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Abstract—Hardware-assisted enclaves with memory encryp-
tion have been widely adopted in the prevailing architectures, e.g.,
Intel SGX/TDX, AMD SEV, ARM CCA, etc. However, existing
enclave designs fall short in supporting efficient cooperation
among cross-node enclaves (i.e., multi-machines) because the
range of hardware memory protection is within a single node.
A naive approach is to leverage cryptography at the application
level and transfer data between nodes through secure channels
(e.g., SSL). However, it incurs orders of magnitude costs due
to expensive encryption/decryption, especially for distributed
applications with large data transfer, e.g., MapReduce and graph
computing. A secure and efficient mechanism of distributed
secure memory is necessary but still missing.

This paper proposes Migratable Merkle Tree (MMT), a design
enabling efficient distributed secure memory to support dis-
tributed confidential computing. MMT sets up an integrity forest
for distributed memory on multiple nodes. It allows an enclave to
securely delegate an MMT closure, which contains both data and
metadata of a subtree, to a remote enclave. By reusing the memory
encryption mechanisms of existing enclaves, our design achieves
secure data transfer without software re-encryption. We have
implemented a prototype of MMT and a trusted firmware for
management, and further applied MMT to real-world distributed
applications. The evaluation results show that compared with
existing systems using the AES-NI instruction, MMT can achieve
up to 13x speedup on data transferring, and gain 12%∼58%
improvement on end-to-end performance of MapReduce and
PageRank.

I. INTRODUCTION

There has been a surge of interest in utilizing hardware-
assisted enclaves [3], [6], [14], [17], [22], [25], [37] like Intel
SGX, AMD SEV, ARM CCA and RISC-V Penglai [25], for
protecting integrity and confidentiality for security-sensitive
applications. Most of these enclaves adopt a hardware-based
memory protection engine, such as Intel MEE [32], BMT [44],
Vault [56] and Mountable MT [25], which provides strong
security guarantees for physical memory, defending against
memory spoofing [19], [70], aliasing [48], splicing and replay
attacks [19], [44], [52], [56]. Meanwhile, some recent stud-
ies [25], [33], [46], [55] have pointed out that using a scalable
integrity tree scheme can support up to 512GB of enclave
memory.

However, existing enclaves are designed to protect memory
on a single node and cannot well fit the requirements of
distributed applications. Since the network among comput-
ing nodes is considered untrusted, existing systems have to
resort to software secure channel, e.g., TLS/SSL [24], to
protect the confidentiality, integrity and freshness of the data

transferring, and use a local memory protection engine to
reconstruct the integrity tree in the remote node. For example,
VC3 [47] deploys a crypto-based protocol to protect the secure
distributed MapReduce computation; Civet [59] checks the
enclave interfaces and inputs with the cryptographic protection;
Graviton [61] and HIX [35] leverage the AES-SHA3/OCB-
AES algorithm to shield the sensitive data transferring between
the CPU and GPU.

It is known that crypto-based approaches incur significant
overheads during data transferring. Table I shows the max
bandwidth of different interconnections. The state-of-the-art
RDMA-based NIC [7] can provide 400 Gbps bandwidth and
reduce the round-trip latency to microseconds. In addition,
the latest PCI-E 5.0/6.0 standards [10], [11], CXL [4] and
NVLink [8] can support more than 800 Gbps bandwidth [10]
However, the cryptographic algorithm such as AES-SHA3
has much less throughput, even for the state-of-the-art FPGA-
based AES/GCM accelerator, which can only achieve 2∼40
Gbps throughput [2], [15], [58]. Graviton also shows that the
AES-SHA3 algorithm will bring about 10∼20 times overhead
compared with the direct memory copy between CPU and GPU
nodes. sRDMA [58] extends RDMA protocol to encrypt and
authenticate the payload in the RDMA packet, but sacrifices
the RDMA bandwidth (only 10 Gbps for sRDMA compared
with max 400 Gbps RDMA bandwidth).

To achieve (nearly) linear speed of secure data transfer
between distributed enclaves, our idea is to scale the memory
protection engine, which can already protect the confidentiality,
integrity and freshness of physical memory, from one node
to multiple nodes. By reusing the hardware protection mecha-
nisms, no extra cryptographic-based operation is needed, and
an enclave can directly transfer data to another enclave through
various connections like PCIe, RDMA, etc.

Nevertheless, it is challenging to scale existing single-node
memory protection engines to multiple nodes because of the
untrusted network (or interconnect). First, hardware memory
protection engines depend on essential metadata which is sealed
within the CPU, e.g., the root of the integrity tree and one-
time-pad are sealed in the CPU for memory encryption and
integrity checks. The metadata cannot be safely transferred
in the untrusted network. Second, a man-in-the-middle can
easily launch the replay (e.g., using stale packets) or re-order
attacks (e.g., exchanging the order of packets) in the untrusted
network. For example, although TDX [6] uses the MKTME to
guarantee the confidentiality and integrity of physical memory
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Method Throughput Connection
PCI-E 5.0 [10] 32GT/s CPU-Device
UCI-E [13] 32GT/s Chiplets
RDMA [7] 400Gb/s Remote Memory
NVLINK [8] 900GB/s GPU

TABLE I: Throughput of the different interconnection.

(encrypted data with MAC), it discards freshness protection.
As the network is unsafe, it is much easier for attackers to
launch replay attacks in the network rather than the physical
memory.

This paper proposes Migratable Merkle Tree (MMT), which
transfers both data and metadata to remote nodes without
software involvement (e.g., re-encryption). A key insight of
MMT is that (single-node) hardware memory protection already
provides confidentiality, integrity and freshness guarantees for
untrusted DRAM that can be reused for protection in the
untrusted network. To this end, we first extend the single
integrity tree to an integrity forest spanning multiple nodes
and break the restriction of CPU-bound encryption metadata.
Besides, we design a new protocol: MMT closure delegation,
to protect the data transferred in the untrusted network. It can
safely transfer integrity subtree root, nodes and data to remote
nodes, which defend against revealing secrets or replay attacks.
Finally, we implement a tiny-and-trusted module to manage
enclaves and trusted hardware modules. It hides details of the
hardware implementation and is responsible for the connection
between local and remote enclaves.

We have implemented a prototype of the MMT system in the
Gem5 [20] as well as all the software components. We extend
the memory controller in the Gem5 to support MMT controller
and add a new device: PCI-connector, which can connect
two nodes using an RDMA-liked mechanism and trigger
the MMT closure delegation. We also implement a secure
monitor based on the Penglai enclave [25], which configures the
secure hardware modules and manages local/remote enclaves.
The evaluation result shows that MMT can speed up the
performance of data transfer up to 169x compared with a
CPU-only secure channel, and achieve 13x speedup compared
with the AES accelerator. As for real-world secure distributed
applications, MMT can gain 12%∼58% improvement on end-
to-end performance of MapReduce in different workloads, and
35% improvement for PageRank using the GAS model [29].

II. BACKGROUND AND MOTIVATION

A. Hardware-based Memory Protection

As shown in Figure 1, the modern memory protection engine
uses a counter-based integrity tree [28], [44], [45], [49], [51],
[56] to provide the integrity/freshness protection, and leverages
counter-mode encryption [38], [45], [49]–[51], [53], [54] to
guarantee the confidentiality of secure memory. Meanwhile,
the memory protection engine also reserves a crypto-key in
the secure storage which cannot be accessed outside the CPU
(e.g., efuse).

Some extra metadata is required for integrity, encryption and
freshness checking, such as integrity tree nodes, addresses and
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Fig. 1: Hardware-based integrity/encryption protection for
secure memory.

MACs. The modern memory protection engine adopts counter-
mode encryption to guarantee confidentiality. As shown in
Figure 1(b), the memory engine first leverages the memory
address and counter to generate a one-time-pad (OTP). Later,
it will use this OTP to perform the XOR operation on the
plaintext to generate the ciphertext. As for integrity protection,
the memory engine constructs an integrity tree covering all
secure memory. Each integrity tree node contains multiple
counters as well as the corresponding hash value. The hash
value is calculated with the counter in the parent node and
all counters in the current node (xoring the OTP and a Galois
Field (GF) dot product result). The counter is increased for
each write request. Therefore, if a parent node is protected,
attackers cannot tamper with its child nodes or fabricate a valid
hash value, and recursively, the data memory is also protected.
In this procedure, only the XOR operation is in the critical
path, and other operations like AES calculation and dot product
can be overlapped with DRAM fetching.

B. Demand of Distributed Confidential Computing

Security guarantee for both code and data. To realize
the distributed confidential computation, we need to protect
the confidentiality and integrity for both code and data. Some
state-of-the-arts [34], [36], [47], [59], [63], [64] choose the
hardware enclave to protect the distributed computation in
the cloud. Enclave can protect the confidentiality of code and
data when executing in an isolated environment, but cannot
guarantee the integrity of them. Therefore, users need to verify
the integrity of the input data and attest the measurement of
the executive code. Although using the hardware enclave has
a better performance compared with the fully cryptographic-
based methods, the security check for the input data brings a
high overhead in the distributed computation.

Large-scale data transfer. Distributed computation is the
basis of large data processing. During the computing, each
node will communicate with others and transfer a large number
of messages. Communication overhead is one of the key
metrics for distributed computation. The traditional distributed
computations may use the global-sharable files/memory pools
to transfer the messages. MapReduce [23] stores the interme-
diate key-value result in the distributed file system, and one
MapReduce task will transfer over 758TB [27] intermediate
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Fig. 2: Interconnection between heterogeneous nodes.

results. Graph computing [30], [40], [41] leverages the fast
network connection to collect the messages from the neighbors
(e.g., GNN [27] needs to transfer 72GB message in one epoch).
Meanwhile, with the evolution of the fast interconnection
mechanisms like RDMA, the distributed computation can
further reduce the communication overhead and improve the
end-to-end performance.

C. Inefficiency of Secure Channel over Untrusted Interconnec-
tion

Limited throughput over secure channel mechanism.
Figure 2 shows the interconnection between heterogeneous
nodes. Latest interconnections achieve over 400Gbps bandwidth
and reduce the round trip latency to microseconds, as shown
in Table I. However, these interconnections face a serious
challenge: no protection for data transferring. Hence, users
must leverage the cryptographic-based operation (i.e., secure
channel) to protect the data in the untrusted network. Secure
channel [12] can resist overhearing and tampering during the
data transmission. It first executes the key exchange protocol
(e.g., Diffie-Hellman [5]) to generate a key only known to
the sender and receiver. Then, the sender will use the AEAD
algorithm [1] (e.g., AES-GCM) to protect the associated data,
and the receiver can check the integrity of both the encrypted
and unencrypted messages. However, the throughput of AEAD
algorithm is much smaller than interconnection mechanisms,
which reduces the performance by orders of magnitude [42],
[68], [69].

Establish the secure channel between enclaves. As the
enclave memory is encrypted, the NIC driver cannot read/write
the enclave memory directly. The state-of-the-art enclave
design [3], [6], [14], [17], [22] uses a shared and untrusted
memory buffer to copy I/O messages out of the enclave memory.
Then, the NIC driver can read content in the shared buffer and
send it to the remote enclave. As the network is untrusted, the
enclave needs to encrypt and authenticate the message by itself.
Hence, compared with the communication channel without any
security guarantees, the secure channel used between enclaves
needs two additional memory copies, one encryption and one
decryption, which are considered to be time-consuming.

III. DESIGN OVERVIEW

A. Design Goals

Performance. Our system should eliminate the overhead
of re-encryption when transferring the secure memory to the
remote nodes and saturate the maximum throughput of the
interconnection.

Security. Our system should achieve the same security guar-
antee as the secure channel mechanisms (i.e., confidentiality,
integrity and freshness of transferred data).

Compatibility. Our system should hide hardware details for
user applications and inherit the programming paradigm of the
distributed confidential computation, e.g., message passing.

B. Threat model

The TCB of our system only contains the CPU and most
privileged software (e.g., EL3 monitor in Arm). Other hardware
(e.g., PCI-e device, NIC, memory) and software (e.g., host OS
in REE) are untrusted and can be comprised by attackers.

Physical attacks. We only trust on-chip hardware mod-
ules (e.g., CPU, memory controller), and any other off-chip
hardware components and devices are untrusted, including the
interconnection interface, memory and network. An attacker
may issue off-chip physical attacks, such as spying, slicing
and replay attacks by plugging a malicious micro-controller in
the bus or network.

Privileged software attacks. We adopt a similar software
threat model as TrustZone/CCA/Keystone, which is widely used
in confidential computing. An attack may trigger a software
attack from the REE, such as compromising the host kernel
or obtaining full control of user applications. However, the
firmware running in the most privileged mode (e.g., EL3 in
Arm, M mode in RISC-V) cannot be comprised. In addition,
TEEOS is trusted but optional in our design.

Our system does not consider the side-channel attacks [39],
[60], [65], [66] and DoS attacks.

C. Challenges

Unlike the non-secure memory, the secure memory cannot
be sent to others directly, as remote nodes cannot decrypt
and authenticate the transferred encrypted memory. What’s
more, attackers can intercept packets in the network, exchange
the order of packets or re-use a stale one to launch replay
or re-order attacks. In summary, MMT needs to address the
following challenges:
• C1: How to decouple the memory protection from the

CPU-bound secret in a single node? Some security
assumptions are held in a single node but fail in multiple
nodes. For example, in a single node, a unique physical
address can be used as the one-time-pad (OTP) in the
memory encryption, and the encryption key is sealed in
the hardware, which cannot be transferred among multiple
nodes.

• C2: How to securely transfer the secure memory to
the remote node without re-encryption? If we just send
the secure memory to the remote, the remote memory
engine cannot decrypt and authenticate the transferred
memory. What’s more, as the connection is unsafe, we
need to protect the secret and defend against the replay
attacks during data transferring.

• C3: How to hide the hardware details and provide the
suitable primitive for distributed computation? The
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Fig. 3: Global attestation for MMT nodes. There are three
steps for global attestation: (1) Discuss a session key; (2) Verify
the hardware certificate; (3) Assign a node id that is used in
the integrity check.

new hardware extension cannot complicate the imple-
mentation of user applications or break the paradigm
in distributed confidential computation, such as using
message passing for communication.

In this paper, we propose Migratable Merkle Tree (MMT),
which can securely transfer the encrypted memory to remote
nodes without software re-encryption. First, We propose a new
abstraction: integrity forest which can span among multiple
nodes. Meanwhile, a global attestation mechanism is adopted
to verify each node that wants to join in the distributed
confidential computation (in §IV-A). Second, we design a
new transferred unit: MMT closure which integrates both data
and metadata. A remote node can decrypt and authenticate the
transfer memory according to the MMT closure. To be immune
to the replay/re-order/revealing attacks in the untrusted network,
we also design a protocol: MMT closure delegation to securely
transfer the MMT closure to remote nodes (in §IV-B2). Third,
we design a trusted-and-tiny module: MMT monitor in the
most privileged mode to organize all secure hardware, and
establish the connection between remote nodes. For scalability,
we do not change the primitive of communication in distributed
computation: message passing (in §IV-C).

IV. DETAILED DESIGN

We propose a new memory protection abstraction: Migratable
Merkle Tree (MMT), to protect the distributed physical memory
and messages in the untrusted network. To achieve it, we first
set up an integrity forest among multiple nodes, and then extend
each Merkle subtree to the MMT scheme.

A. Multiple-Nodes Integrity Tree

First, we establish mutual trust among multiple nodes. A
global authority node will verify each participant node that
wants to join in the distributed computing. Second, an integrity
forest is constructed to protect the distributed memory among
different nodes.

1) Global Attestation: As shown in Figure 3, when an MMT
system boots, it will first attest itself to the global authority
node (called global attestation). The global attestation includes
three phases. First, an attested node generates a key agreement
message to an authority node (as an attestation server) and
discusses a session key (e.g., Diffie Hellman), which protects

1 2 N

…  …

Local Mem. Local Mem. Local Mem.

Integrity ForestSubtree

Node 1 Node 2

Fig. 4: Integrity forest with multiple subtrees. The subtree
is the smallest unit in the integrity forest. Different subtrees
can be located in the same or different nodes.

the sensitive data in the untrusted network. Second, the attested
node sends a manufacturer certificate (sealed with a machine
key) to the authority node. The authority node verifies the
certificate with the manufacturer’s public key, and responds
a certificate authority (CA) report to the attested node. Last,
the attested node sends node-related messages to the authority
node. Node-related messages contain the measurement of the
software module, node meta-info, etc. After receiving these
messages, the authority node checks the software measurement
and responds a global-unique node id to the attested node. This
node id is essential to generate an integrity forest (see §IV-A2).

2) Integrity Forest: However, only global attestation is not
enough. A modern memory encryption engine leverages an
integrity tree to guarantee confidentiality, integrity and anti-
replay attacks for secure memory. Hence, to realize distributed
secure memory, we propose the integrity forest, which contains
subtrees from multiple nodes, as shown in Figure 4.

Hardware-supported memory protection has two significant
factors in cryptographic computing: memory address and
counter. These two factors guarantee that any one-time-pad can
only be used once. When considering the distributed memory
across multiple nodes, however, the physical memory address
will be duplicated, which violates the security assumption (an
OTP can only be used once). To solve it, we use a global-
unique address to replace the real physical address in memory
protection. A global-unique address comprises two parts: the
global-unique node id and a monotonic number. A global-
unique node id is received from an authority node during the
global attestation phase, and the monotonic number is generated
by the hardware for each physical address. Hence, we do not
need to synchronize the address info during the runtime. What’s
more, this global-unique address is only used by hardware
during the integrity check and is transparent to software.
Developers do not need to change the programming model
of the application or sacrifice the degree of distributedness.
All the integrity subtrees span among multi-nodes composing
a large integrity forest, which protects the distributed secure
memory.

Summary: To expand integrity trees to multiple nodes, we
propose two techniques: global attestation and integrity forest.
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Global attestation guarantees that all nodes are verified and
receive a global-unique identification. After global attestation,
an attested node can send its attestation report to others and
establishes mutual trust with remote nodes. The integrity forest
contains subtrees among multiple nodes and guarantees the
security assumption for the distributed secure memory.

B. MMT Scheme

MMT is a subtree in the integrity forest, which can be
migrated to multi-nodes in the untrusted network.

1) MMT root: To migrate a Merkle tree, MMT extends the
tree root with the extra metadata, as shown in Figure 5. There
are four states for MMT: valid, invalid, sending/read-only and
waiting; Valid state means the MMT is active and performs the
security check for the memory access. Invalid state means the
MMT is un-allocated or reclaimed, and the memory is regarded
as non-secure memory. Sending and waiting states are used for
transferring the secure memory. If the MMT state is sending,
the content in this memory range cannot be modified (read-
only); Meanwhile, the waiting state works together with the
sending state, which waits for the remote transferred memory.

In addition to the MMT state, the MMT root also extends
with key and global-unique address. Unlike the traditional
crypto-key sealed in the hardware, MMT key is a user-defined
secret used in memory encryption and authentication procedure.
If two applications agree with the same MMT key, they can
both decrypt and authenticate the same secure memory. Here,
we decouple the crypto-key from the trusted hardware to the
user space (similar to the TLS handshake), as users can flexibly
trust the different nodes in a distributed system. The global-
unique address is initialized after the global attestation, and
will be re-assigned if the MMT state is changed to Valid.
Notably, the value of the global-unique address is transparent
to software, so the system still manages the memory using the
physical address. Besides the key and address, the MMT root
also contains a root counter to guarantee its freshness. Users
can set/clear the initialized root counter when changing the
MMT state to Valid/Invalid.

2) MMT closure delegation: MMT closure contains all data
and metadata (i.e., tree nodes, root and data MACs) used in
decryption and authentication procedure. Here, we propose a
new data transfer primitive: MMT closure delegation.

Assume there are two nodes: receiver and sender. In the
traditional method, the sender and receiver need to set up
a secure channel, and later the sender can send the secret
data to the receiver through this secure channel. However,
using the secure channel will bring an expensive overhead
including re-encryption and extra memory copy. In contrast,
the MMT closure delegation transfers both secure memory and
corresponding metadata to the remote directly. However, if
we do not design this procedure carefully, there will be some
security issues, such as tampering the MMT root and replay
attacks.

As illustrated in Figure 6, we securely design the protocol of
MMT closure delegation to guarantee the security assumption
in the untrusted network.

1. Connect to the remote node: First, the sender registers
a connection handler (similar to QP in RDMA connection) and
sends an MMT key exchange request to the receiver. After
agreeing on the same MMT key, the sender/receiver acquires a
secure buffer (find a free memory region and change the MMT
state to valid with the given root counter) and sets the same
MMT key. Finally, the receiver responds to the sender with
the buffer address and size.

2. Waiting phase: After the connection is established, the
receiver will set the MMT state of the receiving buffer to
waiting; and the sender will set the MMT state of the transferred
buffer to sending (this memory region is read-only until the
whole protocol is finished). After that, the receiver is waiting
for the transferred MMT closure.

3. Securely Delegate the MMT Closure: To achieve it, we
need to guarantee the security assumptions (i.e., confidentiality,
integrity and freshness) during the MMT closure delegation.
There are two facets in the MMT closure delegation: (1) how
to transfer the MMT root and tree nodes; (2) how to transfer
the data memory. Similar to the memory protection in a single
node, we should first guarantee that the MMT root cannot
be tampered by the malicious. Unfortunately, the network
is untrusted during the MMT delegation, so an attacker can
easily fabricate a malicious MMT root value which violates the
security assumption. To protect the MMT root in the untrusted
network, the sender uses the MMT key to seal the root value
(encryption with a MAC value), and a receiver can decrypt
and authenticate this MMT root with the same local MMT key.
Hence, attackers cannot tamper with the MMT root during the
delegation. Meanwhile, there is no need to encrypt intermediate
tree nodes, as they are stored in memory as plaintext. As for
the second facet, the confidentiality and integrity of the data
memory are guaranteed by the corresponding MMT. Hence,
the data memory can be transferred to the remote without any
additional cryptographic-based protection.

4. Ack: When the receiver accepts all transferred secure
memory and MMT nodes, it changes the MMT state to
valid/read-only and sends an ack message to the sender’s node.
The sender will invalidate the original transferred MMT if it
is needed (see more details in §V-B2). After that, the MMT
closure delegation is done.

Defend Against Replay Attacks: In addition to confiden-
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Fig. 6: MMT Closure Delegation. The protocol of MMT closure delegation achieves the highest security assumption
(confidentiality, integrity and freshness) for the transferred data.

tiality and integrity protection, the MMT closure delegation
also defends against replay and re-order attacks. Although the
Merkle tree can protect the secure memory from replay attacks
in a single node, it does not consider the scenario of memory
transferring in the network. In the untrusted network, attackers
can easily (1) re-use a stale MMT closure with the same MMT
key to the destination node; (2) exchange the order of MMT
closure. MMT closure delegation leverages the counter-based
freshness check and monotonic address ordering to defend
against replay and re-order attacks. First, when a target node
receives a transferred MMT closure, it will check the counter
in the MMT closure with the local counter and reject any
incoming MMT closure with less or the same counter value.
The counter will be increased by hardware for each write
request to guarantee any changes will cause a new version
number. In addition, a user can initialize the root counter with a
given value when the MMT state is changed to valid. According
to these, we can ensure that the counter value in the sender is
always larger than that in the receiver and is always increased

during the delegation. Second, the target node will check the
monotony of the global-unique address in two adjacent MMTs.
It guarantees that the address in the MMT root of the latter is
larger than the former. As the counter and address are sealed
(using the MMT key to encrypt and authenticate the MMT
root), attackers cannot tamper with these values in the network.
Hence, the MMT closure delegation is immune to both replay
and re-order attacks.

Summary: We design an MMT scheme to securely transfer
the memory among multiple nodes without re-encryption. MMT
closure is the smallest unit which can migrate in the untrusted
network. When a remote node receives the MMT closure, it can
decrypt and authenticate the secret data by itself. To guarantee
the security assumptions for data transferring, we design a
security protocol of MMT closure delegation to protect memory
from spying, tampering and replay attacks. In summary, we
reduce the overhead of transferring secure memory without
re-encryption and extra memory copy, and achieve the same
security assumption as the secure channel.
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C. MMT Monitor

Besides the hardware extension of the integrity forest and
the MMT scheme, we also design a trusted-and-tiny trusted
module to manage the MMT engine and perform the remote
attestation for enclaves.

Figure 7 shows the software architecture of the MMT system.
We introduce a trusted software module: MMT monitor, to
manage enclaves and MMT-related operations in the most
privileged mode (e.g., EL3 in Arm). MMT monitor uses the
capability to organize the physical memory and hides the
hardware details. It is also responsible for the remote attestation
and setting up connection between local and remote enclaves.

MMT monitor has two key components: enclave manager
and physical memory object (PMO) manager. The first compo-
nent organizes the lifecycle of enclaves, attests to remote clients
and establishes the connection. The enclave manager maintains
a map between an enclave and its metadata (e.g., capability and
attestation report, etc.). To establish the connection between
the local and remote enclave, the local monitor can launch
a connecting requests, and the remote monitor acquires for
the target enclave, verifies the attestation report and finally
establishes the connection. After that, the enclave manager
can set up three kinds of channels between local and remote
enclaves: non-secure, secure and MMT closure delegation. The
second component is responsible for configuring the MMT
state and checking the ownership of physical memory object
(PMO). Physical memory object contains two parts: the secure
memory and the corresponding MMT. As MMT configuration
is closely related to the security of the whole system, we
carefully design a capability mechanism to organize the MMT
and secure memory. Only the owner of the PMO can configure
its MMT root, and each PMO can have only one owner. Notably,
the ownership can be revoked if the secure memory is assigned
to another enclave or transferred to a remote one.

Summary: We design a trusted module: MMT monitor, to
manage the lifecycle of enclaves, establish the connection and
configure the MMT hardware. There are two major components
in the MMT monitor: enclave manager and PMO manager. In
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Fig. 8: MMT hardware architecture. Only in-SoC modules
like the CPU and memory controller are in TCB, and other
parts like pci-connector and DRAM remain untrusted.

addition, MMT monitor is the only privileged module that can
configure the trusted hardware module (e.g., MMT controller).

V. IMPLEMENTATION

A. Hardware Changes for MMT

Figure 8 shows the hardware architecture of an MMT system.
1) PCI-connector: Modern smartNICs [15] expose RDMA

interfaces to the host. Similarly, we implement a specific device
for interconnection: pci-connector. To further control the data
transferring latency in the network, we set delay cycles to
emulate the different connection latency. If a local node wants
to transfer its memory to a remote node, it will trigger a
DMA request to copy the memory from the source to the
pci-connector’s buffer, and then, the remote pci-connector will
initiate a DMA request to copy the memory from the device
buffer to the destination in the remote node. In summary, to
transfer memory from local to remote, we need to initiate two
DMA requests and set the DMA delay cycles to emulate the
connection latency.

There are two types of data transferring: data-only or MMT
closure delegation. The data-only transferring is similar to
RDMA operations. In our implementation, we reserve tx buffer
and rx buffer, as the default device buffer. As for the MMT
closure delegation, it needs to transfer both secure memory and
MMT tree nodes to a remote node. First, pci-connector needs
to set the source and destination of the remote memory address.
Second, before transferring data memory to the remote node, it
will initiate a request to transfer the MMT metadata (see §V-A2
for details). After receiving all MMT closure memory, the pci-
connector will trigger a finished/ack command to local/remote
memory controller to update MMT states (valid in receiver
and invalid in sender). The MMT closure delegation is slightly
slower than the data-only transferring, as it needs to transfer
the extra metadata (MMT tree nodes). Meanwhile, the MMT
root validation can be overlapped with the MMT delegation,
which is not in the critical path.

2) MMT controller: As shown in Figure 9, we extend the
memory controller to support MMT-related manipulations. The
MMT controller contains two new components: integrity tree
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Fig. 9: Hardware extensions for MMT controller.

engine and MMT closure delegation engine. The integrity
tree engine is designed to protect the physical memory from
snooping, tampering and replay attacks. The MMT controller
divides the whole physical memory into three types: the normal
memory, the secure memory and the MMT meta-zone. When
the MMT controller receives a memory request, it will first
check a bitmap which records the type of physical memory. The
granularity of non-secure and secure memory is equivalent to
the protected size of the MMT (in our implementation is 2M).
Meanwhile, the MMT meta-zone is a separate memory range
which can only be accessed by MMT monitor. MMT meta-
zone stores MMT metadata such as intermediate tree nodes
and MMT root (only a placeholder, any read/write request will
redirect to the real root in SoC), and each MMT metadata
has a fixed mapping with its data memory. Each MMT root
contains an extra 24 bytes metadata: 128-bit key, 2-bit state,
58-bit global-unique address and 4-bit is reserved.

Similar to the modern memory protection engine, MMT
controller also adopts the counter-based integrity tree to protect
the physical memory, and stores the integrity tree roots in the
SoC. Figure 1 (a) shows the integrity tree structure for MMT.
In each tree node, we adopt the global-local counter layout
with hash value. Each counter comprises the global-shared part
together with the local-individual part. When the global counter
is exhausted, we need to update counters in all child nodes
and perform the re-hash procedures. In our implementation,
the leaf node has 64 local counters (64 arity), and other tree
nodes have 32 local counters (32 arity). Besides, each MMT
is 3 level height.

The first component is integrity tree engine. Once the MMT
controller receives a read request, it will traverse the integrity
tree to fetch all intermediate nodes from the MMT meta-zone.
After receiving all tree nodes and data packets, the tree engine
checks hashes stored in tree nodes recursively up to the MMT
root; As for a write request, the tree engine first initiates
several read requests for intermediate tree nodes and checks
data integrity before writing. After the validation, it increases
node counters and updates the hash value in tree nodes. A write
request will return immediately when it has been pushed into a
write queue, as write-back operations are triggered periodically
if the write queue is not empty.

The second component is MMT closure delegation engine.
As mentioned above, the physical memory is divided into
three types: the non-secure memory, secure memory and MMT
meta-zone. For an MMT delegation request, the MMT closure

delegation engine leverages the MMT key to seal the MMT
root value (i.e., encrypted and authenticated). After that, the
MMT root can be securely transferred to the destination
through the pci-connector. As for the remote side, the MMT
closure delegation engine will first unseal the transferred MMT
root with the local MMT key. If the authentication fails, the
delegation request will be rejected; Otherwise, the MMT engine
will receive both MMT nodes and data memory. After receiving
all data and MMT nodes, the MMT engine will trigger a
finished command and set the MMT state from waiting to
valid; Similarly, the sender node will receive an ack command,
and invalidate the MMT in the sender side (change state from
sending to invalid). After that, the ownership of MMT and
data memory are transferred from the sender to receiver (see
§V-B2 for more details).

B. Software Implementation

1) MMT Monitor and TEEOS: We implement the MMT
monitor in Arm EL3 based on Penglai enclave [25] and adopt
Chcore [31] — a microkernel-based kernel as the trusted OS
in TEE. ChCore uses the capability to manage all physical
resources (e.g., memory allocation, time slice) and software-
defined objects (e.g., notification, file). MMT monitor is the
most privileged module which manages enclaves, MMT state
and trusted hardware modules. As mentioned in §IV-C, there
are two key components in the MMT monitor: enclave manager
and PMO manager. The MMT monitor uses enclave objects
to manage the lifecycle of local enclaves and maintain the
connection with remote enclaves. As for the PMO manager,
MMT monitor extends the secure physical memory object
(sPMO) with the extra MMT-related metadata (e.g., MMT state
and key), and leverages the capability to organize its ownership.
Meanwhile, to minimize the TCB of MMT monitor, we offload
the allocation of sPMO into TEEOS. The sPMO can only be
allocated from a pinned memory pool (like RDMA’s buffer). If
an enclave obtains the capability of a secure PMO, the TEEOS
maps this physical memory range into its virtual memory space.

2) Enclave Application: There are two modes for user-level
enclave applications: ownership-transfer mode or ownership-
copy mode. In the ownership-transfer mode, the owner of the
MMT can transfer the corresponding secure memory and MMT
nodes to others. Once the remote node accepts the transferred
MMT as well as the secure memory, the ownership of the MMT
is transferred from the sender to the receiver. The sender needs
to re-assign a new MMT if it wants to reuse the transferred
memory region. This programming model is suitable for the
DAG (Directed Acyclic Graph) scenario. As for ownership-
copy mode, the owner of the MMT just sends a read-only copy
of the secure memory and MMT nodes to the receiver. If the
receiver wants to modify the content in the transferred memory,
it needs to copy the content into another space. However, as the
ownership of the transferred memory is still held by the sender,
it can directly modify the content in the sender’s side. This
programming model is suitable for the send/receive protocol.
In summary, we must ensure that there is only one writable
copy of secure memory in the whole distributed system.
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VI. EVALUATION

A. Methodology

Processor Configuration
CPU 8 Out-of-order cores @ 2.0GHz
I/D TLB 256 entries
L1 I/D Cache 32KB, 64B line, 2/4 Associativity
L2 Cache 1MB, 64B line, 15 Associativity
L2 Access Latency data/tag (13 cycles), response (5 cycles)

MMT Controller Configuration
Memory Type LPDDR3 1600 1*32, 2GB
Write/Read queue 128/64 entries
MMT Roots in SoC 8KB
MMT Cache 32KB
MMT levels 3 levels
Encryption Latency 40 processor cycles

TABLE II: Gem5 configurations for processor and MMT
controller.

We implement an MMT hardware based on Gem5 [20]: a
full system, cycle-accurate simulator. Table II shows the Gem5
configuration for evaluation. We implement the full hardware
extension (e.g., MMT controller, PCI-connector) in the GEM5.
In addition, to compare the performance of MMT closure
delegation with state-of-the-art secure channel mechanism using
the AES accelerator (e.g., AES-NI instruction in the current
Intel CPU), we implement a software MMT controller in a
real machine and simulate the MMT closure delegation based
on the RDMA connection. In short, we launch an additional
one-sided RDMA operation to transfer the simulative MMT
metadata to the remote node, and perform the software check
of the MMT root. Table III shows the processor and MMT
configurations for real Intel machines. As for the secure channel
mechanism, we re-use the cryptographic library provided by
OpenSSL [9], and establish the secure channel through the
RDMA connection.

Processor Configuration
CPU Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz
Cores 12 cores, 24 threads
Cache size 30720 KB

MMT Controller Configuration
Memory Type LPDDR4 2400 128GB
Secure Memory 16GB
Simulative MMT Roots 64KB
Simulative MMT levels 3 levels

TABLE III: Simulative MMT configurations on the Intel
machine.

We first evaluate the performance of transferring secure
memory to a remote node with two methods: MMT closure
delegation and a software-based secure channel (e.g., using
AES-GCM algorithm). To comprehensively evaluate the MMT
performance and tradeoff in different settings, we test MMT
on SPECCPU benchmark in different tree levels. We also set
the various pci-connector delay cycles to simulate the different
network connection latency. As for the real-world applications,
we choose two well-known distributed tasks: MapReduce [23]

and PageRank [21]. We implement a MapReduce framework
and test the end-to-end latency with the different transferred
memory sizes, workloads and settings. For the second applica-
tion, we implement a Gather-Apply-Scatter (GAS) model [29]
in our MMT system and adopt the PageRank algorithm in the
apply phase.

B. Microbenchmarks

MMT closure delegation. We evaluate the performance of
MMT closure delegation with secure channel methods using
CPU-only and AES-NI instructions. As for MMT closure
delegation, an enclave needs to transfer the whole granularity
of MMT closure to remote, even if the message size is much
smaller (in our implementation, the default granularity of the
MMT closure size is 2M). In contrast, the secure channel
uses unsafe remote write interfaces without the memory size
limitation. An enclave first needs to encrypt and copy the
sensitive message to non-secure memory. Then, a remote write
request is triggered to transfer this encrypted message to a
remote receiving buffer. Finally, a remote enclave copies the
encrypted message from the non-secure receiving buffer to its
own secure memory and then decrypts it. In summary, there
are two extra memory copies, one remote memory write and re-
encryption in the secure channel method. Table IV:Gem5 shows
the performance of MMT closure delegation and secure channel
on MMT-enabled machines. In the Gem5 simulator, we only use
CPU for cryptographic calculations. MMT closure delegation
has a constant overhead when the transferred memory size
is smaller than one MMT closure (2M). On the contrary, the
secure channel does not have this limitation but needs four
additional operations: memcpy, remote w, encrypt and decrypt.
Data encryption and decryption are the most costly operations
in the secure channel mechanism, which both take up nearly
45% time for 2M message. Data copy between normal and
secure memory takes up another 5% time, while the remote
memory write only accounts for 0.5∼4% of the transferring
overhead. As for the end-to-end performance, MMT closure
delegation gains the 169x speedup when transferring 2M secure
memory. However, using the secure channel method has better
performance in small message (e.g., memory size<8K). In
the distributed computation scenarios, each node will transfer
a large-scale memory to other nodes (see section §II-B), so
the small size of transferred messages is rare in real-world
workloads. Table IV:Intel compares the MMT performance
with an enhanced baseline using AES accelerator. The current
Intel CPU provides AES-NI instructions to accelerate the AES
encryption. To simulate the MMT delegation performance, we
issue two RDMA writes to transfer both data memory and
MMT tree nodes. The evaluation result shows that even using
AES-NI instructions, MMT delegation also gains 13x speedup
compared with the secure channel mechanism.

Throughput. Figure 10 (a) shows the maximum throughput
of AES-128-GCM, RDMA and MMT. We test the AES-GCM
algorithm under different block sizes using AES-NI instruction.
The evaluation result shows that the larger block size can
gain a better performance (2.2GB/s in Intel E5-2650). To
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Breakdown
Transferred Memory Size

Gem5 simlulator (103 cycles) Intel E5-2650 AES-NI (ms)
2M 512K 128K 32K 8K 2K 32M 64M 128M

Memcpy*2 4288 (6%) 989 (5.6%) 211 (5%) 46.4 (3.9%) 6.26 (1.6%) 1.31 (0.7%) 8.84 (19.5%) 17.1 (19.6%) 34.0 (19.4%)
Remote W 367 (0.5%) 102 (0.6%) 36 (0.8%) 15.9 (1.3%) 9.47 (2.4%) 7.69 (4%) 3.01 (6.7%) 6.02 (6.9%) 12.1 (6.9%)

Encrypt 34612 (48%) 8445 (47%) 2066 (47%) 530 (45%) 170.2 (43%) 77.4 (40%) 16.5 (36.5%) 31.8 (36.2%) 63.6 (36.2%)
Decrypt 32230 (45%) 8128 (46%) 2085 (47%) 580 (49%) 204.7 (52%) 104.6 (55%) 16.9 (37.3%) 32.7 (37.3%) 66.0 (37.5%)

Secure Channel 71498 17666 4409 1173 390.7 191.1 45.3 87.9 176
MMT Closure Delegation 422 3.47 6.92 13.9

Speedup 169.1x 41.77x 10.43x 2.77x 0.92x 0.45x 13.1x 12.7x 12.7x

TABLE IV: Performance breakdown. Compare the performance of MMT closure delegation and secure channel.
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Fig. 10: Evaluate the throughput and latency of MMT closure
delegation.

evaluate the MMT throughput on a real machine, we trigger
two RDMA transactions to send both data and metadata. In our
test case, an r-NIC with 100Gbps bandwidth can achieve 11
GB/s throughputs, and the MMT delegation can gain 9.68GB/s
bandwidth under the RDMA connection. If we escalate the
r-NIC to 400Gbps [7], the maximum throughput of MMT
delegation will increase accordingly. Therefore, even using the
AES accelerator, the throughput of AES encryption is still an
order of magnitude smaller than MMT delegation.

Network Latency. Figure 10 (b) demonstrates the rela-
tionship between the end-to-end latency of MMT closure
delegation and network latency. We set the delay cycles in
the pci-connector to emulate the different network latencies
in Gem5. In the ideal situation (the network latency is zero),
the MMT closure delegation can gain the 169x speedup for
2M transferred memory compared with the CPU-based secure
channel. However, when network latency increases, it will
narrow the improvement of end-to-end latency for the MMT
closure delegation (only gain 4.5x speedup if the network
latency is increased to ten milliseconds). Meanwhile, as for a
real-world distributed computation, the major communication
overhead comes from the data transfer, as each computing node
needs to send large-scale messages, but the network latency is
minor (microsecond using RDMA in the same rack).
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Fig. 11: SPECCPU. MMT overhead with different tree levels
on SPECCPU benchmarks.

Tree level Metrics
Root Size MMT Size Overhead

2-level 256K 64K 1.07
3-level 8K 2M 1.12
4-level 256B 64M 1.21

TABLE V: Tree level. Evaluate different MMT tree levels with
multi-metrics.

Tree level. The MMT tree level is also a key parameter
for MMT system, and we evaluate it with various metrics
(e.g., performance, space overhead). Figure 11 shows the
performance overhead of different MMT tree levels. We choose
the SECCPU benchmark to evaluate the general performance
of MMT. If we deepen the MMT level, the performance
overhead will increase. What’s worse, as the SoC space and
tree node cache are limited, this overhead will rise rapidly when
increasing the MMT level (one memory access will trigger
extra tree node accesses, which occupy the read/write queue
and tree node cache in the MMT controller). The evaluation
result shows that if we adopt a 2-level MMT tree, the average
overhead is only 1.07x, however, assuming the tree level is
augmented to 4-level, the average overhead rises to 1.21x.
Table V summarizes the effects of different MMT tree levels.
A deeper MMT takes up less in-SoC storage. For example, a 4-
level MMT only needs 256B extra space for MMT root in SoC.
In contrast, a 2-level MMT occupies 256KB storage, which is
orders of magnitude larger than a 4-level MMT. What’s more,
a higher MMT tree level also means a larger granularity of the
transferred memory. A 4-level MMT closure contains 64MB
contiguous secure memory, whereas this value is 64KB for a
2-level MMT. In summary, the higher MMT tree level saves
the in-SoC storage, but increases the performance overhead and
enlarges the granularity of the secure memory. In our evaluation,
we choose a 3-level MMT as the default configuration.

C. Real-world Applications

1) Trusted MapReduce: MapReduce is a popular program-
ming model in the distributed computation. Some state-of-the-
arts [47], [59] propose trusted MapReduce schemes based
on the hardware enclave like SGX. To protect the integrity
of input/output for the mapper and reducer, these works add
security guarantees such as read-write integrity check. VC3 [47]
points out that the security guarantees will bring up to 63.4%
overhead compared with the non-secure MapReduce tasks. We
establish an in-memory MapReduce framework [18], [43], [57],
[62], [67], which can transfer the intermediate result through
the remote memory write interface (non-secure) or MMT
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Fig. 13: End to end performance. Comm-n% in figure (a)
means that the communication cost takes up n% of total
execution time in the baseline; MnRn in figure (b) means
running n mappers and n reducers in 2n nodes, one worker
per node.

closure delegation. Figure 12 shows the end-to-end performance
of WordCount tasks with different transferred memory sizes
(MMT delegation v.s. secure channel in Gem5). The evaluation
result shows that MMT delegation can gain up to 10x speedup
compared with the secure channel (when transferred memory
size is larger than 2M). To test the worst-case performance, we
run the WordCount tasks with some extremely small workloads.
As MMT delegation must transfer 2M memory region, using a
secure channel has a better performance when the transferred
memory size is less than 8K. Nevertheless, this case is almost
negligible in the real-world distributed MapReduce tasks.

To further estimate the end-to-end performance of MMT, we
run MapReduce jobs in the real Intel server and leverage the
RDMA to transfer the intermediate results. The coordinator
will connect a mapper with reducer using the RDMA queue
pair (QP). There are three configurations: Baseline is running in
the non-secure mode without any protection during the RDMA
transaction; MMT uses MMT closure delegation to transfer the
intermediate result; And secure-channel leverages AES-GCM
algorithm to protect the confidentiality and integrity of the
transferred data. As shown in Figure 13 (a), we evaluate the
end-to-end performance of MapReduce in different workloads.
Comm-n% represents that the communication cost takes up
n% of total execution time in the baseline, and the y axis
is the normalized performance. As for secure channel, AES-
GCM encryption will augment the date transferring overhead.
For example, in comm-5% workload, the communication
only accounts for 5 percent of execution time. However, this
percentage will rise to 74% in the secure channel mode and
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Fig. 14: Evaluate PageRank using the GAS model.

cause up to 69% overhead. MMT delegation has comparable
performance to the baseline, as it does not need to re-encrypt
transferred data. The end-to-end overhead is only 1.5% in
the comm-10% workload, and gains 12%∼58% improvement
compared with the secure channel mechanism.

We evaluate the scalability of MMT delegation by running
MapReduce workers on the different nodes. As shown in
Figure 13 (b), MnRn means running n mappers and n reducers
in 2n nodes. Each mapper needs to set up connections with
all reducers. The evaluation result shows that MMT delegation
will not break the scalability of the MapReduce system, as
MMT delegation leverages message passing-like interfaces
for communication. Similar to the RDMA connection, MMT
delegation will not introduce any coherence operations when
transferring the intermediate results.

2) PageRank: PageRank [21] is a widely used graph com-
putation algorithm. The recent study proposes a gather-apply-
scatter (GAS) model [29] for the large-scale and distributed
graph computation. One GAS iteration contains three phases:
gather, apply and scatter. To migrate the distributed GAS model
to the MMT system, we design a new phase called remote-
transfer, which sends sensitive messages to a remote MMT
machine. As shown in Figure 14 (a), we first set gather and
scatter buffers in each MMT machine. As for a cross-machine
edge, the source vertex node will copy messages to the scatter
buffer, and trigger a remote memory write (non-secure) or
MMT closure delegation to send messages to the gather buffer
in the remote. In the gather phase, we can assure that all
transferred messages are ready in the local machine.

Figure 14 (b) shows the evaluation result of the PageRank
algorithm in the GAS model. There are three configurations:
Non-secure, MMT and secure channel. Non-secure means we
execute PageRank without any memory protection (disable
the MMT engine); MMT/secure channel means using MMT
closure delegation/secure channel to transfer remote messages
in cross-machine edges. We initialize a graph with nearly
100,000 nodes and 60,000 cross-machine edges (similar to real-
world graphs). The evaluation result shows that using MMT
closure delegation, the remote-transfer phase only takes up 5%
execution time for one iteration. As for the secure channel,
nearly 37.5% of runtime cycles are spent in the remote-transfer
phase. As for the end-to-end performance, the MMT closure
delegation gains 35% improvement compared with the secure
channel.
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VII. DISCUSSION

Fault tolerance. MMT adopts the same fault tolerance policy
as the current RDMA-based distributed systems. First, the
MMT delegation uses similar technology to the RDMA reliable
connection (RC) mode, which guarantees that each packet
will not be missing or reordered in the network. Second, the
developer can adopt the primary-backup program mode in
distributed computing.

Scalability. There are two programming models in dis-
tributed computing: distributed share memory (DSM) and
message passing. DSM suffers from poor scalability due to
memory coherence, write amplification, etc. MMT delegation
chooses a more scalable primitive: message passing. Message
passing does not have the scalability issue [30], [40], [41], [62]
as it establishes a peer-to-peer connection and shifts the duty of
synchronization to the developer. In addition, the MMT design
is compatible with other scalable integrity tree schemes [25],
[33], [46], [55]. The state-of-the-arts achieve to support up to
512GB of secure memory using a more compact tree structure,
prefetching and mounting mechanisms.

Security. MMT provides the highest security protection
for physical memory, which can defend against the malicious
read or write, and even replay attacks. Some related works
also claim to constitute a trusted environment for confidential
computing, but compromise partial physical attacks. TDX [6]
acknowledges that it does not defend against memory replay
attacks. What’s worse, the physical attacks become more severe
in the untrusted network, as attackers can easily control the
network infrastructure and inject malicious packages. Therefore,
we cannot loosen the security assumption for MMT threat
model.

VIII. RELATED WORK

Hardware-based Memory Integrity Protection. Many
prior works [22], [25], [28], [33], [44]–[46], [49], [50], [55],
[56] also propose the memory integrity protection scheme
and reduce the overhead of the integrity tree. Rogers et
al. [45] propose an efficient data protection for the distributed
shared memory. However, MMT has no assumption of the
DSM system, and each node can have its own, non-sharable
memory. What’s more, MMT can transfer the secure memory
directly without re-encryption. Penglai [25] designs a scalable
memory protection scheme protecting 512GB secure memory
in a single node. It dynamically mounts the subtree root into
SoC to minimize the security check overhead. Synergy [50]
stores data MACs in the place reserved for ECCs (e.g., ECC
memory), which can reduce the memory overhead of the
integrity tree. What’s more, a dedicated cache can be applied
in the memory protection controller to store the intermediate
tree nodes and improve the performance of security checks.
Morphable [46] dynamically adjusts the counter size in a tree
node to reduce the overflow frequency. BMT [44] uses Merkle
tree to protect the tree counter instead of the memory data,
which reduces the overhead of the integrity checks. Vault [56]
proposes a tree structure with the different sizes of the tree
counters. ITESP [55] builds a separate integrity tree for each

application to achieve a better cache locality. PCPT [33]
leverages a Parallelized-Compressed-Prefetched-Tree to predict
the memory fetch and reduce the integrity check overhead.
BMF [26] aims to guarantee crash consistency on persistent
memory, and to reduce the performance overhead of the BMT
root updates. Although BMF and MMT both adopt the integrity
forest schemes, BMF does not consider how to establish a
distributed Merkle Forest among multiple nodes. In summary,
these schemes only focus on the memory protection in the
single node, and do not consider the secure data transferring
between multiple nodes.

Hardware Enclave. Hardware-based enclaves have been
widely adopted in the prevailing architecture, such as Intel
SGX [22], TDX [6], Arm TrustZone [17], CCA [3], RISC-
V Keystone [37], etc. Intel establishes a trusted environment
for enclaves with the memory confidentiality, integrity and
freshness protection. However, SGX [22] EPC memory is not
available for device, and we cannot perform a DMA operation
on this memory range. TDX [6] only considers the memory en-
cryption and integrity protection, but does not defend against the
replay attacks. CCA [3] only provides an encryption memory
without integrity protection. TrustZone [17] and Keystone [37]
do not consider the physical attacks for the memory system (no
encryption, integrity protection). Graviton [61] proposes a GPU-
enclave coordinating with the CPU enclave. To securely transfer
the sensitive message between CPU and GPU, it leverages
an AES-SHA3 algorithm to protect the transferred message.
HIX [35] adopts the hardware memory protection engine to
the GPU architecture and utilizes the memory access pattern
to optimize the integrity tree structure. Elasticlave [16] only
provides memory isolation using the PMP mechanism in the
RISC-V. It does not consider any physical attacks on memory.
However, MMT considers the memory encryption, integrity
and freshness protection, and provides a mechanism to transfer
the secure memory to others without violating the security
assumptions.

IX. CONCLUSION

This paper presents Migratable Merkle Tree (MMT) to
reduce the secure data transferring overhead in the confidential
distributed computation. To achieve this, we design a secure
protocol: MMT closure delegation, to securely transfer the
MMT closure to others without re-encryption. The evaluation
result shows that MMT can significantly reduce the transfer-
ring overhead compared with the traditional secure channel
mechanism and promote the performance of the real-world
distributed applications.
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