𝑛𝑐 ), and the other using
amemcpy and csync, written as (𝑃𝑎𝑠𝑦𝑛𝑐 ). To prove 𝑃𝑎𝑠𝑦𝑛𝑐
refines 𝑃𝑠𝑦𝑛𝑐 , we only need to show that, for each thread,
there is a rely-guarantee-based simulation (RGSim) [126]
from 𝐶𝑖−𝑠𝑦𝑛𝑐 to 𝐶𝑖−𝑎𝑠𝑦𝑛𝑐 , i.e., for each step 𝐶𝑖−𝑎𝑠𝑦𝑛𝑐 makes,
𝐶𝑖−𝑠𝑦𝑛𝑐 can make corresponding steps to preserve the con-
sistency relation and generate the same observable behavior.
Program transformation.We define the transformation
from 𝐶𝑖−𝑠𝑦𝑛𝑐 to 𝐶𝑖−𝑎𝑠𝑦𝑛𝑐 as follows: (1) amemcpy replaces
memcpy in all occurrences, (2) 𝐶𝑖−𝑠𝑦𝑛𝑐 ’s code that corre-
sponds to the handler is replaced by a placeholder in𝐶𝑖−𝑎𝑠𝑦𝑛𝑐 ,
which identifies the point where𝐶𝑖−𝑠𝑦𝑛𝑐 executes the handler,
(3) before reading or writing the dst range [addr, addr+len), a
csync(addr, len) (or csync_all()) is inserted, (4) before writ-
ing to the source (src) range [addr, addr+len], a 𝑐𝑠𝑦𝑛𝑐 (𝑎𝑑𝑑𝑟 −
𝑠𝑟𝑐+𝑑𝑠𝑡, 𝑙𝑒𝑛) (or csync_all()) is inserted, and (5) before a des-
tination (dst) range is visible to another thread, a csync_all()
is inserted. Note that amemcpy does not count as a read or
write access.
State model. For 𝑃𝑎𝑠𝑦𝑛𝑐 , the memory maps each address to
a value (𝑣) or a list of value pairs (𝑣𝑙 def

= (𝑣, 𝑖𝑑) :: 𝑣𝑙 ′) in case
there are pending amemcpy operations on the address. Each
value pair consists of a value and the amemcpy’s identifier.
When an amemcpy operation starts to copy memory, it is
assigned a unique identifier. A csync operation on an ad-
dress truncates the list to the latest value, i.e., the one with
the largest identifier. Reading a list of value pairs (only al-
lowed by amemcpy, other reads use csync first) returns the
latest value. Writing to a list of value pairs (only allowed by
amemcpy) appends a new value pair to the list.
𝑃𝑎𝑠𝑦𝑛𝑐 also has an auxiliary state, i.e., a list of amemcpy

operations and their status. Each item in the list is (args,
id, csynced, passph, handler). The first two fields are the
arguments and the identifier of the amemcpy operation. The
third field is true or false, indicating whether the amemcpy
has been fully csynced or not. The fourth field is also a
Boolean value, marking whether the execution has passed
the placeholder or not. The last field records the handler for
future execution.
Semantics modelling. We model memcpy(dst, src, size) as
a while-loop, with each round copying a byte atomically
from src to dst until size bytes are copied. In cases where src
and dst have overlapping parts, memcpy(dst, src, size) will
copy either forward or backward to avoid overwriting data.
6The appendix was not peer-reviewed.

We model amemcpy(dst, src, size, handler) as follows: (1)
a while loop with each round atomically reading a byte from
src and writing to dst until size bytes are copied (same as
memcpy except that writing will append to the value list),
and (2) upon invocation, recording the amemcpy’s status
(args, id, false, false, handler) in the auxiliary list.

The step of the placeholder updates the passph field to
true. If the csynced field is true, we will execute the handler.
The csync operation atomically truncates the target ad-

dress range. Once an amemcpy is fully csynced, (1) we update
its csynced field to true and (2) if the passph field is already
true, we execute the handler.
Consistency relation. If passph is true and csynced is false,
it means some free operation in 𝐶𝑖−𝑠𝑦𝑛𝑐 has executed while
the corresponding handler in 𝐶𝑖−𝑎𝑠𝑦𝑛𝑐 has not. We collect
such freed memory in all threads as𝑀𝑓 𝑟𝑒𝑒 . Then
𝑑𝑜𝑚(𝑀𝑎𝑠𝑦𝑛𝑐 ) = 𝑑𝑜𝑚(𝑀𝑠𝑦𝑛𝑐 ⊎𝑀𝑓 𝑟𝑒𝑒 ).

For each memory address 𝑎 in𝑀𝑠𝑦𝑛𝑐 , its value,𝑀𝑠𝑦𝑛𝑐 (𝑎),
equals the corresponding latest value in𝑀𝑎𝑠𝑦𝑛𝑐 ,
𝑙𝑎𝑡𝑒𝑠𝑡 (𝑀𝑎𝑠𝑦𝑛𝑐 (𝑎)), where 𝑙𝑎𝑡𝑒𝑠𝑡 ((𝑣, 𝑖𝑑) ::𝑣𝑙 ′) returns the value
with the largest 𝑖𝑑 , and 𝑙𝑎𝑡𝑒𝑠𝑡 (𝑣) returns 𝑣 .
Simulation proof.
Proof.
We divide the steps of 𝐶𝑖−𝑎𝑠𝑦𝑛𝑐 into the following cate-

gories: steps of amemcpy, step of csync, step of placeholder,
reading or writing a dst range of amemcpy, writing to a src
range of amemcpy, and other steps (non-amemcpy related
steps).

Rely and guarantee conditions specify that each step pre-
serves consistency relation. Given consistency relation holds
before the step, we prove it still holds after each step of
𝐶𝑖−𝑎𝑠𝑦𝑛𝑐 .
1 Steps of amemcpy. For each byte copied in amemcpy,
𝐶𝑖−𝑠𝑦𝑛𝑐 executesmemcpy to copy the corresponding byte.
The memory domains do not change. For each address
of dst range,𝑀𝑠𝑦𝑛𝑐 (𝑎) = 𝑙𝑎𝑡𝑒𝑠𝑡 (𝑀𝑎𝑠𝑦𝑛𝑐 (𝑎)). The value of
other addresses does not change.

2 Step of csync. After truncating the value list,𝑀𝑠𝑦𝑛𝑐 (𝑎) =
𝑀𝑎𝑠𝑦𝑛𝑐 (𝑎). In the case when an amemcpy is fully csynced
and passph is true, the execution of the handler will free
the part of memory that has already been freed in𝐶𝑖−𝑠𝑦𝑛𝑐 .
Therefore, memory domains still obey the consistency
relation.

3 Step of placeholder. 𝐶𝑖−𝑠𝑦𝑛𝑐 correspondingly executes
the free operation. If csynced is false,𝑀𝑓 𝑟𝑒𝑒 will include
the part of memory newly freed in 𝐶𝑖−𝑠𝑦𝑛𝑐 , thus
𝑑𝑜𝑚(𝑀𝑎𝑠𝑦𝑛𝑐 ) = 𝑑𝑜𝑚(𝑀𝑠𝑦𝑛𝑐⊎𝑀𝑓 𝑟𝑒𝑒 ) still holds. If csynced
is true, then the handler will be executed. Consequently,
𝐶𝑖−𝑠𝑦𝑛𝑐 and 𝐶𝑖−𝑎𝑠𝑦𝑛𝑐 will free the same memory, thus the
consistency relation still holds.

4 Reading or writing to dst range. 𝐶𝑖−𝑠𝑦𝑛𝑐 correspond-
ingly executes reads or writes. Because a csync is inserted



before the command, 𝐶𝑖−𝑠𝑦𝑛𝑐 and 𝐶𝑖−𝑎𝑠𝑦𝑛𝑐 will read the
same value, or after the write, the values are still equal.

5 Writing to src range. 𝐶𝑖−𝑠𝑦𝑛𝑐 correspondingly executes
writes. Because a csync is inserted before the command,
the values of the address are still equal.

6 Non-amemcpy related steps. 𝐶𝑖−𝑠𝑦𝑛𝑐 correspondingly
executes the same step. The consistency relation still
holds.
According to the compositionality and soundness of RGSim,

we prove that 𝑃𝑎𝑠𝑦𝑛𝑐 refines 𝑃𝑠𝑦𝑛𝑐 .
Qed.
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