EPK: Scalable and Efficient Memory Protection Key

Jinyu Gu, Hao Li, Wentai Li, Yubin Xia, Haibo Chen
Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China
Institute of Parallel and Distributed Systems (IPADS), Shanghai Jiao Tong University

Abstract—As a hardware mechanism for facilitating intra-
process memory isolation, Intel Memory Protection Key
(MPK) has been leveraged to efficiently improve the isolation,
security, or performance of the software. However, it can only
support 16 isolated memory domains, which significantly limits
its applicability in many scenarios.

In this paper, we present EPK which leverages off-the-shelf
virtualization hardware features to extend the domain number
of MPK. To demonstrate the effectiveness of EPK, we apply
it in three scenarios, including better memory isolation for
server applications as well as Non-Volatile Memory (NVM)
applications, and a fast Inter-Process Communication (IPC)
mechanism for microkernels. The evaluation results show that
EPK can scale to provide hundreds of isolated domains. It can
outperform the state-of-the-art (libmpk) by up to two orders
of magnitude and usually achieve 95% of the performance of
the system with no memory isolation.

I. Introduction

Intel MPK [7] has attracted many researchers since
introduced in 2019 because it offers highly-efficient intra-
process memory isolation by supporting 16 memory domains
inside one application. An application can switch between
different domains with a new instruction, WRPKRU, which
can execute in the user mode directly and takes only about
28 cycles. Compared with traditional software isolation or
page table based isolation, MPK can achieve much lower
performance overhead, and has been adopted in many scenar-
ios, including: 1) enhancing the isolation between different
threads of the same process by giving them different domain
views [13} 55 157]]; 2) hardening the security of an application
by separating different components, such as untrusted third-
party libraries, into different domains [24} 40, 144, |46} I50];
and 3) improving the performance of software that uses
multiple page tables for isolation by substituting domains
for page tables [22| 29].

However, the small number (16) of isolated memory
domains supported by MPK severely undermines its usability.
First, typical server applications usually serve for more than
16 clients concurrently, and it is preferable to store clients’
private data in isolated domains to prevent sensitive data leak-
age due to vulnerabilities like Heartbleed [5S]]. Second, there
is a growing interest in protecting persistent memory [6] data
from accidental or malicious accesses [56l 157]. Long-lived
persistent data is usually directly mapped into processes and
then accessed via load/store instructions. Isolating the data
in more domains can reduce the data exposure time and
benefit stray access protection. Third, both applications and

system software may contain more than 16 components that
need to be isolated. For example, popular applications use
scores of third-party libraries [2l]; an OS consists of tens
or hundreds of modules like device drivers. Besides, prior
studies also indicate the performance of NVM applications
(which desire isolation) [57]] and microkernel OSes [22] can
boost by more than 10x with more MPK domains.

To make MPK support a scalable domain number, recent
researchers propose either software or hardware approaches
to support more MPK domains [38] 41, |57]. However, the
software approach suffers from a large overhead while the
hardware approaches are infeasible on commodity machines.

In this paper, we propose EPK, which extends the max-
imum number of memory domains supported by MPK
on commodity hardware in an efficient manner. MPK’s
performance advantage stems from the decoupling of domain
configuration (in privilege mode) and domain switching
(in non-privilege mode). Our observation is that another
hardware feature, named fast EPT-switching (Extended Page
Table switching, with VMFUNC), has a similar pattern,
which decouples EPT configuration (in host mode) from
EPT switching (in guest mode). Thus, we propose extended
protection keys by combining MPK with fast EPT-switching,
i.e., reusing the same MPK protection keys in different
extended page tables (EPT). Thus, with 512 EPTs, EPK can
support up to 7,680 domains (512 x 15).

However, there are two major challenges to the new system.
The first challenge is to provide a unified abstraction for
applications although combing two orthogonal hardware
features. EPK still retains the abstractions of memory domain
and domain switching inherited from MPK while hiding the
EPTs from applications, by elaborately managing domain
mappings in multiple EPTs and developing a library to
provide easy-to-use APIs. The second challenge is to enable
one thread to simultaneously access memory domains across
different EPTs, as the original MPK allows to access multiple
domains together. To this end, EPK leverages another
existing hardware feature named virtualization exception
(VE) to switch the EPTs for the thread transparently when
a domain access causes EPT violations.

We implement EPK prototype and apply it in the above
scenarios. On the one hand, EPK can work like the original
MPK for mitigating the memory errors and thus facilitates
efficient intra-process memory isolation (Section [V)). On
the other hand, it can also isolate untrusted software com-

ponents [46, 57]] (Section [[V] and Section by further
preventing illegal domain switching.

Experiments on server applications and persistent memory
applications show that EPK’s overhead is usually around or
below 5%. Compared with the state-of-the-art (libmpk) [38]],
the performance improvement can be up to two orders
of magnitude. Furthermore, we incorporate EPK in the
microkernel OS, a representative of large software. A
microkernel OS runs system components like file systems
and device drivers in user processes for embracing better
isolation [20, 26, [30]. Nevertheless, costly inter-process
communication (IPC) is required for the interaction between
different OS components [22} [31} 37, 45]. EPK can provide
enough isolated domains for running different OS compo-
nents and the fast domain switch for IPCs. Thus, we propose
a high-efficient IPC mechanism named HyBridge that can
improve the performance of three well-known microkernels,
seL4 [10]], Google Zircon [4], and Fiasco.OC [3], and
outperform two state-of-the-art IPC designs, SkyBridge [37]]
and UnderBridge [22].

In summary, this paper makes the following contributions:
1) a scalable and efficient intra-process memory isolation
mechanism named EPK; 2) a real implementation and
evaluation on Linux; 3) a new IPC design based on EPK
for microkernel OSes with better performance.

II. Background and Motivation
A. Hardware Background

MPK. Intel MPK [[7] can divide the virtual memory space
of one process into 16 memory domains. By leveraging
previously unused bits of the page table entry, each memory
page is tagged with a four-bit protection key as the domain
ID and exclusively belongs to one of the 16 domains. A
new 32-bit register, PKRU, is introduced to specify the
access permissions (read-only, read-write, none) on the 16
domains (two bits for one domain). Because the register is
per-core, concurrent threads in the same process can have
different access permissions on different domains. During
runtime, MMU transparently checks the permissions. A
non-privileged instruction called WRPKRU can update this
register to change the access permissions.

EPT and VMFUNC. Intel hardware virtualization tech-
nology employs extended page table (EPT) for memory
virtualization. For a guest virtual machine (VM), the guest
page table maps guest virtual addresses (GVA) to guest
physical addresses (GPA) while the EPT maps GPAs to
host physical addresses (HPA) and thus aids in the seamless
translation of GVAs to HPAs. The guest VM’s OS (runs
in non-root mode) controls the guest page table, while
the hypervisor (runs in root mode) manages the VM’s
EPT. VMFUNC is a hardware virtualization extension that
provides VM functions for VMs. EPT pointer (EPTP)
switching is currently the only VM function provided,
allowing the guest VM (both Ring-0 and Ring-3) to directly

load a new EPTP. The loadable EPTP can only be chosen
from a list of EPTPs (up to 512) configured by the hypervisor.
Note that the execution of VMFUNC will not lead to TLB
flushing because TLB entries are tagged with EPT base
addresses.

VE. EPT violations usually trigger VMEXits, after which
the hypervisor can fill the EPT mappings. Nevertheless,
Intel virtualization technology also supports converting
EPT violations into virtualization exceptions (VE) without
VMEZxits. With VE enabled, the hypervisor can configure
bit 63 of certain EPT paging-structure entries to make EPT
violations on some GPAs to cause VE and others to cause
VMEXxits as before.

MPK in the VM. The hardware feature of MPK is also
usable in a VM. Protection keys are still tagged in the page
table of applications instead of EPTs. From the perspective
of applications and the OS, the usage of of MPK is just the
same no matter in the VM or not.

B. Motivation

Software fault isolation (SFI) can enhance memory isola-
tion for applications [27, 58| 48,1936, |15] by instrumenting
and restricting memory accesses. Nonetheless, it may result
in non-negligible runtime performance overhead and is
inflexible (e.g., hard to be fine-grained). Many studies can
avoid such disadvantages [25} 135} (32} 27} 39]] by using MMU.
They isolate different memory partitions of a process in
different page tables or extended page tables and thus utilize
MMU to check memory accesses at the page granularity.

Instruction Cost (cycles) Solution Overhead
Write CR3 (no TLB flush) 226 LwC-simulate 70%
VMFUNC (switch EPT) 146 EPT-based 12%
WRPKRU 28 ERIM 3%

(a) (b)
TABLE I: (a) Instruction cost. (b) The overhead of isolating
session keys in one isolated domain.

However, constructing different memory domains with
page tables is also not free. The cost of changing page
tables, i.e., switching between different domains by executing
specialized hardware instructions, is the tradeoff. Table a)
presents the direct cost of the related instructions. We then
do an experiment to isolate client session keys in the NGINX
web server [9] to show the corresponding performance
overhead. ApacheBench (ab) [1]] generates the workload:
300 concurrent clients send requests to the server for a file.
As presented in Table b), light-weight contexts (IwC) [32],
as a representative of page-table-based solutions, will lead
to approximately 70% overhead if we isolate all the session
keys in a separate context (i.e., a new page table) and switch
to that context when accessing those keys. Similarly, for the
EPT-based solution, we create a new EPT for isolating all
the session keys and use VMFUNC instruction to switch
to that EPT when accessing them. Although noticeably
better than the page-table-based solution, such an EPT-based

solution still introduces around 12% performance overhead.
In contrast, ERIM [46] only adds about 3% overhead by
utilizing the MPK hardware to construct an isolated memory
domain for storing the session keys, which can demonstrate
the efficiency of MPK.

However, MPK can only support at most 16 memory
domains, limiting its usage. Take the web server for example:
it is preferable to separate clients’ data in different memory
domains, guaranteeing the isolation between multiple clients.
Recent work [41), 157, [38]] also identifies and addresses
this limitation of MPK. Two studies (Donkey [41] and
[57]) propose non-trivial hardware extensions for efficiently
supporting scalable domains, which are not achievable on
current platforms.

libmpk [38] gives the illusion of multiple memory domains
by exposing virtual keys to applications and maintaining the
mapping between virtual keys and the 16 real keys (original
MPK provides 16 memory protection keys, one key for one
domain). When all 16 real keys are exhausted and a new
virtual key is required, libmpk will evict a mapped real key
and remap it to the new virtual key. But the key eviction
may incur a large overhead. For instance, if we protect each
client’s session key in a different memory domain (300
domains in total) provided by libmpk in the above NGINX
experiment (rather than storing all keys in one domain), the
overhead becomes about 20%. The overhead consists of
both direct costs, i.e., the expensive key eviction procedure
involving modifying page table entries, flushing TLBs, etc.,
and indirect costs, e.g., TLB misses due to flushing.

More seriously, the domain switch cost of libmpk increases
as domain memory gets larger, as shown in Table
The micro-benchmark allocates 32/64 domains and keeps
switching to one domain randomly. When the domain
number increases from 32 to 64, more key eviction occurs,
resulting in higher overhead. As one domain contains more
memory pages, the switch cost gets more expensive due to
flushing more TLBs and updating more page table entries.
The cost turning point (from 33 to 34) is because Linux
flushes all TLBs together instead of one at a time when the
number of TLBs to flush exceeds 33.

Domunsrges |6 33 34 64 1K 128K
32 6,576 11,173 4,090 5270 42912 5.1x10°
64 9,959 16,573 6,308 8,068 79,012 9.6x10°

TABLE II: The CPU cycles of domain switches in libmpk.

In brief, MPK-based intra-process memory isolation shows
attractive performance advantages but can only support
a limited number of isolated domains. Therefore, we in-
tend to overcome this limitation while retaining MPK’s
performance and flexibility advantages. As described in
Table SFI-based and page-table-based approaches (e.g.,
IwC) have performance issues and do not allow one thread to
simultaneously access different domains. Existing hardware

Memory Memory | Multi | Multi

Domain |-domain | -thread

Domain Hardware

Switch
Cost Number | Access | Support

Access
Changes

SFI High | Fast | Many No Yes Zero

IwC Low | Slow | Many No Yes Zero

Donkey| Low Fast | 1,024 | Yes Yes | Heavy

libmpk | Low | Slow | Many No No Zero

MPK Low Fast 16 Yes Yes Zero

EPK Low Fast | 7,680 Yes Yes Zero

TABLE III: Comparison of different approaches.

approaches (e.g., Donkey) are hard to be implemented
on commercial x86/ARM architectures due to intrusive
hardware modifications. For example, to support 1024
domains, Donkey takes 10 bits in the page table entry as the
domain ID, which is at least incompatible with the upcoming
5-level page table. libmpk makes several contributions like
implementing fast mprotect by using MPK. But, its extension
on the MPK domain number has both performance and
flexibility issues. It cannot support multi-threading well, in
particular, because it is difficult to maintain a consistent
view of active domains across different threads.

III. The EPK Mechanism

According to prior studies on MPK-based intra-process
isolation, the common usage model of MPK is as follows. An
application (process) creates memory domains by binding
different protection keys (pkey) to them as the domain IDs
and separates the memory data into different domains. An
application thread acquires/releases the access permission
of one specific domain before/after accessing the data
in it, which reduces the chances of the isolated memory
being affected by vulnerabilities (e.g., leakage caused by
buffer overflow) or faults (e.g., wild writes). Acquiring
the domain access permission is efficiently achieved by
executing WRPKRU instruction, which is referred to as
switching to that domain. Releasing the permission is a
reverse procedure that also makes use of WRPKRU. EPK
still inherits such a usage model while supporting more
memory domains.

The root cause of why MPK can only support 16 memory
domains for one application is that each domain needs to
exclusively take one pkey while the hardware only supports
16 pkeys. So, to extend the number of memory domains,
the high-level idea of EPK is to make the same pkey
reusable for different memory domains. One intuitive design
choice is resource time-division multiplexing, i.e., letting
different domains use the same pkey at different times by
evicting the pkey from one domain and assigning it to
another. The state-of-the-art (libmpk [38]]) is built over such
a design, but it may exhibit non-negligible performance
overhead, as demonstrated in Section Instead, EPK
allows multiple memory domains to use the same pkey

at the same time. However, simply reusing the same pkey
for different domains does not guarantee memory isolation.
Therefore, EPK proposes extended protection key, which
extends a pkey with different EPT indexes (get more keys),
and then assigns different extended protection keys to
different memory domains.

77N\

An Application’s Virtual Address Space

Domain-1
pkey: 1 EPT: 0
Domain-16 S - ~ p
pkey: 1 EPT: 1 < < < <« | Guest Physical
% ?5 ?5 ?5 Address Space
Domain-2
pkey: 2 EPT: 0
Domain-16 GPA-0: HPA-0 GPA-0: NULL GPA-0: NULL
pkey: 1 EPT: 1 GPA-1: NULL GPA-1: HPA-1 GPA-1: NULL
GPA-2: HPA-2 GPA-2: NULL GPA-2: NULL
Domain-31 GPA-3: NULL GPA-3: HPA-3 GPA-3: NULL
pkey: 1 EPT: 2
EPT-0 EPT-1 EPT-2

Fig. 1: The memory mapping overview for an application.

As depicted in Figure [I] EPK allows an application to
partition its virtual address space into different memory
domains, with each domain containing discrete memory
pages. A domain exclusively takes one extended protection
key as its domain ID, which is composed of a pkey (1-15)
and an EPT index (0-N, OKN<511) || EPK requires an
application to run within a VM where cloud applications
usually run in, and multiple EPTs need to be created for
the VM. Each EPT can hold 15 domains for an application,
and the 15 domain IDs (extended protection keys) have the
same EPT index but different pkeys. For example, domain-1
and domain-2 are both in EPT-0 and use pkey-1 and pkey-2,
respectively. The same pkey can be shared by domains in
different EPTs concurrently, e.g., domain-1, domain-16, and
domain-31 can all use pkey-1 because they will be mapped
in EPT-0, EPT-1, and EPT-2, separately. Memory isolation
between domains within the same EPT is achieved through
the use of distinct pkeys. To achieve memory isolation
between domains in different EPTs, EPK ensures that each
domain’s mappings only exist in one EPT. Specifically, the
memory pages belonging to one isolated memory domain are
tagged with the domain’s pkey in the application’s page table
and are only mapped in the domain’s EPT. Other memory
pages, i.e., the global code and data of an application, are
tagged with pkey-0 and mapped in all the EPTs (we name
them as domain-0 for simplicity).

Although all the 512 EPTs are shared among different
applications, it is worth mentioning that each application
can construct 7,680 domains since it has an individual guest
page table.

"Domain-ID (extended protection key) = EPT-index x 15 + pkey. Thus,
the total domain number can be up to 15 x 512 = 7,680.

When an application thread needs to access some domain,
it retrieves the permission by setting the PKRU value
and choosing the corresponding EPT (switching to the
domain). Switching between domains within the same EPT
can be finished by executing one WRPKRU instruction.
Switching between domains in different EPTs involves
one additional VMFUNC instruction for EPT switching.
Since both these two instructions are non-privileged, the
domain switches are efficiently finished in user mode (one
exception case will be explained in Section [[II-B). From
the perspective of programming, EPK provides easy-to-use
interfaces (Section [[II-C)) through a user-level library for
applications to create/delete domains, add/remove memory
pages to/from domains, and switch domains. Applications
can simply use the interfaces similar as programming on
the original MPK.

Challenges. Although the idea sounds simple, there are
two implementation challenges for combining the hardware
features. First, how to make a VM seamlessly run with
different EPTs, and how to differentiate a legal EPT violation
caused by on-demand domain paging with an illegal one due
to an unauthorized access? (Section . Second, given
that MPK allows one thread to access multiple domains
simultaneously, how to support such a flexible feature when
multiple EPTs are in use (access domains mapped in different
EPTs simultaneously)? (Section [[II-B].

Threat Model. We assume the OS, hypervisor, and hardware
are trusted, and EPK is correctly implemented. For the case
of reducing the memory exposure time (Section [[V)), we
assume the unreliable code may contain memory corruption
bugs, which is similar to [38} S7]. For the case of isolating
mutual-distrusted software components (Section |V|and (Sec-
tion [VI)), we assume the untrusted code or mutual-distrusted
code may contain exploitable vulnerabilities like memory
corruption and even use ROP to abuse WRPKRU/VMFUNC
for illegal domain switches. So, EPK further integrates the
mechanism of secure switching from [46] 22] (Section [VI-A]
explains how to avoid illegal domain switches). Other attacks,
like side-channel attacks and rowhammer attacks, are not
considered.

A. Extended Page Table Management

Traditionally, a VM has a single EPT that maps the GPAs
of both the guest OS and applications to HPAs. Differently,
EPK necessitates the creation of multiple EPTs for a VM
based on two principles. Principle-1: GPAs that are not
allocated for memory domains should be mapped uniformly
across EPTs. Thus, the VM can always run normally in any
EPT. Principle-2: Each memory domain’s GPAs should be
mapped in only one EPT. As previously stated, this is for
domain isolation.

Since the hypervisor is in charge of constructing EPTs,
the first problem is how it can tell whether one GPA
belongs to some memory domain or not. A straightforward

solution is letting the guest OS, the GPA manager, share the
information about which GPAs are allocated for memory
domains with the hypervisor. Nevertheless, this entails non-
trivial modifications to both the hypervisor and the guest OS.
An alternative solution is to divide the whole GPA space
into two halves and allocate GPAs for domain memory
from one half, allowing the hypervisor to easily determine
whether a GPA belongs to a domain. This solution still adds
a significant amount of complexity to GPA allocation in the
guest OS and may result in GPA resource underutilization.

j———— SHADOW REGION OFFSET ——]

Guest Physical Address Space Shadow Address Space
EPT-0 PDPT Shared PDPT EPT-1 PDPT
#0 > < #0
Maps [« #1 Common #1 > Maps
Domain Mappings Domain
1-15 16-30
#511 #511
EPT-0 PML4 EPT-1 PML4

Fig. 2: The EPT structures. PMLA4 is the top-level EPT page,
and PDPT is the second top-level page.

To address this problem, EPK proposes the following
design. Instead of partitioning the GPA space, EPK creates
the illusion that there is a shadow address space (GPA) in
the VM by simply adding a fixed offset (SHADOW REGION
OFFSET) to the GPAs allocated to memory domains, as
illustrated in the top half of Figure 2] As a result, the fixed
offset becomes the boundary between the GPAs for memory
domains and other GPAs. Based on this boundary, EPK
constructs the EPTs, as shown in Figure [2| It sets the offset
to 512 GB since an EPT PML4 entry can point to 512 GB
GPA range. The entire GPA space is pointed by the first
entry of each EPT PML4 || and the shadow address space
is pointed by the second entry of each EPT PML4. The
first PML4 entry of different EPTs points to a shared PDPT,
implying that the non-domain GPA mappings are always
the same in different EPTs and thus satisfies Principle-1.
By sharing this PDPT, the hypervisor can reduce the space
overhead of multiple EPTs. More importantly, it does not
need to explicitly synchronize an EPT update (e.g., adding
a new mapping for the guest OS) across all EPTs, which
is expensive. The second PML4 entry of different EPTs
points to different PDPTs for adding the GPA mappings for
memory domains, which is a prerequisite of Principle-2.

The second problem is that the hypervisor is unable to
determine whether an EPT violation (EPT fault) within the
shadow address space is legal or not. Assume an application
thread executes in EPT-1 while accessing Domain-1 in EPT-

2For simplicity, we assume the size of the GPA space is smaller than
512 GB. The fixed offset can be adjusted to support larger GPA space.

0, resulting in an EPT violation. The hypervisor cannot
decide whether to add the mapping in that case because it
does not know which domain the faulting address belongs
to, i.e., whether the GPA should be mapped in the current
EPT. Simply adding the mapping regardless of semantics
will violate Principle-2. Instead, EPK chooses to avoid any
legal EPT violation within the shadow address space (except
accessing domains across EPTs which will be explained
in Section [III-B)). Specifically, the guest OS is required to
invoke one new hypercall (a hypervisor interface provided to
the VM) to fill the EPT mapping when a legal domain page
fault happens, which eliminates the following EPT violatiorﬂ
The guest OS can check the legality of a domain page fault
because applications tell it the semantics of domain mappings
via the corresponding interfaces (explained in Section [[II-C).
As such, the hypervisor only needs to add a simple hypercall
to add the EPT mapping, and EPT violations within the
shadow address space must be illegal. Together with the
carefully designed EPT structure, Principle-2 can be met
now. Furthermore, because it avoids original VMEXits caused
by EPT violations, this hypercall-based solution incurs no
additional overhead.

When a domain page fault occurs, the guest OS needs to
check whether the faulting thread has the access permission
(switch to the domain) according to the current PKRU
register value and EPT-ID. However, because the domain
switches are performed in user mode, the guest OS is unaware
of the changes of PKRU and EPT-ID. The guest OS can
directly read the PKRU register but cannot get EPT-ID (the
third problem). EPK enables the guest OS to efficiently
retrieve the EPT-ID by subtly mapping one special guest
physical page (named EPT-ID-Page) across different EPTs.
During VM initialization, the guest OS allocates the EPT-ID-
Page and passes its starting address to the hypervisor. The
hypervisor maps the EPT-ID-Page to different host physical
pages in different EPTs (in different PDPTs) and stores the
corresponding EPT-ID in each physical page. Therefore, the
guest OS can always obtain the current EPT-ID by simply
reading the EPT-ID-Page (first four bytes).

B. Multi-Domain Access Support

MPK supports 16 domains and allows one thread to access
any of them by configuring the PKRU register. Nevertheless,
it is non-trivial to support this flexible feature in EPK since
there are domains across different EPTs.

Accessing multiple domains in the same EPT can still be
accomplished simply by configuring PKRU. To transparently
support accessing multiple domains in different EPTs,
EPK further employs another hardware feature named VE
(virtualization exception). The hypervisor converts EPT
violations in the shadow address space into VEs which

3The guest OS is assumed to be trustworthy and function properly. Even
if it does not invoke the hypercall to add the EPT mappings, it can only
cause DoS problems to the applications on it.

will be handled in the guest OS. The VE handler in the
OS can switch the EPTs for one thread and thus help it
to seamlessly access multiple EPTs. Specifically, when a
thread needs to acquire the access permission of domains
across multiple EPTs simultaneously, it needs to inform the
kernel of the domain information. Suppose the thread needs
to access domain-A in EPT-1 and domain-B in EPT-2 and
first runs in EPT-1. As running in EPT-1, it can directly
access domain-A but will trigger an EPT violation when
attempting to access domain-B. Because domain-B is in the
shadow address space, the corresponding EPT violation will
be caught by the VE handler instead of causing expensive
VMEXxits. Since the OS knows that the thread can access
domain-B, the VE handler will switch to EPT-2 by using
VMFUNC and setting PKRU to the required value. After that,
the thread can be restored and continue to access domain-B.
A similar procedure happens when it later accesses domain-
A in EPT-2. Thereby, EPK gives an illusion that one thread
can access domains in multiple EPTs at the same time.

Two points are worth mentioning. First, EPK only converts
EPT violations to VEs within the shadow address space,
which has no interference on the VM’s original execution.
Second, different from getting access to domains in the same
EPT or a specific domain in other EPTs (fast path), getting
access to multiple domains in different EPTs requires the
kernel involvement (slow path).

C. System Components in Linux/ KVM

EPK’s prototype implementation on Linux/KVM mainly
consists of three components: a user library, a kernel module
in the guest OS (Linux), and a hypercall handler in the
hypervisor (KVM).

/* Allocate domain IDs with affinity */
int alloc_domains(int num, int dom_ids[]1);

/* Free domain IDs */
int free_domains(int num, int dom_ids[1);

/* Allocate a virtual memory range for a domain */
void *domain_mmap(int dom_id, void *addr, size_t len,
int prot, int flags);

/* Remove some mappings */
int domain_munmap(void *addr, size_t len);

/* Retrieve the access permission of a domain */
int domain_begin(int id, int prot);

/* Release the domain permission */
int domain_end(int id);

Fig. 3: The APIs provided by the user library of EPK.

Figure [3| lists the main library interfaces available to
applications. The first two interfaces simply invoke the
kernel module through ioctl to allocate and free domain
IDs. alloc_domains can get multiple domain IDs, and the
kernel module will try to return the domains that are located
in the same EPT. This is because some domains may
have affinities, i.e., they are likely to be traversed together.
Properly utilizing affinity in the applications can benefit the
performance. Although it is non-trivial in general, it can be
easy in many cases where locality is easy to achieve. For

example, in Section [[V-B| a simple locality-aware request
dispatching scheme can make Memcached embrace the
affinity benefits; in Section simply letting one thread
work on the warehouses within the same EPT can get the
affinity right.

domain_mmap first invokes mmap and then informs the
kernel module about the domain mapping information. The
kernel module records the information by using Linux’s
rbtree and validates domain page faults based on it. Huge
page mapping is also supported through setting the flag
argument. The last two interfaces are responsible for
switching memory domains and are purely implemented in
user mode except for accessing multiple domains in different
EPTs. It is also necessary to know the current EPT-ID in
user mode. For example, switching domains in the same
EPT requires no VMFUNC. EPK does this by reusing the
EPT-ID-Page During its initialization, the library asks the
kernel module to map the EPT-ID-Page as read-only into
the application. Besides, a domain memory allocator based
on [34] is also provided.

Since servicing invocations from applications and record-
ing the domain-related information, the kernel module
provides a routine that aids in handling domain page faults.
We insert a hook in the Linux page fault handler for invoking
this routine. When a page fault occurs, the page fault handler
still executes as before (e.g., allocates a free page) but
invokes this routine just before setting the GPA of the newly
allocated page in the page table entry. The routine then
checks whether the page fault occurred within the domain
regions and whether it was legal. If it is a legal domain
page fault, the routine updates the GPA by adding SHADOW
REGION OFFSET to it and invokes the hypercall to fill
the mapping for the updated GPA in the EPT (as described
in Section [[II-A). Finally, the routine returns and the page
fault handler sets the updated GPA in the page table entry.
Another simple hook is added to the OS schedule function
(i.e., __schedule). It saves/restores the EPT-ID for threads of
applications that use EPK. Specifically, it saves the current
EPT-ID in the thread’s task_struct when scheduling out
such a thread and restores the EPT-ID with VMFUNC (if
necessary) when scheduling in the thread. Moreover, we
add the VE handler for transparently supporting flexible
multi-domain access.

In KVM, besides enabling VE and VMFUNC, we extend
the hypercall handler to provide two additional functions
for the guest kernel module. The first is to map the EPT-
ID-Page, and the second is to add the EPT mapping for
the VM’s shadow address space. To support reclaiming the
pages mapped in the shadow address space, the hypervisor
needs to first disable VE on the pages to reclaim and record
the reclaim information When swapping back the pages,
the hypervisor needs to re-enable VE on the pages. Besides
these, the hypervisor can reclaim the pages as before. Yet,
this reclaiming mechanism is not supported in the current

implementation of EPK.

EPK only requires minor modifications on Linux/KVM.
Our prototype only adds 250 lines of code (LOC) in KVM,
13 LOC in guest OS, and 600 LOC in guest kernel module.

IV. Case Study: Protecting Server Applications

Native
EPK ——

VMFUNC ===
libmpk ——

IwC(sim)

1
0.8
0.6

0.4
0.2
0

Normalized Throughput

(a) NGINX. The X-axis is the data size of each request.

Native

EPK 3 VMFUNC === IwC(sim)

Throughput (x10,000 req/s)

60

40'
(b) Memcached SET operation. X-axis: the number of users.

Native = EPK ——= VMFUNC == IwC(sim)

Throughput (x10,000 req/s)

1 2 4 8 40 60 70

(c) Memcached GET operation. X-axis: the number of users.
Fig. 4: (a) shows the performance of protecting session keys
in NGINX web server. (b) and (c) show the performance of
isolating different users in Memcached.

Experiment Setup. All the experiments in this paper are
conducted on a Dell PowerEdge R640 server equipped with
Intel Xeon Gold 6138 CPU. Hyper-threading is disabled,
and the CPU frequency is fixed to 2.0GHz. In Section
[[V] and Section [V] we implement and evaluate EPK on
Linux/KVM-4.19.88 (both the guest OS and the hypervisor).
The experiments are conducted in a VM (20 CPUs and
80GB memory), and the loopback network is used.

Comparison Systems. Besides the native performance (run
benchmarks with no isolation in the VM), we compare
the performance of EPK with libmpk [38]], IwC [32]], and
a VMFUNC-only solution. We evaluate libmpk in single-
thread experiments since it does not support multi-threading
and in the host without explicit statements. Since IwC is
implemented on FreeBSD, we simulate its performance on
Linux. Specifically, we first measure its switch cost (around
6,000 cycles, which corresponds to the reported data in
Table 2 in [46] and Table 2 in [32]) and then add such

switch cost in the benchmarks (i.e., waiting for 6,000 cycles
when switching context is needed). Note that the simulated
performance will be better than the actual performance
because the indirect cost of switching address space is
ignored. We also implement a VMFUNC-only solution that
provides one memory domain in one EPT and leverages
VMFUNC for domain switches.

A. Micro-benchmarks

Domain Num 2 3 4 8 16 32 64

libmpk(128 pages) 183 184 184 186 12,991 13,148 13,048
VMFUNC 353 350 831 830 834 849 830
EPK 95 97 97 100 111 115 162

TABLE IV: The average cost (in cycles) of domain switches.

We leverage different solutions to create multiple memory
domains and evaluate the domain switching cost (shown in
Table [TV). The test program initially runs in domain-0 (not
counted in the domain number) and iterates (switch to and
then back) each created domain one by one. The number
of iterations is 100,000 and we measure the average cost.
libmpk’s switch cost gets much higher when the domain
number is above 15 (domain-0 takes one protection key).
Besides, its switch cost is severely influenced by the size of
protected memory. When each domain contains 128 pages,
its switch cost becomes more than 10,000 cycles if the
domain number exceeds 16, which is even 100x slower
than EPK. With the domain size increasing, its switch cost
will enlarge due to more page table updates during key
eviction, as shown in Table In contrast, the switch time
of the other two approaches is immune to the domain size.

The VMFUNC-only solution uses one EPT for domain-0,
and its switch cost is about 350 cycles which mainly comes
from two VMFUNC instructions when the domain number
is no more than 3 (the total EPT number is no more than
4). However, its cost increases to around 830 cycles when
the domain number exceeds 3. This is because TLB entries
are tagged with EPT base addresses, and the involvement
of more EPTs may decrease the TLB hit rate. Specifically,
accessing the same memory page in different EPTs generates
different TLB entries and then may exceed the capacity of
the corresponding TLB set. The obvious increase of the
TLB miss number reported by the Performance Monitoring
Unit (PMU) also confirms this reason. EPK shows the
lowest average switch cost since most switches are based
on WRPKRU. When the domain number is less than 16, it
outperforms libmpk because the latter one involves virtual
protection key management (although no key eviction).
When the domain number exceeds 60, the average cost
of EPK increases since there are more than 4 EPTs.

Yet, in the worst case, EPK needs both WRPKRU and
VMFUNC for switching to one domain, and takes around
860 cycles for traversing domains like the above.

B. Macro-benchmarks

NGINX. Introducing intra-process memory isolation to
server applications brings the potential to achieve higher
security or reliability. We first apply different solutions to a
widely-used web server, NGINX [9] v1.12.1, to evaluate the
performance overhead. We isolate SSL session keys in the
same way that [46] does (including preventing the abuse of
domain switching), except that we store per-client session
keys in different domains rather than in one domain. We
leverage ab [1] to generate the workload: 300 clients keep
sending file requests one by one. The server thread is fully
loaded. The total domain number is 300 and each domain
contains 5 memory pages.

Figure [4al shows the evaluation results. The throughput is
normalized because libmpk is implemented on Linux 4.14.2
and the native throughput differs on Linux 4.14.2 and 4.19.88
(EPK) (while KPTT is disabled on both, other mitigations on
CPU vulnerabilities are key factors). EPK imposes overhead
from 4.3% to 5.8% compared with native and outperforms
other solutions. The overhead of the VMFUNC-only solution
varies from 11.0% to 12.4%. Notice that the NGINX serving
thread handles client requests in order. Thus, most domain
switches in EPK need no EPT changing, making EPK
outperform the VMFUNC-only solution. When storing each
session key in an individual context created by IwC, the
overhead is 37.1% on average merely due to the explicit cost
of domain switches. The overhead incurred by libmpk ranges
from 14.5%-18.9% (23.4% to 33.2% if in the virtualization
environment) due to the involvement of page table modifying
and TLB flushing. In the cases of infrequent switching and
small domain size (5 pages), libmpk will not lead to too
much overhead.

Memcached. We evaluate Memcached [8]] 1.6.9 and use

libMemcached as the client library in this experiment.

Memcached is a well-known key-value store and usually runs
as a multi-thread server application. Arbiter [49] suggests
that it is preferred to isolate data from different clients in
Memcached for security-sensitive cases. Like Arbiter, we
enable Simple Authentication and Security Layer (the SASL
configuration) in Memcached and then isolate data stored
by different clients. Besides, we slightly modify the request
dispatching scheme of Memcached so that the requests from
one client are always dispatched to the same worker thread
for leveraging the domain affinity provided by EPK. The
worker thread switches to the client’s corresponding domain
before handling a request and exits that domain before
sending back the reply. We create a different number of
client threads, and each of them uses libMemcached for
sending SET/GET requests. The sizes of key and value are
32 bytes and 256 bytes, separately. There are four worker
threads (default configuration) on the server-side, and the
clients will be evenly partitioned to them. In this experiment,
the max domain number is 70 and each domain contains
about 2,000 memory pages.

Figure [4b] and ic| show the throughput of Memcached. As
before, IwC leads to the highest overhead due to its expensive
switch cost. When the client number is no more than 60,
EPK incurs at most 0.7% overhead on the throughput of
SET operations. The overhead on the throughput of GET
operations is slightly higher (up to 2.9%) because the GET
operations are lighter than the SET ones. The extremely low
overhead is because no EPT switches happen on the critical
path. EPK allows each worker thread to create 15 domains
in one EPT, and thus four worker threads can handle 60
clients (60 domains) without switching EPTs. When the
number of clients exceeds 60, the overhead of EPK becomes
larger because some worker threads need to handle requests
from more than 15 clients, and then EPT switches happen.

In contrast, the VMFUNC-only solution incurs a much
larger overhead, i.e., up to 17.9% and 34.0% overhead for
the throughput of GET and SET operations, separately. The
overhead mainly comes from TLB misses, as explained
in Section For validation, we further carry out two
experiments marked as VMFUNC-test-1 and VMFUNC-test-
2 in Table [Vl The former one is that the worker thread
switches to the target EPT and immediately switches back
before handling a request. So, all the requests are handled
in EPT-0. The latter one is that each worker thread always
switches to EPT-1 for handling requests. So, all the requests
are handled in EPT-1. Both of them show close-to-native
performance, and the TLB miss number is not significantly
enlarged. However, the VMFUNC-only solution causes many
more TLB misses and then leads to the highest overhead.
The overhead of TLB miss in NGINX is not obvious because
the worker thread of NGINX only switches to other EPTs
when accessing session keys while the worker thread of
Memcached executes most logic in different EPTs.

Throughput (x 10K req/s) dTLB/iTLB misses
Native 24.5 1/1

VMFUNC-test-1 24.4 1.1/24
VMFUNC-test-2 ~ 24.0 12724
VMFUNC 20.1 9.5/729.1

TABLE V: The throughput and TLB misses (normalized)
when evaluating Memcached SET operation with 60 clients.

Since libmpk does not support multi-thread, we evaluate
libmpk in Memcached with a single worker thread. When
there are 60 domains, the overhead of the above test exceeds
80%, which is significantly higher than that in NGINX
because each domain contains about 2,000 pages.

V. Case Study: Isolating NVM Data

To embrace the low access latency of NVM, applications
usually map NVM into the address space and access
it through load/store instructions. Bringing intra-process
memory isolation to protect NVM data (e.g., reducing the
data exposure time) has also been investigated by recent
work [57, 156]. In this section, we evaluate the benchmarks

Native mmmmm VMFUNC =—= Native s VMFUNC =—= EPK mmmrzm libmpk ==
EPK —— libmpk —= EPK —— : VMFUNC === |
1100 5.5 1260
& 5 T 1200 | BB
D 900 -] » 45 5 28
B 700 - M g 4 :g o4l direct ===z
S = 35 g - indirect BT
¥ 500 | < 3 g 2
5 0 a 25 o 16
3 300 £ 72 3 12}
g 12f ” II ” g 151 e 08
o r o =
E 4 -| = 05 ’_Iﬂrl = 0.4 - B3
g 4 I 5 [I |
4 16 64 128 1 2 4 8 4 8 16 64 128
Number of Domains Number of Threads Number of Domains
(a) B+-tree test-1. (b) B+-tree test-2. (c) B+-tree test-3.
Native s VMFUNC ==
i Native mmmmm VMFUNC ==
EPK — libmpk —= TR
5 ® VMFUNC g ol
< = 25| —A— libmpk = s
=] © - L
a 5.0 A, 2
5 5 S, = g 4l
=] > ‘“ =)
o 6254 3
= -| golo—e—o—a g g o . £ 05F
£0. T T T . = o—0
0
15 16 20 32 16K 64K 256K 1M 4M 16M 64M 128M 256M p 6 12 16 20

Number of Domains
(d) Linked List test.

similar to [57, 156] and other NVM studies [33} 23], using
DRAM as NVM.

A. Data Structure Benchmarks

We first experiment on B+-tree. We map each B+-tree in
an individual domain and create different numbers of threads
to do lookup or insert operations (the ratio is 1:1 and other
ratios show similar performance trends). Domain switches
occur before and after an operation. Each tree initially has
500,000 key-value pairs, and each tree node has up to 32
child nodes. In this experiment, the max domain number is
128 and the size of each domain is about 128MB.

Figure [5a shows the throughput when a single thread op-
erates on a randomly selected tree (i.e., randomly switching
to a domain). If the domain number is less than 16, EPK and
libmpk bring about 6.8% and 14% overhead, individually.
When the domain number exceeds 15, libmpk introduces
unacceptable overhead (99.8%) due to the substantial cost
of key eviction (as the domain size is not small), and
EPK can outperform it by two orders of magnitude. Note
that the kernel version has minor effects on the native
performance since this benchmark rarely issues system calls.
The VMFUNC-only solution incurs 27% overhead when the
domain number is 4. Compared to EPK, its higher overhead
comes from two sources: one is VMFUNC is slower than
WRPKRU; the other is more TLB misses (its dTLB and
iTLB misses are 1.34x and 3.34x of EPK’s, respectively).
When the domain number increases to 64 and 128, EPK’s
overhead also increases to 32% and 44% because more EPTs

Memory Size per Domain

(e) Hashtable test.

Number of Domains per Thread

(f) TATP benchmark.

Fig. 5: B+-tree (a) Single-thread and random access, (b) Multi-thread and each thread operates on 15 domains, (c¢) Time
breakdown when single-thread and sequential access. (d) Linked List (low switch frequency). (e) Hashtable benchmark
(different domain memory size). (f) TATP benchmark.

and EPT switches are required. Specifically, when there are
64 domains, 78% of domain switches in EPK involve EPT
switches. If accessing different domains sequentially instead
of randomly, EPK’s overhead is below 10% (3% for huge
page) when the domain number is no over 60.

Figure [5b] shows the performance when there are multiple
threads and each thread accesses 15 different domains. EPK’s
overhead remains below 5% as the thread number increases,
which is significantly lower than that of the VMFUNC-only
solution (41% to 51%).

We further analyze the overhead of the three approaches
in terms of the time cost (the part that exceeds the native
time): the switching time (direct cost) and the rest time
overhead incurred by the pollution on CPU internal structures
including TLBs and caches (indirect cost). The experiment is
one thread operates on the tree in each domain sequentially
to complete a fixed amount of operations. Figure [Sc| presents
the breakdown. The VMFUNC-only solution brings about
1.2x time overhead when the domain number exceeds 8. Its
indirect cost remains around 0.8 x because the TLB miss
rate is almost stable. The page table updating operations
of libmpk leads to both high direct cost and indirect cost
(not only incurs TLB misses but also leads to intensive
cacheline pollution). EPK causes 0.23x (0.13x for huge
page) indirect cost when there are 64 domains due to more
than 4 EPTs, which is still better than others, and causes
much lower cost for fewer domains.

The overhead of IwC in the above benchmarks is always

around 80% because one B+-tree operation takes just about
2,100 cycles. Besides, the simulated overhead of 1wC is
always higher than the VMFUNC-only solution in the

following benchmarks, so we omit its results for simplicity.

Note that the domain switch frequency is proportional
to the throughput in the presented benchmarks. We also
conduct an experiment on Linked List (Figure [5d): each
list is separated into one domain, and one thread performs
10 operations (search, insert, delete) in a random list for
each time. The switch frequency is less than 1,400 times per
second. libmpk still introduces 65.1% performance overhead

when there are 32 domains and each domain is 256 MB.

The other two approaches cause unnoticeable overhead.
Last, Figure @ shows the overhead (in terms of the time

cost) of different approaches as the domain size increases.

In this experiment, each hash table resides in one domain
(32 domains), and one thread keeps performing an operation
(search or insert) in one random domain. We gradually
increase the domain size by adding more buckets/key-value
pairs in each hash table. The overhead of libmpk increases as
the domain size grows, as expected, whereas the overhead of
EPK and the VMFUNC-only solution decreases because the

native performance decreases when more memory involves.

Specifically, when each domain is 256 MB, the overhead of
the latter two are 1.3% and 4.7%, respectively.

Virtualization Cost. Virtualization brings performance
overhead to applications, especially when the working set is
large and TLB misses are frequent. For example, when each
domain in hash table is configured with 16KB or 128MB
memory, the overhead caused by virtualization are 2.1%
and 9.0%, respectively. When a VM application uses EPK,
the virtualization cost is not accounted on EPK. Otherwise
(in bare metal), the virtualization cost should be included
in the overhead of EPK. Nevertheless, a thin virtualization
layer instead of a full-fledged hypervisor can minimize the
virtualization cost [22]].

B. OLTP Benchmarks

TATP [43] is an online transaction processing (OLTP)
benchmark. In the experiment, we use the above B+-tree
as the data store and create four threads to keep executing
transactions (three read-only and three read-write ones). We
store a fixed amount of initial data in different domains, and
each thread switches to the corresponding domain before
executing one transaction. The max domain number is 80
and the size of each domain is 512MB. Figure [5f| presents the
throughput as the domain number for each thread increases
from 1 to 20. The native throughput is in a decreasing
trend along with the increase of domain number because
more data weakens the cache locality. EPK’s overhead is
within 7%, while the VMFUNC-only solution incurs up to

32% overhead. We also run single-thread TATP with libmpk.

Similar to B+-tree test-1, the overhead of libmpk is over
99% when the domain number exceeds 15.

TPC-C [18] is another OLTP benchmark in which there
are multiple warehouses. We isolate different warehouses as
well as their associated data in different domains. The max
domain number is 128 and the size of each domain is 400MB.
According to its specification, 7.2% of the transactions
update multiple warehouses simultaneously. There are also
four threads executing the transactions. When each thread
operates on less than 16 domains, EPK achieves almost
the same throughput as the native (0.6% overhead). The
overhead is lower than that in TATP because the transactions
in TPC-C are more heavyweight. When each thread operates
on 32 domains, the overhead of EPK becomes 3.2% as VEs
are triggered for supporting transparent multi-domain access.
The other approaches are infeasible in this experiment due
to the lack of the support of multi-domain access.

VI. Case Study: Boosting IPCs in Microkernels
A. HyBridge

Different from monolithic OSes which run all the OS
modules in the kernel-level, microkernels leave minimal
functionalities in the kernel while running all other OS
modules (referred to as system servers below) such as file
systems, network stacks, and device drivers into separated
user-level processes. Inherently, microkernels embrace better
security and fault isolation, but leads to non-negligible
communication cost at runtime. Specifically, since system
servers are user-level processes, the interactions between two
servers or between an application and a server require inter-
process communication (IPC). In contrast, on monolithic
OSes (e.g., Linux), the interaction between two OS modules
only requires function calls, and the interaction between
applications and the OS can be as fast as about 150 cycles
(syscall and sysret). As a result, there has been a long line of
research to reduce the cost of IPC to bridge the performance
gap between microkernels and monolithic OSes.

User| APP | |Server0| |Server1| | APP |
A

—>| ServerQ |—>| Server1 |

Fig. 6: Traditional IPC flow on microkernels is shown on
the left, and IPC with UnderBridge is shown on the right.

A most recent IPC design called UnderBridge [22] retrofits
Intel MPK to optimize (synchronous) IPC. For reducing the
cost of IPC between an application and a server, it pulls
system servers from user-level processes into the kernel
address space as shown in Figure [6] Besides, it leverages
Intel MPK to ensure the isolation between system servers
in the kernel, and the IPCs between them are based on
WRPKRU and thus greatly optimized. However, due to the
limitation of MPK memory domains, it can only run limited
system servers in the kernel and accelerate IPCs to them
(issue-1). Also, although it can reduce the privilege switches
during IPCs between applications and servers, the page table

Kernel| |

switches are still needed because it requires a separate kernel
page table (issue-2).

Since EPK can construct even thousands of isolated
memory domains efficiently and enable fast domain switch
at user-level, we propose EPK-based HyBridge for boosting
IPCs for microkernels, which is inspired by UnderBridge
while fixing the two issues of UnderBridge. As shown in
Figure [/] system servers run at user-level, and each one
exclusively takes one or more memory domain for holding
its own memory, including code, data, stack, and heap. Thus,
one system server cannot access others’ private memory,
just like when they are isolated in different processes while
IPCs are based on domain switches.

Cross-server IPC. The cross-server IPCs only happen
between system servers that need to interact with each other.
For example, a file system communicates with a disk driver
while a network stack does not. This also matches the domain
affinity provided in EPK. Therefore, the microkernel can
run the related system servers in the same EPT. When two
servers establish an IPC connection, the microkernel will
map an IPC gate, i.e., a piece of code, for them. During
an IPC invocation, the gate will transfer the control flow
from the caller to the callee. Specifically, it saves the caller’s
execution states, then executes WRPKRU to switch to the
callee’s domain, and restores the callee’s execution states.
Similarly, it does the reverse procedure when the IPC returns.
HyBridge also allows two servers to share memory for
exchanging data by assigning a free memory domain to
them, e.g., shared memory domain 4 in Figure

EPT-0 EPT-1 EPT-n
APP Server0| |Server1| [Server2
dom: 1 dom: 2 dom: 3 Other
shm: 4 shm: 4 shm: -
Servers
Trampo-
line | Servers Trampoline |

Microkernel

Fig. 7: The overview of HyBridge. The numbers after colons
are memory domain IDs. Shared memory is short as shm.

Application-to-server IPC. Applications execute in dif-
ferent processes (in EPT-0) just like before while several
system servers can run in one process (across one or more
EPTs), which means each application has a unique guest CR3
(GPA) while multiple servers share one. Since an application
and a server run in different EPTSs, the IPCs between them
need EPT switching. HyBridge attaches a trampoline in the
EPTs for running servers and maps the trampoline into an
application when it asks for establishing an IPC connection
with some server. The trampoline plays the role of the IPC
gate and uses VMFUNC to switch between the caller and
the callee. Though VMFUNC can directly switch EPT, it
does not change guest CR3. However, for an application-to-
server IPC, the caller and callee use different CR3 (CR3-

App and CR3-Server). So, besides mapping the trampoline,
HyBridge also maps CR3-App (GPA) to the HPA of CR3-
Server in the server’s EPT during the IPC establishment. In
this way, the HPA mapping for the guest CR3 is transparently
changed after executing VMFUNC, i.e., the guest page table
is switched from the application to the server. When an
application invokes an IPC, the trampoline saves the caller’s
execution states (executes in EPT-0), executes VMFUNC
(switches the EPT), and restores the callee’s execution states
(executes in server’s EPT).

Security Enforcement. Besides memory isolation, Hy-
Bridge employs additional security mechanisms to achieve
the same security guarantee as original microkernels. Com-
pared with original IPC designs, HyBridge makes an un-
trusted system server have two more potential attack vectors.
One is that a server may bypass the memory isolation by
maliciously executing WRPKRU or VMFUNC and then
access others’ memory. The other is that a server may issue
arbitrary IPCs to other servers by maliciously executing the
trampoline code without the corresponding capabilities.

HyBridge eliminates the two attack vectors as follows.
First, it utilizes binary scanning and rewriting to ensure that
each server contains no WRPKRU or VMFUNC instructions
during binary loading. Meanwhile, it adds sanity checks in
the IPC gates for ensuring the argument of WRPKRU is legal,
which is similar as [46]. So, a compromised or malicious
server cannot illegally execute these two instructions to
retrieve unauthorized memory permissions even with return-
oriented programming (ROP). Second, HyBridge uses a
token-based mechanism to authenticate IPC invocations
as [37] does. Considering control flow hijacking, trampolines
can be executed arbitrarily or it is even possible to jump into
the middle of the trampoline, i.e., using VMFUNC to switch
to any EPT. Although they cannot be misused to break the
memory isolation, an untrusted server may issue arbitrary
IPCs by invoking them. To prevent this, HyBridge lets a
server generate a random 64-bit token for a registered client
(another server or an application) when building the IPC
connection, and a client needs to pass the token during IPCs
for authentication. The server only serves the IPC requests
with legal tokens, so the problem of arbitrary IPCs can be
avoided. Moreover, HyBridge also prevents the occurrence
of VMFUNC in applications by scanning and rewriting the
binary code. Thus, an application can only switch to system
servers through the mapped trampoline.

B. Experiments

We implement HyBridge on three well-known microker-
nels, Zircon [4], seL4 [10], and Fiasco.OC [3]], to assess
its effectiveness. Besides, we also compare it with Sky-
Bridge [37] which runs system servers in different EPTs
and implements kernel-bypass IPCs based on VMFUNC,
and UnderBridge [22]]. We deploy the thin virtualization
layer from SkyBridge while applying extensions needed by

Native w/o KPT| s
Zircon-SkyBridge zzzzm
Zircon-UnderBridge ©=—=<3

Zircon-HyBridge ———
Monolithic ——
Monolithic w/o KPTI ——

N
S

Native w/ KPT| ez
Native w/o KPTI
sel4-SkyBridge zza

selL4-UnderBridge =<3

Native w/ KPTI ez

Native w/o KPT| s
Fiasco.OC-SkyBridge zzza
Fiasco.OC-UnderBridge =—~=3

Fiasco.0C-HyBridge ——=
Monolithic ——
Monolithic w/o KPTI ——

selL4-HyBridge ———
Monolithic ———
Monolithic w/o KPTI ——

o

o
T

Throughput (Normalized)
>

il

update

Throughput (Normalized)

o - N w & a
T

o

insert

(a) Zircon.

three IPC designs. We evaluate the performance of SQLite3
v3.23.0 [[L1], a database application, after applying different
IPC mechanisms on different microkernels. For severing
SQLite3, we run two system servers, a file system named
xvofs [16] and a RAMdisk. When SQLite3 operates a storage
file, it will first invoke the xv6fs server by an application-
to-server IPC; then, the xv6fs will access RAMdisk through
cross-server IPCs. We also simulate the performance of a
monolithic kernel by running system servers in the kernel
and connecting them with function calls.

Figure [8a] [8b] and [8c| present the normalized throughput
on the three microkernels. The native performance of each
microkernel is set as the baseline. Because Zircon has the
slowest native IPC among the three microkernels since it
includes scheduling overhead in IPCs, HyBridge can provide
the highest speedup for it, i.e., more than 9x speedup for
three database operations. The performance improvement
of query operations is relatively small because SQLite3 has
an internal cache of recent data and may handle the queries
without issuing IPC requests. For seL4 which optimizes IPC
performance extensively, HyBridge can also improve the
throughput (except query) to more than 2.5x of the native.

Besides, HyBridge can outperform SkyBridge by up
to 66% because most IPCs issued from SQLite3 to
xv6fs involve multiple cross-server IPCs between xvo6fs
and RAMdisk, whereas the cross-server IPCs are more
lightweight in HyBridge. Specifically, an cross-server IPC
takes 110 and 437 CPU cycles in HyBridge (WRPKRU-
based) and SkyBridge (VMFUNC-based), respectively. In
this benchmark, HyBridge only shows slightly higher perfor-
mance than UnderBridge since cross-server IPCs dominate,
while it has more advantage over UnderBridge in the
application-to-server IPC (527 vs. 723 CPU cycles) owing
to no CR3 changing.

VII. Other Related Work

Many studies [27, IS8, 48| 142, [19, 36l [15] leverage
instruction instrumenting to achieve memory isolation,
which may incur non-trivial overhead. Many other stud-
ies [25} 1350132} 127, |39]] utilize the memory management unit
(MMU) to check memory accesses efficiently. Specifically,
they divide a process into different compartments and assign
each one an individual (extended) page table. However,

update

(b) selL4.

on s o ® O N
T

Throughput (Normalized)

query

(c) Fiasco.OC.
Fig. 8: Normalized throughput of SQLite3 on different microkernels. KPTI is short for kernel-page-table-isolation.

switching between compartments requires (extended) page
table switching, which can be costly when the cross-boundary
invocation is frequent. Twizzler [14] is a pioneer data-
centric OS for NVM and uses EPT/VMFUNC to create
different memory domains for NVM isolation. Differently,
EPK focuses on solving the challenges of combining MPK
and EPT/VMFUNC and outperforms a VMFUNC-only
solution. Besides, recent work [51) |28|] harnesses hardware
features like Supervisor-Mode Access Prevention (SMAP)
or underused intermediate privilege levels (Ringl and Ring2
on x86) to achieve efficient intra-process memory isolation.
Yet, they can only provide two isolated memory domains.
Prior work [21} 154} 152} 47]] also proposes architecture
designs to facilitate efficient intra-process memory isolation,
which, however, is not achievable on commodity machines.
PLB [53] proposes architecture changes which differs from
Intel MPK for supporting scalable domains but requires
virtual-indexed cache which may cause performance issues.
Besides Intel, both ARM (ARMv7) and AMD propose
similar feature of memory domains and faces the same
scalability problem of the domain number. The basic idea of
EPK is feasible to be extended to them as they also support
2-stage address translation. Yet, for efficiency, hardware-
assisted fast switching (currently commercially unavailable)
of stage-2 page table is needed on the two architectures.
An orthogonal study [17] shows that some system calls
can be used to break the MPK isolation, so the OS may need
to be aware of MPK in the future or the applications needs to
incorporate other mechanisms like system call filtering [12].

VIII. Summary

This paper presents EPK which first combines the usage
of MPK and hardware virtualization features to achieve
scalable and efficient intra-process memory isolation. The
case studies demonstrate various potential usages of EPK.

IX. Acknowledgement

We sincerely thank the anonymous shepherd and reviewers
for their insightful suggestions. This work is supported in
part by China National Natural Science Foundation (No.
61925206 and No.U19A2060), Huawei, and STCSM (No.
21511101502). Yubin Xia is the corresponding author.

References

[1] |https://httpd.apache.org/docs/2.4/programs/ab.html.

[2] The 20 best linux apps ever. https://helpdeskgeek.com/
linux-tips/the-20-best-linux-apps-ever/.

[3] Fiasco.oc repository. https://14re.org/download/
snapshots/.

[4] Fuchsia repository. |https://fuchsia.dev/fuchsia-src/
development/source_code!

[5] The heartbleed bug. https://heartbleed.com/.

[6] Intel optane technology. https://www.intel.com/
content/www/us/en/architecture-and-technology/
intel-optane-technology.html.

[7] Intel software developer’s manual. https:
/Isoftware.intel.com/sites/default/files/managed/
39/c5/325462-sdm-vol- 1-2abcd-3abed.pdf.

[8] Memcached. https://www.memcached.org.

[9] Nginx. https://nginx.org,

[10] sel4 repository. https://github.com/sel.4/selL4.

[11] Sqlite. https://www.sqlite.org/index.html.

[12] Jenny: Securing syscalls for PKU-based memory iso-
lation systems. In 31st USENIX Security Sympo-
sium (USENIX Security 22), Boston, MA, Aug. 2022.
USENIX Association.

[13] A. Ahmad, S. Lee, P. Fonseca, and B. Lee. Kard:
Lightweight data race detection with per-thread mem-
ory protection. In Proceedings of the 26th ACM
International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS 2021, page 647-660, New York, NY, USA,
2021. Association for Computing Machinery.

[14] D. Bittman, P. Alvaro, P. Mehra, D. D. E. Long, and
E. L. Miller. Twizzler: a data-centric os for non-
volatile memory. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), pages 65-80. USENIX
Association, July 2020.

[15] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akri-
tidis, A. Donnelly, P. Barham, and R. Black. Fast byte-
granularity software fault isolation. In Proceedings
of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, SOSP 09, page 45-58, New York,
NY, USA, 2009. Association for Computing Machinery.

[16] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F.
Kaashoek, and N. Zeldovich. Using crash hoare logic
for certifying the fscq file system. In Proceedings of
the 25th Symposium on Operating Systems Principles,
SOSP 15, page 18-37, New York, NY, USA, 2015.
Association for Computing Machinery.

[17] R. J. Connor, T. McDaniel, J. M. Smith, and
M. Schuchard. Pku pitfalls: Attacks on pku-based
memory isolation systems. In 29th USENIX Security
Symposium (USENIX Security 20), pages 1409-1426.
USENIX Association, Aug. 2020.

[18] T. P. P. Council.
Benchmark C.

[19] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and
G. C. Necula. Xfi: Software guards for system address
spaces. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation, OSDI
"06, pages 75-88, Berkeley, CA, USA, 2006. USENIX
Association.

[20] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back,
and S. Clawson. Microkernels meet recursive virtual
machines. In Proceedings of the Second USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI ’96, pages 137-151, New York, NY,
USA, 1996. ACM.

[21] T. Frassetto, P. Jauernig, C. Liebchen, and A.-R.
Sadeghi. IMIX: In-process memory isolation extension.
In 27th USENIX Security Symposium (USENIX Security
18), pages 83-97, Baltimore, MD, Aug. 2018. USENIX
Association.

[22] J. Gu, X. Wu, W. Li, N. Liu, Z. Mi, Y. Xia, and
H. Chen. Harmonizing performance and isolation in
microkernels with efficient intra-kernel isolation and
communication. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), pages 401-417, July
2020.

[23] J. Gu, Q. Yu, X. Wang, Z. Wang, B. Zang, H. Guan, and
H. Chen. Pisces: A scalable and efficient persistent
transactional memory. In Proceedings of the 2019
USENIX Conference on Usenix Annual Technical
Conference, USENIX ATC ’19, page 913-928, USA,
2019. USENIX Association.

[24] M. Hedayati, S. Gravani, E. Johnson, J. Criswell, M. L.
Scott, K. Shen, and M. Marty. Hodor: Intra-process
isolation for high-throughput data plane libraries. In
Proceedings of the 2019 USENIX Conference on Usenix
Annual Technical Conference, USENIX ATC ’19, pages
489-503, Berkeley, CA, USA, 2019. USENIX Associ-
ation.

[25] T. C.-H. Hsu, K. Hoffman, P. Eugster, and M. Payer. En-
forcing least privilege memory views for multithreaded
applications. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’16, page 393405, New York, NY, USA, 2016.
Association for Computing Machinery.

[26] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and
S. Winwood. seld4: Formal verification of an os kernel.
In Proceedings of the ACM SIGOPS 22Nd Symposium
on Operating Systems Principles, SOSP ’09, pages
207-220, New York, NY, USA, 2009. ACM.

[27] K. Koning, X. Chen, H. Bos, C. Giuffrida, and
E. Athanasopoulos. No need to hide: Protecting safe

http://www.tpc.org/tpcc/. TPC

https://httpd.apache.org/docs/2.4/programs/ab.html
https://helpdeskgeek.com/linux-tips/the-20-best-linux-apps-ever/
https://helpdeskgeek.com/linux-tips/the-20-best-linux-apps-ever/
https://l4re.org/download/snapshots/
https://l4re.org/download/snapshots/
https://fuchsia.dev/fuchsia-src/development/source_code
https://fuchsia.dev/fuchsia-src/development/source_code
https://heartbleed.com/
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://www.memcached.org
https://nginx.org
https://github.com/seL4/seL4
https://www.sqlite.org/index.html

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

regions on commodity hardware. In Proceedings of the
Twelfth European Conference on Computer Systems,
EuroSys ’17, pages 437-452, New York, NY, USA,
2017. ACM.

H. Lee, C. Song, and B. B. Kang. Lord of the x86 rings:
A portable user mode privilege separation architecture
on x86. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’18, pages 1441-1454, New York, NY, USA, 2018.
ACM.

H. Lefeuvre, V.-A. Bidoiu, c. Teodorescu, P. Olivier,
T. Mosnoi, R. Deaconescu, F. Huici, and C. Raiciu.
Flexos: Making os isolation flexible. In Proceedings
of the Workshop on Hot Topics in Operating Systems,
HotOS °21, page 79-87, New York, NY, USA, 2021.
Association for Computing Machinery.

J. Liedtke. Improving ipc by kernel design. In
Proceedings of the Fourteenth ACM Symposium on
Operating Systems Principles, SOSP "93, pages 175—
188, New York, NY, USA, 1993. ACM.

J. Liedtke. A persistent system in real use - experiences
of the first 13 years. pages 2 — 11, 01 1994.

J. Litton, A. Vahldiek-Oberwagner, E. Elnikety, D. Garg,
B. Bhattacharjee, and P. Druschel. Light-weight
contexts: An os abstraction for safety and performance.
In Proceedings of the 12th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI’ 16,
pages 49-64, Berkeley, CA, USA, 2016. USENIX
Association.

M. Liu, M. Zhang, K. Chen, X. Qian, Y. Wu, W. Zheng,
and J. Ren. Dudetm: Building durable transactions
with decoupling for persistent memory. In Proceedings
of the Twenty-Second International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS °17, page 329-343, New
York, NY, USA, 2017. Association for Computing
Machinery.

R. Liu and H. Chen. Ssmalloc: a low-latency, locality-
conscious memory allocator with stable performance
scalability. In Proceedings of the Asia-Pacific Workshop
on Systems, pages 1-6, 2012.

Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia.
Thwarting memory disclosure with efficient hypervisor-
enforced intra-domain isolation. In Proceedings of
the 22Nd ACM SIGSAC Conference on Computer and
Communications Security, CCS ’15, pages 1607-1619,
New York, NY, USA, 2015. ACM.

S. McCamant and G. Morrisett. Evaluating sfi for a
cisc architecture. In Proceedings of the 15th Confer-
ence on USENIX Security Symposium - Volume 15,
USENIX-SS’06, Berkeley, CA, USA, 2006. USENIX
Association.

Z. Mi, D. Li, Z. Yang, X. Wang, and H. Chen. Sky-

(38]

[39]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

bridge: Fast and secure inter-process communication
for microkernels. In Proceedings of the Fourteenth
EuroSys Conference 2019, EuroSys ’19, pages 9:1-9:15,
New York, NY, USA, 2019. ACM.

S. Park, S. Lee, W. Xu, H. Moon, and T. Kim. Libmpk:
Software abstraction for intel memory protection keys
(intel mpk). In Proceedings of the 2019 USENIX
Conference on Usenix Annual Technical Conference,
USENIX ATC ’19, pages 241-254, Berkeley, CA, USA,
2019. USENIX Association.

S. Proskurin, M. Momeu, S. Ghavamnia, V. P. Kemerlis,
and M. Polychronakis. xmp: Selective memory protec-
tion for kernel and user space. In Proceedings of 41st
IEEE Symposium on Security and Privacy, S&P 20,
2020.

V. A. Sartakov, L. Vilanova, and P. Pietzuch. Cubi-
cleos: A library os with software componentisation for
practical isolation. In Proceedings of the 26th ACM
International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS 2021, page 546-558, New York, NY, USA,
2021. Association for Computing Machinery.

D. Schrammel, S. Weiser, S. Steinegger, M. Schwarzl,
M. Schwarz, S. Mangard, and D. Gruss. Donky:
Domain keys — efficient in-process isolation for risc-
v and x86. In 29th USENIX Security Symposium
(USENIX Security 20), pages 1677-1694. USENIX
Association, Aug. 2020.

D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko,
K. Schimpf, B. Yee, and B. Chen. Adapting software
fault isolation to contemporary cpu architectures. In
Proceedings of the 19th USENIX Conference on Secu-
rity, USENIX Security’ 10, pages 1-1, Berkeley, CA,
USA, 2010. USENIX Association.

N. Simo, W. Antoni, m. Markku, and R. Vilho.
http://tatpbenchmark.sourceforge.net/. Telecom Appli-
cation Transaction Processing Benchmark.

M. Sung, P. Olivier, S. Lankes, and B. Ravindran. Intra-
unikernel isolation with intel memory protection keys.
In Proceedings of the 16th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Envi-
ronments, pages 143-156, 2020.

D. Tsafrir. The context-switch overhead inflicted by
hardware interrupts (and the enigma of do-nothing
loops). In Experimental Computer Science on Experi-
mental Computer Science, ecs’07, pages 3-3, Berkeley,
CA, USA, 2007. USENIX Association.

A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte,
M. Sammler, P. Druschel, and D. Garg. Erim: Se-
cure, efficient in-process isolation with protection keys
(mpk). In Proceedings of the 28th USENIX Conference
on Security Symposium, SEC’19, pages 1221-1238,
Berkeley, CA, USA, 2019. USENIX Association.

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

L. Vilanova, M. Ben-Yehuda, N. Navarro, Y. Etsion, and
M. Valero. Codoms: Protecting software with code-
centric memory domains. In 20714 ACM/IEEE 41st
International Symposium on Computer Architecture
(ISCA), pages 469-480. IEEE, 2014.

R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.
Efficient software-based fault isolation. In Proceedings
of the Fourteenth ACM Symposium on Operating
Systems Principles, SOSP 93, pages 203-216, New
York, NY, USA, 1993. ACM.

J. Wang, X. Xiong, and P. Liu. Between mutual
trust and mutual distrust: Practical fine-grained priv-
ilege separation in multithreaded applications. In
Proceedings of the 2015 USENIX Conference on Usenix
Annual Technical Conference, USENIX ATC 15, page
361-373, USA, 2015. USENIX Association.

X. Wang, S. Yeoh, P. Olivier, and B. Ravindran. Secure
and efficient in-process monitor (and library) protection
with intel mpk. In Proceedings of the 13th European
Workshop on Systems Security, EuroSec ’20, page 7-12,
New York, NY, USA, 2020. Association for Computing
Machinery.

Z. Wang, C. Wu, M. Xie, Y. Zhang, K. Lu, X. Zhang,
Y. Lai, Y. Kang, and M. Yang. Seimi: Efficient and
secure smap-enabled intra-process memory isolation.
ieee symposium on security and privacy, 2020.

R. N. M. Watson, R. M. Norton, J. Woodruff, S. W.
Moore, P. G. Neumann, J. Anderson, D. Chisnall,
B. Davis, B. Laurie, M. Roe, N. H. Dave, K. Gudka,
A. Joannou, A. T. Markettos, E. Maste, S. J. Murdoch,
C. Rothwell, S. D. Son, and M. Vadera. Fast protection-
domain crossing in the cheri capability-system archi-
tecture. IEEE Micro, 36(5):38-49, Sept. 2016.

J. Wilkes and B. Sears. A comparison of protection
lookaside buffers and the PA-RISC protection architec-
ture. In Technical Report HPL-92-55. Hewlett-Packard
Laboratories, Mar. 1992.

E. Witchel, J. Cates, and K. Asanovi¢. Mondrian
memory protection. In Proceedings of the 10th
International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS X, pages 304-316, New York, NY, USA, 2002.
ACM.

M. Wu, Z. Zhao, Y. Yang, H. Li, H. Chen, B. Zang,
H. Guan, S. Li, C. Lu, and T. Zhang. Platinum:
A cpu-efficient concurrent garbage collector for tail-
reduction of interactive services. In 2020 USENIX
Annual Technical Conference (USENIX ATC 20), pages
159-172. USENIX Association, July 2020.

Y. Xu, Y. Solihin, and X. Shen. Merr: Improving
security of persistent memory objects via efficient
memory exposure reduction and randomization. In Pro-
ceedings of the Twenty-Fifth International Conference

[57]

(58]

on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’20, page 987-1000,
New York, NY, USA, 2020. Association for Computing
Machinery.

Y. Xu, C. Ye, Y. Solihin, and X. Shen. Hardware-
based domain virtualization for intra-process isolation
of persistent memory objects. In 2020 ACM/IEEE
47th Annual International Symposium on Computer
Architecture (ISCA), pages 680-692. IEEE, 2020.

B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,
T. Ormandy, S. Okasaka, N. Narula, and N. Fullagar.
Native client: A sandbox for portable, untrusted x86
native code. In Proceedings of the 2009 30th IEEE
Symposium on Security and Privacy, SP 09, pages
79-93, Washington, DC, USA, 2009. IEEE Computer
Society.

	Introduction
	Background and Motivation
	Hardware Background
	Motivation

	The EPK Mechanism
	Extended Page Table Management
	Multi-Domain Access Support
	System Components in Linux/KVM

	Case Study: Protecting Server Applications
	Micro-benchmarks
	Macro-benchmarks

	Case Study: Isolating NVM Data
	Data Structure Benchmarks
	OLTP Benchmarks

	Case Study: Boosting IPCs in Microkernels
	HyBridge
	Experiments

	Other Related Work
	Summary
	Acknowledgement

