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Abstract
Java runtime frees applications from manual memory man-

agement through automatic garbage collection (GC). This,

however, is usually at the cost of stop-the-world pauses. State-

of-the-art collectors leverage multiple generations, which

will inevitably suffer from a full GC phase scanning and com-

pacting the whole heap. This induces a pause tens of times

longer than normal collections, which largely affects both

throughput and latency of applications.

In this paper, we comprehensively analyze the full GC

performance of the Parallel Scavenge garbage collector in

HotSpot. We find that chain-like dependencies among heap

regions cause low thread utilization and poor scalability.

Furthermore, many heap regions are filled with live objects

(referred to as dense regions), which are unnecessary to col-

lect. To address these two problems, we provide ScissorGC,
which contains two main optimizations: dynamically allocat-

ing shadow regions as compaction destinations to eliminate

region dependencies and skipping dense regions to reduce

GC workload. Evaluation results against the HotSpot JVM

of OpenJDK 8/11 show that ScissorGC works on most bench-

marks and leads to 5.6X/5.1X improvement at best in full GC

throughput and thereby boost the application performance

by up to 61.8%/49.0%.

CCSConcepts •General and reference→Performance;
• Software and its engineering → Garbage collection;
Multithreading;

Keywords Full garbage collection, Java virtual machine,

Performance, Parallel Scavenge, Memory management
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1 Introduction
Java is steadily adopted by various kinds of applications due

to its virtues such as powerful functionalities, strong relia-

bility, and multi-platform portability, mainly thanks to its

underlying runtime, the Java Virtual Machine (JVM). Auto-

matic memory management, or garbage collection (GC), is

a crucial module provided by the JVM to free programmers

from manual deallocation of memory and thereby guaran-

tees both usability and memory safety. However, GC comes

with a cost. Most state-of-the-art garbage collectors leverage

the stop-the-world (STW) method for collection: when GC

starts, application threads will be suspended until all dead ob-

jects have been reclaimed. Although mainstream collectors

exploit the generational design [25] so that most collections

only touch a small portion of the heap and finish quickly,

they inevitably have to enter a stage called full GC to collect

the whole heap space and thus incur considerable pause time.

State-of-the-art concurrent collectors like G1 [6] also contain

a similar full GC cycle to handle the case where memory

resource is nearly exhausted [18]. The problem is even ag-

gravated in today’s prevalent memory-intensive frameworks

like Spark [29] in that they have a large demand for mem-

ory, which induces more frequent full GC cycles and longer

pauses.

In this paper, we provide a comprehensive analysis of the

full GC part of Parallel Scavenge Garbage Collector (PSGC),

the default collector in the HotSpot JVM.We find that full GC

spends the most time on the compacting phase, which moves

objects to the head of the heap to vacate a large continuous

free space. The compaction algorithm of PSGC divides the

heap into regions and assigns them as tasks to multiple GC

threads for concurrent processing. Our analysis uncovers

two problems in this algorithm. First, the multi-threading

compaction suffers from poor thread utilization due to chain-

like dependencies among regions. Second, memory-intensive

applications introduce a large number of regions filled up

with live objects (referred to as dense regions), and blindly

compacting them cannot collect any memory space within

those regions but only cause data copy overhead. Those

two problems make the original algorithm non-scalable and

inefficient.

To this end, we propose ScissorGC, a new compaction algo-

rithm with two corresponding optimization techniques. For

the thread utilization problem, we introduce shadow regions
to eliminate region-wise dependencies and in turn enable

https://doi.org/10.1145/3313808.3313820
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more threads to run in parallel. For the compaction efficiency

problem, we provide a region skipping design to avoid com-

pacting and moving dense regions. We have also discussed

the design tradeoff of ScissorGC and provided several tech-

niques to mitigate the overhead ScissorGC introduces.

We have implemented ScissorGC in the HotSpot JVM of

OpenJDK 8 and compared it with the vanilla PSGC over ap-

plications from various benchmark suites. The evaluation

result confirms that our optimizations make full GC much

more scalable and improve the full GC throughput for most

applications by up to 5.6X and thereby shorten the execu-

tion time of most applications by up to 61.8%. We have also

ported ScissorGC into the latest OpenJDK 11 to integrate with

other optimizations on full GC [27] and improve the full GC

throughput by up to 5.1X and the application throughput

by up to 49.0%. The source code of ScissorGC is available at

https://ipads.se.sjtu.edu.cn:1312/opensource/scissorgc.
To summarize, the contributions of this paper include:

• A detailed analysis of the compaction algorithm of full

GC to uncover the sources of its inefficiency. (§3)

• ScissorGC, a new compaction algorithm with two cor-

responding optimization techniques to resolve the per-

formance problems. (§4)

• A thorough evaluation with various applications to

confirm our optimizations actually work. (§5)

2 Background
2.1 Parallel Scavenge
Parallel Scavenge Garbage Collector (PSGC) is the default

garbage collector in the HotSpot JVM of OpenJDK 8. It col-

lects objects in a stop-the-world fashion: when a GC cycle

starts, all mutator threads must be paused and GC threads

will take over. Mutators cannot be executed until all GC

threads have finished their work. This design avoids compli-

cated coordination between mutators and GC threads and

in turn reaches satisfying GC throughput, but it may greatly

affect the application latency.

1 class Region {

2 // Fields in vanilla PSGC

3 int dcount;

4 int live_obj_size;

5 char* dest_addr;

6 Region*[] src_regions;

7 ...

8

9 // Added by ScissorGC

10 int shadow;

11 int status;

12 }

Figure 1. The definition of Region in PS full GC

PSGC divides the heap into two spaces: a young space for
object creation and an old space to store long-lived objects.

The GC algorithm is also two-fold. Young GC is triggered

when the young space is used up and only collects the young

space. Full GC happens when the memory resource of the

whole heap is exhausted and collects both spaces. To reach

a satisfying application latency, young space is usually de-

signed as a small fraction of the entire heap so that young

GC happens frequently but finishes quickly. However, when

full GC must be initiated, mutators will experience a much

longer pause. Worse yet, full GC happens quite frequently

in memory-intensive applications. Our evaluation on Spark

with a 20GB heap shows that full GC cycles happen every

10 seconds and last for 3.35 seconds on average. Meanwhile,

the worst-case pause time is 11.4X that of a young GC cycle.

Therefore, the primary concern of our work is to mitigate

the prohibitive pauses caused by full GC.

2.2 Full GC algorithm
Full GC is a multi-threaded, compaction-based algorithm

that copies all live objects into the beginning of the old space

to vacate a large continuous free memory space. PSGC imple-

ments full GC as a three-phase algorithm, including marking

phase, summary phase, and compacting phase. These phases

are region-based: PSGC partitions the JVM heap into contin-

uous regions of equal size (512KB by default in PSGC) and

compacts live objects within the same region together. The

data structure of Region is shown in Figure 1. We next briefly

explain these three phases below.

Marking phase. In the first marking phase, GC threads

will search for live objects from known roots, such as on-

stack references and static variables. All reachable objects

from roots will be marked as alive, and their sizes will be

added to the live_obj_size of the very regions.

Summary phase. After the marking phase, PSGC will

calculate a heap summary for all regions based on their

live_obj_size. After the summary phase, a mapping between

regions is generated with the source_regions field so that each
source region will have its own destination regions1 for object
copying. The summary phase also generates per-region in-

dices, i.e., dest_addr, with which GC threads can calculate

the destination address of any live objects inside a region.

Compacting phase. Live objects will not be moved or

modified until the last compacting phase. Since the compact-

ing phase is costly and usually accounts for over 70% of the

overall full GC time, we will focus on optimizing this phase

in this work. The compacting phase is still region-based:

each destination region stands for a task, and GC threads

will concurrently fetch destination regions and fill them up

with live objects from their corresponding source regions.

Reference updates for live objects also occur after copying

1
A source region can have one or two destination regions.

https://ipads.se.sjtu.edu.cn:1312/opensource/scissorgc
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Figure 3. An example of the work stealing in full GC

them to destination regions. Since destination regions them-

selves are also source regions for others, the GC threads

must not process them until all live objects within them

are evacuated to their destinations. This processing order is

preserved by maintaining a variable for each region named

destination count, or dcount, to memorize how many desti-

nation regions (excluding itself) depend on it. The summary

phase will calculate the initial dcount for each region. In the

compacting phase, once a GC thread fills up a destination

region, it will decrement dcount by one for all corresponding
source regions. When a region’s dcount reaches zero, all live
objects within it have been evacuated so it can serve as a

destination region. It will thereby be pushed into the work-

ing stack of the GC thread which decrements its dcount to

zero and poised to accept live objects from its source regions.

Those dependencies among regions can be used to construct

a dependency graph to shape the execution behavior of GC

threads.

We provide an example in Figure 2 to further illustrate the

compaction algorithm. This example consists of six heap re-

gions and two available GC threads. At the summary phase,

since region 0 and region 2 contain no live objects, they de-

pend on nothing and get a zero dcount. Other regions, on
the contrary, keep a non-zero dcount and their own depen-

dencies. When the compacting phase starts, regions with

a zero dcount (i.e., region 0 and 2) will be assigned to the

working stack of thread 0 and 1 respectively for processing

(Figure 2.a). Those two GC threads will copy live objects

from other regions to the under-processed ones, according

to the per-region indices generated in the summary phase.

After region 0 is processed by thread 0, the dcount of region
1 will be decreased to 0, which makes region 1 available for

processing. Since region 1 initially depends on region 0 and

should serve as a source region for region 3 and 4, it will

be pushed to the stack of thread 0 (as shown in Figure 2.b).

On the contrary, when thread 1 finishes processing region 2,

region 5 will not be pushed to the working stack as it is the

last region in this example and no region relies on it. Simi-

larly, when the task on region 1 is complete, region 3 and 4

will not be processed; all live objects have been compacted at

that time and the compacting phase terminates (Figure 2.c).

Optimizations. Since not all destination regions are avail-
able at the beginning of compaction, PSGC can only assign

those available regions to GC threads initially. This design,

unfortunately, is likely to result in a load imbalance. Consider

the example in Figure 3.a, where region 0, 1, and 2 are relied

on by subsequent regions (region 3, 4, and 5). Since the first

three regions are available at the beginning of compaction,

they will be assigned to two GC threads in a round-robin

manner. If thread 1 runs much faster than thread 0 and fin-

ishes copying objects from region 4 to region 1 in advance,
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it will become idle since no regions depend on region 4 (Fig-

ure 3.b). To avoid starvation of GC threads, full GC enables

work stealing so that GC threads can steal available regions

from other threads after their own working stacks are fully

drained. In this example, thread 1 will fetch region 0 from

thread 0’s working stack to achieve load balance (Figure 3.c).

Full GC also specially handles regions at the beginning of

the heap. If most objects in those regions are alive (named

dense regions in PSGC), the benefit of moving them forward

is diminishing. Consequently, full GC will instead organize

them as a dense prefix and avoid moving any objects therein.

Although dense prefixes can avoid data copying, they can

only be used to optimize regions at the head of a heap.

3 Analysis
3.1 Thread Utilization
Although the compacting phase supports multi-threading,

our results show that it suffers from low thread utilization

and induces poor scalability in many applications. We eval-

uate Derby [31] in the SPECjvm2008 benchmark suite [23]

as an example to support our claim. Figure 4 shows the exe-

cution behavior of 16 GC threads (x-axis) in the compacting

phase over time (y-axis). The result indicates that all threads

only spend a small fraction of time (8.0% on average) working

on compaction (colored bars) while wasting CPU resources

on stealing in vain (blanks). The terrible utilization rate also

causes poor scalability (shown in Section 5.5) and strongly

motivates us to optimize it.

0

200

400

600

0 5 10 15
Thread Number

E
xe

c
u

ti
o

n
 t

im
e

 (
m

s
)

Figure 4. Thread utilization in the full GC compacting phase

of Derby

We have further profiled work stealing by dumping the

working stack for every thread and find that all except one

stack are empty for most of the time. The non-empty stack,

however, has only one task being processed, which is not

available for stealing. As mentioned in Section 2.2, a desti-

nation region cannot be processed until its dcount reaches

zero. Therefore, the Derby scenario happens when the depen-

dency graph contains long dependency chains as illustrated
in Figure 5. This simplified case comprises four regions and

all regions have only one destination, which forms a depen-

dency chain, where only one region is available for process-

ing at any time. Consequently, other threads will always fail

to steal due to lack of available tasks.
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Figure 5. An example of dependency chains, the culprit for

poor thread utilization

3.2 Compaction Efficiency
Memory-intensive applications like Spark have a keen de-

mand for memory resources and request tens or hundreds

of gigabytes for their Java heaps, which introduces tens of

thousands of destination regions during full GC. To process

such a number of regions without inducing large pauses, the

compaction efficiency must be greatly optimized.

We have used Spark as an example of memory-intensive

applications to study theirmemory behaviors.When running

the built-in page rank application on Spark with a 20GB heap,

we collect the region-related statistics at each full GC cycle

and the observations are described below.

Dense regions are quite common. In our evaluation,

49.4% of heap regions on average are dense regions. We have

even observed extreme cases where dense regions occupy

over 80% of the whole heap. Consider region 1 in Figure 2.a,

since it only contains live objects, compacting it is meaning-

less for it does not help to reclaim any memory space. Even

worse, the compaction algorithm has to move the whole

region forward and cause considerable data copy overhead

(copying to region 0 in this example). Therefore, specially

processing those dense regions can greatly optimize the com-

paction efficiency.

Previous optimizations fail to help. PSGC has pro-

vided the dense prefix optimization (mentioned in Section 2.2)

to avoid compacting dense regions at the beginning of the

heap. Unfortunately, dense regions are dispersed throughout

the whole heap, so many of them cannot benefit from the

optimization and thus suffer from unnecessary compaction.

Our evaluation shows that 60.5% of dense regions are outside

the dense prefix, which suggests great potential for further

optimizations.
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Large objects are the culprit for dense regions. We

have also looked into each dense region to study its composi-

tion.We observed that 74.5% of dense regions are part of large

objects. Those large objects are usually data arrays, such as

arrays of doubles, integers, long integers, and Scala Tuples2.
This happens because applications like Spark are usually

based on huge datasets, which generate many large arrays

whose size can span multiple heap regions. The largest ar-

ray object in our test consumes more than 18MB heap space,

which introduces 36 consecutive dense regions. Furthermore,

those objects live long because Spark allows users to cache

huge datasets in the heap memory for future reuse [28],

so they will survive many GC cycles and finally induce a

large number of dense regions in full GC. The cache be-

havior is very common in today’s memory-intensive frame-

works [4, 7, 11].

To conclude, memory-intensive applications usually intro-

duce many dense regions in full GC and compacting them is

not effective to reclaim memory resource. However, the cur-

rent compaction algorithm still blindly processes most dense

regions as normal ones, which induces poor compaction effi-

ciency. This observation motivates us to avoid compacting

and moving dense regions for better performance.

4 Optimizations
As analyzed in Section 3, there are two major performance

issues in the compaction algorithm of full GC: limited thread

utilization due to chain-like region dependencies and ineffi-

cient compaction for dense regions. To resolve these prob-

lems, we introduce ScissorGC in this section, which contains

two optimization techniques: shadow regions and region

skipping.

4.1 Shadow Region
Basic idea. The goal of the shadow region optimization is

to allow threads to steal unavailable regions. Specifically,

when a GC thread encounters a stealing failure, it will turn

to unavailable regions rather than spin or sleep. Since an un-

available region still contains live objects and cannot serve

as a destination for the moment, the GC thread needs to allo-

cate a shadow region as its substitute and directly copy live

objects into the shadow one. Live objects within the shadow

region will be copied back once the destination count of the

corresponding stolen region reaches zero. This design im-

proves the success rate of work stealing and thereby achieves

better thread utilization.

Implementation. We implement shadow regions as a

complement to work stealing. In PS full GC, work stealing

is implemented as StealTask: when a GC thread cannot find

any available regions to process, it will fetch a StealTask to

start stealing. If the GC thread manages to steal a region

2Tuples are prevalently used in Scala. Programmers can easily define a

two-dimensional tuple with code like "x = (10, 20)".

Algorithm 1 The algorithm of shadow region

1: function StealTask

2: while there is still other task running do
3: if T steals an available reдion then
4: fill reдion
5: drain the working stack of T
6: else if T finds an unavailable reдion then
7: FillShadowRegion(reдion)
8: drain the working stack of T
9: else
10: T spins or falls asleep

11: end if
12: end while
13: end function
14:

15: function FillShadowRegion(reдion)
16: reдion.shadow = acquire a shadow region

17: while reдion.shadow is not full do
18: next_src = the next source region of reдion
19: MoveObject(next_src, reдion.shadow)

20: DecrementDestinationCount(next_src)
21: end while
22: if reдion.dcount == 0 then
23: CopyBack(reдion)
24: end if
25: end function
26:

27: function DecrementDestinationCount(reдion)
28: reдion.dcount--
29: if reдion.dcount == 0 then
30: if reдion.shadow == NULL then
31: push reдion to the working stack of T
32: else if reдion.shadow is full then
33: CopyBack(reдion)
34: end if
35: end if
36: end function
37:

38: function CopyBack(reдion)
39: copy the data of reдion.shadow back to reдion
40: release the shadow region reдion.shadow
41: reдion.shadow = NULL

42: end function

from others, it will process the region and drain its own

working stack (line 3-5 of Algorithm 1). When encountering

a stealing failure, GC threads will spin or fall asleep in the

original design (line 9-10). We instead have modified its logic

to search for an unavailable region to fill with the help of

shadow regions (line 6-8).

To fill an unavailable region, GC threads first acquire a

shadow region (line 16) and copy live objects from source

regions to the shadow one until it is full (line 17-19). This
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step also memorizes the shadow region in a newly-added

per-region field, shadow. When all live objects of a source

region have been evacuated to the corresponding shadow

regions, the GC thread should decrement the destination

count for this source region (line 20), and push the region

into its working stack if it becomes available (i.e. dcount

becomes 0). After filling the shadow region, GC threads will

copy data therein back to its corresponding heap region if

that region has become available (line 22-24). Otherwise, the

data will be copied back once the heap region turns available

(line 32-34).

Discussions. Since multiple GC threads may fetch the

same unavailable region simultaneously (line 6-7 and line 30-

31), ScissorGC atomically marks regions to avoid repeated

processing. To this end, ScissorGC introduces a variable

named status for each region (see Figure 1), and GC threads

leverage atomic Compare-And-Swap (CAS) instructions to

update this variable to mark the corresponding region as

being processed. Those atomic instructions guarantee that

each destination region is processed exactly once by GC

threads, and they are cheap compared to other synchroniza-

tion primitives such as locks.

To handle the requests for shadow region allocation, a

straw-man design is to allocate off-heap memory. However,

this strategy may consume too much memory, and the write

latency of newly allocated shadow regions is observably

slower than that of heap regions due to worse data locality.

Fortunately, we find an interesting feature in young GC,

which guides us to reuse regions in the young space for less

memory consumption and better locality.

eden space

to space

from space

eden space

to space

from space

eden space

from space

to space

(a) Start

(c) End

(b) Middle

Figure 6. A brief introduction to young GC

The young space in PSGC is divided into three parts: an

eden space to serve for memory allocation, and two survivor
spaces to store objects which have survived at least one GC

cycle.

Consider Figure 6.(a), when young GC starts, one empty

survivor space (known as to space) will accept objects from

the eden space and the other non-empty survivor space
3

(known as from space). During this young GC cycle, live ob-

jects in from space will be evacuated, then it becomes empty

while to space contains live objects (shown in Figure 6.b).

Therefore, the role of those two survivor spaces will be

swapped at the end of young GC (as shown in Figure 6.c),

and live objects will be copied to the new to space in the next

young GC cycle. The observation is that only one survivor

space at a time actually contains live objects. We thereby

always leverage the empty survivor space to allocate shadow

regions (line 16). In the case where the survivor space is not

enough, we will fall back to the slow path and allocate some

extra shadow regions out of Java heap memory. Once objects

in a shadow region have been copied back to heap regions,

it will be recycled into a LIFO region stack for future reuse

(line 40). These optimizations can improve both memory

efficiency and data locality (shown in Section 5.6).

To find an unavailable region to fill, a GC thread linearly

scans the heap from its last processed region and picks the

first unavailable one (line 6). It is possible to apply more

sophisticated heuristics to maximize the benefit of shadow

regions. For example, GC threads can choose a region heavily

depended by other ones so as to generate available regions

as many as possible for other threads to steal. This design in-

deed reduces the usage of shadow regions to avoid additional

overhead, but it may also introduce heavy computation and

more metadata maintenance. Therefore, we decide to exploit

the previously mentioned mechanism due to its satisfying

efficiency.

4.2 Region Skipping
Basic idea. The basic idea of region skipping is to avoid

data movement for dense regions. To achieve this goal, we

need to find out all the dense regions and skip over them

when establishing mappings between destination and source

regions in the summary phase. Those regions will not be

moved in the subsequent compacting phase, and the com-

paction efficiency can be boosted if a considerable number

of regions is skipped.

Implementation. Algorithm 2 presents the pseudocode

of the region skipping. In the summary phase, PSGC tra-

verses all the regions to establish the source-to-destination

mapping (line 3-12). We have modified the summary phase

to record all the dense regions (line 2), and exclude them

from the mapping so that they will not be moved by the sub-

sequent compacting phase. The branch code in line 5 only

allows regions which are not dense to become a source re-

gion for others, while the function SkipDenseRegion in line 10
avoids assigning a dense region as a destination by skipping

its address range.

3
When objects have survived many young GC cycles, they will be copied

to old space instead. We elide this case here for simplicity.
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Algorithm 2 The algorithm of region skipping

1: function SummaryPhase(beд_reдion, end_reдion)
2: find out all the dense regions

3: cur_addr = the start address of beд_reдion
4: for reдion = beд_reдion → end_reдion do
5: if reдion is not dense then
6: cur_reдion = the region contains cur_addr
7: add reдion to cur_reдion.src_reдions
8: reдion.dest_addr = cur_addr
9: cur_addr += reдion.live_obj_size
10: cur_addr = SkipDenseRegion(cur_addr )
11: end if
12: end for
13: shadow_area = acquire a shadow area

14: end function
15:

16: function MoveObject(src_reдion,dest_reдion)
17: repeat
18: live_obj = next live object in src_reдion
19: if live_obj is an overflowing object then
20: store live_obj in shadow_area as new_obj
21: else
22: move live_obj to dest_reдion as new_obj
23: end if
24: UpdateReference(new_obj)
25: until dest_reдion is full or src_region is empty

26: end function
27:

28: function UpdateReference(obj)
29: for all re f in obj do
30: ∗re f = CalcObjDestAddr(∗re f )
31: end for
32: end function
33:

34: function CalcObjDestAddr(obj)
35: reдion = the region that contains obj
36: if reдion is dense then
37: return obj
38: else if obj is an overflowing object then
39: return heap end +

40: offset of obj in shadow_area
41: end if
42: o f f set = live bytes before obj in reдion
43: result = reдion.dest_addr + o f f set
44: return SkipDenseRegion(result )
45: end function
46:

47: function SkipDenseRegion(addr )
48: while addr is in a dense region do
49: addr += size of the dense region

50: end while
51: return addr
52: end function

After moving a live object in the compacting phase (the

function MoveObject), the GC thread needs to update its

object references to the calculated destination addresses of

their referents (line 24). Since objects in dense regions will

not be moved, the destination calculation just returns their

original addresses (line 36-37). Otherwise, ScissorGC com-

putes the destination address and adjusts the result to skip

dense regions (line 42-44).
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Figure 7. An example on handling overflowing objects

The major challenge we encountered in implementing

region skipping is that the calculated destination address

of some objects may collide with the skipped dense regions

during compaction, which will cause data corruption. As Fig-

ure 7.a shows, object 2 should have been moved to its destina-

tion dest_addr in region 0 whose remaining free space is not

enough. If the copy really happens, object 2 will overwrite

dense region 1 and corrupt object 1 (illustrated in Figure 7.b).

We refer objects like object 2 as overflowing objects.
As illustrated in Algorithm 2, we address the issue of

overflowing objects by first acquiring a shadow area in the

summary phase (line 13), whose allocation strategy is similar

to that for shadow regions. In the compacting phase, over-

flowing objects will be moved to the shadow area instead of

their calculated destination address (line 19-20). Before the

compaction ends, they will be copied to the heap end (line

38-41). In the example of Figure 7, object 2 will be copied

to the shadow area (Figure 7.c) and finally moved to region

3 before the compacting phase finishes (Figure 7.d). Since

PSGC does not allow uninitialized memory in the middle

of the heap, the memory space at the calculated destination

address should be filled with dummy objects.

Discussions. According to our evaluation, overflowing

objects are common in applications that skip many regions.

For example, Spark generates about 150 overflowing objects

on average for every full GC cycle. Those overflowing objects

result in considerable overhead. First, the usage of shadow

regions introduces additional data copy operations. Since

the summary phase has maintained the destination address

for each overflowing object, we assign them to different GC

threads to copy them in parallel. The copy overhead is about
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4.5% of the GC time. Second, overflowing objects cause frag-

mentations since their original destination addresses cannot

be reused and will be filled with dummy objects as shown

in Figure 7.d. The resulted memory waste consumes aver-

agely 0.15% of the entire heap size, which is trivial (further

discussed in Section 5.6).

Another source of overhead comes from additional cal-

culations in the summary phase and reference update since

we have to identify dense regions and specially handle over-

flowing objects. However, the overhead is also trivial as we

illustrate in Section 5.4.

5 Evaluation
We have implemented ScissorGC on OpenJDK 8u102-b14

with approximately 3000 lines of code. The evaluation is

conducted on a machine with dual Intel ®Xeon
TM

E5-2618L

v3 CPUs (2 sockets, 16 physical cores with SMT enabled) and

64G DRAM. As for benchmarks, we exploit all applications

from the DaCapo [1]
4
, and some from SPECjvm2008 [23]

and JOlden [5] suites, as well as Spark
5
, a memory-intensive

large-scale data processing engine. The maximum heap size

for each application is set to 3X of its respective minimum

heap size and listed in Table 1. For the DaCapo applications,

we select the default workload and do not configure specific

input sizes for SPECjvm2008 benchmarks. All results (ex-

cept Figure 10) are the average of ten runs after a warm-up

run. And we have specified the 95% confidential intervals of

results in Figure 11, 11, 13, and 14.

5.1 Full GC Throughput Improvement
The performance of full GC is measured by GC through-

put, which is computed by the heap size before compaction

divided by GC execution time. We mainly use vanilla Open-

JDK 8 as our baseline. To understand the effects of the two

optimization techniques respectively, we also provide the

throughput result with only region skipping enabled.

As shown in Figure 8.a, full GC throughput is improved

in all benchmarks but fop and pmd, which loses 0.09% and

0.04% throughput respectively. These two applications, as

well as jython, do not invoke any full GC except the single

System.gc() that DaCapo harness performs before iterations,

so ScissorGC hardlyworks on them. For those improved cases,

the throughput improvement ranges from 1.01X (crypto.aes)

to 5.59X (perimeter).

Specifically, region skippingmainlyworks on scimark.fft.large,

serial, Derby, and Spark because these applications create

many dense regions at runtime while others do not. Re-

gion skipping even downgrades GC performance in jython,

treeadd and voronoi, as the extra calculating and copying

4
We exclude the benchmark tomcat, since it has an underlying problem [13].

5
We run a pagerank application in Spark 2.3.0 in the local mode, with

a dataset consisting of a graph with 5 million edges sampled from the

Friendster social network[22].

Benchmark Suite Heap size (MB)
crypto.aes SPECjvm2008 405

scimark.fft.large SPECjvm2008 6750

serial SPECjvm2008 4050

xml.validation SPECjvm2008 1140

derby SPECjvm2008 4950

avrora DaCapo 10

batik DaCapo 120

eclipse DaCapo 285

fop DaCapo 75

h2 DaCapo 720

jython DaCapo 75

luindex DaCapo 21

lusearch DaCapo 21

pmd DaCapo 150

sunflow DaCapo 60

tradebeans DaCapo 180

tradesoap DaCapo 180

xalan DaCapo 35

perimeter JOlden 810

bisort JOlden 720

mst JOlden 2180

treeadd JOlden 2700

tsp JOlden 2550

voronoi JOlden 900

health JOlden 675

pagerank Spark 43008

Table 1. Benchmark heap size

overhead offsets its benefit. To avoid such performance loss,

we have implemented an adaptive policy to enable region

skipping only when over one-third of destination regions

are dense regions.

On the other hand, the shadow region improves the full

GC throughput for most benchmarks except for luindex,

Spark, crypto.aes, and xml.validation as these applications

originally achieve satisfying thread utilization, which leaves

little room for optimization. Since the dependencies among

regions form a dependency graph, we have used normal-
ized critical path length, which is calculated by the length

of the longest dependency chain in the graph divided by

the number of regions, to describe the difference in those

benchmarks. In our test, the normalized length of the crit-

ical path is less than 0.05 for these four applications. As a

comparison, the normalized length for Derby is 0.46. This

metric suggests that they are hardly affected by chain-like

dependencies compared with Derby.

We have also evaluated the thread utilization for Derby to

compare that in Figure 4. As Figure 10 indicates, all threads

spend most of the time working on destination (or shadow)

regions, and the average thread utilization reaches 95.3%,

which is 11.9X of that without shadow region optimization.
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Figure 9. Full GC throughput under different multiples of minimum heap size

Figure 9 focuses on the impact of varying heap sizes on

full GC throughput like previous work does [9, 19]. Accord-

ing to their shapes, we divide the curves into six groups as

Figure 9.(a)-(f). In most cases, the throughput becomes rela-

tively stable once the heap size exceeds a certain multiple

of the minimum requirement, e.g., 2X or 3X. But for smaller

heaps, GC throughput fluctuates. For example, curves in

Figure 9.(a)/(b) reach their apices at 2X/1X of the minimum

heap size since smaller heaps tend to introduce more fre-

quent full GC, larger numbers of dense regions and severer

region dependencies. But for some cases (like Figure 9.(d)/(f)),

performance at the minimum heap size is worse, because

ScissorGC will allocate excessive shadow regions and run

out of empty regions in young space, which hurts the per-

formance.

5.2 Application Performance Improvement
We have also evaluated the overall application performance

by comparing execution time, as shown in Figure 11.a. To

summarize, ScissorGC speeds 22 of 26 applications up from
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Figure 10. Optimized thread utilization for Derby

0.5% to 61.8%. Generally, applications with larger working

sets benefit more from our optimizations on full GC. For

example, Spark exploits the Java heap as a data cache for

the datasets, which will occupy a significant portion of the

memory space and thereby induce relatively frequent full GC

phases. Consequently, Spark gains 20.2% speedup thanks to

our optimizations. On the contrary, applications like Derby

have relatively small working set and induce few full GC

phases, so the improvement on application performance is

limited.

5.3 Integrated with Other Optimizations
Prior work [8, 27] has studied the performance of full GC and

provides various optimizations. However, our optimization

techniques are orthogonal to those optimizations and can be

easily integrated with them. To support our claim, we have

ported our optimizations on the latest OpenJDK 11
6
, whose

full GC is improved with the proposal from Yu et al. [27],

where the reference updating in the compacting phase is

accelerated with a result cache. Since our optimizations have

nothing to do with the reference updating logic, it is quite

simple to port ours into OpenJDK 11. Figure 8.b
7
indicates

that our ScissorGC can further improve the throughput of full

GC in OpenJDK 11 for 23 benchmarks from 1.04X to 5.09X,

while Figure 11.b shows the performance of 20 applications

is improved from 0.2% to 49.0%.

5.4 Full GC Breakdown Analysis
Figure 12 shows the comparison of breakdown for the three

phases in full GC between the vanilla and our ScissorGC. The
left bar of every benchmark stands for vanilla while the right

one stands for ScissorGC. As we mentioned in Section 2, the

6
The version of OpenJDK 11 is OpenJDK11+28

7
Spark and eclipse cannot run with vanilla OpenJDK 11 in our environment,

so we exclude it from the OpenJDK 11 evaluation.

compacting phase dominates full GC, with 69.0% of the exe-

cution time on average. This number drops to 33.5% thanks

to our optimizations. The compacting phase of 23 bench-

marks speeds up by a range from 1.01X (xml.validation) to

9.2X (bisort). Although our region skipping optimization

complicates the summary phase, the overhead is trivial con-

sidering its proportion to the overall GC time. Our evaluation

indicates that the summary phase takes averagely 8.5% of

all three phases with optimizations in ScissorGC (6.2% for

vanilla), so the overhead in the summary phase does not

affect the performance of full GC much. Meanwhile, as the

execution time of the compacting phase dramatically de-

creases, the marking phase plays a much more important

role and contributes to at most 63.3% (for voronoi) of the over-

all full GC pause, which makes it a potential optimization

target in the future.

5.5 Scalability
The chain-like region dependencies are the culprit for limited

GC thread utilization in compaction, resulting in poor GC

performance and scalability. Since our optimizations have

solved the thread utilization issue, we have also studied how

ScissorGC improves the GC scalability by evaluating the GC

throughput for all benchmarks with different numbers of

GC threads (from 1 to 32). To eliminate performance fluctua-

tion introduced by non-deterministic scheduling from the

Linux scheduler, we have modified both JVMs to bind GC

threads into a fixed core with setaffinity. If the number of

GC threads is no more than 8, those threads will be bound to

the same NUMA node, but on different physical cores. For

16 GC threads, they are bound to different physical cores

respectively, but in two NUMA nodes. For 32 GC threads,

they are pinned to different hardware threads. The result for

scalability is shown in Figure 13
89
.

ScissorGC has similar performance to the vanilla JVM at

1 thread as work stealing and shadow regions cannot work

in the single-thread configuration. Furthermore, the over-

head of overflowing objects cannot be mitigated by multi-

thread parallelism and counteracts the benefit brought by

region skipping. As the number of GC threads increases, Scis-
sorGC notably improves the GC throughput compared with

the vanilla JVM for all benchmarks except for avrora, batik,

crypto.aes, and xml.validation. The later two cannot be opti-

mized by shadow regions because the vanilla JVM already

achieves relatively satisfying scalability due to much shorter

critical paths (analyzed in Section 5.1). As for avrora, the

heap only contains 2 4 regions, so the improvement brought

by shadow regions is still marginal. Some applications which

cannot benefit from the shadow region optimization (like

8
xml.validation lacks data at 1 thread because there is no full GC in that

configuration.

9
We select the representative benchmarks from each suite because some

curves are in similar shapes. And the complete results can be found at our

opensource repo.
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Figure 11. Application performance improvement
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Figure 12. Full GC Breakdown Comparison

Spark and scimark.fft.large) still enjoy larger speedup with

more GC threads, as the overhead of handling overflowing

objects for region skipping is amortized by multiple threads.

Most benchmarks with ScissorGC can scale to 8 cores but

some meet an inflection point in 16 or 32 threads. The 16-

thread configuration introduces more cross-NUMA memory

accesses, while the 32-thread one co-locates two GC threads

on a single physical core to leverage SMT. Both NUMA and

SMT have been proved harmful for garbage collections and

applications in Java [8, 9, 21], which we leave as our future

work for further analysis and optimizations.

To conclude, ScissorGC makes full GC much more scalable

as it eliminates region dependencies and greatly improves GC

thread utilization with shadow regions. It thereby improves

the overall GC performance in the multi-core environment.

5.6 Memory Overhead
As handling overflowing objects in region skipping would

leave fragmentations near dense regions, which results in

memory waste, we have evaluated the fragmentation ratio

for each benchmark by dividing the total size of fragments

by the size of the whole heap. The result in Figure 14 only

includes a part of benchmarks since the others result in few

dense regions and the region skipping optimization is never

triggered. In contrast, benchmarks with excessive dense re-

gions, such as derby and Spark, have a relatively higher

ratio. Nevertheless, even the highest fragmentation ratio (for

serial) is only 1.22% while the average ratio is 0.07%. As a

comparison, the dense prefix optimization in vanilla JVM

would generate 1.3% fragmentation on average.

We also study the off-heapmemory overhead led by shadow

regions and compare it with a naive implementation which

allocates new memory space each time a GC thread requires

a shadow region. Since ScissorGC mainly leverages unused

memory in the young space to allocate shadow regions, all

benchmarks show weak demand for off-heap memory. In our

evaluation, most benchmarks cause zero off-heap memory

overhead, as the young space suffices for shadow regions.

Only three benchmarks (batik, serial, and scimark.fft.large)

require off heap memory to serve as shadow regions since

they have a larger memory requirement to store overflowing

objects. However, the off-heap memory overhead is only

0.07%, 1.03%, and 0.32% of the heap size respectively. As a

comparison, the naive allocation policy (mentioned in Sec-

tion 4.1) results in 97.79% extra memory consumption of

the entire heap size. The overflowing objects usually intro-

duce higher memory pressure than shadow regions in that

the memory space they consume cannot be recycled until

the compaction finishes. The objects in a shadow region

can be copied back once the corresponding heap region be-

comes available. However, the overflowing objects can only

be copied to the heap end when the whole compacting phase

is nearly over. Therefore, the memory space consumed by the

overflowing objects cannot be recycled and reused during

compaction and thereby cause more memory overhead.
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Figure 13. Full GC Scalability
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The reduced memory consumption also improves the data

locality in copying. Compared with the naive implemen-

tation which takes averagely 54.97% more time to fill up

a shadow heap region than normal ones, ScissorGC only

spends 7.02% more time thanks to better locality.

6 Related Work
6.1 GC Scalability
The scalability of a garbage collector is crucial for its perfor-

mance on large-scale multi-core machines. Gidra et al. [8]

find that PSGC is NUMA-unaware and exploit heavily-contended

locks for synchronization and in turn provide corresponding

optimizations. Suo et al. [24] point out that the unfair lock

acquisitions in the JVM and imperfect scheduling decisions

from the Linux CFS scheduler will hurt scalability, and pro-

pose optimizations such as annotating GC tasks with sched-

uling hints. Zhou et al. [30] present software configurable

locality policies to improve the GC scalability for many-core

processors. Our work mainly studies the scalability of the

full GC algorithm, which is neglected by most prior work,

and finds that the low thread utilization is the main culprit.

Multi-threading garbage collectors have introduced work

stealing mechanism for better load balancing and scalability.

However, work stealing also introduces considerable over-

head and needs to be optimized. Qian et al. [20] find that GC

threads will suffer from consecutive futile stealing attempts,

so they force those threads to terminate to reduce the in-

terferences among threads. Suo et al. [24] further maintain

an active GC thread pool to eliminate meaningless steals

to terminated GC threads. Wessam [12] exploits a master

thread to adaptively decide the number of GC threads active

for stealing based on the size of remaining tasks. Gidra et

al. [9] propose local mode for NUMA machines to forbid

GC threads to steal references from remote NUMA nodes

so as to avoid costly cross-node memory access. Our work

mainly focuses on enabling more available tasks to improve

the success rate of stealing, and we also leverage lock-free

mechanisms to reduce the stealing overhead.
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6.2 GC on Memory-intensive Workload
Memory-intensive workload greedily requests memory from

Java heap and induces much more frequent garbage collec-

tions than others. Therefore, optimizations on GC will have

a significant impact on the overall performance. Since the

allocation pattern of memory-intensive workload does not

conform to the generational hypothesis, the region-based

garbage collector [2, 3, 10, 17] is proposed to avoid unneces-

sary object copies in generational GC. Nguyen et al. [17] pro-

pose an epoch-based collector to collect objects only when

an epoch ends. Gog et al. [10] define regions with different

lifetime for allocation and fast collection. Bruno et al. [2, 3]

divide the Java heap into regions with different ages and
allocate objects to different regions according to their esti-

mated lifespan and programmers’ annotations. Espresso [26]

instead considers efficient hybrid heap management atop a

mix of non-volatile memory (NVM) and DRAM and tailors

the GC algorithm for long-lived objects on NVM. Our work

mainly studies the excessive dense regions in full GC intro-

duced by memory-intensive workload. Li et al. [14] point

out that the dense prefix in the stock JVM cannot optimize

dense regions which are not in the head of a heap, while

ScissorGC further analyzes the composition of dense regions

and leverages shadow regions to improve the performance

of region skipping.

Other optimizations focus on optimizing GC in memory-

intensive workload, but in various scenarios. Yu et al. [27] fo-

cus on optimizingmemory-intensive applications onmemory-

hungry platforms like Xeon Phi, where GC plays a more

important role. Maas et al. [15, 16] study the GC behavior

of memory-intensive applications for distributed scenarios,

such as a Spark cluster, and propose several policies to co-

ordinate GC among JVMs in different machines. Those op-

timizations are orthogonal to ours, and we have integrated

our ScissorGC with the work from Yu et al. to gain larger

speedup.

7 Conclusion
Full GC is a costly stage in Java garbage collectors which may

induce prohibitive application pauses especially for large

heaps. This paper mainly analyzes the most time-consuming

compacting phase in full GC in the Parallel Scavenge garbage

collector and uncovers two performance problems: non-

scalability due to region-wise dependencies and inefficient

compaction resulted with unnecessary data movement. To

overcome those problems, this paper proposes ScissorGC, a
new compaction algorithmwith two corresponding optimiza-

tions: shadow regions to eliminate dependencies and enable

more threads to run simultaneously, and region skipping to

avoid moving regions filled up with live objects. ScissorGC
has been implemented on two versions of HotSpot JVM of

OpenJDK, and the evaluation shows that ScissorGC helps to

improve both scalability and efficiency of compaction in full

GC.
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