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Abstract

Existing secure containers (VM-level containers) rely on
virtualization hardware designed for general-purpose vir-
tual machines, which leads to performance disadvantages
compared with OS-level containers. The performance gap be-
comes much larger in nested clouds, where secure containers
are deployed inside a VM.

This paper proposes CKI (Container Kernel Isolation), a
hardware-software co-design for efficient secure contain-
ers, based on two insights. First, memory protection keys
for kernel space (PKS) facilitates constructing a new privi-
lege level for securely collocating multiple container kernels
within the host kernel, without the involvement of virtual-
ization hardware. Second, VM virtualization used by secure
containers actually exceeds the demand of container virtual-
ization. Thus, CKI avoids using the virtualization hardware
for running container kernels and removes the unnecessary
virtualization mechanism like two-stage address translation,
reducing the overhead of secure containers.

Our experiments on real-world applications demonstrate
the efficiency of CKI, reducing the latency of memory-
intensive applications by up to 72% and 47% compared with
state-of-the-art hardware-assisted virtualization (HVM) and
software-based virtualization (PVM), respectively.

CCS Concepts: « Software and its engineering — Oper-
ating systems; « Security and privacy — Virtualization
and security.
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1 Introduction

Containers are widely used in the cloud for building and
deploying applications, owing to their advantages like porta-
bility and scalability. There are two typical container archi-
tectures. OS-level containers have been criticized for poor
security due to vulnerabilities in the OS kernel shared among
mutually-untrusted containers. A malicious OS-level con-
tainer may escape isolation by exploiting the large attack
surface exposed by the syscall interface. In contrast, VM-level
containers run each container on its own guest OS kernel
for stronger security isolation, and gain more popularity in
the cloud [15, 22, 29, 50, 56]. Compromising the guest kernel
is harmless to the host kernel or other containers.

Despite many optimizations, VM-level containers still
show performance disadvantages compared to OS-level con-
tainers due to the involvement of virtualization hardware
designed for general-purpose virtual machines. For example,
two-dimensional page table walk can increase the latency of
memory-intensive applications by 46% on average [39, 69].

Moreover, the performance gap increases with nested vir-
tualization [34, 45, 51, 52, 58, 65]. According to well-known
cloud providers like Google and Alibaba, there is a grow-
ing demand for building cloud services based on public
infrastructure-as-a-service (IaaS) clouds [9, 45]. In such a
nested cloud, VM-level containers must run inside a VM,
leading to high runtime overhead due to excessive context
switches between the L2 VM (container), the guest hyper-
visor (L1 kernel), and the host hypervisor (L0 kernel). This
overhead degrades the performance of memory-intensive
and I/O-intensive applications by 28%~226% and 1.8x~4.3x,
respectively, according to our evaluation.

We argue that the performance overhead stems from the
mismatch between privilege levels needed by a secure con-
tainer architecture and those provisioned by the CPU hard-
ware. Specifically, the host kernel needs to isolate multiple
container guest kernels, and each of them needs to isolate
multiple container application processes. Thus, three privi-
lege levels are needed. However, the CPU hardware usually
offers two privilege levels for running the OS and applica-
tions, e.g., x86 ring-0/ring-3 and Arm EL1/EL0. Therefore,
existing secure containers such as Kata Containers [15] and
Firecracker [29] leverage hardware virtualization extensions
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to obtain the extra privilege level, leading to performance
overhead.

Some secure container architectures, such as PVM [45] and
gVisor [3], eliminate the need for virtualization hardware.
They deprivilege the container guest kernel to user mode
and isolate the guest kernel and the container applications
in separate address spaces. However, these architectures
incur more context switch overhead because syscalls and
exceptions inside the container must be redirected by the
host kernel. For example, an empty syscall takes 90ns in an
OS-level container and 336ns in a PVM container.

In this paper, we propose a new secure container design
called CKI based on two insights. First, the recent CPU fea-
ture (Protection Keys Supervisor [14], PKS or MPK) can be
retrofitted to create another privilege level within the kernel
mode for accommodating guest (container) kernels. This new
privilege level allows the guest kernel to efficiently serve
its container applications [61], and thus brings performance
benefits, e.g., minimizing the context switches in both bare-
metal and nested clouds. Second, separating the kernel for
each container is for security isolation instead of general-
purpose virtualization. Thus, the unnecessary virtualization
mechanism for supporting arbitrary VMs, i.e., two-stage
address translation, could be removed to reduce overhead.

CKI faces three challenges in creating the new privilege
level. First, PKS is designed solely for memory isolation while
a malicious guest kernel may execute arbitrary privileged
instructions as it executes in kernel mode. To address this,
we propose lightweight hardware extensions to PKS for in-
struction isolation. Second, the security target of the PKS
switch gates in CKI, i.e., preventing container escape or DoS,
requires additional designs beyond basic MPK gates [64].
For example, the gates require new mechanisms for locating
the per-vCPU area and preventing interrupt monopolizing
or forgery. Third, PKS supports only 16 memory domains
within one kernel address space, whereas a machine may
host dozens to hundreds of secure containers. To support
an arbitrary number of containers, CKI combines PKS and
address space isolation for isolating different guest kernels.
Specifically, it creates a separate address space for each guest
kernel. It maps a kernel security monitor (KSM) in each
address space and uses PKS to isolate the KSM from the
guest kernel. The PKS isolation deprivileges the guest kernel
so that it can perform privileged operations only through
the interfaces provided by the KSM or the host kernel. The
KSM implements the privileged operations that only access
the private data of one secure container (e.g., page table
updates), which can be invoked through a fast PKS switch
gate. We only map these private data in the KSM, so that
side-channel protections (e.g., PTI [21], IBRS [13]) can be
eliminated from the PKS switch gate, which saves hundreds
of CPU cycles [33].

We implement a prototype of CKI and evaluate it with
real-world container applications. We evaluate CKI in both
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bare-metal and nested clouds, comparing it with hardware-
assisted virtualization (HVM) [15] and software-based virtu-
alization (PVM) [45]. In a bare-metal cloud, CKI reduces
the latency of memory-intensive applications by up to
18%/47% compared with HVM/PVM. In a nested cloud, CKI
reduces the latency of memory-intensive applications by
up to 72%/47% compared with HVM/PVM, and obtains up
to 6.8x/1.2x throughput for I/O-intensive applications com-
pared with HVM/PVM.

In summary, this paper makes the following contributions:

o A comprehensive design space exploration for secure con-
tainers, revealing a mismatch between the CPU privilege
levels and the need of container kernel separation;

e A new secure container design called CKI that achieves
efficient kernel separation by introducing a hardware-
software co-designed privilege level;

e A system prototype with experimental results on real-
world applications demonstrating its effectiveness.

2 Background and Motivation
2.1 Secure Container Models

OS-level containers [26, 63] achieve lightweight isolation by
sharing a single OS kernel among multiple containers. How-
ever, the OS-level isolation mechanisms [1, 2, 20, 27, 46] are
weak, given that many vulnerabilities have been discovered
in commodity OS kernels like Linux. The complex syscall in-
terfaces expose a large attack surface to the userspace, which
can be exploited by containers for privilege escalation, in-
formation leakage, or denial-of-service (DoS) [4, 6, 7, 16, 53].
Secure containers enhance container isolation by limiting
the effects of a compromised OS kernel. This can be achieved
by two container architectures: VM-level containers and
enclave-based containers, as depicted in Figure 1.

Kernel Sharing
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Nr-v | [ App App
NR-K N N

R-K | Host Kernel |J

Kl Host Kernel |J

Kernel Separation
(gVisor)

Kernel Separation
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Figure 1. Secure containers: VM-level (kernel separation)
and enclave-based (kernel sharing). GK: guest kernel, NR:
non-root, R: root, U: ring-3, K: ring-0.

VM-level containers. VM-level containers run each con-
tainer on a separate guest kernel. They require three levels
of privilege for user applications, the guest kernel, and the
host kernel. A malicious application within the container
can compromise its guest kernel by exploiting kernel vul-
nerabilities, which, however, is harmless to the host kernel
or other containers. The interface between the guest kernel
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and the host kernel can be much simpler than the syscall
interface [30, 66], making it difficult for a malicious guest
kernel to compromise the host kernel.

Enclave-based containers. Enclave-based containers run
all the containers on a shared kernel, just like OS-level con-
tainers. Yet, a security monitor [43] or a hardware-based
trusted execution environment (TEE) [31, 44] deprives the
shared kernel of the privilege to arbitrarily access the mem-
ory data or execution context of the protected containers.

Out-of-Bound R/W
Use-After-Free

9.9% 30.2% Null Dereference
Other Mem. Corrupt.
Logic Error
o 27% 279 Memory Leakage
1.6% Kernel Panic
27% Deadlock/Deadloop
5.9% Information Leakage
DoS
12.8% 8.0%

6.4% No DoS

Figure 2. Linux kernel CVEs exploitable by containers.

VM-level containers are preferred when considering
real-world CVEs. We collect Linux kernel CVEs that are
exploitable in containers in the recent two years (2022-2023)
and classify them (209 in total) by security effects, as shown
in Figure 2. Among these CVEs, 97.3% can lead to denial-of-
service (DoS) attacks, including breaking system states (e.g.,
out-of-bound write, use-after-free), causing irrecoverable
errors (e.g., null pointer deference, kernel panic), or monop-
olizing hardware resources (e.g., memory leak, deadlock).

Although enclave-based containers can protect the confi-
dentiality and integrity of container data, they cannot defend
against DoS attacks due to the kernel-sharing design. In con-
trast, VM-level containers can prevent DoS because of the
kernel-separation design.

2.2 Secure Containers in Nested Clouds

According to prior work like [45], there is a growing de-
mand to build container platforms within VMs leased from
an infrastructure-as-a-service (IaaS) cloud. In these nested
clouds, VM-level containers are deployed inside another VM.
For instance, Alibaba Cloud is shifting secure containers
from bare-metal instances to general-purpose (virtualized)
instances to achieve greater isolation, cost savings, and more
flexible and elastic Kubernetes cluster management [45]. Ad-
ditionally, Google’s gVisor considers in-VM deployment and
designs corresponding optimizations [9].

Running secure containers within an IaaS VM requires
nested virtualization, in which an L0 kernel (host hypervisor)
runs a VM with an L1 kernel (guest hypervisor), which then
isolates multiple secure containers (L2 VM), each with its
own L2 kernel. Both memory-intensive and I/O-intensive
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container applications may be deployed under nested vir-
tualization [45, 52, 69]. We aim to mitigate the overhead of
nested virtualization for these applications.

2.3 Memory Protection Keys

Memory Protection Keys (MPK) is a recent hardware feature
for memory isolation on x86 CPUs [14]. MPK divides the
pages in a virtual address space into at most 16 domains and
leverages four previously unused bits in the page table entry
(PTE) to represent the domain ID of each page. It also intro-
duces a 32-bit per-core protection key register to configure
the access permissions for each domain. The permission can
be set to read-only, read-write, or non-accessible.

MPK has two variants: Protection Keys User (PKU) con-
trols the permissions for user pages, while Protection Keys
Supervisor (PKS) controls the permissions for kernel pages.
The protection key registers for PKU and PKS are referred
to as PKRU and PKRS, respectively. PKRU can be configured
with an efficient instruction named wrpkru, while PKRS can
be configured with wrmsr instruction.

2.4 Issues of VM-Level Containers

VM-level containers require three privilege levels, while the
CPU hardware only offers two privilege levels for the kernel
and applications. One problem with VM-level containers is
the lack of a third CPU privilege level to efficiently accom-
modate the guest (container) kernel. Specifically, Figure 3 il-
lustrates existing VM-level container designs, and Table 1
shows a comparison of them. The problems with the existing
designs are summarized as follows.

(1) Hardware-assisted virtualization (HVM) isolates the
guest kernel with dedicated VM control structures (VMCS)
and EPT, resulting in suboptimal memory performance due
to EPT translation and management, as well as poor I/O
performance in nested clouds caused by slow VM exits.

(2) Software-based virtualization (PVM) deprivileges the
guest kernel to user mode and isolates container memory
with shadow paging, resulting in additional context switches
during syscall handling and inefficient page table updates.

(3) LibOS-based containers break the isolation between ap-
plications and the guest kernel, reducing security guarantees
and causing compatibility issues.

2.4.1 HVM. The container design with HVM faces both
performance and compatibility issues.

Overhead of EPT. Handling one EPT fault takes 3us for
HVM in a bare-metal cloud, which could increase the latency
of memory-intensive applications by 2%~21% compared with
OS-level containers (HVM-BM / RunC-BM in Figure 4). HVM
also results in expensive TLB miss handling due to the two-
dimensional page table walk, which incurs an average over-
head of 46% for memory-intensive applications [39, 69].

In nested clouds, since there is no hardware support for
three-stage address translation, the L1 kernel relies on the
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Figure 3. Comparison of different VM-level containers. Cntr: container, S(E)PT: shadow (extended) page table, AS: address
space, fncall: function call, U/K-Iso: user/kernel isolation, VMM: hypervisor.

Table 1. Comparison of different VM-level containers. BM: bare-metal, NST: nested.

Aspect HW-Assisted VM SW-Based VM Proc-Like LibOS VM-Like LibOS Userspace Kernel CKI
Memory Intensive Applications © B8M)® (NST) © (] © (] o
Performance
/0 Intensive Applications ® BM) O (NST) (D) o o © o
Security Guest User-Kernel Isolation o o O @) [ ] ]
. Nested Cloud Deployment () [ ) [ ) [ ) [ ) [ )
Compatibility . . o
Container Binary Compatibility o ([ © o (~] o

L0 kernel to maintain a shadow EPT (SPTE) for each L2
VM, resulting in high overhead for EPT management [45].
A page fault in an HVM container takes more than 32ps
in a nested cloud. This increases the latency of memory-
intensive applications by 28%~226% compared with OS-level
containers (HVM-NST / RunC-BM in Figure 4).

Overhead of VM exit redirection. When running HVM
containers in a nested cloud, the L1 kernel and the L2 VM
execute with different VMCS, resulting in L0 intervention on
VM exits. Specifically, when a VM exit occurs in an L2 VM,
it triggers a trap to L0 kernel, and then L0 kernel resumes
the L1 kernel to handle the L2 VM exit. After the L1 kernel
processes the VM exit, it traps to L0 kernel again, and then L0
kernel resumes the L2 VM. An empty hypercall in an HVM
container only takes 1.1us in a bare-metal cloud, while it
takes 6.7us in a nested cloud. This VM exit overhead reduces
the throughput of I/O-intensive applications by 1.8x~4.3x
compared with PVM [45], which eliminates L0 intervention
(HVM-NST / PVM-NST in Figure 5).

Compatibility issues. HVM also faces compatibility issues
in nested clouds. First, some IaaS clouds disable hardware-
assisted nested virtualization to reduce the attack surface of
the L0 kernel [45]. Second, hardware-assisted nested virtu-
alization is not supported for emerging confidential virtual
machines because the L0 kernel is untrusted.

2.4.2 PVM. PVM [45] implements VM-level containers
with para-virtualization techniques. It runs container ap-
plications and the host kernel in user and kernel mode, re-
spectively. It also runs the guest (container) kernel in user
mode within an individual address space. PVM obtains better

Table 2. Container performance on microbenchmarks (ns).

Bare-metal (BM) Nested (NST)
RunC HVM PVM HVM PVM

syscall 93 91 336 91 336
pgfault 1,000 4,347 6,727 34,050 7,346
hypercall - 1,088 466 6,746 486

performance than hardware-assisted virtualization in nested
clouds by avoiding VM exits to L0 kernel.

Overhead of syscall redirection. When an application
invokes a syscall, it first traps to the host kernel. The host
kernel then switches to the guest kernel page table, returns
to user mode, and invokes the syscall handler in the guest
kernel. The guest kernel returns to the user application with
a reverse procedure after it handles the syscall. This syscall
procedure adds two more CPU mode switches and two more
page table switches compared with a native syscall. This
increases the syscall latency from 90ns to 336ns, and incurs
an average overhead of 6.6% on I/O intensive applications
compared with HVM in a bare metal cloud. The application
overhead is evaluated by emulating PVM syscall overhead
in an HVM container, using the applications in Figure 5.

Overhead of shadow paging. PVM preserves the abstrac-
tion of two-stage address translation: guest virtual address
(gVA) to guest physical address (gPA) to host physical address
(hPA), by using the shadow paging mechanism. The host ker-
nel maintains a shadow page table (translates gVA to hPA) for
each container application. One container page fault involves
at least 6 context switches between the host kernel and the
guest. Two switches are needed to redirect the page fault to
the guest kernel, two for updating the shadow page table,
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and two more for returning to the user application. More-
over, the emulation logic during the page fault handling also
incurs high overhead, such as page table walking, instruction
emulation, shadow page table management, and exception
injection. A page fault in a PVM container takes 7us while
a native page fault only takes 1ps. The overhead of shad-
owing paging increasing the latency of memory-intensive
applications by 6%~73% compared with OS-level containers
(PVM-BM / RunC-BM in Figure 5).

HVM-NST  EEPVM-NST  [JRunC-BM O HVM-BM B PVM-BM

=0

Latency
(Normalized)

o

btree xsbench canneal dedup fluidanimate fregmine

Figure 4. Comparing the performance of different containers
on memory-intensive (page-fault-intensive) applications.
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Figure 5. Comparing the performance of different containers
on I/O-intensive applications.

2.4.3 LibOS and gVisor. LibOS-based secure contain-
ers [38, 48, 49, 62, 66] attach a library OS (libOS) to each con-
tainer within either a process or a VM. They do not enforce
user-kernel isolation within the secure container, running
both the applications and the libOS in the same address space.
This design avoids the page table switches during syscall
handling, but it weakens the isolation guarantee of contain-
ers. Meanwhile, they usually have less compatibility, such
as a lack of full support for multi-processing in a container.

gVisor [3] implements a new userspace kernel called Sen-
try, and runs each container on a private Sentry instance.
gVisor lets the host kernel to handle the application page
faults, avoiding the overhead of shadow paging. gVisor relies
on Systrap [24] to redirect the application syscalls to the Sen-
try instance, based on binary rewriting. However, Systrap is
much slower than native syscalls, because it involves inter-
process communication. Meanwhile, as a re-implemented
kernel, gVisor may lack the full compatibility and optimiza-
tions of Linux kernel.

3 Overview
3.1 Design Implications and Design Choices
Design implications. According to the analysis in §2.4,

there are two design implications for efficiently building a
new privilege level for container guest kernels.
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(1) Efficient switches between privilege levels. As the guest
kernel frequently communicates with applications (i.e.,
syscall/exception) and performs privileged operations (e.g.,
page table updates and I/O requests), we should minimize
the context switch overhead during these procedures. Over-
heads like syscall redirection in PVM or VM exit redirection
in nested HVM should be avoided.

(2) Memory isolation without two-stage translation. Two-
stage address translation is designed for general-purpose
virtualization, which exceeds the demand of container isola-
tion, as containers do not rely on specific physical memory
layout. Using single-stage translation can avoid the overhead
of shadow paging or EPT translation/management.

Design choices. MPK can enforce efficient domain isolation
within a single CPU privilege level [40, 41, 55], which can be
leveraged for constructing the new privilege level. There are
two possible designs: (1) Run the guest kernel in user mode
and isolate it from the application using PKU (Design-PKU),
(2) Run the guest kernel in kernel mode and isolate it from the
host kernel using PKS (Design-PKS). Both designs support
efficient syscalls without redirection. They also avoid VM
exit redirection in nested clouds as the guest kernel and the
host kernel execute with the same VMCS.

We choose Design-PKS instead of Design-PKU for the fol-
lowing reasons. First, because PKU has been widely adopted
for various applications (intra-process isolation [35, 42, 64]),
Design-PKU would inherently interfere with these existing
use cases. This conflict undermines the original purpose of
PKU in user-space applications. Second, Design-PKU necessi-
tates replacing both wrpkru instructions and syscall instruc-
tions in container applications. However, as highlighted in
Hodor [42], binary rewriting on arbitrary (container) im-
ages without source code can be undecidable, which may
break container binary compatibility or hinder application
features like just-in-time compiling. Third, Design-PKU in-
troduces extra performance overhead in exception handling.
For instance, injecting page faults from the host to the guest
kernel requires additional cross-ring switches, adding ap-
proximately 750ns to page fault latency (which is originally
around 1,000ns) on our tested platform.

3.2 Challenges of PKS-based Isolation

PKS is not originally designed for isolating container guest
kernels, leading to the following challenges for our design.

Challenge-1: Insufficient number of isolation domains. PKS
only supports up to 16 domains in one address space, which is
much lower than the potential number of secure containers.
Therefore, it is infeasible to isolate each guest kernel in a
dedicated PKS domain.

Challenge-2: Lack of privileged instruction isolation. PKS
only offers memory isolation, while a malicious guest kernel
running in kernel mode can break isolation using privileged
instructions. Binary rewriting is a common technique for
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Figure 6. Comparing the architecture of software-based virtualization and CKI. PrivData-Only Operations: privilege operations
that only access the private data of the current secure container. Switcher: a piece of context switching code. Note: these two
designs work in both bare-metal and nested clouds (the host kernel is L1 kernel in nested clouds).

removing specific instructions from isolated software. How-
ever, it is infeasible to eliminate all of the privileged instruc-
tions at unaligned locations in an OS kernel [37, 40, 42]. For
nested clouds, one potential solution is to intercept and in-
spect all privileged instructions in L1 VM using virtualization
hardware [40], but it requires intrusive modifications to the
L0 kernel, which may not be feasible.

Challenge-3: Incomplete switch gate capabilities. Under PKS-
based isolation, the guest kernel communicates with the host
kernel using PKS switch gates. However, such switch gates
require capabilities that are not naturally supported by PKS.
For example, the host kernel needs to intercepts hardware
interrupts during guest execution using the switch gates, but
a naive gate design might allow the guest kernel to inject
fake interrupts into the host kernel.

3.3 Architecture Overview

CKI is a VM-level container architecture, where each con-
tainer runs on a separate kernel. It implements three privilege
levels without hardware virtualization extensions. PVM [45]
is the state-of-the-art secure container design without us-
ing virtualization hardware. Figure 6 shows the architecture
of CKI and how it differs from PVM. In short, CKI avoids
the overhead of syscall redirection and shadow paging of
software-based virtualization, and thus can achieve better
performance no matter in bare-metal or nested cloud.

Abstraction. Each CKI secure container is like a VM with a
guest kernel and multiple user processes, running on a host
kernel. The guest kernel provides OS functionalities like
memory management, scheduling, filesystem and network
stack. The host kernel schedules the vCPUs of the guests, al-
locates memory to them, and emulates virtual devices (disks
and network cards) for the guest kernel using the VirtIO
protocol. All hardware interrupts are handled by the host
kernel. When a guest kernel needs to invoke host functional-
ities, or when a hardware interrupt occurs, the guest vCPU

exits to the host kernel via a piece of context-switching code
called switcher (§4.2). For nested virtualization, CKI VM exit
process does not involve L0 intervention. The host kernel
may inject virtual interrupts when resuming the guest vCPU.

Differences. There are two key differences between CKI
and software-based virtualization. First, CKI runs the guest
kernel in a new privilege level within the kernel mode, al-
lowing guest users to invoke syscalls without host kernel
intervention. The memory of the guest kernel is mapped
in the guest user address spaces and is isolated with the
PTE U/K-bit, which eliminates page table switches during
syscalls. Second, CKI does not implement two-stage address
translation. The host kernel provides each guest VM with
some contiguous segments of hPA that are directly man-
aged by the memory manager in the guest kernel. Therefore,
guest user page faults can be handled directly by the guest
kernel, instead of triggering the shadow page fault in the
host kernel. The PTE update operation is also simplified by
eliminating VM exits, gPA to hPA translation, and shadow
PTE generation.

Defining the new privilege level (guest kernel mode).
CKI leverages PKS-based intra-kernel isolation to construct
the new privilege level for de-privileging guest kernels. On
the one hand, it combines PKS isolation with address space
isolation to restrict the memory accessibility of guest kernels.
On the other hand, it monitors the execution of privileged
operations from guest kernels.

Specifically, different secure containers and the host kernel
are isolated in different address spaces. Each guest kernel is
deprivileged and operates with a privileged kernel security
monitor (KSM), both of them running in the same address
space but have different PKS permissions specified in PKRS
(protection key rights register for kernel pages). The KSM
(PKRS is zero) can access all the virtual memory, while the
guest kernel (PKRS is PKRS_GUEST) cannot access the mem-
ory of its KSM. Within the address space of each secure
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container, only two PKS domains are needed for the guest
kernel and the KSM. Thereby, CKI can support an arbitrary
number of secure containers without being affected by the
PKS domain limitation (overcoming Challenge-1).
Additionally, CKI adds a lightweight hardware extension
to PKS that makes privileged instructions inexecutable in
guest kernels (§4.1) (overcoming Challenge-2). A guest kernel
can only perform privileged operations through the pre-
defined interfaces offered by its KSM or the host kernel. The
KSM implements the privileged operations that only access
the private data of the secure container, such as page table
updates (§4.3), and iret instruction. These operations can
be invoked through an efficient PKS gate (switch between
guest kernel and KSM) (§4.2). CKI eliminates the costly side-
channel mitigation (e.g., PTI [21] and IBRS [13]) from this
PKS gate, since only private data is mapped in the KSM [33].
Other privileged operations (e.g., VirtlO MMIO, timer
setup, hit instruction), which rely on global data (e.g.,
driver/scheduler metadata), are offered by the host kernel.
The guest kernel can invoke such operations through a
dedicated switcher (switch between the guest kernel and
the host kernel). The switcher also contains interrupt gates
that intercepts hardware interrupts during guest execution
and redirect them to the host kernel. CKI relies on multiple
techniques to prevent interrupt monopolizing and interrupt
forgery by a compromised guest kernel (§4.4) (overcoming

Challenge-3).

3.4 Threat Model

CKI inherits the threat model of VM-level containers. The
host kernel and the KSMs isolate multiple containers, while
the guest kernel in a container isolates multiple user pro-
cesses. One container may be compromised and then attempt
to break inter-container isolation, e.g., by executing destruc-
tive privileged instructions or corrupting critical in-memory
structures (like page table, IDT). The KSMs and the host
kernel are assumed to be trusted as their attack surfaces are
small (hypervisor interface).

Transient execution attacks [47, 54] within a single se-
cure container are out of scope. Inter-container transient
execution attacks are mitigated by running each container
in its own address space and enabling Spectre mitiga-
tion [12, 13, 25] in the host kernel.

4 Detailed Design
4.1 PKS-based Privileged Instruction Isolation

CKI chooses to construct the new privilege level inside the
kernel mode due to performance considerations, i.e., the
container user processes can interact with the (container)
guest kernel in the original efficient manner. For example, a
process can still invoke system calls directly through syscall
instruction, without extra context switches.
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As the guest kernel is untrusted, CKI needs to prevent it
from executing privileged instructions that can breach secu-
rity isolation. The current PKS hardware feature can only
offer memory isolation within the kernel mode, which cannot
restrict the execution of privileged instructions. Moreover,
existing software-based instruction isolation techniques like
binary rewriting do not apply to CKI (§3.2).

Hardware extension. Thus, CKI introduces a lightweight
hardware extension to prevent the guest kernel from execut-
ing privileged instructions that could lead to destructive con-
sequences. Since the PKRS is non-zero (limited memory view)
during guest kernel execution and zero (unlimited memory
view) during KSM execution, the extension can rely on the
PKRS register value to determine which one is currently
executing. The extension blocks all destructive privileged
instructions when the PKRS is non-zero. Executing these in-
structions in the guest kernel triggers an exception that traps
to the host kernel. Non-destructive privileged instructions
remain executable in the guest kernel to minimize overhead.
Table 3 lists the privileged instructions and whether they are
blocked in the guest kernel.

Blocked instructions. Most privileged instructions are
blocked, except for the harmless ones listed in Table 3. The
blocked instructions can be virtualized using the similar
techniques in software-based virtualization, i.e., replacing
them with calls to the host kernel or the KSM.

We block any instructions that write system registers
(such as GDTR and IDTR), control registers, or model-specific
registers (MSR). The interrupt returning instruction (iret) is
blocked as it can modify segment registers. We also block
instructions that are unnecessary for the container guest
kernel, such as instructions related to port I/O and system
management mode.

OS kernels use cli/sti and popf instructions to enable or
disable interrupt handling on the CPU. These instructions
are blocked in the guest kernel to prevent DoS. CKI adopts
interrupt handling mechanisms from para-virtualization [32,
45]. All hardware interrupts are handled by the host kernel,
which injects virtual interrupts into the guest kernel. Instead
of using privileged instructions, the guest kernel maintains
the interrupt enabled/disabled state with an in-memory bit
that is visible to the host kernel.

Not-blocked instructions. The PKRS modification instruc-
tion should be executable in the guest kernel; otherwise,
the guest kernel cannot invoke the KSM. Existing x86 hard-
ware implements PKRS as a model-specific register (MSR).
However, wrmsr should be blocked in the guest kernel to
prevent arbitrary manipulation of other MSRs. We introduce
a new hardware instruction, wrpkrs, for PKRS modification,
which has semantics similar to the existing wrpkru instruc-
tion (modifying PKRU, a userspace equivalent of PKRS).
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Categories Relatec.i Instructions Blocked? | Usages in Container Guest Kernels or Brief Explanations
or Registers
System Registers | IDTR, GDTR, TR ... Yes They are required at boot time only and replaced with KSM calls.
MSRs RDMSR/WRMSR Yes They are used for updating timer and sending IPI, which are replaced with hypercalls.
- MOV CRn, reg -No - It is used for reading CRO and CR4, which is harmless.
Control Registers | - MOV reg, CRO/CR4 - Yes - Replaced with KSM call: initializing CR0/CR4, toggling CRO TS-bit for lazy FPU switching.
- MOV reg, CR3 - Yes - Replaced with KSM call: updating CR3 for address space switching.
- CLAC/STAC - No - They are used to toggle the AC-bit (SMAP-enabled) in CR4, which is harmless.
TLB States - INVLPG - No INVLPG is used to flush the TLB. Each secure container and the host are isolated in different
- INVPCID - Yes PCID contexts to prevent one container from flushing the others’ TLB entries with INVLPG.
Syscall/ - SWAPGS, SYSRET - No - They are handled with special methods for better syscall performance.
Exception - IRET - Yes - It is used for returning from exceptions and replaced with a KSM call.
Other Privilege -HLT -No - It is replaced with a hypercall that pause the current vCPU.
Instructions - STI/CLI, POPF - Yes - The interrupt enabling/disabling state in the guest is maintained in memory.
- IN/OUT, SMSW ... - Yes - They are not used in a para-virtualized container guest kernel.
PKRS Register WRPKRS No It is used in the PKS switch gates and protected with binary rewriting.

Table 3. Deprive the container guest kernel of the ability to execute destructive privileged instructions.

The wrpkrs instruction should only be present at pre-
defined switch gates, so that we eliminate all wrpkrs instruc-
tions, including the unaligned ones, from the guest kernel
code with the similar binary rewriting technique introduced
in prior work [64]. To prevent the guest kernel from dynami-
cally creating wrpkrs instructions, all kernel code is mapped
as read-only during guest kernel initialization, and the KSM
prohibits new kernel-executable mapping during container
execution. CKI does not need to support dynamic patch-
ing or loading of guest kernel code, as this is unnecessary
for containers. Note that CKI aims to provide a container
environment rather than support arbitrary guest kernels.

The sysret and swapgs instructions are utilized during
syscall handling. Calling the KSM for these instructions
would increase the empty syscall latency from 90ns to 153ns.
To enhance performance, we allow these instructions to be
executable in the guest kernel. The sysret instruction could
be exploited to modify the RFLAGS register and disable in-
terrupts (DoS). Therefore, we add a lightweight extension to
this instruction to ensure that the IF (interrupt enabled) flag
remains turned on when the PKRS is non-zero.

The guest kernel can flush the TLB with invipg. We isolate
each secure container and the host in different PCID contexts
to prevent performance attacks, as invlpg only flushes the
TLB entries of the current PCID.

4.2 Switch Gates for Context-Switching

Figure 7 shows the context-switching flows in CKI. CKI of-
fers fast paths for the most frequent switches, i.e., syscall,
exception, and KSM invocation. It provides slow paths for
other switches, i.e., host kernel invocation (hypercall) and
hardware interrupts.

When designing the PKS switch gates for these context
switches, a challenge is the locating of the per-vCPU area
in the KSM. Since the guest kernel can arbitrarily modify
kernel_gs, the KSM cannot rely on this register to identify
the current vCPU.

User Application

Guest
(Cntr)
Kernel

1RQ JJ hypercall
_inject vIRQ Host Kernel

Figure 7. The context switches in CKI. Green lines: fast
paths. (v)IRQ: (virtual) interrupt. Cntr: container.

Syscall and exception. When the user application in a
container invokes a syscall, it traps to the guest kernel’s entry
point defined in the IA32_STAR register. Similarly, when
the application triggers an exception such as a page fault,
it traps to the guest kernel’s entry point in the interrupt
descriptor table (IDT). PKRS is set to PKRS_GUEST in user
mode, allowing the entry point to call the untrusted handler
function without a PKS switch. The entry and exit code for
syscalls and exceptions use three privileged instructions:
swapgs, sysret, and iret. The swapgs and sysret instructions
are executable in the guest kernel, while the iret instruction
must be executed by calling KSM (§4.1).

KSM call. The guest kernel uses the KSM call gate to invoke
the privileged operations offered by KSM (Figure 8a). The
gate sets PKRS to zero, switches to a secure stack that is
inaccessible to the guest kernel, calls a handler function, and
finally restores PKRS and the stack pointer.

An attacker may jump to the wrpkrs instruction at the end
of the gate with ROP-like attacks, to arbitrarily modify PKRS
and execute malicious code. To prevent this attack, the new
PKRS value is checked after modification, as shown by the
switch_pks macro in Figure 8a.

Per-vCPU area. Since the KSM can be invoked on multiple
vCPUs simultaneously, each vCPU has its own secure stack,
located in a per-vCPU area of the KSM memory. OS kernels
typically use kernel_gs register to locate per-CPU variables,
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switch_pks \pkrs:
Xor %rcx, %rcx
xor %rdx, %rdx

KSM_call:
switch_pks $0

mov %rsp, $%rcx

// gs is untrusted

hypercall:

switch_pks $0
exit_to_host

// request in registers

exit_to_host:

save guest registers
restore host registers
save guest CR3 l |

Constant Base
— SPERCPU_SEC_STACK

jne abort switch_pks $PKRS_GUEST

ret iret // HW: restore

mov \pkrs, %rax mov $PERCPU_SEC_STACK, %rsp switch_pks $PKRS_GUEST switch to host CR3 gvA
push %rcx ret PT1 PT2

// new instruction .. // trap into host kernel

wrpkrs .. // KSM handles the request idtentry \irgno: l IchUlI |vCPU2| ]
// HW: i to I stack switch to guest CR3 Vi hEA

// avoid gate abuse pop %rcx // HW: save PKRS witch it to 0 save host registers ‘/ T -

cmp \pkrs, S%rax mov %rcx, %rsp save IRQ info (\irgno, errcode) restore guest registers Per-vCPU Area -
exit_to_host

Secure/IST vCPU
Stack

Context

()

(b) (c)

Figure 8. (a) Code snippets of the KSM call gate, (b) code snippets of the hypercall gate and the interrupt gate, (c) the switch
gates can find the per-vCPU area at a constant virtual address, without a trusted gs register, PT: page table.

i.e., the kernel_gs register on each CPU stores a different
base for local CPU variables. However, CKI allows the guest
kernel to execute the swapgs instruction (§4.1), and thus
a malicious guest kernel can arbitrarily modify kernel_gs.
To tackle with this problem, CKI puts the per-vCPU area
at a constant virtual address, which can be found without
kernel_gs. As depicted in Figure 8c, CKI maintains multiple
per-vCPU page tables for each page table in the guest kernel.
When a guest thread executes on different vCPUs, different
per-vCPU page tables are used. Each per-vCPU page table
maps a different per-vCPU area (hPA) at the same constant
virtual address (gVA).

Hypercall. The guest kernel uses the hypercall gate to in-
voke the privileged operations offered by the host kernel. The
gate first switches PKRS to zero because it needs to execute
privileged instructions and access the KSM memory (per-
vCPU area). It then performs a full context switch to save
the guest kernel context and restore the host kernel context,
which includes a page table switch, general-purpose/system
registers switches and side-channel mitigation like IBRS. The
host and guest contexts are stored in the per-vCPU area. The
host kernel then reads the request from the guest context and
processes it. After the request is completed, the host kernel
restores the guest context, and the guest kernel resumes from
the hypercall gate.

Hardware interrupt. A hardware interrupt triggers a trap
from the guest to the host kernel. The IDT entry for a hard-
ware interrupt points to an interrupt gate.

The interrupt gate saves the interrupt information to the
per-vCPU area and switches to the host kernel. The host
kernel reads the information, constructs an interrupt context,
and calls the interrupt handler. After handling the interrupt,
the host kernel restores the interrupted guest context.

We add a hardware extension to save the PKRS register
upon interrupt entry and switch PKRS to zero (detailed in
§4.4). After handling the interrupt, the iret instruction should
be executed with PKRS set to zero (§4.1), but it needs to re-
store PKRS to PKRS_GUEST when restoring the guest kernel
context. Therefore, we extend the iret instruction, allowing
it to modify the PKRS register.

4.3 Memory Protection

A malicious guest kernel may attempt to breach memory iso-
lation by manipulating the page table. To isolate the memory
view of the guest, the KSM intercepts and verifies all page
table updates in the guest kernel.

Page table monitoring. To intercept page table updates,
CKI employs a mechanism similar to nested kernel [36],
which is based on the following invariants: (1) Only declared
pages can be used as page table pages (PTP); (2) Declared
PTPs are read-only in the guest kernel; (3) Only a declared
top-level PTP can be loaded into the CR3 register. Unlike
nested kernel, CKI uses PKS instead of the PTE writable bit
to control PTP write permissions. CKI divides all the PTPs
in a guest virtual address space into a specific PKS domain.
It adds the PKS domain ID, pkey PTP, to each guest PTE that
maps a PTP. When the guest kernel is executing, this PKS
domain is configured as read-only in the PKRS register.

The KSM maintains a descriptor for each physical page
belonging to the guest. The guest kernel can invoke the KSM
to declare a PTP or update a PTE. When declaring a PTP,
the PTP level is specified and recorded in the descriptor. The
KSM then walks the page table to find the PTE that maps
this PTP and adds pkey_PTP to it. The KSM also checks a
reference counter in the descriptor to ensure that the PTP is
only mapped once. When updating a PTE, the KSM verifies
that the new PTE points to a valid next-level PTP or a data
page belonging to the guest, and it does not map a declared
PTPs. Furthermore, to prevent malicious wrpkrs instructions
(§4.1), KSM prohibits the update if the new mapping is kernel-
executable.

Per-vCPU page table. As mentioned in §4.2, CKI maintains
multiple per-vCPU page tables for each guest page table.
Each per-vCPU page table maps a different per-vCPU area
in the KSM memory. Specifically, KSM maintains multiple
per-vCPU copies for each top-level PTP in the guest. When
a top-level PTP is declared, KSM adds the mapping of its
own code and data, including the per-vCPU area, to each
of these copies. When the guest kernel invokes the KSM
to update CR3, the KSM verifies that the new CR3 value
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points to a declared top-level PTP, and then loads the corre-
sponding PTP copy into CR3. Moreover, the KSM provides
an interface for reading PTEs in the top-level PTP, where
the accessed/dirty-bit is propagated from the copies to the
original PTP.

Comparison with shadow paging. Compared with
shadow paging, the performance benefits of CKI arise from
more lightweight page fault and PTE updating procedures.

(1) Lightweight page faults. Without two-stage address
translation, a user page fault in CKI can be directly handled
by the guest kernel. In contrast, under shadow paging, a user
page fault is intercepted by the host kernel, which performs
a page table walk to determine the type of page fault (first-
stage or second-stage) and then injects the page fault into
the guest kernel.

(2) Lightweight PTE updates. First, under shadow paging,
a PTE update in the guest triggers a VM exit to the host
kernel. In contrast, the guest kernel in CKI can call KSM
for PTE updating through a lightweight PKS gate. Second,
shadow paging associates gPAs with the virtual memory
areas (VMASs) of the QEMU process. When writing a gPA to
a PTE, it must find the hPA associated with the gPA from
the mapping of the VMA, which is time-consuming. In con-
trast, CKI delegates hPAs to guest kernels, allowing the guest
kernel to directly fill the hPA, instead of a gPA, in the PTE.

A limitation of CKI is that it allocates contiguous physical
memory segments to each secure container, which may result
in low memory utilization due to memory fragmentation.

4.4 Interrupt Abuse Prevention

A compromised guest kernel has three potential methods
for initiating DoS attacks by abusing interrupts. First, it may
alter the code of the interrupt gate to monopolize all the
interrupts. If so, the host and other containers can no longer
receive interrupts. Second, it might manipulate the interrupt
stack to trigger an unrecoverable fault. Specifically, when an
interrupt occurs, the CPU pushes context data onto the inter-
rupt stack. If the interrupt occurs in kernel mode, the CPU by
default uses the stack at the occurrence of the interrupt as the
interrupt stack. A malicious guest kernel could set the stack
pointer as an invalid address, leading to a triple fault when
the CPU tries to push data. Third, it can forge interrupts and
overwhelm the system with unnecessary interrupt requests,
thereby degrading system performance or causing undefined
behavior in the host kernel. CKI defends all of these attacks.

Prevent interrupt monopolizing. First, CKI allocates the
IDT and the interrupt gate code in the KSM memory, making
them non-modifiable by the guest kernel. Second, it uses the
privilege deprivation mechanism (§4.1) to ensure that a guest
kernel cannot disable interrupt handling nor modify IDTR
(IDT base address register). Third, the guest kernel cannot
change or remove the mapping of the IDT or the interrupt
gate code, because the KSM maps its own memory in each
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activated page table (§4.3). With these mechanisms, CPU
control flow always switches to the correct interrupt gate
when an interrupt occurs.

Prevent interrupt stack manipulation. CKI leverages x86
interrupt stack table (IST) feature to ensure that CPU always
uses the correct interrupt stack. Specifically, IST allows to set
a specific interrupt stack and forces the CPU switch to the
stack before pushing the interrupt context. The IST initializa-
tion is finished by the KSM (the guest kernel cannot execute
the related privileged instructions) and the corresponding
memory is also located in the KSM (the guest kernel cannot
modify the corresponding memory data).

Prevent interrupt forgery. As the interrupt gate needs to
access KSM memory and execute privileged instructions, it
needs to first switch PKRS to zero when an interrupt hap-
pen in the guest kernel. If the switch is made by a wrpkrs
instruction within the gate, a malicious guest kernel could
directly jump to one of the interrupt gates and send a forged
interrupt to the host kernel.

To prevent interrupt forgery, CKI extends the IDT config-
uration to further support switching PKRS register besides
its original functionalities like switching interrupt stack. As
described by the underlined blue text in Figure 8b, this minor
hardware extension automatically sets the PKRS register to
zero when a hardware interrupt occurs. Thus, there is no
wrpkrs instruction in the interrupt gate. If the guest kernel
jumps to the gate entry, the PKRS remains PKRS_GUEST,
causing subsequent context switching to fail. Note that the
application or the guest kernel may generate a software
interrupt with an int instruction. The hardware extension
switches PKRS only on hardware interrupts and keeps PKRS
unchanged on software interrupts.

Additionally, the guest kernel also cannot abuse the hy-
percall gate for interrupt forgery because the host kernel
can identify different exit reasons based on the information
saved in the KSM (per-vCPU memory area).

5 Implementation

Guest kernel. We run Linux kernel as the guest kernel in the
CKI container. We leverage the para-virtualization utilities in
the Linux kernel (i.e., pv_ops) to hook privileged operations.
We also add a new boot procedure in the Linux kernel to
remove legacy initialization operations. We add ~2K lines of
code (LoC) and modify fewer than 80 LoC.

Removing two-stage address translation does not require
significant porting effort. A legacy kernel may depend on
fixed low physical addresses for real mode startup. In con-
trast, CKI starts virtual CPUs (vCPUs) directly from long
mode via para-virtualization. The traditional virtualization
stack uses two-stage address translation to create MMIO
regions that are mapped in the first stage but not in the
second stage. We replace the MMIOs in the guest kernel
(VirtIO frontend) with hypercalls.
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In terms of compatibility, CKI can potentially support the

same set of guest kernel features as software-based virtual-
ization.
Hardware extensions. The performance evaluation in §7
is conducted on real hardware rather than in the simulator.
In the evaluation, we use the wrpkru instruction to emulate
the wrpkrs instruction. According to our evaluation based on
Gemb5 simulator [8], PKS permission-checking logic added to
the privileged instructions incurs negligible overhead, so we
use the unmodified instructions directly in the evaluation.
We emulate the PKRS switching overhead during interrupt
entry and iret by adding wrpkru instructions.

6 Security Analysis

@ User-mode

De-privilege *[~ Guest Guest u Guest User
@ Syscall _.}.Kernel User | g K — - ® Call Gates
,»AY DT - N N @ Interrupt Gates
@ |switcher| [switcher| K Cuest R ST o
- . MESRNCUNG @ PKS De-privilege
@ U/K-bit & * 3

Our Work (CKI)

Software Virtualization (PVM)

Figure 9. A comparison of isolation primitives in software-
based virtualization (PVM) and CKL

CKI can achieve the same security goals as software-based
virtualization (PVM) because it implements the same set of
isolation primitives (see Figure 9).

First, PVM isolates the switcher and host kernel memory
from the guest kernel with PTE U/K-bit and separate page
tables. CKI isolates KSM and host kernel memory from the
guest kernel with PKS and separate page tables (§4.3). Second,
PVM prevents the execution of privileged instructions by the
VM guest kernel by running it in user mode. CKI restricts
privileged instructions from the guest kernel with an ex-
tension on PKS (§4.1). Third, PVM provides the VMs with a
pre-defined syscall entry point to invoke the host kernel. CKI
employs binary rewriting to eliminate wrpkrs instructions
from the guest kernel, leaving only valid entry points to
call KSM or the host kernel (§4.2). Fourth, in PVM, when a
VM is interrupted by hardware interrupts, the CPU invokes
the corresponding host kernel handler function defined in
the IDT. CKI designs interrupt gates that redirects hardware
interrupts to the host kernel, ensuring the gates cannot be
broken or abused (§4.4).

7 Performance Evaluation

We evaluate the performance of CKI with microbenchmarks
and application benchmarks, in both bare-metal (BM) and
nested (NST) clouds. For experiments that yield similar re-
sults in both scenarios, we omit the BM/NST label in the
results to save space.

Baseline. We compare CKI with OS-level containers
(RunC [26]) and state-of-the-art VM-level secure containers
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(Kata Containers [15]) based on hardware-assisted virtual-
ization (HVM) or software-based virtualization (PVM [45]).
The guest kernels in CKI containers and Kata Containers are
based on Linux 6.7.0-rc6.

Testbed. All evaluations are performed on an AMD server
with an EPYC-9654 CPU running at 2.4GHz and 125GB of
memory. For nested cloud evaluations, the containers are
deployed in a hardware-assisted L1 VM with 16 vCPUs, 16GB
of memory, and a VirtIO network interface. Both the L0
machine and L1 VM run Ubuntu 22.04 with Linux 6.7.0-rc6.

7.1 Microbenchmarks
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Figure 10. (a) Page fault latency, (b) system call latency.

Page fault. Figure 10a presents a breakdown of page fault
latency in different secure containers. The latency is mea-
sured by allocating a large virtual memory region within
the container and sequentially accessing each 4K page. For
HVM, each page fault in the container triggers an additional
EPT fault because the newly allocated gPA is not mapped
in the EPT. This results in an overhead of 2,093ns (BM) and
30,881ns (NST). The high overhead in a nested cloud is due
to the costly switches between the L0 kernel, the L1 kernel,
and the L2 VM, as well as shadow EPT emulation. The page
fault latency for PVM is four times that of RunC, due to VM
exits (1,532ns) and shadow paging emulation (1,828ns). CKI
eliminates the overhead of shadow paging by running the
guest kernel in kernel mode and removing two-stage address
translation. CKI only incurs 77ns overhead on a page fault
due to the KSM calls for the PTE update and iret.

System call. Figure 10b shows the latency of a simple syscall
(getpid) in different containers. For RunC, HVM, and CK]I,
the syscall latencies are the same (~90ns). The syscall latency
in a PVM container is 336ns due to the additional page table
and CPU mode switches.

Compared with PVM, CKI optimizes syscall latency
through three optimizations: eliminating additional CPU
mode switches (OPT1), eliminating page table switches
(OPT?2), and allowing sysret and swapgs to be directly ex-
ecutable in the guest kernel (OPT3). We further examine
these optimizations by introducing two test settings, CKI-
wo-OPT2 and CKI-wo-OPT3. The CKI-wo-OPT?2 setting adds
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two page table switches to the syscall path of CKI. The CKI-
wo-OPTS3 setting blocks sysret and swapgs in the guest kernel,
resulting in two PKS switches in the syscall path of CKI (zero
to PKRS_GUEST on entry, PKRS_GUEST to zero on exit).
Comparing PVM with CKI-wo-OPT2, OPT1+OPT3 reduces
the syscall latency from 336ns to 238ns. Comparing CKI-wo-
OPT2 with CKI, OPT2 further reduces the latency to 90ns.
Comparing CKI-wo-OPT3 with CKI, adding OPT3 based on
OPT1+OPT2 reduces the latency from 153ns to 90ns.

VM exit in nested cloud. In a nested cloud, both CKI and
PVM support direct VM exits from the L2 VM to the L1 kernel
without the intervention of the L0 kernel. Thereby, an empty
hypercall takes only 390ns for CKI and 486ns for PVM. In
contrast, for HVM, an empty hypercall takes 6,746ns due to
the intervention of the L0 kernel.
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Figure 11. Container performance on lmbench.

Imbench. We evaluate the containers using Imbench mi-
crobenchmarks [17], with the results shown in Figure 11. The
syscall redirection overhead in PVM containers is significant
for syscalls with short execution times, e.g., doubling the
latency of a read syscall. PVM shadow paging also imposes
a large overhead on memory management operations, such
as page fault handling and process creation. Additionally,
context switching and inter-process communication are slow
on PVM because the kernel need to invoke a hypercall to
switch process page tables. CKI adds KSM calls to memory
management operations and process switches, but the end-
to-end overhead is small as PKS switches are fast. HVM
achieves performance comparable to RunC on lmbench, as
these test cases do not involve VM exits.

7.2 Memory-intensive Applications
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Figure 12. Latencies of memory-intensive (page-fault-
intensive) applications, 2M: enabling huge page mapping
for (container) VM memory.

Figure 12 shows the latencies of memory-intensive (page-
fault-intensive) applications from PARSEC [68] and vmitosis-
workloads [59]. Compared with HVM-NST, HVM-BM, and
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PVM, CKI reduces latencies by 24%~72%, 1%~18% and
2%~47%, respectively. CKI incurs low overhead (<3%) com-
pared with RunC.

We also evaluate PVM and HVM-BM with 2MB huge
page mapping enabled for the (container) VM memory. The
overhead of HVM-BM becomes minor since each EPT fault
handles a huge page, allowing the cost to be amortized. Com-
pared with PVM, CKI still reduces the latencies of btree and
dedup applications by 44% and 42%, respectively, as each
page fault in the container triggers VM exits. HVM-NST is
not evaluated with huge page enabled because it fails to run.
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Figure 13. Overhead of secure containers on page-fault-
intensive applications, (a) BTree, (b) XSBench.

Figure 13 analyzes the overhead of secure containers (com-
pared with RunC) with the BTree and XSBench applica-
tions. The BTree application first inserts a group of entries
into a BTree key-value store and then performs a series of
search operations on it. The insertion operation is more time-
consuming since of triggering new memory allocation and
page table modification. Therefore, the overhead decreases as
the lookup/insert ratio increases. The XSBench application
simulates Monte Carlo neutron transport and consists of
an initialization phase for data generation, followed by a
calculation phase for simulating each particle. The overhead
in this case mainly stems from data generation, resulting
in higher overhead when the calculation phase is shorter
(fewer particles).

The overhead of CKI remains low across different pa-
rameters due to the small per-page-fault overhead it incurs.
Additionally, we analyze the page fault frequency of these
applications to validate our overhead analysis.

Table 4. Finish time of TLB-miss-intensive applications,
HVM-BM results: EPT huge page disabled/enabled.

| RunC-BM HVM-BM PVM-BM CKI-BM

GUPS 54.9 67.8/67.1 54.9 55.1
BTree-Lookup 22.6 24.1/24.2 21.7 22.6

Table 4 shows the latencies of memory-intensive (TLB-
miss-intensive) applications in bare-metal. Compared with
HVM-BM, CKI-BM avoids two-dimensional page table walk,
reducing the latency of GUPS [10] and BTree lookup (45GB
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memory) by 19% and 6%. We also evaluate HVM-BM with
2MB huge page mapping enabled in the EPT, and the results
are similar.

7.3 1/O-intensive Applications
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Figure 15. Break down the syscall optimizations in CKI with
SQLite benchmark. OPT2/OPT3: see §7.1.

We evaluate the SQLite relational database engine [28] us-
ing sqlite-bench [5], which measures operation throughput
with various access patterns. The database file is stored in
an in-memory filesystem (tmpfs). We ignore the EPT fault
overhead of HVM by running the test cases twice. Figure 14
shows the throughput of different containers and the syscall
frequency for each test case. The syscall redirection overhead
of PVM is correlated with syscall frequency. For database
writing, PVM throughput is 19%~24% lower compared with
RunC, as the SQLite engine interacts intensively with the
filesystem. In contrast, for database reading, the low syscall
frequency means that PVM does not incur significant over-
head. Both CKI, HVM, and RunC achieve similar throughput
since they support native syscalls, and the evaluation does
not involve virtualized I/O (VM exits) because it uses tmpfs.

Figure 15 shows an analysis of the syscall optimizations
introduced by CKI. Comparing PVM with CKI-wo-OPT2,
removing the additional CPU mode switches in PVM reduces
overhead by up to 10%. Comparing CKI-wo-OPT2 with CKI,
eliminating page table switches further decreases overhead
by up to 15%. Comparing CKI-wo-OPT3 with CKI, making
swapgs and sysret executable in the guest kernel reduces
overhead by up to 9%.

We evaluate two in-memory key-value stores, mem-
cached [18] and Redis [23], using memtier_benchmark [19]
with an 1:1 read/write ratio and a data size of 500 bytes.
Figure 16 presents the results for different numbers of
clients. Compared with HVM-NST, CKI-NST eliminates L0
intervention on VM exits, achieving 6.8x throughput for
memcached and 2.0x throughput for Redis. Compared with
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Figure 16. Throughput of key-value stores in containers
with different number of clients. (a) memcached, (b) Redis.

PVM-BM/PVM-NST, CKI-BM/CKI-NST achieves 1.8x/1.5x%
throughput for memcached, and 1.4x/1.3x throughput for Re-
dis. The optimization of CKI over PVM partly results from the
elimination of syscall redirection. We emulate PVM syscall la-
tency on CKI, resulting in a throughput decrease of up to 4.4%
compared with unmodified CKI. The remaining performance
improvements stem from the simpler VirtIO implementation
in CKI, such as replacing MMIOs with hypercalls.

8 Other Related Work

Intra-kernel isolation. Table 5 shows prior work on intra-
kernel domain isolation. Nested Kernel [36] and NICKLE [60]
create a single isolation domain to deprivilege the en-
tire kernel and monitor security-critical operations. Under-
Bridge [40], LVD [57], SILVER [67], and BULKHEAD [41]
establish multiple domains for isolating kernel extensions.
Unlike UnderBridge, which relies on MPK, the number of
domains in CKI is not limited by the number of keys because
it integrates PKS isolation with page table isolation. BULK-
HEAD proposes a similar technique that isolates different
groups of kernel extensions in different address spaces.
Some prior work does not support page table updates
within domains (LVD, UnderBridge) or relies on costly
shadow paging (NICKLE). In contrast, CKI enables secure
and efficient page table management within secure contain-
ers. Nested Kernel and BULKHEAD isolate privileged in-
structions with binary rewriting, but they can only elimi-
nate part of the privileged instructions because x86 does not
enforce alignment of instructions. LVD and UnderBridge
isolate all privileged instructions with hardware virtualiza-
tion extension, but this extension may be unavailable for
secure containers in nested clouds. LVD, UnderBridge, and
BULKHEAD protect interrupts by redirecting them to the
core kernel, but they overlook potential interrupt forgery
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Table 5. Comparison between CKI and prior work on intra-kernel isolation domains.

Aspect ‘ Nested Kernel LVD UnderBridge NICKLE SILVER BULKHEAD CKI
Scalable Isolation Domains v v v v
Secure & Efficient Pgtbl. Mgmt. v v v v
No Reliance on Virt. HW v v v v
Complete Priv. Inst. Isolation v v v
Interrupt Redirection v v v v
Interrupt Forgery Prevention v

attacks. For example, LVD allows a malicious kernel module
to invoke an interrupt handler of the core kernel by jumping
to the vmfunc-based switch gate.

The concept of our hardware extension shares similarities
with x86 ring-1 [14], which provides an additional privilege
level where privileged instructions are disabled. CKI revives
this concept for secure containers, which is the first attempt.
Inspired by VTx for VMs, we investigate hardware extensions
to accelerate container virtualization.

Nested virtualization. Turtles [34] was the first implemen-
tation of hardware-assisted nested virtualization on x86. Intel
adds a hardware extension for nested virtualization called
VMCS shadowing [14], which allows the L1 kernel to read-
/write VMCS without trapping into the L0 kernel. NEVE [51]
add a similar extension on ARM platform. TLFS [11] para-
virtualizes the VMCS accesses in L1 to reduce VM exits to
L0. Despite these optimizations, hardware-assisted nested
virtualization is still inefficient due to L0 intervention and
shadow EPT management. DVH [52] enables the L0 kernel
to directly provide virtual hardware to L2 VMs without the
intervention of the L1 kernel, reducing the overhead of VM
exits. It optimizes I/O-intensive applications, but the memory
management overhead is still high. Meanwhile, DVH relies
on modification in the L0 kernel, which is not feasible for
an laa$ tenant. DMT [69] proposes a hardware extension
for three-stage translation, avoiding shadow paging. CKI
eliminates the overhead of shadow paging with a simpler
hardware extension (PKS). SVT [65] reduces the overhead
of nested VM exits by running the hypervisor and the VMs
on different hardware threads and replacing VM exits with
simple thread stall and resume events.

9 Conclusion and Future Work

CKl is a hardware-software co-design for building efficient
secure containers. By leveraging and extending lightweight
CPU features for intra-kernel isolation, CKI efficiently con-
structs a new privilege level for container kernels, harmo-
nizing the performance overhead and security isolation and
outperforming state-of-the-art secure container designs.
While our PKS extensions are not available in current
CPUs, we believe they will enable new opportunities for
future use cases including the following: Sandboxing un-
trusted kernel drivers: Directly isolating drivers within ring-0,

eliminating the need to deprivilege them to ring-3 as in
microkernel designs, thus avoiding additional performance
overhead on user-kernel or inter-process communication.
Kernel-level syscall optimization: Running syscall-intensive
applications within the kernel to achieve better performance
by eliminating the traditional syscall overhead. We plan to
explore these directions in our future work.
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A Hardware-Software Co-Design for Efficient Secure Containers

A Artifact Appendix
A.1 Abstract

The artifact contains the source code of our prototype sys-
tem, the scripts for conducting experiments presented in the
paper, and the applications used for those experiments. It also
includes a prebuilt VM image for running the experiments
in a nested cloud setting (containers running inside the VM).

A.2 Description & Requirements

A.2.1 How to access. The artifact is available at https:
//doi.org/10.5281/zenodo.14931956.

A.2.2 Hardware dependencies. This artifact requires
AMD CPUs and has been tested on AMD EPYC-9654 and
AMD EPYC-7T83 machines. The machine should have at
least 8 GB of memory and 32 GB of free disk space.

A.2.3 Software dependencies. To run the experiments
with the prebuilt images, the machine should operate on
a Linux OS (Ubuntu 22.04 with Linux 6.7.0-rc6 tested) and
have the following dependencies installed: gemu-system-
x86_64 (v6.2.0 tested), expect, redis-cli, nc, Docker, Python 3,
matplotlib, and numpy.

A.2.4 Benchmarks. The Dockerfiles for building the con-
tainer applications are available in the apps directory. Mem-
cached and Redis are evaluated using memtier_benchmark,
which can be downloaded from Docker Hub.

A.3 Set-up

The user needs to download the prebuilt images, fill out a
configuration file, and create a tap device on the host OS.
Please refer to the README for details.

A.4 Evaluation workflow
A.4.1 Major Claims.

e CI: Compared with HVM-NST and PVM, CKI reduces
the latencies of page-fault-intensive applications (from
PARSEC/vmitosis-workloads) by up to 72% and 47%,
respectively. This is proven by experiment EI whose
results are reported in Figure 12.

e (C2: Compared with PVM, CKI increases the through-
put of sqlite benchmark by up to 24%. This is proven by
experiment E2 whose results are reported in Figure 14.

e (3: Compared with HVM-NST, CKI-NST obtains 6.8x
throughput for memcached and 2.0x throughput for
Redis. This is proven by experiment E3 whose results
are reported in Figure 16.

A.4.2 Experiments.

e Experiment EI (20 compute-minutes): Run script
scripts/run_figl2.sh, which executes the page-
fault-intensive applications using HVM-NST, PVM,
and CKI. The latency results will be displayed in
plots/figl2.pdf.

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

e Experiment E2 (20 compute-minutes): Run script
scripts/run_figl4.sh, which executes the sqlite
benchmark using HVM, PVM, and CKI. The through-
put results will be displayed in plots/figl4.pdf.

e Experiment E3 (40 compute-minutes): Run script
scripts/run_figl16. sh, which evaluates the through-
put of Redis and Memcached using HVM-NST, PVM-
NST, and CKI-NST with different numbers of clients.
The results will be displayed in plots/fig16.pdf.
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