
/ 27

Deconstructing Xen
Lei Shi, Yuming Wu, Yubin Xia, Nathan Dautenhahn, Haibo Chen, Binyu Zang,

Haibing Guan, Jinming Li

Shanghai Jiao Tong University, University of Pennsylvania, Huawei Inc.

N
D

S
S

’1
7

/ 27

Hypervisors have Bugs

2

0

50

100

150

200

250

2011 2012 2013 2014 2015 2016 2017

•  Xen is used by Amazon EC2

•  Xen’s CVE is growing
210 XSA (Xen Security Advisories)

Xen’s LoC is growing from
45K (v2.0) to 270K (v4.0)

•  KVM also has 100+ CVEs
Data from https://xenbits.xen.org/xsa/

/ 27

Analyze 201 of Xen’s Vulnerabilities (XSA)

3

•  10 are ignored
7 numbers are not used

XSA-161 was withdrawn

XSA-99 is irrelevant

XSA-166 is too vague

•  144 are in the hypervisor

E.g., Host DoS, privilege
escalation, etc.

Use hypervisor to attack VM

47 10 144 (75% of 191)

•  47 are not in hypervisor
Some are in Domain-0

Some are in Qemu

191

Focus on this part

/ 27

3 Dimensions to Categorize (144 Hypervisor
bugs)

4

Hypervisor Hypervisor Hypervisor

Attack targets

Memory management: 25.7%
CPU virtualization: 21.5%
Code emulation: 13.2%
...

Key steps of attack

Memory corruption: 45.1%
Misuse of hardware: 22.2%
Live lock: 8.3%
...

Results of attack

Host DoS: 61.8%
Privilege escalation: 15.3%
Info leak: 13.9%
...

Which component to attack? How to attack? Attack for what?

/ 27

1. Xen Components with Bugs

5 0.00%	 5.00%	 10.00%	 15.00%	 20.00%	 25.00%	 30.00%	

Others
Scheduler

XSM
Event channel

Domain building
Domain control

Global
Grant table

Exception handling
I/O

Code emulation
CPU virtualization

Memory management

•  Components with bugs
25.69%: Memory management

21.53%: CPU virtualization

13.19%: Code emulation

•  Observations:
Some components are more
attractive to attackers

Memory management is critical
and hard to get right

25.69
% 21.53

% 13.19
%

/ 27

2. The Types of Key Step of Attack

6 0%	 5%	 10%	 15%	 20%	 25%	 30%	 35%	 40%	 45%	 50%	

Dead lock

Run out of resource

General fault

False BUG_ON

Infinite loop

Live lock

Misuse of hardware

Memory curruption

•  Memory corruption: 45.14%
Illegal memory read

E.g., out-of-boundary

Illegal memory write
E.g., write to an invalid pointer

45.1
%

22.2
%

/ 27

3. The Consequences of Attack

7
0%	 20%	 40%	 60%	 80%	

Privilege escalation (to
guest)

Guest DoS (other)

Guest DoS (itself)

Information leak

Privilege escalation (to host)

Host DoS

•  Host DoS: more than 60%
All DoS: more than 70%

•  Guest to guest attack
Some guest app leverages hypervisor
to DoS its own guest VM

61.8%

15.3%

13.9%

/ 27

Summary: Observations

•  Hypervisors have bugs
–  Some previous studies focused on bugs of dom-0 or host OS
–  Some systems (e.g., nested virtualization) can solve the

problem but may cause performance overhead due to nested
levels

•  Some components have more vulnerabilities (found)
–  Take consideration on mem management, code emulation, etc.

•  DoS cannot be ignored
–  Need to tolerant DoS for availability 8

/ 27

NEXEN: NESTED XEN
Deconstruction for Isolation

It’s a palindrome!

9

/ 27

From Observations to Nexen

•  Hypervisors have bugs
–  Deconstruct the hypervisor to isolated components
–  “Nesting” within single hardware privilege for performance

•  Some components have more vulnerabilities
(found)
–  Isolate vulnerabilities in the boundary of VM

•  DoS cannot be ignored
–  Isolate failure in the boundary of VM

10

/ 27

Deconstructing Xen

Xen Slice Xen Slice Xen Slice Shared
Service

Security Monitor

Dom-0 Para-VM Full-VM

Hypervisor

Virtual Machine

Partition Xen into several internal domains, all the domains run in the same hardware privilege
11

/ 27

Xen Slice

Xen Slice Xen Slice Xen Slice Shared
Service

Security Monitor

Dom-0 Para-VM Full-VM

Hypervisor

Virtual Machine

Each Xen slice serves only one VM, containing the VM’s metadata and handling its VMExits

Same code,
Different instances

12

/ 27

Shared Service

Xen Slice Xen Slice Xen Slice Shared
Service

Security Monitor

Dom-0 Para-VM Full-VM

Hypervisor

Virtual Machine

Only one shared service. It does not interact directly with VM, just serves Xen slices.

Serve all
the Xen slices

13

/ 27

Xen Destruction

•  Questions
–  Which parts to put in Xen slices?
–  Which parts to put in shared service?

•  Principles
–  Least privilege
–  Minimize runtime communication
–  Separate mechanism from policy

14

/ 27

15

Original Xen Component
s

Vulnerabilities

/ 27 16

Xen
Slice

Shared Service Component
s

Vulnerabilities

/ 27

Security Monitor: Controls the MMU

Xen Slice Xen Slice Xen Slice Shared
Service

Security Monitor

Dom-0 Para-VM Full-VM

Hypervisor

Virtual Machine

The security monitor controls guest page tables and EPTs. It offers interfaces & does security checks.

Isolation

17

/ 27

Protecting the Security Monitor

•  MMU virtualization
–  Get higher software privilege in the same hardware privilege
–  Similar with the nested-kernel architecture [ASPLOS’16]

•  Only the monitor can modify page tables
–  Page tables are mapped as read-only to other components
–  No page table operation instructions out of the monitor
–  Enforce security policies on each operation of page table
–  Bootstrap security: through Intel TXT or TPM

18

/ 27

Same Memory, Different Views

19

Guest
VM Xen Slice Shared

Service
Security
Monitor

RW

RW

RW RW

RW RW

RW

RW

RW

RW RW
RO

RO RO

/ 27

Call Gate: Intercept Switches between
Slices

Xen Slice Xen Slice Xen Slice Shared
Service

Security Monitor

Dom-0 Para-VM Full-VM

Hypervisor

Virtual Machine

Intercept switches between Xen slices & shared service, as well as VM & its Xen slice

call gate

20

/ 27

Summary: What Nexen can/cannot Defend?

Malicious

Component
Steal or tamper with

VM’s data Host DoS Guest DoS

VM (user) N.A. Considered Considered

VM (kernel) Not considered Considered N.A.

Other VM Considered Considered Considered

Xen Slice Considered Considered Not considered

Shared Service Considered Not considered Not considered

21

Nexen cannot defend against attacks through legal interfaces (aka., Iago
attack)

/ 27

EVALUATION
Security & Performance

22

/ 27

Security Evaluation on 144 XSAs
107/144 (74%): Defended

27/144 (19%): target the shared service and can cause host failure

10/144 (7%): attack through
interface, depends on semantic

23

/ 27

Case Study: XSA-108

•  Type: Out-of-boundary mem access in
 code emulation causes info leak

•  Description
–  Xen’s code emulation for APIC erroneously emulates

read and write permissions for 1024 MSRs where
there are actually 256 MSRs. A read operation can go
beyond the page set up and potentially get sensitive
data from the hypervisor or other VMs

- case MSR_IA32_APICBASE_MSR ... MSR_IA32_APICBASE_MSR +
0x3ff: + case MSR_IA32_APICBASE_MSR ... MSR_IA32_APICBASE_MSR
+ 0xff:! 24

Xen
Slice

Xen
Slic
e

Security Monitor

VM VM

/ 27

SPEC CPU2006 (less than 1%)

/ 27

IOzone (2.4% on average)

/ 27

Conclusion

•  Methodology of deconstruction
–  Analyze 201 Xen’s vulnerabilities
–  Derive boundary of isolation from the result
–  Deconstructing system to internal domains and security monitor

•  Nexen implementation
–  Deconstruct Xen to multiple Xen slices and one shared service
–  Using nested kernel design to protect the security monitor

•  More info: http://ipads.se.sjtu.edu.cn/xsa Thanks!
27

47 10 144 (75% of 191) 107 (74% of 144)

/ 27

BACKUP SLIDES

28

/ 27

Same Memory, Different Views

Xen Slice
Code

Secure
Monitor

Shared
Service Code

Xen Slice
Data

Xen Slice
Data

Shared
Service Data

M
em

or
y

Sp
ac

e

…

Xen Slice 1 Xen Slice n Shared Service
29

/ 27

Memory	
management	

26%	

CPU	
virtualiza9on	

22%	
Code	emula9on	

13%	

I/O	
9%	

Excep9on	
handling	

6%	

Grant	table	
5%	

Global	
4%	

Domain	control	
4%	

Domain	
building	

4%	

Event	channel	
2%	

XSM	
1%	

Scheduler	
1%	

Others	
3%	

30

/ 27

The Control Flow

•  Gate keeper in the monitor
•  Switch between memory spaces

•  Intercept transferring between:
•  Guest VM & Hypervisor

•  Xen slice & shared service

•  Complete mediation
•  Cannot be bypassed

31

/ 27

Case Study: XSA-191

•  Type
‒  Misuse of H/W feature in code emulation causes privilege

escalation to guest kernel

•  Description
‒  Intel hardware uses NULL segment selectors to prevent

access. Xen code emulator fails to check this condition and
may erroneously permit invalid access. An unprivileged guest
user program may be able to elevate its privilege to that of
the guest operating system

32

/ 27

Case Study: XSA-191

•  How to trigger?
1.  try to set kernel data segment selector to NULL
2.  trigger an instruction that requires emulation, the side effect

of which changes an entry of kernel page table
3.  the instruction emulated, changing the page table entry,

giving the user program access to some kernel data

33

/ 27

Case Study: XSA-191

•  Why cannot defend?
‒  Not harming other VMs: the process completely finish in code

emulator of one VM
‒  Iago attack: logic error of code emulator

34

/ 27

Performance Evaluation: Negligible
Overhead

SPEC CPU2006 (less than 1%) IOzone (2.4% on average)
35

/ 27

Case Study: XSA-83

•  Type
–  Memory corruption in shared service causes privilege escalation

•  Description
–  Out-of-memory condition yielding memory corruption during IRQ

setup. When setting up the IRQ for a passed through physical
device, a flaw in the error handling could result in a memory
allocation being used after it is freed, and then freed a second
time

36

/ 27

Case Study: XSA-83

•  Patch

@@ -1590,8 +1590,7 @@ int pirq_guest_bind(struct vcpu *v, stru !
 printk(XENLOG_G_INFO !

 “Cannot bind IRQ%d to dom%d. Out of memory.\n”, !
 pirq->pirq, v->domain->domain_id); !
- rc = -ENOMEM; !
- goto out; !
+ return -ENOMEM; !
 }!

37

/ 27

Case Study: XSA-83

•  Why cannot Nexen defend?
–  Since the shared service is

critical in Nexen, exploiting a bug
in this part will allow the attacker
to do almost anything destructive
towards the whole system

–  VM’s data are still protected

Xen Slice

Security Monitor

Dom-0

Shared
Service

38

/ 27

Comparing with Related Work
Hypervisor illegally
accesses guest’s

data

Guest causes host
DoS

Guest apps attack its
own VM by
hypervisor

Disaggregated Xen No No No

Xoar No No No

Turtles KVM No Yes No

DeHype No Yes No

HyperLock No Yes No

CloudVisor Yes No Yes

Nexen Yes Yes Yes
39

/ 27

Comparing with Related Work

40

/ 27

Internal Domain API

•  Domains interaction
– Create a Xen slice
– Allocate protected memory to a Xen slice
– Specify policy for a piece of memory

41

/ 27

Case Study: XSA-111

•  Type
–  False BUG_ON in CPU virtualization causes host DoS

•  Description
–  A piece of hypercall parameter translation code assumes

that only the lower 32 bits of a 64-bit register variable are
used, violation of which will trigger a BUG_ON that kills the
hypervisor

42

/ 27

Case Study: XSA-111

•  How to trigger?
–  This condition can be deliberately violated by an HVM guest

by temporarily changing to 64-bit mode and passing an
invalid 64-bit parameter

int hypercall_xlat_continuation(unsigned int
*id, unsigned int nr, unsigned int mask, ...) { !

 ... !
 regs = guest_cpu_user_regs(); !
 ...!

 BUG_ON(*reg != (unsigned int)*reg);!
}!

43

/ 27

Case Study: XSA-111

•  How to defend?
–  In Nexen, the vulnerable code

runs in the context of a Xen slice
–  The modified BUG_ON logic will

only kill current Xen slice VM
when it is triggered

Xen Slice Xen Slice

Security Monitor

Dom-0 Para-VM

44

