é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

MT2: Memory Bandwidth Regulation on
Hybrid NVM/DRAM Platforms

Jifei Yi, Benchao Dong, Mingkai Dong, Ruizhe Tong, and Haibo Chen,
Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

https://www.usenix.org/conference/fast22/presentation/yi-mt2

This paper is included in the Proceedings of the
20th USENIX Conference on File and Storage Technologies.
February 22-24, 2022 « Santa Clara, CA, USA
978-1-939133-26-7

Open access to the Proceedings
of the 20th USENIX Conference on
File and Storage Technologies
is sponsored by USENIX.

MT?: Memory Bandwidth Regulation on Hybrid NVM/DRAM Platforms

Jifei Yi, Benchao Dong, Mingkai Dong, Ruizhe Tong, Haibo Chen
Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

Abstract

Non-volatile memory (NVM) has emerged as a new mem-
ory media, resulting in a hybrid NVM/DRAM configuration in
typical servers. Memory-intensive applications competing for
the scant memory bandwidth can yield degraded performance.
Identifying the noisy neighbors and regulating the memory
bandwidth usage of them can alleviate the contention and
achieve better performance. This paper finds that bandwidth
competition is more severe on hybrid platforms and can even
significantly degrade the total system bandwidth. Besides the
absolute bandwidth, the competition is also highly correlated
with the bandwidth type. Unfortunately, NVM and DRAM
share the same memory bus, and their traffic is mixed together
and interferes with each other, making memory bandwidth
regulation a challenge on hybrid NVM/DRAM platforms.

This paper first presents an analysis of memory traffic in-
terference and then introduces MT? to regulate memory band-
width among concurrent applications on hybrid NVM/DRAM
platforms. Specifically, MT? first detects memory traffic inter-
ference and monitors different types of memory bandwidth of
applications from the mixed traffic through hardware monitors
and software reports. MT? then leverages a dynamic band-
width throttling algorithm to regulate memory bandwidth
with multiple mechanisms. To expose such a facility to ap-
plications, we integrate MT? into the cgroup mechanism by
adding a new subsystem for memory bandwidth regulation.
The evaluation shows that MT? can accurately identify the
noisy neighbors, and the regulation on them allows other ap-
plications to improve performance by up to 2.6 x compared
to running with unrestricted noisy neighbors.

1 Introduction

Emerging fast, byte-addressable NVM, such as phase-change
memory (PCM) [41, 52], STT-MRAM [25, 37], Memris-
tor [56], and Intel’s 3D-XPoint [55], are promising to be
employed to build fast cloud data centers. Intel Optane DC
Persistent Memory, the first commercially available NVM
product, has been released in 2019 [28,33] and deployed in
cloud environments, such as Google Cloud [13].

NVM has attracted many research efforts on exploring
its usage scenarios. Consequently, an increasing number of
NVM-aware file systems [19-21,38,53,54,60,62,63], NVM
programming libraries [9, 70], NVM data structures [26,42,
46,64,73] and NVM-based databases [5,10,45] have been pro-
posed and studied, which in turns accelerates the widespread
deployment of NVM. NVM is being deployed in data cen-
ters as fast byte-addressable storage or large-volume runtime
memory that lies side-by-side with the volatile DRAM, result-
ing in hybrid NVM/DRAM platforms.

However, the hybrid NVM/DRAM platforms exacerbate
the noisy neighbor problem. In cloud environments, a physical
platform may be shared by many users. Applications, con-
tainers, or VMs of different users inevitably share the same
memory bus on the platform. Some applications may over-
utilize memory bandwidth, either accidentally or intentionally,
and become the noisy neighbors that significantly affect the
performance of other applications. On hybrid NVM/DRAM
platforms, both NVM and DRAM are attached to the memory
bus. As a result, different applications compete for the limited
memory bandwidth, and different kinds of memory traffic
interfere with each other, reducing the overall performance of
all applications on the hybrid NVM/DRAM platform.

Memory bandwidth regulation is one common approach
that reduces the interference of memory bandwidth usage
to mitigate the noisy neighbor problem. With the commer-
cial use of NVM in cloud data centers, the need for memory
bandwidth regulation on hybrid platforms is imminent. How-
ever, several significant challenges hinder memory bandwidth
regulation on NVM/DRAM hybrid platforms.

The first challenge is memory bandwidth asymmetry. On
NVM/DRAM hybrid platforms, different memory accesses
(i.e., DRAM reads, DRAM writes, NVM reads and NVM
writes) yield different maximal memory bandwidth. The ac-
tual available memory bandwidth heavily depends on the
proportions of different kinds of memory accesses in the
workload. Thus, it is no longer appropriate to assume a static
maximal memory bandwidth and disregard the difference be-
tween different memory accesses like in prior work [67-69].

USENIX Association

20th USENIX Conference on File and Storage Technologies 199

Especially, the maximal NVM bandwidth is usually relatively
smaller than DRAM bandwidth. Besides, we find that dif-
ferent types of memory accesses interfere with each other
differently, making it even more difficult to estimate the avail-
able memory bandwidth under various workloads. Thus, the
assumption that all memory accesses are equal (as in prior
work [67—69]) does not hold anymore.

The second challenge stems from the fact that NVM shares
the memory bus with DRAM on existing NVM/DRAM hy-
brid platforms [3]. On existing hybrid platforms, NVM traffic
and DRAM traffic are inevitably mixed and difficult to sep-
arate. With the mixed memory traffic, monitoring different
kinds of memory bandwidth on a per-process basis become
almost impossible [49], which invalidates existing hardware
and software regulation approaches designed for DRAM.

The third challenge is inadequate hardware and software
mechanisms for memory regulation. As both NVM and
DRAM are directly accessible by CPU load/store instructions,
counting and throttling each memory access is impractical
for the sake of performance. CPU vendors, such as Intel, pro-
vide hardware mechanisms to regulate the memory bandwidth.
However, the bandwidth restriction is coarse-grained and qual-
itative, which is insufficient for precise memory bandwidth
regulation. Some other approaches, such as frequency scaling
and CPU scheduling, may provide relatively finer-grained
bandwidth adjustment. However, they are also qualitative and
slow down both computation and memory accesses, thus inef-
ficient for the overall platform performance.

In this paper, we reveal severe bandwidth interference prob-
lems in hybrid memory platforms and propose MT? (short
for Memory Traffic Throttle) to address the above challenges.
MT? collaboratively leverages several hardware and software
techniques to monitor real-time bandwidth of different types
of memory accesses. To regulate memory bandwidth with
non-static maximal memory bandwidth, MT? proposes a dy-
namic memory bandwidth throttling framework, combining
both hardware and software techniques to provide efficient
memory bandwidth regulation.

We have implemented MT? as a new subsystem in the ex-
isting Linux control groups (cgroups) and applied MT? to
mitigate the noisy neighbor problem and demonstrate MT?’s
effectiveness in two more scenarios: memory bandwidth al-
location and cloud SLO guarantee. Performance evaluation
shows that MT? can effectively regulate memory bandwidth
on hybrid platforms with nearly zero performance overhead.

In summary, the contributions of this paper include:

¢ A survey uncovering the problem of memory bandwidth
interference that leads to notable performance churn for
memory-intensive applications on hybrid NVM/DRAM
platforms (§2);

¢ The first study on existing hardware and software mem-
ory bandwidth regulation mechanisms on hybrid NVM/-
DRAM platforms (§3.3.1);

* The design and implementation of MT?, the first compre-

hensive system that efficiently and effectively regulates
memory bandwidth on hybrid NVM/DRAM platforms
with thread-level granularity (§3 and §4);

* Detailed evaluation of MT? in noisy neighbor suppres-
sion and other two scenarios (§5) on Intel Optane PM to
illustrate MT2’s effectiveness and overhead (§6).

2 Background
2.1 Noisy Neighbors

In complex modern multi-tenant cloud environments, mem-
ory bandwidth can significantly impact applications’ overall
performance. In a cloud data center, some applications may
over-utilize memory bandwidth, which will affect the perfor-
mance of other applications. These applications that over-
utilize memory bandwidth are usually called noisy neighbors,
and the affected applications are the victims.

Two strategies can mitigate the noisy neighbor problem.
The prevention strategy proactively sets bandwidth limits for
applications to keep anyone from being a potential noisy
neighbor. The remedy strategy monitors the system for the
presence of noisy neighbors and identifies then limits the
bandwidth usage of appeared noisy neighbors. Both strategies
require a system to monitor applications’ bandwidth usage
and/or the system-wide traffic interference level and provide
effective mechanisms to limit applications’ memory traffic.

22 NVM

The release of Intel Optane DC Persistent Memory (Op-
tane PM) marks the widespread commercial deployment of
NVM [28,33]. With Intel’s proprietary DDR-T protocol [33],
Optane PM can be directly accessed via CPU load/store in-
structions. However, the actual bandwidth of NVM is still far
below DRAM [34].

Before the public release of Optane PM, NVM has been
widely studied in academia and industry. Some NVM-aware
file systems, such as PMFS [53], NOVA [62,63], SoupFS [21],
Strata [38], SplitFS [35] and ZoFS [20], are proposed to pro-
vide file abstraction over NVM. Applications can create files
on these file systems and map the files using mmap to ac-
cess NVM directly. For example, Marathe et al. [45] modify
Memcached [7], a popular high-performance memory object
caching system, to run upon NVM using files and mmap.

However, managing persistent files by hand can be labo-
rious. Intel develops Persistent Memory Development Kit
(PMDK) [9], which is a suite of open-source libraries to sim-
plify the programming model of NVM. With PMDK, pro-
grammers do not need to manage persistent files by them-
selves. Instead, they can utilize PMDK abstractions, such
as objects, transactions and simple persistent data structures,
to develop NVM-aware applications more easily. Many in-
memory or storage systems are ported to NVM using PMDK,
such as PmemKYV [5] and Pmem-RocksDB [10].

NVM is increasingly deployed in data centers. For exam-
ple, SAP HANA has deployed Optane PM in its data plat-

200 20th USENIX Conference on File and Storage Technologies

USENIX Association

Task B

NVM NVM DRAM DRAM
AIone Read Write Read Write

‘ ‘ ! ‘ 100%
NVM _

Read > = 0%

80% 2

0

NVM_ 10.3 | 72% 79% | 74% 3

<(Write =

70% N

E: g

'_
m“ﬂﬂﬂﬁww
=4

50%
ARl 53% | 67% | 64% | 46%
Write 40%

Figure 1: The impact of memory interference of two tasks. The first
column is the bandwidth of Task A when it runs alone (in GB/s) and
the last 4 columns are the bandwidth of Task A as a percentage of the
first column when two tasks run simultaneously and compete for the
bandwidth. Task B decrease Task A’ throughput by 21 to 64%. The
darkest block at the top row shows that NVM write bandwidth affect
NVM read bandwidth significantly. Different types of bandwidth
affect others differently.

forms [14]. Google Cloud has deployed Optane PM on its
virtual machines in public clouds [13].

2.3 Memory Bandwidth Interference

Despite the advantages NVM has brought to the data center,
the use of NVM on the hybrid NVM/DRAM platforms in-
creases the complexity of the memory bandwidth interference
due to the fact that NVM and DRAM share the memory bus.

To illustrate the impact between different types of band-
width, we conducted an experiment in which two tasks run
different kinds of workloads simultaneously. In the experi-
ment, we run two Flexible I/O tester [2] (fio) workloads for
the tasks to compete for the memory bandwidth. We test four
workloads, namely NVM Read, NVM Write, DRAM Read, and
DRAM Write, and use the mmap engine for the DRAM work-
loads and libpmem for the NVM workloads. The experiment
setup is described in §6. To fully utilize the memory band-
width, we use fourteen cores to run each workload, except for
NVM Write. We use six cores to run NVM Write workload
because its bandwidth drops significantly with more cores
due to its own bandwidth competition.

We first run Task A alone and then run two tasks together
with different workload combinations to illustrate the impact.
To avoid the contention of CPU cache, we also leverage Intel
CAT [4] to make each task run on different cache partitions
in the experiment. Thus, the performance degradation in the
figure is simply caused by memory bandwidth interference.

Figure 1 shows the results. For Task A (i.e., each row in
the figure), the throughput (GB/s) of running alone is used as
the baseline, as listed in the first column, and the throughput
running simultaneously with Task B is normalized to the base-
line. Thus, smaller numbers (i.e., the darker blocks) indicate
a more significant impact of Task B.

We make two observations from the results.

w
o

N
o
Latency (us)

== Task A's Thput

=@~ Task A's Latency

Thput (MB/s)

w
o

0 2 4 6 8
Numjobs (Task B)
Figure 2: Relationship between bandwidth and latency of Task A
(one-job NVM-Write £io) when running simultaneously with differ-
ent number of Task B (NVM-Write £io). The bandwidth and latency
of task A are negatively correlated. Notice that the Y-axis does not
start from zero.)

1. The impact of memory interference is closely related to the
type of memory access. Tasks that occupy a smaller band-
width may have a more significant impact on other tasks
than those with a larger bandwidth. A 102GB/s DRAM-
read Task B can only reduce the bandwidth of an NVM-
read Task A to 73% of the original, while an NVM-write
Task B with only 10.3GB/s can bring it down to 36%. This
observation indicates that the ability to distinguish between
different bandwidth types is vital on hybrid platforms.

2. NVM accesses affect other tasks more severely than DRAM
accesses. When Task B runs a 35.5GB/s NVM read work-
load, it drops the bandwidth of different Task A to 40%-
72% (the second column in the figure) of what it would
have been running alone. However, when Task B runs a
102GB/s DRAM read workload, Task A’s bandwidth drops
to only 50%-79% (the fourth column in the figure) of the
original bandwidth. In particular, a 10.3GB/s NVM write
task B can severely degrade the performance of other tasks.
NVM writes can lead to severe interference with minimal
absolute bandwidth, followed by NVM reads and finally
DRAM accesses. In other words, applications that write
NVM a lot are more likely to become the noisy neighbors
and affect others.

While investigating the memory bandwidth interference,
we also check the relationship between a task’s throughput
and latency. Figure 2 shows the throughput and latency of a
one-job fio with the NVM-Write workload (Task A) when
running simultaneously with Task B (NVM-Write fio with
variable numjobs). As the numjobs of Task B grows, the
bandwidth of Task A gradually decreases (due to the growth
of bandwidth interference), while the latency of Task A in-
creases. Together with the evaluation of other memory access
type combinations, the results lead to another observation
that the memory access latency is negatively correlated to
the bandwidth usage, which indicates that we can detect the
memory bandwidth interference by measuring the latency of
different types of memory accesses.

2.4 Memory Bandwidth Monitoring (MBM)

Intel Memory Bandwidth Monitoring (MBM) [48] is a feature
that allows monitoring bandwidth from the L3 cache to the
next level of the memory hierarchy system, which can be

USENIX Association

20th USENIX Conference on File and Storage Technologies 201

DRAM or NVM. It provides a hardware-level measurement
of memory bandwidth on each logical core.

Each logical core can be assigned with a resource moni-
toring ID (RMID), and a group of logical cores can be as-
signed with the same RMID. The underlying hardware tracks
memory bandwidth with the RMID and groups the memory
bandwidth of processors with the same RMID. On a platform
with the non-uniform memory access (NUMA) architecture,
the MBM hardware on each NUMA node tracks two types
of memory bandwidth for each RMID: the local external
bandwidth and the total external bandwidth, indicating the
memory traffic to the local NUMA node and all NUMA nodes
respectively. System programmers can access model-specific
registers (MSRs) to get the tracked bandwidth. To get the
system-wide memory bandwidth of an RMID, programmers
need to read the tracked total bandwidth from all NUMA
nodes and add them together.

2.5 Memory Bandwidth Allocation (MBA)

Intel Memory Bandwidth Allocation (MBA) [29] is a hard-
ware feature that provides indirect and approximate control
over memory bandwidth with negligible overhead. MBA in-
troduces a programmable request rate controller between each
physical core and the shared L3 cache. The controller throt-
tles the memory bandwidth usage by inserting delays to the
memory requests. MBA defines throttling values to indicate
how much delay is imposed. Due to the delay mechanism,
the same throttling value might behave differently on applica-
tions with different memory access patterns [29]. The specific
throttling values vary on different platforms. On our platform,
the throttling values range from 10 to 100, with a precision
of 10. For MBA, Intel also exposes a set of Classes of Ser-
vice (CLOS) [29] into which threads can be assigned. To use
MBA, administrators need to set a throttling value to a CLOS,
after which all threads in the CLOS will be throttled.

3 MT? Design
3.1 Overview

To regulate bandwidth efficiently on a hybrid NVM/DRAM
platform, we design a hybrid bandwidth regulation system
called MT?. Figure 3 shows the architecture of MT?2, which is
designed to work in the kernel space. Though some function-
alities of MT? can be implemented in user space, the kernel
space environment makes it much easier and more efficient
for MT? to access hardware features, cooperate with other
kernel components, and put constraints on user-space threads.

System administrators communicate with MT? via exposed
pseudo-filesystem interfaces in user space. Administrators can
classify threads into different groups (same as cgroups) and
specify a policy to regulate each group’s bandwidth. We call
these groups TGroups (i.e., Throttling Groups), which are the
target of bandwidth monitoring and restriction in MTZ.

MT? consists of two parts: the monitor and the regulator.
With data collected from VFS, PMU (Performance Monitor-

00

User space TGroups

FS interface

Kernel space

MT? ~ Monitored
) BW Set quota GPU
VFS Monitor ~———=>|Regulator
) Scheduler

Set MBA throttling value

PMU || MBM MBA

Figure 3: The overview architecture of MT2. Threads are classified
into TGroups (the unit of NVM bandwidth monitoring and restric-
tion). The monitor computes NVM bandwidth with the data from
VES, MBM and PMU, and then pass the result to the regulator, who
is responsible for restricting a TGroup’s bandwidth with different
mechanisms.

Hardware

ing Unit), and MBM, the monitor divides it into four types and
forwards them and the interference information to the regula-
tor. According to the monitored data and the regulation policy,
the regulator makes decisions to limit the bandwidth with two
mechanisms: adjusting the MBA throttling values and chang-
ing CPU quotas. MT? adopts a dynamic bandwidth throttling
algorithm that constantly monitors and adjusts restrictions
based on the real-time bandwidth and the interference level.

MT? provides two strategies to mitigate the noisy neigh-
bor problem (prevention and remedy in § 2.1) to cope with
different scenarios. For prevention, administrators are asked
to set bandwidth caps for each TGroup. MT? monitors the
precise real-time bandwidth and enforces all groups not to
use more bandwidth than the caps. However, several TGroups
that do not exceed the caps together may still cause strong
bandwidth interference, which can be identified and restricted
by the remedy strategy. The two strategies are orthogonal;
thus, when and how to use the two strategies depends on the
specific scenarios.

3.2 The Monitor

The monitor distinguishes different types of bandwidth with
process granularity and detects the current memory interfer-
ence level of the system. Unfortunately, existing hardware
technology cannot achieve this directly [49]. For example,
Intel MBM cannot distinguish between NVM bandwidth and
DRAM bandwidth. The IMC performance counter [22] can
help get different types of real-time bandwidth, but only with
memory channel granularity rather than process granularity.
Thus, the MT? monitor leverages various hardware and soft-
ware techniques jointly.

3.2.1 Bandwidth Estimation

The monitor needs to get accurate or estimated bandwidth
of each access type (i.e., BWpg for DRAM reads, BWyy for
NVM reads, BWpy for DRAM writes and BWyw for NVM
writes), so that the regulator can use these information to

202 20th USENIX Conference on File and Storage Technologies

USENIX Association

decide whether and how to restrict each TGroup’s memory
bandwidth usage to avoid or suppress noisy neighbors.

MT? calculates the precise BWy of each process by retriev-
ing the number of local NVM reads via the ocr.all_data_-
rd.pmm_hit_local_pmm.any_snoop PMU event counter
and multiplying the value by the cache line size (64B). MT?
calculates BWppg similarly via the ocr.all_data_rd.13_-
miss_local_dram.any_snoop PMU counter for DRAM
reads of each process [30].

However, MT? cannot get BWpy and BWyy via PMU,
since no similar performance events exist for write instruc-
tions. Fortunately, we can leverage MBM to monitor each
TGroup’s total memory access bandwidth, which is the sum
of BWpgr, BWyr, BWpw and BWyw . Given that we can calcu-
late the precise value of BWpg and BWyg via PMU, we only
need to know one of BWpy and BWyw or the ratio between
them to calculate the two values via simple arithmetic.

We choose to calculate BWyyw of a TGroup by collecting
the amount of NVM writes periodically since user-space ap-
plications can write to NVM in only two ways: the file APIs
(such as write) and the CPU store instructions after mem-
ory mapping the file. For file APIs, MT? hooks the VFS in
the kernel and tracks the amount of NVM writes for each
TGroup. For memory-mapped accesses, we propose two dif-
ferent approaches according to whether the applications on
the platform are trusted.

Trusted applications. Many cloud applications (such as
those in private clouds) are from trusted users or cooperations;
thus, we can rely on these trusted applications to collect and
report to MT? its amount of writes to memory-mapped NVM.
To facilitate the process, we provide a modified PMDK [9],
which is the official and most popular library for NVM pro-
gramming on Intel’s NVM. Specifically, we hook the PMDK
APIs that explicitly flush cache lines to NVM or perform
non-temporal memory writes (e.g., movnt), by calculating
and adding the amount of NVM writes to per-thread counters.
To report the counters to MTZ, each process sets up a shared
page with the kernel, and each thread in the process writes its
per-thread counter value to a different slot in the page. MT?
in the kernel checks the counters periodically and calculates
the bandwidth of each TGroup.

To collaborate with MT2, applications built on PMDK can
directly link to our modified PMDK without source code
modification; other applications are required to collect and
report NVM writes by themselves, which should be a simple
task since our modification to PMDK is merely 43 lines.

With the reported writes to mapped NVM and the NVM
writes via file APIs, MT2 calculates BWyyw for each TGroup.
With the BWyw, MT? further calculates the BWpy by
BWpw = BWrotai — BWpr — BWyg — BWyw .

Untrusted applications. Untrusted applications may not re-
port their NVM write bandwidth faithfully. Thus, we provide
another approach to roughly distinguish NVM writes and

DRAM writes without the collaboration of applications.

We leverage Processor Event Based Sampling (PEBS) [31],
an efficient sampling feature in modern Intel processors,
to sample each TGroup’s memory writes (mem_inst_re-
tired.all_stores) with the target addresses. By comparing
the sampled addresses to the address ranges of NVM, we can
figure out the ratio of sampled writes to NVM and DRAM,
with which we calculate BWyw and BWpy roughly.

Note that the BWyw and BWpy we calculated via PEBS
are not precise due to the shadow effect [65]. But it would be
sufficient for MT? to identify which TGroup is more likely to
be the noisy neighbors.

3.2.2 Interference Detection

Even given the accurate bandwidth usage of four types of
memory accesses, it is difficult to determine whether the band-
width interference occurs and its severity, since both the de-
crease of memory access demand and the presence of noisy
neighbors can cause an application to utilize less bandwidth.

Instead of detecting memory interference via memory band-
width, MT? proposes to detect the interference level by mea-
suring the latency of different kinds of memory accesses,
which is supported by the observation that the memory access
latency is negatively correlated to the bandwidth (§2.3).

We measure four types of memory accesses separately.
For reads, we derive the latency from four performance
events, unc_m_pmm_rpqg_occupancy.all (RPQp), unc_-
m_pmm_rpg_inserts (RPQy), unc_m_rpg_occupancy, and
unc_m_rpqg_inserts. The latency of NVM reads can be cal-
culated by RPQo/RPQ;. The DRAM read latency can be
obtained similarly. For writes, MT? periodically issues a few
NVM and DRAM write requests and measures their comple-
tion time to obtain the latency of both types of write requests.

We set a threshold to determine whether bandwidth in-
terference occurs. When the latency of a certain access re-
quest exceeds the corresponding threshold, relatively severe
interference occurs on the platform and affects this type of
memory access (as shown in Listing 1). The threshold can be
tuned across different platforms by measuring the relationship
between bandwidth and latency under different interference
levels. On our platform, we use the latency at a 10% reduction
in throughput as the threshold (THRESHOLD in Listing 1).

Listing 1: Interference detection

def detect_interference () :
for bt in bandwidth_type:
if latency[bt] > THRESHOLD [bt]:
return true
return false

3.3 The Regulator

Monitoring the bandwidth information is the first step towards
bandwidth regulation. The following step is to restrict the
bandwidth a TGroup can occupy, which is handled by the
regulator. The regulator takes the interference level and the

USENIX Association

20th USENIX Conference on File and Storage Technologies 203

Table 1: Performance events

Performance Event Name Description

Where we use (if not, why)

ocr.all_data_rd.pmm_hit_local_pmm.any_snoop
mem_load_retired.local_pmm that hit local NVM
ocr.all_data_rd.13_miss_local_dram.any_snoop
mem_inst_retired.all_stores
unc_m_pmm_rpq_occupancy.all
unc_m_pmm_rpq_inserts

unc_m_pmm_wpq_occupancy.all occupancy time

unc_m_pmm_wpq_inserts :
—m_pmm_wpq_| insert count

per-core: local NVM read
per-core: memory load instructions retired

per-core: local dram read

per-core: all memory store instruction retired
per-socket: NVM read pending queue occupancy
per-socket: NVM read pending queue inserts
per-socket: NVM write pending queue

per-socket: NVM write pending queue

Bandwidth Estimation (§3.2.1)

No, the results are not precise without
disabling the hardware prefetcher
Bandwidth Estimation (§3.2.1)
Bandwidth Estimation (§3.2.1)
Interference Detection (§3.2.2)
Interference Detection (§3.2.2)

No, wpq_occupancy/wpq_inserts

is not inversely proportional to bandwidth
No, wpq_occupancy/wpq_inserts

is not inversely proportional to bandwidth

monitored bandwidth as the input and decides what actions
to take to adjust the bandwidth of the TGroup according to
the regulation policy from system administrators.

3.3.1 Memory Regulation Mechanisms

MBA. Toillustrate the effect of MBA, we use fio to generate
different workloads under different MBA throttling values.
Throttling value 100 means that there are no restrictions, while
10 represents the maximum MBA limit. The configuration of
fio is the same as in §2.3.

The red lines in Figure 4 show the following phenomena.
1) MBA only supports limited throttling values, and not all
throttling values are effective to workloads. This means that
we cannot precisely control the bandwidth of threads with
MBA. 2) MBA can restrict DRAM-intensive workloads better
than NVM-intensive workloads. MBA is almost completely
ineffective for NVM writes. Therefore, MBA alone is insuf-
ficient for controlling memory bandwidth. We must employ
other techniques to restrict the NVM bandwidth.

CPU scheduling. An effective mechanism to control mem-
ory bandwidth is to reduce the number of cores allocated
to an application [43]. We take a finer-grained approach by
changing the CPU time (or CPU quota) of a thread with the
help of the existing Linux CPU cgroup [6] controls. CPU
quota in MT? defines an upper bound on CPU time allocated
to the threads of a TGroup within a given period. TGroups
with lower CPU quota take less CPU time, so it consumes
less memory bandwidth. Since CPU quota leverages the CPU
scheduler, it can provide a more fine-grained adjustment of
memory bandwidth.

Effectiveness and comparison. CPU scheduling is a mech-
anism that supplements MBA. We repeat the same experiment
with CPU scheduling as we do with MBA to compare these
two mechanisms to decide how to cooperate better. Figure 4
shows the results. Take reading DRAM in figure 4(a) as an
example (Read MBA and Read CPU two lines in the figure).
When we don’t enforce any limits on the workload (i.e., when
the horizontal coordinate is 100), the throughput of 14 DRAM
read fio workloads reachs 102GB/s on our platform. When
the MBA throttling value keeps decreasing to 60, the through-

Table 2: Execution time and max bandwidth of pagerank under
different restrictions

No limit 50% CPU 10% MBA
Execution Time(s) 56.459 118.179 78.662
Max BW,..,4(GB/s) 3.61 1.89 1.45
Max BW,,i1.(GB/s) 4.84 2.53 1.87

put of the DRAM read does not change much. When this
value decreases to 30, there is a significant drop in throughput.
After we enforce the maximum limit via MBA, the throughput
drops to about 28GB/s. For CPU scheduling, the throughput is
proportional to the available CPU time. Thus, CPU scheduling
can restrict memory bandwidth better than MBA.

The previous experiment is only for the effectiveness of
bandwidth restriction. Table 2 gives some data when we run
a real-world application, pagerank. We run the same task in
three different situations. When this task runs without any
limits, it takes 56 seconds to complete, of which the maxi-
mum read and write bandwidth is 3.61GB/s and 4.84GB/s,
respectively. When we only allow it to use 50% of the CPU
time, the task consumes 118 seconds, with the read and write
bandwidth dropping to 1.89GB/s and 2.53GB/s. It seems that
bandwidth usage is indeed changed to half while spending
almost twice the original time. After we apply the maximum
limit with MBA (10% MBA), its peak bandwidth is lower
than that in 50% CPU, but it performs faster. This is because
CPU scheduling will reduce the amount of CPU time the
program can use. In contrast, MBA slows down the mem-
ory access operations and does not affect other operations,
such as computation operations. We can conclude that the
MBA mechanism is more efficient than CPU scheduling in
restricting memory bandwidth.

Table 3 summarizes the characteristics of these two mem-
ory restriction mechanisms. As MBA has limited throttling
values, it can only provide discrete restrictions on memory
bandwidth. CPU scheduling can adjust memory bandwidth
continuously, which could restrict the bandwidth finer. How-
ever, CPU scheduling is not as efficient as MBA since it is
not friendly to the overall performance. At last, these mecha-
nisms have different favor in memory access types. According

204 20th USENIX Conference on File and Storage Technologies

USENIX Association

—8— Read MBA —@— Read CPU —@— Write MBA —— Write CPU

100

w
o

50

Thput (GB/s)
Thput (GB/s)
N
o

=
o

0

=]

100 80 60 40 20 100 80 60 40 20
Throttling Value Throttling Value

(@) (b)
Figure 4: The effect of MBA and CPU scheduling on limiting
DRAM (a) and NVM (b) bandwidth. Compared with MBA, CPU
scheduling is more effective on restricting NVM bandwidth.

Table 3: Comparison of different memory restriction mechanisms

Mechanism Granularity Efficiency Favor
MBA Discrete High DRAM
CPU scheduling Continuous Low Both

to Figure 4, MBA is good at restricting DRAM bandwidth,
while CPU scheduling can cope with both DRAM and NVM
bandwidth because it treats DRAM and NVM equally.

3.3.2 Dynamic Bandwidth Throttling

To ensure a relatively stable bandwidth for TGroups, we adopt
an algorithm called dynamic bandwidth throttling that com-
bines all mechanisms above. The algorithm first identifies
noisy neighbors according to the information provided by the
monitor and then takes actions to restrict the noisy neighbors’
memory bandwidth.

Identifying the noisy neighbors. The algorithm will iden-
tify the noisy neighbors according to the enabled strategies.
In the prevention strategy, the algorithm treats all TGroups
that exceed their administrator-configured bandwidth limits
as noisy neighbors. In the remedy strategy, the algorithm
first checks whether there is severe memory interference on
the platform according to the memory interference informa-
tion provided by the monitor. If severe memory interference
presents, the algorithm identifies noisy neighbors by each
TGroup’s current bandwidth use. According to the observa-
tions in the previous analysis (§2.3), a small amount of NVM
writes can lead to severe bandwidth interference and NVM
accesses affect others more severely than DRAM accesses.
Thus, TGroups with the most NVM writes are more likely
to become the noisy neighbors, followed by TGroups with
most NVM reads, and finally the TGroups with more DRAM
accesses. The algorithm picks the TGroup that is the most
likely to be a noisy neighbor in the above order.

Regulating the memory bandwidth. The algorithm then
chooses the memory regulation mechanism according to the
types of memory bandwidth to restrict. To restrict NVM
access bandwidth, the algorithm takes the CPU scheduling
mechanism since MBA is almost ineffective for NVM. To
restrict only DRAM access bandwidth, the algorithm chooses
to decreases the MBA value of the target TGroups. If the
MBA is already set to the lowest value, the algorithm uses
CPU scheduling for further restriction.

Relaxing the memory regulation. Once the memory inter-
ference disappears, the algorithm attempts to relax the en-
forced bandwidth restrictions. The procedure is opposite to
the way we add and enforce the restriction.

After the regulator finishes a single step of the algorithm
(i.e., identifying then regulating/relaxing), it continues to wait
for the next period in which another step will be taken ac-
cording to the new information provided by the monitor. The
step-by-step approach reduces the uncertainty of platform
memory bandwidth changes and prevents unnecessary perfor-
mance jitters for applications.

4 Implementation

As control groups (cgroups) [6] is an existing Linux kernel
feature that manages resource usage of a collection of threads,
we modify the Linux kernel 5.3.11 to add TGroup as a sub-
system of cgroups. MT? is implemented as a kernel module
that cooperates closely with the TGroup subsystem.

Cgroup interface. Cgroups exposes its interfaces via files in
a pseudo-filesystem called cgroupfs. MT? follows the same
approach as other cgroups subsystems. Specifically, an admin-
istrator first mounts the subsystem and creates a new directory
in the subsystem mount point (i.e., creating a new TGroup).
Then the administrator writes the pid of the process to the
cgroup.procs file (i.e., adding the process to the TGroup).
Three more files in this directory can be read/written to man-
age the TGroup:

1. The priority file is used to get and set the priority of a
TGroup. Two priorities are currently supported. TGroups
with high priority will not be restricted by the regulator,
while the low-priority TGroups will be limited when in-
terferences occur in the system.

2. The bandwidth file is read-only and returns the bandwidth
of a TGroup for the last second.

3. The limit file is used to get and set the absolute bandwidth
limit of a TGroup. Four comma-separated numbers can
be written to this file as upper bandwidth limits of four
types of memory accesses. When any one of the limits
is exceeded, the TGroup will be throttled. A zero value
indicates no limit, and the values take effect immediately.

When the write bandwidth cannot be separated accurately,
only the first interface is valid. When the measured bandwidth
is accurate, the last two can be used for prevention (§ 2.1).
In this case, MT? allows the administrator to set four caps
for four types of bandwidth for each TGroup. Once the real-
time bandwidth used by one TGroup exceeds its limit, MT?
enforces restrictions on that group, ensuring that each group
does not use more bandwidth than the preset cap.

Thread creation. All the child processes are put in the same
TGroup as their parent when created unless the administrator
puts them manually into another TGroup. To achieve this, we
also add a hook to the process/thread creation routine, which
is the fork routine in the Linux kernel.

USENIX Association

20th USENIX Conference on File and Storage Technologies 205

MBA. The MBA hardware supports ten MBA throttling val-
ues. However, there are only eight CLOS available on our
platform. To support as many TGroups as possible, we do
not assign a dedicated CLOS for each TGroup. Instead, we
assign eight MBA throttling values to eight CLOS, respec-
tively. We omit MBA throttling values 70 and 80 because the
effect of the MBA throttling values 70, 80, and 90 are very
similar across all workloads in Figure 4. As a result, each
CLOS presents a different MBA throttling value. To restrict
the bandwidth of a TGroup to an MBA throttling value, we
assign all threads of the TGroup to the corresponding CLOS.
Thus, by changing the CLOS of a TGroup, we can change
its MBA throttling value. Since the MBA limits the memory
bandwidth by adjusting the request rate between the physical
core and the shared LLC, TGroups with the same CLOS get
the same request rate without interference.

Context switches. To set up the MT?2 context for each thread,
including setting the PMU related context, writing the MSR
registers related to MBA and setting CPU quota, we add a
hook to the scheduler. Each time a context switch happens,
we set up the corresponding MT? context for the new thread
that is going to run on this CPU core.

PMU. PMU is used to count read instructions that miss all
caches and access the NVM and DRAM respectively. Using
these data we are able to accurately calculate the DRAM
and NVM read bandwidth. The latency of both types of read
operations is also obtained through the PMU.

PEBS. We set the PEBS sample frequency to 10,007; thus,
PEBS will record one linear address for every 10,007 events.
As later evaluated in §6.2.2, this sample frequency is large
enough to avoid noticeable overhead.

During context switches or PEBS interrupts occur, MT?2
reads all the samples in the PEBS buffer and filters out ad-
dresses in the kernel and the user stacks to mitigate the inter-
ference of irrelevant accesses and the CPU cache. MT? then
translates the addresses to physical addresses and counts the
number of NVM accesses and DRAM accesses, respectively.
Finally, MT? stores the numbers in per-thread data structures,
which will be used to estimate NVM bandwidth usage in the
untrusted environment.

Listing 2: Kernel thread main loop

def kthread_main () :
start = current_time ()
interference = detect_interference ()
for group in TGroups:
group.aggregate_bandwidths ()
group.adjust_bandwidths (interference)
sleep (INTERVAL - (current_time () - start))

The dedicated kernel thread. A kernel thread is created at
the initialization phase of MT? kernel module to periodically
detect the interference, track the bandwidth and take actions
generated by the dynamic bandwidth throttling algorithm.
When interference is detected, the kernel thread calculates
all types of bandwidth of all TGroups via information from

MBM, VFS, and PMU. It then invokes the dynamic bandwidth
throttling algorithm to adjust the bandwidth. The kernel thread
runs at a configurable frequency (INTERVAL in Listing 2),
which is once per 100ms in our implementation.

5 Other Use Cases

In addition to being used to prevent severe bandwidth inter-
ference caused by the noisy neighbors, MT? can also be used
in more scenarios, such as memory bandwidth allocation, and
cloud SLO guarantee.

5.1 Memory Bandwidth Allocation

For prevention, choosing and setting the maximum bandwidth
for each application is a practical problem. A more reasonable
solution in practice is the bandwidth guarantee, which assigns
a minimum guarantee bandwidth to each task. As long as
there is such a guarantee, a task will be able to use more
bandwidth than this minimum guarantee when a task needs
to use bandwidth, regardless of how much bandwidth other
tasks are using at the same time.

Bandwidth allocation is essentially the same as band-
width limiting since bandwidth resources are finite. The only
method to reserve a minimum bandwidth for a program is to
ensure that no other programs can consume excessive band-
width resources. However, since the bandwidth resources in
a hybrid system are not fixed, it is very difficult to give such
a guarantee. We build an empirical model of four kinds of
bandwidths on our platform to help us solve this problem.
The input is the four bandwidths without interference, while
the output is the actual bandwidths running simultaneously.

In this use case, each group of programs needs to pre-
declare their demand for each kind of bandwidth. Then we
add up the demanded bandwidths of all the programs and pass
to the empirical model to calculate the intensity of bandwidth
competition. If the bandwidth competition is sufficiently in-
tense, the minimum bandwidth for these programs cannot be
guaranteed at the same time, and MT? will report an incident.
If the bandwidth competition is low, we look for a point in the
model where the system’s bandwidth resources can be more
fully utilized without excessive bandwidth competition (in
our implementation, 90% of the desired value is considered to
be no excessive bandwidth competition). Then MT? allocates
the extra bandwidth resources proportionally to all programs,
in such a way that each group of programs is guaranteed to
use more than 90% of its own declared bandwidth.

5.2 Cloud SLO Guarantee

Service Level Objective (SLO) assurance is important for
cloud users [18, 51]. For example, for users deploying KV-
store applications, which primarily use memory bandwidth
resources, the latency and the throughput of GET and PUT re-
quests are what they value most. However, the request pattern
of latency-critical (LC) tasks may not be fixed. There may
not be any requests for a while, but at the next moment, the

206 20th USENIX Conference on File and Storage Technologies

USENIX Association

requests become very intensive.

Cloud service providers want to make their devices as
highly utilized as possible. When KV-store requests are not
frequent, we can run some other best-effort (BE) background
tasks simultaneously to make full use of the physical ma-
chine’s bandwidth resources. When the foreground requests
are dense, we can dynamically reduce the background tasks’
bandwidth to ensure the SLO of the foreground tasks.

For trusted environment, we can use the bandwidth limiting
(prevention) to prevent the BE applications from becoming
noisy neighbors. We can divide the tasks into two TGroups:
a high-priority TGroup for tasks that require a guaranteed
SLO and a low-priority TGroup for other tasks. MT? first
gives the foreground tasks a relatively smaller bandwidth
guarantee. When the foreground tasks are about to run out of
the allocated bandwidth, MT? allocates more bandwidth for
them while reclaiming the bandwidth resources owned by the
background BE tasks.

For untrusted environment, the two types of write band-
width cannot be precisely separated. We can assign high prior-
ity to LC applications and low priority to the BE applications
to mitigate the interference when the BE applications overuse
memory bandwidth. This case is then transformed into rem-
edy in noisy neighbor suppression.

6 Evaluation

In this section, we comprehensively evaluate MT? from mul-
tiple dimensions, including effectiveness for all use cases,the
performance overhead, and the accuracy when the environ-
ment is trusted.

Experiment setup. Experiments are conducted on a server
with two 28-core Intel® Xeon® Gold 6238R CPUs with hyper-
threading disabled. The server has two NUMA nodes, and
each is equipped with 6¥32GB DDR4 DRAM and 6*128GB
Optane™ PM configured in interleaved app-direct mode. All
experiments are conducted on a single NUMA node.

6.1 Effectiveness

In this part, we evaluate the effectiveness of our three use
cases: noisy neighbor suppression, memory bandwidth allo-
cation and cloud SLO guarantee.

6.1.1 Noisy Neighbor Suppression

Effect of restrictions on noisy neighbors. We first re-
conduct the experiment in §2 (results are shown in Figure 1)
with and without MT? respectively to show the effect of MT?
in micro-benchmarks. In this experiment, we run two fio
simultaneously, one is marked as the noisy neighbor and the
other as the victim. The throughputs when the victim runs
alone are used as the baselines.

The results are shown in Figure 5. Generally, the columns
with MT? have a much lighter color than the columns with-
out MT2, which indicates that MT? can effectively reduce
noisy neighbors’ interference by restricting their bandwidth

Noisy Neighbors

NR NW DR DW
NR (MT2) NW (MT2) DR (MT2) DW (MT?)

V'\\I'Xt'\gJO% 96% 93% 78% 99% 71% 98% || 80%

DRAM — 98% 70% 96% 99% 98%
Write 40%

Figure 5: The normalized throughput of fio with/without MT2.
Noisy neighbors decrease the victim’s throughput heavily while MT?2
can benefit the victim by restricting noisy neighbors’ bandwidth.

Victim
ndy] pazijewloN

usage. NVM Read noisy neighbor is abbreviated to NR in the
following figures, and the others are similar. Take the NVM-
Read workload as an example, four kinds of noisy neighbors
decrease fio’s throughput to 50%, 39%, 65%, and 44% of
the baseline. By restricting noisy neighbors’ bandwidth with
MT2, fi0’s throughput recovers to 98%, 92%, 99%, and 98%
of the baseline. The other workloads present similar phenom-
ena. The victim can run with a nearly maximal throughput
with the help of MT?2.

Applications We evaluate three real-world applications,
Hadoop [1], Graphchi [39] and Pmem-RocksDB [10], to
check the effectiveness of MT?. The computing tasks of these
applications are conducted on DRAM, while the data is stored
on NVM. Consequently, these applications will access both
NVM and DRAM at the same time. The number of the fio
noisy neighbors are the same as the configuration in §2.

On Hadoop 2.10.0 and Graphchi, we run a page-rank job
on Twitter [11] social graph with 81,306 nodes and 1,768,149
edges. The iteration count of the page-rank is set to 3. Figure 6
gives the results. We treat the execution time when the victim
application runs alone as the baseline. For both applications,
MT? can mitigate the victim’s performance slowdown well
by restricting the noisy neighbors’ bandwidth.

YCSB [12] is used to evaluate the throughput of
RocksDB [8]. Before running the benchmark, we load
500,000 records, each with the size of 1KB, into RocksDB.
Besides fio, we also use the aforementioned Graphchi with
eight long jobs as the noisy neighbors (denoted by Graph in
the figure). Figure 7 shows the results. Generally, the through-
put of RocksDB with noisy neighbors is 61% to 77% of that
without any noisy neighbors. When the noisy neighbors are
restricted, RocksDB’s throughput rises to about 94% to 100%
of the original throughput. This indicates that MT? effectively
reduces or even eliminates the impact of noisy neighbors to
improve the high-priority application’s bandwidth.

Response of limit update. A fast and accurate bandwidth
limiting is the foundation of prevention. Figure 8 shows the
applications’ response to the update of the bandwidth limit in
MT? at runtime. In this experiment, we run a six-job NVM
Write fio and a fourteen-job NVM Read fio simultaneously.

USENIX Association

20th USENIX Conference on File and Storage Technologies 207

Noisy Neighbors
NR NW DR DW
NR (MT2) NW (MT?) DR (MT?) DW (MT?)
' ' 1 ' | ' | ' 200%
Hadoop -137% 102% 112% 104% 146% 102% 102%

£
S 150%
S Graphchi -tReR2 1029 143% 104% L1 101% 101%

Figure 6: The normalized execution time of Hadoop and Graphchi
when running page rank on Twitter social graph. Noisy neighbors
slow down the execution and MT2 mitigates the impact by restricting
noisy neighbors’ NVM bandwidth.

Wi pazijew.oN

Noisy Neighbors

NR NW DR DW Graph
NR (MT?) NW (MT?) DR (MT?) DW (MT?)Graph(MT?) 100%
‘o

Af 98%95%98%98%98% 95%
B f 97% 95% 99% 98% PERA100% 90%
cf 97% (23 94% (XA 97% (A4 97% 100% 85%
D f 97% 94% 98% 96% PRK/A100% 80%

9
E , 97% 94% 97% 96% 99% :Z;
F , 98% 95% 98% 98% PAA100% 65%
Figure 7: The throughput of YCSB’s different workloads on
RocksDB when running with/without MT? against eight noisy neigh-

bors. Noisy neighbors decrease the throughput and MT? mitigates
the impact by restricting noisy neighbors’ bandwidth.

Victim
ndyl pazijew.oN

The concepts of victims and noisy neighbors are relative.
We assume the former as the neighbor and the other as the
victim. At first, the victim and neighbor run together without
any restrictions. They can reach the throughput of 12.5GB/s
and 7.2GB/s, respectively. After 5 seconds, we set the noisy
neighbor’s NVM write bandwidth limit to 5GB/s. It takes no
more than one second that the noisy neighbor’s throughput
drops to 5GB/s, and the victim’s throughput rises to 20GB/s
due to less bandwidth interference. Similar results appear
when noisy neighbors’ NVM bandwidth limit is changed to
1GB/s after 15 seconds, 3GB/s after 25 seconds and unlimited
after 35 seconds. The evaluation result shows that MT? can
adjust a TGroup’s throughput accurately and timely.

This also illustrates that it is not just applications that use
plenty of bandwidth that can become noisy neighbors. An
application that uses relatively small amounts of NVM band-
width can have a significant impact on other applications. So
the ability to distinguish between different types of bandwidth
is critical in the hybrid NVM/DRAM platforms.

6.1.2 Memory Bandwidth Allocation

We run four fio tasks with different memory access patterns
individually and record their throughputs. Then we run all
four tasks simultaneously without MT? and with different
guarantees with MTZ. As shown in Table 4, DRAM Write
and NVM Read suffer the most severe bandwidth degradation
when run together. DRAM Write has a whopping 66% drop
in throughput (from 7.4GB/s to 2.5GB/s). We then assign

== Victim == = \/ictim Max === Neighbor
z P o o ———— T —————————— o
@ ? \m
9 20,
5 1GB/s —>
o <-5GB/s 3GB/s ———>| unlimited -
[0 L

5 15 25 35

Time (s)
Figure 8: Response of the victim’s and noisy neighbors’ throughput
when NVM-write intensive noisy neighbors’ NVM write bandwidth
limit is updated at run time. The limit is changed at S5s, 15s, 25s and
35s. When a lower limit is put on noisy neighbors, its throughput
decreases and the victim’s throughput increases and vice versa. The
adjustment takes no more than 1 second and is very accurate.

Table 4: The throughput of fio tasks under BW allocation

Thput(GB/s) Alone w/o MT?> Config1 Config2
DRAMRead 100 698 28.8(20) 11.5(10)
DRAM Write 7.4 25 535 424)
NVMRead 7.2 3.4 42(4) 53(5)
NVM Write 5.0 3.8 4.5(4) 3.3(3)

different bandwidth guarantees (as indicated by the numbers
in parentheses in the table) to these tasks, which are satisfied
under the regulation of MT2.

6.1.3 Cloud SLO Guarantee

We conduct three experiments to verify the effectiveness of
the SLO guarantee. The first is a micro-benchmark that shows
a breakdown of DRAM/NVM read/write bandwidth changes
of both foreground tasks and background tasks. The second
is a macro-benchmark which evaluates the 95th percentile
latency of several LC tasks when running simultaneously with
Graphchi [39] as the BE task. These two correspond to the
first method in § 5.2 (similar to prevention). For the other
method (like remedy), the third experiment is conducted. We
run YCSB as the LC task with different types of memory
accesses generated by fio to simulate different BE tasks.

—a— FG DR —— FG NR -¥- BGDR -<- BGNR
—eo— FG DW — FG NW -4- BG DW -»- BG NW
g 4 FFe¥Yy. - ¥y
o YR ¥ YR yvy
U LR /
55 prebpasananees e
E P ~ m‘ L
0 - - ¢ 7 -
5 15 25 35
Time (s)

Figure 9: The throughput of the foreground and background (dashed
lines) tasks. As foreground tasks use more and more bandwidth re-
sources, if there are no sufficient bandwidth resources in the system,
MT? will reduce the bandwidth for background tasks. When the
foreground task reduce its memory usage, MT? will restore the band-
width resources of the background tasks.

208 20th USENIX Conference on File and Storage Technologies

USENIX Association

Table 5: The 95th percentile latency of several LC tasks

Table 6: Tail latency of the LC task and throughput of the BEs

Workloads w/o BEs w/o MT? w/ MT?
img-dnn (ms) 5.719 99.656 5.661
masstree (ms) 0.991 1.956 1.056
YCSB-A-read (us) 39 81 42
YCSB-A-update (us) 57 103 59

Breakdown of bandwidth changes. Figure 9 shows the re-
sult of dynamic bandwidth changes of foreground and back-
ground tasks. We use fio that read DRAM and NVM to act
as the foreground workloads. For the background tasks, we
choose all kinds of fio to show the impact to the hybrid
bandwidth. The solid lines represent the bandwidth of fore-
ground tasks, while the dashed lines represent background
tasks. Before the beginning, MT? reserves 1GB/s bandwidth
for each of the four types of memory accesses for the fore-
ground tasks and allocate all the remaining bandwidth to the
background tasks. After excluding the bandwidth reserved
for foreground tasks, MT? lookups the empirical model and
selects an appropriate bandwidth cap for background tasks
to ensure that foreground tasks will not be affected until they
use more bandwidth than reserved.

At first, the background tasks normally run with 4GB/s
DRAM read, 2.7GB/s DRAM write, 2.5GB/s NVM read, and
1.2GB/s NVM write bandwidth consumption. After 5 sec-
onds, a foreground task starts to read DRAM and takes SGB/s
DRAM read bandwidth. MT? increases the DRAM read band-
width reservation for the foreground tasks to 6GB/s. As the
existing four kinds of bandwidths do not exceed the limitation,
MT? does not restrict the background tasks. Then the fore-
ground tasks start to read NVM after 10 seconds. MT? finds
that the foreground tasks occupy 1GB/s NVM read bandwidth,
which exceeds 90% of the reservation, and assumes they may
need extra NVM read bandwidth. So MT? lowers the NVM
read bandwidth cap for the background tasks by 1GB/s, and
then the NVM read bandwidth of background tasks exceeds
the limit. As a result, MT? decides to tighten the restriction
on background tasks. After 16 seconds, foreground tasks read
NVM at 1.7GB/s, which is less than 90% of 2GB/s. Hence no
additional NVM read bandwidth needs to be added to meet
the SLO guarantee, i.e., MT2 will not put more restrictions
on background tasks.

The following bandwidth changes are all caused by the
same reasons. With more bandwidth being taken by fore-
ground tasks, the background tasks can use less bandwidth,
and MT? puts more restrictions on them to ensure the fore-
ground tasks’ performance. After 32 seconds, the foreground
tasks start to sleep one by one. Finally, all foreground tasks
sleep, and background tasks occupy their original bandwidth.

Impact on latency. YCSB on RocksDB and two workloads
from TailBench [36] (img-dnn [66] and masstree [44]) are
selected as the latency-critical (LC) applications. First, we
measure the 95th percentile latency of these LC tasks when

‘Workloads alone w/o MT2 w/ MT?
95th YCSB-A-read (us) 39 61 41
95th YCSB-A-update (us) 58 86 64
99.9th YCSB-A-read (us) 69 110 76
99.9th YCSB-A-update (us) 419 545 449
FIO(DR) (GB/s) 17.3 14.9 16.7
FIO(DW) (GB/s) 10.8 10.4 10.8
FIO(NR) (GB/s) 13.2 4.8 8.8
FIO(NW) (GB/s) 10.3 7.8 1.2

running alone without any interference. Then we run the
LC tasks together with 25 Graphchi (as the BE tasks) and
measure their latency. We then group the LC tasks into one
high-priority TGroup and the Graphchi into another (the BE
TGroup) and repeat the same experiments. The results are
shown in Table 5. Since YCSB’s results are similar for all
workloads, only the results for workload A are given.

Without MT?, the 95th percentile latency of img-dnn in-
creases to 17.4x. MT? can restore all LC tasks’ latency almost
to the level when there is no interference at all. At the same
time, the bandwidth of the BE tasks is limited to about 25% of
the original. The performance of the BE tasks can be rapidly
restored after the LC tasks are completed.

MT? in an untrusted environment. For this case, we use
the hardware method (PEBS) to separate the two types of
write bandwidth. We run YCSB as the LC application along
with four fio tasks as the BE tasks. The four BE tasks perform
read or write operations on NVM or DRAM respectively. MT?
can optimize the latency of the LC application and improve
the throughput of some BE applications by only restricting the
bandwidth of the noisiest BE application as shown in Table 6.
This thanks to the ability of distinguishing different types of
memory bandwidth.

6.2 Performance Overhead

The performance overhead derives from three aspects: in-
terference detection, bandwidth monitoring and restriction.
The interference detection and monitoring overhead stems
from setting and reading the PMU registers reading MBM
data, and issuing write requests, while the restriction overhead
comes from setting MT? context for threads, including MBA
throttling value and CPU scheduling.

6.2.1 Trusted Environment

We measure the throughput or the execution time of some
aforementioned test programs (fio, graphchi, hadoop, and
RocksDB) with/without MT? to evaluate the performance
overhead. As shown in Table 7, all overheads are less than
0.01%. The slight performance improvement in graphchi
and hadoop is caused by noise. The overhead is negligible be-
cause most operations in MT? are performed by the dedicated
kernel thread. For the interference detection, no overhead or
additional bandwidth contention is introduced as only 400KB

USENIX Association

20th USENIX Conference on File and Storage Technologies 209

Table 7: The performance overhead of MT2

Thput/Time ~ w/o MT? w/ MT? Overhead
fio 31505 MB/s 31507 MB/s < 0.01%
graphchi 321.64s 321.55s <0.01%
hadoop 54.93s 54.93 s <0.01%
RocksDB 37770 ops/s 37767 ops/s < 0.01%

@41 P

) -7.29% 1°2.76%

Sao0 y

210)i @ With NT?

= 4 — = Without NT2
102 103 104 105 108

Sample frequency
Figure 10: The throughput of fio under different sample frequen-
cies. Frequencies no less than 103 introduce nearly no overhead. The
Y-axis starts at 3.8GB/s to show the difference clearly.

data is written by the dedicated kernel thread for each period
in our implementation, Others access the MSRs to use the
hardware, which introduces little performance overhead.

We also run two applications on the same core to mea-
sure the overhead introduced in context switches. MT? in-
creases an average of 900 cycles (less than 1 microsecond) in
each context switch, which is insignificant compared to the
millisecond-level scheduling period.

6.2.2 PEBS in the Untrusted Environment

In an untrusted environment, PEBS sampling is one of the
main sources of performance overhead and is closely related
to the sample frequency. We use fio to test the throughput
under different sample frequencies and present the result in
Figure 10. The overhead is negligible when the sample fre-
quency is no less than 10°.

6.3 Efficiency

We then split the regulation mechanisms to show the necessity
of the two-stage algorithm design. First we run YCSB (as the
victims) along with graphchi (as the noisy neighbors), and try
using different techniques separately to restore the throughput
of YCSB to 80% of the throughput it runs alone. We can not
achieve the desired goal (restoring the throughput of YCSB
to 80% of the initial) with MBA only. As shown in table 8§,
when we throttle the memory bandwidth only via CPU quota
to restore the throughput of YCSB to 80%, the execution time
of graphchi is 10m40s. The corresponding time is 9m56s
when MT? is used. This indicates that MT? can control the
bandwidth efficiently, consistent with our analysis in § 3.3.1.

Table 8: The efficiency of MT?

Time MT? CPU Scheduling
9m56s 10m40s

graphchi

Table 9: The deviation (in %) of monitored bandwidth in MT2
Bandwidth(GB/s) DR DW NR NwW

MT? 1051 4.19 3.84 2.79
PCM 10.69 4.22 3.89 2.81
Deviation 1.68% 0.71% 0.13% 0.71%

6.4 Accuracy

When the environment is trusted, applications faithfully re-
port their NVM write bandwidth using the interface we pro-
vide. Although other bandwidths are obtained using reliable
techniques, we still need to verify whether the results are
accurate. PCM [58] is a software that can monitor different
types of bandwidth of the whole system. When there is only
one memory-intensive program in the system, the system-
wide bandwidth reported by PCM is almost equal to the only
program’s bandwidth. So we run four fio simultaneously to
generate different kinds of workloads and compare the band-
widths monitored by MT? with those of PCM since Intel also
uses PCM’s bandwidth as the baseline [32]. The results are
shown in Table 9, where the results reported by MT? are very
close to the ground-truth bandwidths.

7 Discussions
7.1 Limitations and Possible Mitigations

MT? brings the hybrid memory bandwidth regulation with
several limitations. MT? relies on hardware mechanisms such
as MBA, MBM, and PMU, which may conflict with applica-
tions that also depend on these techniques. The problem stems
from the limited hardware resources. For example, there are
only 79 RMIDs on our platform. It is possible to mitigate
these limitations via virtualization or by more powerful hard-
ware in the future.

Besides, the granularity of our empirical model is coarse,
which may result in some bandwidth waste. Machine learn-
ing may be used to build more accurate models with a finer
granularity in the future.

Currently, MT? is only able to accurately track the band-
width of applications accessing the NVM via the file system
and NVM programming libraries like PMDK. On trusted en-
vironments, MT? relies on applications to report their NVM
write bandwidth honestly. Since many applications (such
as PmemKYV [5], Pmem-RocksDB [10], and Pangolin [71])
choose to use NVM programming libraries to manage the
NVM, this can be easily achieved by slightly modifying the
libraries. For untrusted environments, MT? can only monitor
the write bandwidth roughly because of the hardware limi-
tation, which can be addressed correctly by an update to the
hardware mechanism.

7.2 NUMA

Currently, MT? does not support cross-NUMA bandwidth
monitoring/regulation. MT? assumes that applications are
bound to the same NUMA node where its NVM resides so

210 20th USENIX Conference on File and Storage Technologies

USENIX Association

that it can monitor and regulate without cross-NUMA NVM
accesses. The binding can be done manually (by the admins)
or by the system’s scheduler (e.g., in cloud environments).
This assumption is reasonable and commonly stands in prac-
tice since applications and FS tend to access the local NUMA
node to avoid degraded cross-NUMA accesses. For multi-
socket machines, MT? can separate the monitoring and re-
striction policies for different sockets so that MT? will not
regulate the TGroup in socket 1 when the bandwidth con-
tention level is high in socket 0.

7.3 Future work

In some scenarios, cross-NUMA accesses are inevitable. A
NUMA-and-NVM-aware scheduler can mitigate the memory
bandwidth interference via more advanced scheduling poli-
cies, e.g., isolating DRAM-only applications and the NVM-
intensive applications to different NUMA nodes. We leave
the memory throttling in such scenarios as future work.

MT? prefers to limit TGroups with massive write NVM
writes. However, these TGroups are not always the culprits
of memory bandwidth contention. Accurately identifying the
noisy neighbors remains a challenge and might require more
hardware assistance. We leave the exploration of accurate
bandwidth monitoring and regulation with hardware modifi-
cations as future work.

8 Related Work

DRAM bandwidth monitoring and regulation. Mem-
Guard [67-69] is a DRAM bandwidth reservation system
designed for real-time multi-core systems. It provides guaran-
teed and best-effort DRAM bandwidth for different applica-
tions. MemGuard monitors the DRAM traffic by accounting
for the cache misses and suspends a task when it has exhausted
its budgets in a given period.

Although both MemGuard and MT? aim to throttle memory
bandwidth to avoid interference, MT? differs from MemGuard
in several aspects. First, MemGuard is designed for DRAM
in real-time systems, but MT? is proposed for hybrid NVM/-
DRAM platforms. Second, MemGuard throttles DRAM band-
width via a software budget-based throttling mechanism. MT?
leverages both hardware and software mechanisms and pro-
poses a dynamic bandwidth throttling algorithm to better
regulate bandwidth for various applications.

LIKWID [59], Larysch [40], and Merlin [57] estimate mem-
ory bandwidth with L3 cache miss information collected from
hardware performance counters. LibDistGen [17] estimates
the memory bandwidth of applications based on stack reuse
histograms. Mmbwmon [16] estimates the memory band-
width consumption of applications by running benchmarks
on other CPU cores of the system simultaneously. These tech-
niques are proposed for DRAM and cannot be simply adopted
to a system with both DRAM and NVM.

EMBA [61] models the relationship between performance
and LLC occupancy and memory bandwidth and then pro-

poses an algorithm with Intel MBA to restrict the memory
bandwidth to improve the overall system performance in data
centers. However, EMBA cannot control the memory band-
width of a group of threads, and it cannot be used on hybrid
NVM/DRAM platforms.

HyPart [50] consists of thread packing, clock modulation
and Intel’s MBA. MT? utilizes the CPU scheduler, thus pro-
viding finer-grained and precise control. Caladan [24] is a
CPU scheduler that supports task monitoring and scheduling
at the microsecond level. Some other studies [15,23,47,72]
also reduce resource contention with a modified scheduler.

None of these works can be used directly on hybrid memory
NVM/DRAM platforms because the interference model is
completely different from the DRAM-only platforms. They
can only be used on hybrid platforms if they can separate the
DRAM and NVM traffic at thread granularity as MT? does.

Hybrid NVM/DRAM bandwidth interference regulation.
FairHym [27] will limit the frequencies of cores that per-
form NVM writes when the NVM write bandwidth exceeds a
threshold to improve the inter-process fairness. It only con-
cerns the bandwidth interference between NVM writes and
DRAM accesses. It requires an impractical setup (installing
DRAM and NVM on different NUMA nodes) to estimate the
number of NVM writes. MT? has more flexible monitoring
and allocation method that takes all types of bandwidth in-
terference into account and can be used to meet the need of
different user scenarios. Dicio [49] can control the bandwidth
interference in a single LC and a single BE job situation. It
blames and throttles the only BE job. In real-world scenar-
ios, it cannot figure out which one to blame. In comparison,
MT? targets a more practical setup (each NUMA node has
both DRAM and NVM) and a more common scenario where
multiple applications can run together.

9 Conclusions

This paper presents MT?, the first comprehensive system to
regulate memory bandwidth on the hybrid NVM/DRAM plat-
forms. MT? first detects the bandwidth interference, monitors
four types of memory bandwidth through various mechanisms
and adjusts the bandwidth with a dynamic bandwidth throt-
tling algorithm. Evaluation shows that MT? can effectively
regulate the bandwidth among applications with nearly zero
performance overhead and can be used in multiple use cases.

Acknowledgments

We sincerely thank our shepherd Sanidhya Kashyap and the
anonymous reviewers from ATC ’20, FAST ’21, ATC ’21,
SoCC ’21, and FAST ’22 for constructive comments and
insightful suggestions. This work is supported in part by the
High-Tech Support Program from Shanghai Committee of
Science and Technology (No. 19511121100), the National
Natural Science Foundation of China (No. 61925206), and
Huawei. Mingkai Dong (mingkaidong @sjtu.edu.cn) is the
corresponding author.

USENIX Association

20th USENIX Conference on File and Storage Technologies 211

References
[1] Apache hadoop. https://hadoop.apache.org/.

[2] Flexible i/o tester. https://fio.readthedocs.io/e
n/latest/index.html.

[3] Intel® optanetm dc persistent memory quick start guide.
https://www.intel.com/content/dam/support/
us/en/documents/memory-and-storage/data-ce
nter-persistent-mem/Intel-Optane-DC-Persis
tent-Memory-Quick-Start-Guide.pdf.

[4] Introduction to cache allocation technology in the intel®
xeon® processor €5 v4 family. https://software.1
ntel.com/en-us/articles/introduction-to-ca
che-allocation-technology.

[5] Key/value datastore for persistent memory. https:
//github.com/pmem/pmemkv.

[6] Linux control groups. http://man7.org/linux/man
-pages/man7/cgroups.7.html.

[7] Memcached. https://memcached.org/.

[8] A persistent key-value store for fast storage environ-
ments. https://rocksdb.org.

[9] Persistent memory programming. https://pmem.io/
pmdk /.

[10] Rocksdb on persistent memory. https://github.com
/pmem/pmem-rocksdb.

[11] Twitter socail graph. http://snap.stanford.edu/
data/ego-Twitter.html.

[12] Yahoo! cloud serving benchmark. https://github.c
om/brianfrankcooper/YCSB.

[13] Google Cloud. https://cloud.google.com/blo
g/topics/partners/available-first-on-googl
e-cloud-intel-optane-dc-persistent-memory,
2019.

[14] SAP HANA. https://www.sap.com/products/han
a.html, 2019.

[15] Sergey Blagodurov, Sergey Zhuravlev, Mohammad
Dashti, and Alexandra Fedorova. A case for numa-aware
contention management on multicore systems. In Pro-
ceedings of the 2011 USENIX Conference on USENIX
Annual Technical Conference, USENIXATC’11, page 1,
USA, 2011. USENIX Association.

[16] Jens Breitbart, Simon Pickartz, Stefan Lankes, Josef
Weidendorfer, and Antonello Monti. Dynamic co-
scheduling driven by main memory bandwidth utiliza-
tion. 2017 IEEE International Conference on Cluster
Computing (CLUSTER), pages 400-409, 2017.

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

Jens Breitbart, Josef Weidendorfer, and Carsten Trini-
tis. Automatic co-scheduling based on main memory
bandwidth usage. In JSSPP, 2015.

Shuang Chen, Christina Delimitrou, and José F.
Martinez. Parties: Qos-aware resource partitioning for
multiple interactive services. In Proceedings of the
Twenty-Fourth International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems, ASPLOS ’19, page 107-120, New York,
NY, USA, 2019. Association for Computing Machinery.

Jeremy Condit, Edmund B. Nightingale, Christopher
Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Der-
rick Coetzee. Better i/o through byte-addressable, persis-
tent memory. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles, SOSP *09,
page 133-146, New York, NY, USA, 2009. Association
for Computing Machinery.

Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and
Haibo Chen. Performance and protection in the zofs
user-space nvm file system. In Proceedings of the
27th ACM Symposium on Operating Systems Princi-
ples, SOSP ’19, pages 478-493, New York, NY, USA,
2019. ACM.

Mingkai Dong and Haibo Chen. Soft updates made sim-
ple and fast on non-volatile memory. In Proceedings of
the 2017 USENIX Conference on Usenix Annual Tech-
nical Conference, USENIX ATC ’17, pages 719-731,
Berkeley, CA, USA, 2017. USENIX Association.

Intel Xeon Processor Scalable Memory Family. Un-
core performance monitoring reference manual. Intel
Corporation, July, 2017.

Alexandra Fedorova, Margo Seltzer, and Michael D.
Smith. Improving performance isolation on chip mul-
tiprocessors via an operating system scheduler. In Pro-
ceedings of the 16th International Conference on Par-
allel Architecture and Compilation Techniques, PACT
"07, page 25-38, USA, 2007. IEEE Computer Society.

Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and
Adam Belay. Caladan: Mitigating interference at
microsecond timescales. In /4th {USENIX} Sympo-
sium on Operating Systems Design and Implementation
({OSDI} 20), pages 281-297, 2020.

Yiming Huai et al. Spin-transfer torque mram (stt-
mram): Challenges and prospects. AAPPS bulletin,
18(6):33-40, 2008.

Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and
Beomseok Nam. Endurable transient inconsistency

212 20th USENIX Conference on File and Storage Technologies

USENIX Association

https://hadoop.apache.org/
https://fio.readthedocs.io/en/latest/index.html
https://fio.readthedocs.io/en/latest/index.html
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://github.com/pmem/pmemkv
https://github.com/pmem/pmemkv
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
https://memcached.org/
https://rocksdb.org
https://pmem.io/pmdk/
https://pmem.io/pmdk/
https://github.com/pmem/pmem-rocksdb
https://github.com/pmem/pmem-rocksdb
http://snap.stanford.edu/data/ego-Twitter.html
http://snap.stanford.edu/data/ego-Twitter.html
https://github.com/brianfrankcooper/YCSB
https://github.com/brianfrankcooper/YCSB
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud-intel-optane-dc-persistent-memory
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud-intel-optane-dc-persistent-memory
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud-intel-optane-dc-persistent-memory
https://www.sap.com/products/hana.html
https://www.sap.com/products/hana.html

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

in byte-addressable persistent b+-tree. In Proceed-
ings of the 16th USENIX Conference on File and Stor-
age Technologies, FAST’ 18, page 187-200, USA, 2018.
USENIX Association.

S. Imamura and E. Yoshida. Fairhym: Improving inter-
process fairness on hybrid memory systems. In 2020 9th
Non-Volatile Memory Systems and Applications Sympo-
sium (NVMSA), pages 1-6, 2020.

Intel. Intel optane dc persistent memory readies for
widespread deployment. https://newsroom.intel
.com/news/intel-optane-dc-persistent-memor
y-readies-widespread-deployment/, 2018.

Intel. Intel 64 and ia-32 architectures software devel-
oper’s manual. Volume 3: System Programming Guide,
pages Vol. 3B 17-64, 2019.

Intel. Intel 64 and ia-32 architectures software devel-
oper’s manual. Volume 3: System Programming Guide,
2019.

Intel. Intel 64 and ia-32 architectures software devel-
oper’s manual. Volume 3: System Programming Guide,
pages Vol. 3B 18-19, 2019.

Intel. Intel resource director technology (intel rdt) on
2nd generation intel xeon scalable processors reference
manual. Intel Resource Director Technology Reference
Manual, 2019.

Intel. Intel(R) Optane(TM) DC Persistent Memory. ht
tps://www.intel.com/content/www/us/en/arch
itecture-and-technology/optane-dc-persiste
nt-memory.html, 2019.

Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao
Liu, Amirsaman Memaripour, Yun Joon Soh, Zixuan
Wang, Yi Xu, Subramanya R. Dulloor, Jishen Zhao, and
Steven Swanson. Basic performance measurements of
the intel optane DC persistent memory module. CoRR,
abs/1903.05714, 2019.

Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,
Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.
Splitfs: Reducing software overhead in file systems for
persistent memory. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP ’19,
page 494-508, New York, NY, USA, 2019. Association
for Computing Machinery.

Harshad Kasture and Daniel Sanchez. Tailbench:
a benchmark suite and evaluation methodology for
latency-critical applications. In 2016 IEEE International
Symposium on Workload Characterization (IISWC),
pages 1-10. IEEE, 2016.

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Takayuki Kawahara. Scalable spin-transfer torque ram
technology for normally-off computing. IEEE Des. Test,
28(1):52-63, January 2011.

Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon
Peter, Emmett Witchel, and Thomas Anderson. Strata:
A cross media file system. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP *17,
page 460—477, New York, NY, USA, 2017. Association
for Computing Machinery.

Aapo Kyrola, Guy Blelloch, and Carlos Guestrin.
Graphchi: Large-scale graph computation on just a PC.
In Presented as part of the 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
12), pages 31-46, Hollywood, CA, 2012. USENIX.

Florian Larysch. Fine-grained estimation of memory
bandwidth utilization. Master thesis, Operating Sys-
tems Group, Karlsruhe Institute of Technology (KIT),
Germany, March13 2016.

Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug
Burger. Architecting phase change memory as a scalable
dram alternative. In Proceedings of the 36th Annual In-
ternational Symposium on Computer Architecture, ISCA
’09, pages 2—-13, New York, NY, USA, 2009. ACM.

Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beom-
seok Nam, and Sam H. Noh. Wort: Write optimal radix
tree for persistent memory storage systems. In Pro-
ceedings of the 15th Usenix Conference on File and
Storage Technologies, FAST 17, page 257-270, USA,
2017. USENIX Association.

David Lo, Liqun Cheng, Rama Govindaraju,
Parthasarathy Ranganathan, and Christos Kozyrakis.
Heracles: improving resource efficiency at scale. In
Deborah T. Marr and David H. Albonesi, editors, Pro-
ceedings of the 42nd Annual International Symposium
on Computer Architecture, Portland, OR, USA, June
13-17, 2015, pages 450-462. ACM, 2015.

Yandong Mao, Eddie Kohler, and Robert Tappan Morris.
Cache craftiness for fast multicore key-value storage. In
Proceedings of the 7th ACM european conference on
Computer Systems, pages 183-196, 2012.

Virendra] Marathe, Margo Seltzer, Steve Byan, and Tim
Harris. Persistent memcached: Bringing legacy code to
byte-addressable persistent memory. In 9th {USENIX}
Workshop on Hot Topics in Storage and File Systems
(HotStorage 17), 2017.

Amirsaman Memaripour, Joseph Izraelevitz, and Steven
Swanson. Pronto: Easy and fast persistence for volatile

USENIX Association

20th USENIX Conference on File and Storage Technologies 213

https://newsroom.intel.com/news/intel-optane-dc-persistent-memory-readies-widespread-deployment/
https://newsroom.intel.com/news/intel-optane-dc-persistent-memory-readies-widespread-deployment/
https://newsroom.intel.com/news/intel-optane-dc-persistent-memory-readies-widespread-deployment/
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

data structures. In Proceedings of the Twenty-Fifth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS
’20, page 789-806, New York, NY, USA, 2020. Associ-
ation for Computing Machinery.

Andreas Merkel, Jan Stoess, and Frank Bellosa.
Resource-conscious scheduling for energy efficiency
on multicore processors. In Proceedings of the 5th Eu-
ropean Conference on Computer Systems, EuroSys *10,
page 153-166, New York, NY, USA, 2010. Association
for Computing Machinery.

Khang T Nguyen. Introduction to memory bandwidth
monitoring in the intel(r) xeon(r) processor e5 v4 family.
https://software.intel.com/en-us/articles/
introduction-to-memory-bandwidth-monitorin

g, 2016.

Jinyoung Oh and Youngjin Kwon. Persistent memory
aware performance isolation with dicio. In Proceedings
of the 12th ACM SIGOPS Asia-Pacific Workshop on
Systems, APSys *21, page 97-105, New York, NY, USA,
2021. Association for Computing Machinery.

Jinsu Park, Seongbeom Park, Myeonggyun Han, Jihoon
Hyun, and Woongki Baek. Hypart: A hybrid technique
for practical memory bandwidth partitioning on com-
modity servers. In Proceedings of the 27th International
Conference on Parallel Architectures and Compilation
Techniques, PACT 18, New York, NY, USA, 2018. As-
sociation for Computing Machinery.

Tirthak Patel and Devesh Tiwari. Clite: Efficient and
gos-aware co-location of multiple latency-critical jobs
for warehouse scale computers. In 2020 IEEE Inter-

national Symposium on High Performance Computer
Architecture (HPCA), pages 193-206, 2020.

Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and
Jude A. Rivers. Scalable high performance main mem-
ory system using phase-change memory technology. In
Proceedings of the 36th Annual International Sympo-
sium on Computer Architecture, ISCA 09, pages 24-33,
New York, NY, USA, 2009. ACM.

Dulloor Subramanya Rao, Sanjay Kumar, Anil S.
Keshavamurthy, Philip Lantz, Dheeraj Reddy, Rajesh
Sankaran, and Jeff Jackson. System software for per-
sistent memory. In Ninth Eurosys Conference 2014,
EuroSys 2014, Amsterdam, The Netherlands, April 13-
16, 2014, pages 15:1-15:15, 2014.

Yujie Ren, Changwoo Min, and Sudarsun Kannan.
Crossfs: A cross-layered direct-access file system. In
14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20), pages 137-154.
USENIX Association, November 2020.

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

Smith Ryan. Intel announces optane storage brand for
3d xpoint products. https://www.anandtech.com/
show/9541/intel-announces-optane-storage-b
rand-for-3d-xpoint-products, 2015.

Dmitri B Strukov, Gregory S Snider, Duncan R Stewart,

and R Stanley Williams. The missing memristor found.
nature, 453(7191):80, 2008.

Priyanka Tembey, Ada Gavrilovska, and Karsten
Schwan. Merlin: Application- and platform-aware re-
source allocation in consolidated server systems. In
Proceedings of the ACM Symposium on Cloud Comput-
ing, SOCC 14, page 1-14, New York, NY, USA, 2014.
Association for Computing Machinery.

Thomas Willhalm and Roman Dementiev. Intel(r) per-
formance counter monitor - a better way to measure cpu
utilization. https://software.intel.com/content
/www/us/en/develop/articles/intel-performa
nce-counter-monitor.html, 2012.

Jan Treibig, Georg Hager, and Gerhard Wellein. Lik-
wid: A lightweight performance-oriented tool suite for
x86 multicore environments. In Proceedings of the
2010 39th International Conference on Parallel Pro-
cessing Workshops, ICPPW ’10, page 207-216, USA,
2010. IEEE Computer Society.

Haris Volos, Sanketh Nalli, Sankarlingam Panneersel-
vam, Venkatanathan Varadarajan, Prashant Saxena, and
Michael M. Swift. Aerie: Flexible file-system inter-
faces to storage-class memory. In Proceedings of the
Ninth European Conference on Computer Systems, Eu-
roSys 14, New York, NY, USA, 2014. Association for
Computing Machinery.

Yaocheng Xiang, Chencheng Ye, Xiaolin Wang, Ying-
wei Luo, and Zhenlin Wang. Emba: Efficient memory
bandwidth allocation to improve performance on intel
commodity processor. In Proceedings of the 48th Inter-
national Conference on Parallel Processing, ICPP 2019,
New York, NY, USA, 2019. Association for Computing
Machinery.

Jian Xu and Steven Swanson. Nova: A log-structured
file system for hybrid volatile/non-volatile main mem-
ories. In Proceedings of the 14th Usenix Conference
on File and Storage Technologies, FAST’ 16, pages 323—
338, Berkeley, CA, USA, 2016. USENIX Association.

Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha
Gangadharaiah, Amit Borase, Tamires Brito Da Silva,
Steven Swanson, and Andy Rudoff. Nova-fortis: A
fault-tolerant non-volatile main memory file system. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles, SOSP 17, pages 478-496, New York,
NY, USA, 2017. ACM.

214 20th USENIX Conference on File and Storage Technologies

USENIX Association

https://software.intel.com/en-us/articles/introduction-to-memory-bandwidth-monitoring
https://software.intel.com/en-us/articles/introduction-to-memory-bandwidth-monitoring
https://software.intel.com/en-us/articles/introduction-to-memory-bandwidth-monitoring
https://www.anandtech.com/show/9541/intel-announces-optane-storage-brand-for-3d-xpoint-products
https://www.anandtech.com/show/9541/intel-announces-optane-storage-brand-for-3d-xpoint-products
https://www.anandtech.com/show/9541/intel-announces-optane-storage-brand-for-3d-xpoint-products
https://software.intel.com/content/www/us/en/develop/articles/intel-performance-counter-monitor.html
https://software.intel.com/content/www/us/en/develop/articles/intel-performance-counter-monitor.html
https://software.intel.com/content/www/us/en/develop/articles/intel-performance-counter-monitor.html

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang,
Khai Leong Yong, and Bingsheng He. Nv-tree: Re-
ducing consistency cost for nvm-based single level sys-
tems. In Proceedings of the 13th USENIX Conference on
File and Storage Technologies, FAST’ 15, page 167-181,
USA, 2015. USENIX Association.

Jifei Yi, Benchao Dong, Mingkai Dong, and Haibo Chen.
On the precision of precise event based sampling. In Pro-
ceedings of the 11th ACM SIGOPS Asia-Pacific Work-
shop on Systems, pages 98—105, 2020.

Xingdi (Eric) Yuan. A deep network handwriting classi-
fier. https://github.com/xingdi-eric-yuan/mu
lti-layer-convnet, 2014.

Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Cac-
camo, and Lui Sha. Memory access control in multi-
processor for real-time systems with mixed criticality.
In Robert Davis, editor, 24th Euromicro Conference on
Real-Time Systems, ECRTS 2012, Pisa, Italy, July 11-13,
2012, pages 299-308. IEEE Computer Society, 2012.

Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Cac-
camo, and Lui Sha. Memguard: Memory bandwidth
reservation system for efficient performance isolation in
multi-core platforms. In /9th IEEE Real-Time and Em-
bedded Technology and Applications Symposium, RTAS
2013, Philadelphia, PA, USA, April 9-11, 2013, pages
55-64. IEEE Computer Society, 2013.

Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Cac-
camo, and Lui Sha. Memory bandwidth management for
efficient performance isolation in multi-core platforms.
IEEE Trans. Computers, 65(2):562-576, 2016.

Lu Zhang and Steven Swanson. Pangolin: A fault-
tolerant persistent memory programming library. In
Proceedings of the 2019 USENIX Conference on Usenix
Annual Technical Conference, USENIX ATC °19, page
897-911, USA, 2019. USENIX Association.

Lu Zhang and Steven Swanson. Pangolin: A
fault-tolerant persistent memory programming library.
In 2019 {USENIX} Annual Technical Conference
({USENIX}{ATC} 19), pages 897-912, 2019.

Sergey Zhuravlev, Sergey Blagodurov, and Alexandra
Fedorova. Addressing shared resource contention in
multicore processors via scheduling. In Proceedings of
the Fifteenth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS XV, page 129-142, New York, NY,
USA, 2010. Association for Computing Machinery.

Pengfei Zuo, Yu Hua, and Jie Wu. Write-optimized and
high-performance hashing index scheme for persistent

memory. In Proceedings of the 12th USENIX Confer-
ence on Operating Systems Design and Implementation,
OSDI’ 18, page 461-476, USA, 2018. USENIX Associ-
ation.

USENIX Association

20th USENIX Conference on File and Storage Technologies 215

https://github.com/xingdi-eric-yuan/multi-layer-convnet
https://github.com/xingdi-eric-yuan/multi-layer-convnet

	Introduction
	Background
	Noisy Neighbors
	NVM
	Memory Bandwidth Interference
	Memory Bandwidth Monitoring (MBM)
	Memory Bandwidth Allocation (MBA)

	MT2 Design
	Overview
	The Monitor
	Bandwidth Estimation
	Interference Detection

	The Regulator
	Memory Regulation Mechanisms
	Dynamic Bandwidth Throttling

	Implementation
	Other Use Cases
	Memory Bandwidth Allocation
	Cloud SLO Guarantee

	Evaluation
	Effectiveness
	Noisy Neighbor Suppression
	Memory Bandwidth Allocation
	Cloud SLO Guarantee

	Performance Overhead
	Trusted Environment
	PEBS in the Untrusted Environment

	Efficiency
	Accuracy

	Discussions
	Limitations and Possible Mitigations
	NUMA
	Future work

	Related Work
	Conclusions

