
Comprehensive VM Protection against Untrusted
Hypervisor through Retrofitted AMD Memory Encryption

Yuming Wu, Yutao Liu, Ruifeng Liu, Haibo Chen∗, Binyu Zang, Haibing Guan
Institute of Parallel and Distributed Systems

Shanghai Key Laboratory for Scalable Computing and Systems
Shanghai Jiao Tong University

ABSTRACT

The confidentiality of tenant’s data is confronted with high
risk when facing hardware attacks and privileged malicious
software. Hardware-based memory encryption is one of the
promising means to provide strong guarantees of data secu-
rity. Recently AMD has proposed its new memory encryp-
tion hardware called SME and SEV, which can selectively
encrypt memory regions in a fine-grained manner, e.g., by
setting the C-bits in the page table entries. More impor-
tantly, SEV further supports encrypted virtual machines.
This, intuitively, has provided a new opportunity to protect
data confidentiality in guest VMs against an untrusted hy-
pervisor in the cloud environment. In this paper, we first
provide a security analysis on the (in)security of SEV and
uncover a set of security issues of using SEV as a means to
defend against an untrusted hypervisor. Based on the study,
we then propose a software-based extension to the SEV fea-
ture, namely Fidelius, to address those issues while retaining
performance efficiency. Fidelius separates the management
of critical resources from service provisioning and revokes
the permissions of accessing specific resources from the un-
trusted hypervisor. By adopting a sibling-based protection
mechanism with non-bypassable memory isolation, Fidelius
embraces both security and efficiency, as it introduces no
new layer of abstraction. Meanwhile, Fidelius reuses the
SEV API to provide a full VM life-cycle protection, includ-
ing two sets of para-virtualized I/O interfaces to encode the
I/O data, which is not considered in the SEV hardware de-
sign. A detailed and quantitative security analysis shows
its effectiveness in protecting tenant’s data from a variety
of attack surfaces, and the performance evaluation confirms
the performance efficiency of Fidelius.

1. INTRODUCTION
One of the primary premises of current multi-tenant clouds

is to guarantee the confidentiality of the tenant’s data, even
when facing curious or malicious insiders. It is a well-known
fact that purely encrypting private data in the secondary
storage is far from enough since such data will be finally
loaded into memory in plaintext for processing. Such data
will be exposed to the underlying privileged software and
hardware attacks like cold boot or bus snooping.

One promising direction of further protecting in-memory
processed data is to use relatively efficient hardware-based
memory encryption so that even though the memory is some-
how accessed by the attackers, its confidentiality is still guar-

∗Corresponding author: haibochen@sjtu.edu.cn

anteed. Recently, Intel and AMD have both proposed hard-
ware supports for memory encryption within their manufac-
tured processors. Intel proposed the Software Guard Ex-
tensions (SGX) [1], to protect pieces of application logic in-
side encrypted enclave memory against malicious OS. How-
ever SGX is limited to protect a relatively small portion
of memory, and the developers have to mostly reconstruct
the protected software or build it from scratch. Thus it is
nontrivial for SGX to protect large-scale software like the
operating system or even the entire virtual machine. AMD
proposed another simpler mechanism called Secure Memory
Encryption (SME), with which enabled, the memory can be
encrypted in page level granularity by simply setting the C-
bit in the page table entry. More importantly, it enables
the Secure Encrypted Virtualization (SEV) feature, so that
each virtual machine can use its own key to selectively en-
crypt memory, which provides an opportunity to guarantee
the data security of guest VM against untrusted hypervisor.

However, we observed that there are numerous issues when
leveraging SEV for VM protection against an untrusted hy-
pervisor. First, a malicious hypervisor can bypass the pro-
tection by manipulating some critical resources. For exam-
ple, the SEV does not encrypt the virtual machine control
block (VMCB) and general purpose registers, so that hy-
pervisor can easily breach their privacy and integrity, and
arbitrarily disable corresponding policies [2]. Though the
optional SEV-ES feature can eliminate the above attack sur-
faces by encrypting these guest states, the hypervisor is still
in the position of managing the guest memory mapping and
key sharing mechanisms, where replay attacks can be con-
ducted to infer VM’s encrypted memory, and the shared
keys may be abused by the hypervisor with other collusive
VM. On the other hand, we observed that SEV misses some
functionalities to provide the full VM protection. For in-
stance, SEV cannot encrypt I/O based (DMA) memory re-
gions, which can be directly accessed by the untrusted driver
domain. In addition, given SEV, there is currently no secure
way for two cooperative guest VMs to share memory without
exposing it to the hypervisor.

In this paper, we propose a software-based extension to
AMD SEV, namely Fidelius, to enable a comprehensive VM
protection against the untrusted hypervisor (including the
management VM). To address the security issue from by-
passed protection by the hypervisor, Fidelius separates the
critical resource management from the service provisioning,
such that the hypervisor is deprived of the permissions to
directly operate on specific resources. Fidelius introduces
another isolated context to manage those resources with

441

2018 IEEE International Symposium on High Performance Computer Architecture

2378-203X/18/$31.00 ©2018 IEEE
DOI 10.1109/HPCA.2018.00045

policy enforcement, and this isolation is guaranteed by the
non-bypassable memory protection mechanism. Meanwhile,
for performance consideration, Fidelius builds this isolated
context in the same privilege level as the hypervisor, and it
provides three types of gates to enable lightweight context
switch compared with the otherwise cross-world approaches.

To remedy the missed functions of SEV while retaining
compatibility, Fidelius provides a novel reuse of the SEV
API to enable the full VM life-cycle protection. Specifically,
Fidelius retrofits the usage of SEV’s SEND and RECEIVE
APIs to enable booting from encrypted kernel image. For
I/O protection, Fidelius provides two sets of para-virtualized
interfaces for guest VM, so that it can enjoy fast I/O data en-
coding and decoding with hardware-based cryptographic ac-
celeration while preserving compatibility for systems with or
without AES instruction set. Finally, to provide a secure ap-
proach for memory sharing between cooperative guest VMs,
Fidelius extends the hypercall interfaces to verify the shar-
ing contexts between VMs.

Our contributions: To summarize, this paper makes
the following contributions:

• A comprehensive security analysis and discussion of lever-
aging AMD SEV for VM protection against untrusted
host system (Section 2).

• Fidelius, a software extension to address the issues of
leveraging SEV for full VM protection by separating crit-
ical resource management from service provisioning with
sibling based protection, and a novel reuse of the SEV
API for VM life-cycle protection. (Section 3 and 4).

• A working prototype implemented on Xen, and policy en-
forcement based on it (Section 5), as well as its security
(Section 6) and performance (Section 7) evaluations that
confirm its effectiveness and efficiency, and some hardware
suggestions for a better security solution (Section 8).

2. BACKGROUND AND MOTIVATION
The idea of protecting virtual machine under untrusted

hypervisor with cryptographic support is not new, some pre-
vious wisdom (e.g., HyperCoffer [3]) has been proposed to
involve in such scenario. However, compared with the secure
processors used in those systems, the AMD SEV feature has
some appealing characteristics. Firstly, SEV is implemented
in the mainstream processors instead of the academic sim-
ulators. Thus it can be widely supported in reality. Mean-
while, other than encrypting the whole memory of the en-
tire guest virtual machine, SEV chooses to grant guests the
capabilities to control the encryption in a manner of page
granularity. Therefore it is more flexible and can be adapted
to more complicated scenarios. In this section, we will first
introduce the background of SME and SEV proposed in the
AMD processors, as well as its potential problems when en-
abling guest VM running on the untrusted hypervisor with
SEV support to motivate our work. Then we will briefly
show some background of Xen virtualization techniques.

2.1 AMD Memory Encryption
Recently AMD proposed its memory encryption solutions

called SME and SEV [4] and integrated them into the AMD-
V techniques. As indicated in Figure 1, a new SoC firmware
is brought in, and it cooperates with the memory controller
accommodated in CPU to serve both SME and SEV. All the

����

����	
�
�
���

����

�
�������
��
��
�

������
��
�������

����������

���!�����
�"#�$�

�"#�$! "��
��
%��������

�������
��
��&�

�
���
��	�
�

'�(�)�

�
���
��������
�
���
����
��

���*�	��������������

"��

+���,	��

���- ���. ����

�"#�$�
���!

�"#�$!

'��������� '����%/����	����������*0��
"��

1
����%/����	���������
'���2(�����
%	���3	0��

1
����4���
	���������

1
����%	���3	0��

"�4

Figure 1: AMD memory encryption solutions

keys are managed by a secure processor and installed into
the memory controller to support on-die AES encryption
engine. The keys will be regenerated every time the host
system resets in SME or guest reboots in SEV.

SME is used to defend against physical attacks. The ker-
nel can decide which pages to encrypt by setting the C-bits
in the page table entries. While SEV can further protect
guest memory in a similar manner with the help of addi-
tional guest key management instructions. When a guest
VM is launched in SEV mode, the firmware initializes the
guest SEV context in SoC and returns a handle to the hy-
pervisor. Each handle corresponds to one SEV context in-
cluding the VM encryption key (Kvek). Since then when the
guest VM is about to be scheduled, the hypervisor will first
issue the ACTIVATE instruction, with parameters of handle
and ASID of the guest VM, so that the processor will install
the corresponding Kvek into the memory controller together
with ASID tagged. AMD also proposed the SEV-ES [5] in
its future version of SEV so that the VMCB and general
purpose registers can be encrypted when trapped into the
hypervisor, to prevent attackers from tampering them.

As shown in Figure 1, guest dom1 and dom2 can encrypt
their memory with different Kvek, by setting the C-bits in
the guest page table entries. It is important to note that
SEV can be used together with SME, but C-bits in the guest
page tables take priority.

2.2 (In)securities of AMD Memory Encryp-
tion

It is noted that though the protected guest VM has been
endowed with the capability of sheltering its memory from
an untrusted host system, the management role of hypervi-
sor weakens this power for following potential reasons.

Problems existing in SEV. The VMCB contains criti-
cal information (e.g., instruction pointer, control registers),
and it controls the execution, as well as exit and entry con-
ditions of the guest VM through specific control vectors.
However, the VMCB is not encrypted, and its integrity
is not protected in the current SEV. Besides, the general
purpose registers are also exposed when control is trapped.
Once context switch happens from guest mode to host mode,
the hypervisor is capable of stealing confidential information
from the unencrypted registers and tampering critical fields
in VMCB . This can lead to arbitrary guest memory reads
and writes or even disable SEV protection completely [2].

Remaining problems even with SEV-ES enabled.
Although SEV-ES can disallow the above-mentioned attack
surfaces, there are still at least two potential weaknesses.

442

First, the second level memory mapping is still controlled
by the hypervisor to map from guest physical address to
host physical address. This is shown to be vulnerable to
replay attacks for bypassing password validation [2] even
with SEV-ES enabled. Second, a key-sharing enabled guest
can still not prevent hypervisor from exposing its Kvek to
a collusive guest VM since handle and ASID are managed
by the hypervisor, and this handle-ASID relationship is not
protected by SEV-ES.

Security issues not considered by AMD memory
encryption. It is noted that DMA is not allowed to op-
erate on encrypted guest memory by the SEV hardware for
security reasons. Thus guest should allocate shared memory
pages unencrypted for DMA, which may break the confiden-
tiality of I/O data. Also, since guest VMs have their own
cryptographic keys, the shared memory between two guests
has to be in plaintext, which is exposed to the underlying
hypervisor. Meanwhile, since the grant table is maintained
by the hypervisor, it can intentionally manipulate the grant
references (including the access permissions), and map the
shared memory to its conspirator VM, or abuse the permis-
sion systems. For example, the hypervisor can tamper the
permission to writable, while the origin VM shares its mem-
ory with only read permission. It is noted that the I/O data
transferring highly relies on the memory sharing mechanism.
Thus it reveals high risk for the I/O guest VM.

2.3 Xen Virtualization
Xen [6] was famous for its para-virtualized interfaces that

guest VM should be explicitly ported to communicate with
virtualization layer during privileged operations, memory
shadowing and I/O transfer. As Intel VT-x and AMD-V vir-
tualization hardware extensions came into the market. Cur-
rently, CPU and memory virtualizations are widely and effi-
ciently supported by hardware, while for I/O virtualization,
the para-virtualized approaches with front-end and back-end
drivers are still popular for its efficiency. We take AMD-V as
an example to explain CPU, memory and I/O virtualization
implemented in Xen environment, as well as its memory
sharing mechanisms.

CPU virtualization. Guest VM normally runs in the
guest mode, while the hypervisor and management VM run
in the host mode. Both of the two modes have ring 0 and ring
3 privilege levels for kernel and user processes to run respec-
tively. Before guest VM bootup, hypervisor initializes data
structures called virtual machine control block (VMCB) for
every virtual core, and each VMCB contains the runtime
states of the corresponding guest, as well as the control bits
for VM entry and exit. Once the VMCB and the general
purpose registers are initialized, the hypervisor can issue the
VMRUN instruction, taking the address of the VMCB as
its argument, then the CPU is switched to the guest mode,
and its states are synchronized with the VMCB fields. Dur-
ing running cycles of guest mode, the privileged instructions
and events pre-configured in the VMCB will trap the con-
trol flow into the host mode, and then the hypervisor can
handle them according to the vmexit reasons.

Nested paging. AMD introduces a nested layer for
memory virtualization. For each guest VM, the hypervi-
sor maintains one nested page table (NPT) referenced by a
specific hardware register, to translate from guest physical
address (GPA) to host physical address (HPA), while the
guest governs its own page tables referenced by CR3 regis-

ters, to map from guest virtual address (GVA) to GPA. One
complete memory read involves two steps of hardware-based
addressing, firstly, the GPA is retrieved from the guest page
tables, then the real HPA is further obtained through the
nested page tables walking. When the nested page faults
happen, the hypervisor is responsible for allocating physi-
cal pages and fill the addresses to the corresponding NPT
entries.

Para-virtualized I/O. In Xen the para-virtualized I/O
interface is widely used, it can outperform the emulated
I/O interface as the transferred data are batched instead
of trapping every I/O operation. Specifically, the whole I/O
process is divided into front-end and back-end, initially the
front-end driver in the guest VM first establishes a shared
memory buffer with the back-end driver through the persis-
tent grant table mechanism. During I/O write, the front-end
driver copies data to this memory buffer, and informs the
back-end driver through the event channel mechanism; af-
terward, the latter does the actual I/O write. The reverse
path is similar to the I/O read.

Memory sharing in Xen. Memory sharing is common
in Xen, it is realized by the underlying grant table mecha-
nism. Specifically, once a VM is about to share memory
regions, it first offers the memory pages by creating a grant
through related hypercalls, with the information of the do-
main id, flags, and the number of page frames. Hypervisor
fills these pieces of information in the grant table. For the
other end of the guest VM, it takes the grant reference from
the XenStore and maps the shared pages to its own address
space, which needs to be first validated by the hypervisor.

3. OVERVIEW

3.1 Approaches Overview
Efficiently separating resource management from

service provision. We observed that the main obstacle
to providing sufficient VM protection under untrusted hy-
pervisor is the mixing of resource management and service
provision in the hypervisor. Normally hypervisor plays the
role who not only takes over control when specific events
occur to provide services for guest VM but also manages
nearly all resources including critical ones. The basic idea is
to separate these two functionalities, that hypervisor is still
responsible for serving guest VM like interrupt handling,
scheduling, etc., while the permissions of accessing specific
resources are revoked from it.

Meanwhile, to enable a secure but also efficient approach,
instead of completely restricting hypervisor from accessing
critical resources, we adopt another idea of separating re-
source accessing from policy enforcement. Specifically, in
our scenario, Fidelius represents a trusted context control-
ling the exit and entry boundaries between the guest and
host modes. For resources that are compactly organized and
may frequently be accessed by the hypervisor (e.g., VMCB),
whenever guest VM exits to host mode, Fidelius first shad-
ows those resources, and hides the confidential fields before
passing the control to the hypervisor. Thus during the hy-
pervisor running, it is permitted to read or write those re-
sources, while the privacy is still reserved and malicious tam-
pering can be detected during the policy enforcement phase
before entering back to the guest mode in the trusted con-
text. For sparsely organized resources (e.g., page tables),
they are mapped as read-only in the hypervisor, and any

443

modification to them requires the trusted context to involve
in for policy enforcement. For other resources having noth-
ing to do with the service provision (e.g., SEV metadata),
they are simply unmapped in the hypervisor’s address space.

Sibling protection with non-bypassable memory
isolation. Since hypervisor lies in the most privileged soft-
ware layer, theoretically it can break any software based iso-
lation. One possible solution is to introduce another lower
layer of abstraction, e.g., nested virtualization [7] to enforce
the isolation. However, this approach incurs much over-
head due to frequent cross-layer switches. Therefore, we
opt for the sibling protection mechanisms [8, 9], that the
hypervisor and the Fidelius lie in the same privilege level,
but remains separated through the non-bypassable memory
isolation mechanism [10]. Specifically, the capabilities of ar-
bitrarily mapping memory are revoked from the hypervisor
by mapping its page-table-pages as read-only, and eliminat-
ing all related privileged instructions (e.g., modify CR0 to
disable paging, or replace CR3 to reuse other page tables)
out of the hypervisor’s code. Therefore Fidelius needs to
involve in for the normal page table manipulation and vali-
date its updating with page information table (PIT) based
policy enforcement.

Novel reuse of SEV API for full VM life-cycle pro-
tection. Currently, SEV does not support full VM protec-
tion due to the missing of some functionalities, including
not supporting I/O encryption. By retrofitting the usage of
SEV’s SEND and RECEIVE APIs, Fidelius enables securely
booting guest VM from encrypted kernel image. Mean-
while, it provides two sets of para-virtualized interfaces with
hardware-based cryptographic acceleration for guest VM to
protect its own disk I/O data. Specifically, for processors
with AES-NI hardware support, guest VM can encrypt its
block I/O data by directly executing the AES instruction
set. Otherwise, Fidelius provides another mechanism that
innovatively reuses the SEV API to enable hardware-based
I/O encryption and decryption. Besides, Fidelius ensures
that the VM migration and memory sharing are all pro-
tected during its life-cycle.

�������	
����
��������� ��
���	
�����������
�����	����

��������

�
����
��

�������
��

������	�	
��
����������

!���
"�����
#$%�&�
��'���

	
���
������

(��������
	�����)�*���

������	�	
��

#$%�*���'���

��������

���������		��

�
����

������	
��
�����

������

������
�����

���	

������
�
��
�
���
�

��������	
��
�����

���������	

���
���������

���������������

���

���������	���
��������
���

!��
�����
	���)�	���

+
,��-���
���-���
�

Figure 2: Architecture overview of Fidelius

Architecture overview. Figure 2 presents the architec-
ture of Fidelius. Its trust computing base includes the AMD
memory encryption engines and the Fidelius context lying
in parallel with the hypervisor, but they are isolated from

each other through non-bypassable memory isolation mecha-
nism. Meanwhile, to separate resource accessing from policy
enforcement, and retain most of the compatibilities, the hy-
pervisor is deprived of the permissions of accessing critical
resources through three categories of approaches: shadow-
ing (VMCB and registers), write-protecting (memory map-
ping structures and grant tables), and self-maintaining (SEV
metadata and specific instructions). The accessing of them
should go through three types of gates (disable WP, checking
loop, add new mappings), where corresponding policies are
enforced. It is noted that shadowing VMCB and registers
can be regarded as a software version of SEV-ES, while oth-
ers will solve the remaining issues. Finally, Fidelius controls
the boundaries between guest and host modes and reuses
the interfaces of AMD memory encryption engines and AES
instruction sets to provide the full VM life-cycle protection.

3.2 Threat Model and Assumptions
Fidelius aims at protecting privacy and integrity of guest

VM from untrusted host including hypervisor and manage-
ment VM, as well as physical attacks like cold-boot or bus
snooping. A benign hypervisor may be compromised and
become untrusted. The untrusted hypervisor still handles
service requests from the guest VM and is able to access
any data it has permissions. The backend I/O paths are
controlled by the management VM that any I/O data trans-
ferred to it are exposed. However, Fidelius makes no at-
tempt to prevent following types of attacks. First, guest
VMs may be compromised through the security flaws inside
them, this kind of protection is out of the scope of this paper.
Second, DoS attack and availability guarantee of the guest
VM is not under consideration since they are not aimed at
disclosing privacy data. Finally, Fidelius does not prevent
against side-channel attacks, we believe that both of the en-
cryption mechanism and the trusted software extension are
irrelevant to data access pattern, and Fidelius will not bring
in new side-channel attack surfaces.

4. Fidelius DESIGN

4.1 Non-bypassable Memory Isolation
Theoretically, kernel code can do anything, including arbi-

trarily mapping memory, enabling or disabling protection by
configuring specific registers, etc. However, these capabili-
ties can be restricted if the kernel page tables are controlled,
and the protection mechanism is ensured to not be disabled.
The most key premise of revoking permissions of accessing
critical resources from the privileged hypervisor is to create
an isolated context out of it. To avoid an additional layer
of abstraction, Fidelius puts this isolated context in the
same privileged layer as the hypervisor, i.e., the host kernel
mode.

Table 1: Permissions and policies resources
Resources Xen Fidelius Policies

Page tables (Xen)

Read-only

Writable

PIT based policy
NPT (guest VM)

Grant tables GIT based policy
Page info table

Xen not writable
Grant info table
Guest states Writable Exit reasons based
Shadow states

No access Xen not accessible
SEV metadata

444

��������	
���

��

������	
���

��

���	����

�
�

����������	����

�
�

�������	
	����
�������	����

�
�

������ �	
���

��

!����

�
�

������ �	����

�
�

��������	
���

�

������	
���

��

���	����

�
�

����������	����

�
�

!����

�
�

������ �	����

�
�

���������	

���

��

�������	

���������

����	������ � ��

����
��

����������	����

��
��

!!�����

��
��

������� �	����

��
��

"#$�������
�������	�$���

����������	
����

����

��������	
��� ������

���	������ �� �

����
��

�����������	����

��
��

���������	
 ����
��������� �����

��
��

������� �	
���

����

!�����

��
��

������� �	����

��
��

������ �
�������	�$���

!���	�#$�	%&	����'��	��
�������	
����
�����

�������	
����
������
���
����������
���
�������������
���
������
���
���������
��
���
������	
����
�������
 �������!���������"#$����������
%
&�����	
����
�����

!���	�#$�	(&	�)��*���	���$	+��	$���	����
�������	
����
�����

������'
�����������(���
�����)�
��������
���
���
����*����
��!����
 ��������������%
������	
����
�����

!���	�#$�	,&	���	��-	��$$����
�������	
����
�����

���+���� ��,-
�������
 ������
�������������
���
�����+�)���,-
����
����,./
������	
����
�����

.��$�	��	,	�#$��	�+	!����

Figure 3: Memory layout of hypervisor and Fidelius.

4.1.1 Controlling memory mapping structures

Fidelius is in control of the memory mapping structures by
write-protecting the page-table-pages of the hypervisor, so
that every attempt to update the memory mapping will be
forwarded to the Fidelius’s handler, and pre-defined policies
will be enforced. The overall memory layout of Xen and Fi-
delius is shown in Figure 3. Table 1 details the permissions
mapped in Xen and Fidelius for different resources, as well
as the enforced policies when hypervisor accesses them. For
example, the Fidelius data representing the shadow guest
states and the SEV metadata are unmapped from the Xen’s
context. While the critical data including the page-table-
pages of the hypervisor and NPT of the protected guest VM,
the grant tables, as well as PIT and GIT, are all mapped
as read-only in Xen. On the other hand, for performance
consideration, we map most of the code as executable in
both Xen and Fidelius except some specific privileged in-
structions.

4.1.2 Restricting privileged instructions

In addition to restricting hypervisor from directly tamper-
ing its page-table-pages, another key point is to forbid hyper-
visor to execute specific privileged instructions which may
hijack the control flow, switch the context, or even disable
the protection mechanisms. Accordingly, Fidelius provides
two options to restrict the execution of these instructions.
For instructions that may disable protection mechanisms,
we simply monopolize them, which means for each of these
instructions, binary scanning is used to ensure that no such
instruction, no matter aligned to instruction boundaries or
not, exists in the code region, excepting the only one copy ex-
isting in the Fidelius’s code. In this case, these instructions
are still mapped as executable in the Xen’s address space.
To avoid attackers from directly executing the instruction
through control flow hijacking attacks, we add checking loop
logics (type 2 gate in Figure 3) around the instruction for
sanity check with policies detailed in Table 2,

For instructions that may hijack the control flow (e.g.,
VMRUN), or directly switch the address space (e.g., mov
CR3), Fidelius unmaps them from the Xen’s address space
and remaps them as executable before their execution. In
this case, the sanity check is located between the remap-
ping and the execution, to prevent attackers from directly
jumping to these instructions. Moreover, we should give
special treatments to the mov CR3 instruction, since the
execution of this instruction will directly switch to a new

address space, where this instruction should not be mapped
so that the next instruction cannot be executed. To resolve
this problem, we elaborately place the mov CR3 instruction
in the last few bytes of the page and make sure the next
page containing the subsequent instructions are mapped in
all valid address spaces.

4.1.3 Securing transition between isolated contexts

When hypervisor needs to normally update its page tables,
modify protected resources, or execute privileged instruc-
tions, it should first switch to the Fidelius’s context. Gen-
erally, there are several approaches. The most common one
is to change the CR3 during the transition, which switches
to a completely separated address space. However, this ap-
proach introduces significant overhead as it involves full TLB
flush in the AMD architecture. The second approach is to
temporarily add a pre-allocated address space during con-
text transition, and withdraw them in the reverse path. This
approach only involves one single memory write to the page-
table-page, as well as one TLB entry flush. Therefore, we
leverage it for those unmapped privileged instructions (VM-
RUN and mov CR3) and resources (the shadow guest states
and SEV metadata). To further reduce the overhead, we
adopt the third approach for the most common cases, that
no additional address space is brought in. Instead, only the
permissions of current address space mapping are modified
during the transition. In this respect, we only need to clear
the WP bit in CR0, so that the original read-only resources
in Xen’s space becomes writable within Fidelius’s space.

As shown in Figure 3, we provide three types of gates to
achieve the context transition. The first one is to disable
the WP bit in CR0 . Besides, it is also needed to disable
interrupts, switch stacks, and do sanity checks after setting
the WP bit. The second and third types of gates are used
for privileged instructions and unmapped resources, as elab-
orated previously. Their main difference is the placement of
the sanity check logic, and for the type 3 gate, specific TLB
entries should be flushed for mapping freshness.

4.2 Resource Management
In Fidelius, we apply three categories of protection for the

critical resources.

4.2.1 Shadowing guest runtime states

The current version of AMD SEV can only encrypt guest
VM memory, while the release date of SEV-ES that can en-
crypt runtime states (e.g., registers and VMCB) is unknown.
As demonstrated in [2], it leads to arbitrary memory reads
and writes, as well as protection disabling. To protect the
guest runtime states, one intuitive way is to hide the register
values, and completely restrict hypervisor from accessing the
VMCB . However, in most scenarios, hypervisor requires to
read or even update them. Thus we adopt the shadowing ap-
proach, that Fidelius guards the boundaries between guest
and host modes, upon exiting from the guest VM, Fidelius
first shadows the registers and VMCB by copying their con-
tents to a private memory region which is unmapped from
the hypervisor’s context, and masks the original contents ex-
cept for some selective fields according to the exit reasons.
Once the hypervisor finishes handling the VMExit and is
about to return to the guest mode, Fidelius checks the in-
tegrity of the VMCB using the shadowed VMCB , and the
registers are directly overwritten by the shadowed registers.

445

Table 2: Description of privileged instructions protected in Fidelius
Instruction Description Perm-Xen Perm-Fidelius Gate type Policies

MOV CR0 May disable PG and WP
Executable

Executable

Type 2:
checking loop

PG and WP bits cannot be cleared
MOV CR4 May disable SMEP SMEP bit cannot be cleared
WRMSR May disable NX NXE bit in EFER cannot be cleared
VMRUN May change the control flow

Inaccessible
Type 3:
add new mapping

Specific VMCB fields cannot be tampered
MOV CR3 May switch address space The target CR3 must be valid

4.2.2 Write-protecting memory mapping data

Since the NPT of the guest VM is maintained by the
hypervisor, a malicious hypervisor can conduct replay at-
tacks [2]. Thus in Fidelius, the NPT is mapped as read-only
in the hypervisor’s address space, any attempt of tampering
will be trapped and detected in the Fidelius’s fault han-
dler. When hypervisor requires updating the NPT entries
routinely, it has to go through the type 1 gate, where the
subsequent updates of the NPT entries are checked by en-
forcing the PIT based policies (Section 5).

Also, the encryption of guest memory poses a great chal-
lenge of sharing its memory with others. Since each guest
VM has its own encryption key, normally the shared memory
should be in plaintext. Meanwhile, currently, the hypervi-
sor is in the core path of managing the sharing information
(grant table). Therefore, even if the hypervisor is forbidden
to access the shared memory, it can still deceive the guest
VM to share its memory with the accomplice VM with incor-
rect permissions. To secure the memory sharing, we map the
grant table as read-only in the hypervisor, similarly, when
the hypervisor is about to update it in the normal process,
it first goes through the type 1 gate, then the grant table
update is checked by enforcing the GIT based policies.

4.2.3 Self-maintaining SEV metadata

The final type of critical resources is the SEV metadata,
including the ASID of the guest VM, the handle returned
from the firmware, as well as that cryptographic metadata
(guest public keys and nonce) used for guest launching. The
SEV metadata is used in Fidelius, and it has nothing to do
with the hypervisor’s service provision, thus they are simply
unmapped from the hypervisor, the only way to access them
is through the type 3 gate.

4.3 Full VM Life-cycle Protection

4.3.1 System initialization

To reduce complexity, Fidelius adopts the late launching
approach [7]. Xen remains booting up itself as usual until
it boots Fidelius and leverages existing hardware support to
issue a measurement on its integrity, which can be used in
remote attestation to verify its validity. During the booting
process of Fidelius, it measures the integrity of the hypervi-
sor’s code. Then it remaps the hypervisor’s page tables as
read-only, and allocates memory regions for PIT and GIT.
It also updates the PIT to track the used physical pages,
e.g., whether they are used as page-table-pages, Xen pages,
or Fidelius pages. Next, it executes the INIT API provided
by SEV, so that the whole system turns to the initialized
state. Finally, the control is transferred back to the hyper-
visor for subsequent initialization.

4.3.2 VM preparing

Since SEV does not consider about I/O encryption, it is
unable to directly load the encrypted data from the disk im-
age to memory. To resolve this problem, Fidelius combines

the SEND and RECEIVE API used for migration, as well
as the para-virtualized API used for I/O encryption, to en-
able a secure VM booting from encrypted disk and memory
images. Before booting, the owner of guest VM should first
provide following components:

• The encrypted kernel image of guest VM, which is gen-
erated by the SEND APIs: the SEND START API be-
gins the sending process, and returns wrapped keys for
encryption and integrity check, the SEND UPDATE API
encrypts memory regions using the wrapped encryption
key. Finally, the SEND FINISH API finishes the sending
process, which results in an encrypted kernel image of and
the measurement Mvm of it.

• Kwrap, the wrapped keys generated by the SEND START
API as shown above. It includes the wrapped encryption
key Ktek and integrity key Ktik, and it should be sent to
the Fidelius offline for later use.

• Kblk, the encryption key of the disk image, which is pre-
defined by the guest owner. It is embedded in the en-
crypted kernel image and will be used by the front-end
driver during block I/O.

• The disk image of the guest VM, which is encrypted by
the Kblk and mounted during VM bootup.

• The SEV metadata, which is used to generate the master
secret Sm by the firmware. It includes a guest provided
nonce Nvm and the origin’s public ECDH key.

We assume that the environment to generate the kernel
and disk images is trusted, the Kblk is hidden in the en-
crypted kernel image and is not exposed to the hypervisor.
While the other keys like Kwrap or nonce like Nvm are in
public, since they are used for the ECDH key agreement al-
gorithm, that only the guest owner and the firmware can
agree on the master secret using their private key, while the
hypervisor in the middle cannot guess them.

4.3.3 VM bootup

The guest VM bootup includes following steps:

1. Fidelius invokes the RECEIVE START API, taking the
parameters like Kwrap, Nvm and origin’s public ECDH
key. The firmware then unwraps the Kwrap to get Ktek

and Ktik. Meanwhile, the firmware generates the guest
VM’s encryption key (Kvek) for memory encryption. The
successful execution of this command returns a guest han-
dle (Hvm) which refers to the internal structure in the
firmware representing the SEV states of the guest.

2. The hypervisor loads the encrypted kernel image to the
memory, and Fidelius uses the RECEIVE UPDATE API
to re-encrypt the loaded pages. Specifically, the firmware
decrypts the pages with the Ktek and re-encrypts them
using the Kvek in place.

446

3. After the whole kernel image is re-encrypted, Fidelius
invokes the RECEIVE FINISH API to finish the kernel
memory re-encryption process and verifies its integrity
using the Ktik by comparing it with Mvm.

4. Upon the re-encrypted kernel is ready, Fidelius prepares
the VMCB of the guest VM and executes the VMRUN
instruction, to run the guest kernel. The init phase of
the guest VM is as normal, except for disk initialization,
the front-end driver decrypts and encrypts the I/O data
using the Kblk embedded in the kernel image.

4.3.4 Runtime memory protection

During runtime, the firmware uses Kvek to encrypt and
decrypt memory. These encrypted memory pages are pro-
tected from malicious hypervisor and hardware attacks. To
further prevent hypervisor from mapping guest memory and
tampering it, the NPT of the protected guest is write-protected
from the hypervisor, and the memory pages allocated for the
guest are also unmapped from the hypervisor. This is guar-
anteed by the non-bypassable memory isolation described in
Section 4.1.

When NPT violation happens, it first traps into the Fi-
delius’s context, which then forwards it to the NPT vio-
lation handler of the hypervisor. The handler checks the
exact reason, and decides to allocate new physical pages or
simply update the permission bits. Immediately when the
handler requires to fill a new NPT entry or update an old
one, it calls the type 1 gate clearing the WP bit in CR0,
and the PIT based policies will be enforced. This transition
between two contexts complicates the process of updating
NPT, which may potentially introduce performance slow-
down. However, we found that instead of lazily updating
the NPT, Xen will first allocate most of the physical mem-
ory regions for the guest by default, and update the NPT
respectively. This means the operations of NPT updates
happen in a batched manner during its bootup, while for
normal run, there is rare NPT violation happening.

4.3.5 Runtime I/O protection

0�+$ 1���
�
23

/���#$���

4�� 5���
���5

��*

0/.1���

0/.1���

0�+$ 1���
�
23

/���#$���

4�� 5���
���

��*

����1 $����

����1 $����
�����	
�)�����

6������
+�+��

6������
+�+��

��-
�����	
�)�����

+���-���
�
��� �
���

�%��7-689:�	�����:;<����
��
��� 	%��6-2�	�����:;<����
��
���

Figure 4: Two approaches for I/O protection.

Since network I/O data has been protected by the SSL
protocol, we only consider about the disk I/O. By design of
the SEV, the I/O (DMA) data cannot be encrypted by the
encryption engine, thus normally the data has to be first
copied in plaintext to the shared memory with the driver
domain, which is untrusted. According to the implemen-
tation of para-virtualized I/O, it is reasonable for the guest
front-end driver to utilize the pre-allocated persistent shared
pages to reduce redundant data copy and protect its data
before copying. Fidelius provides two interfaces for guest
VM to protect its I/O data.

AES-NI based I/O protection. For processors with
AES-NI hardware support, guest VM can encrypt its block

I/O data by directly using the AES instruction set, as shown
in the left part of Figure 4. With this approach, the guest
owner should first provide the disk image encrypted by Kblk.
During disk read, the back-end driver first copies the disk
data to the shared memory, at this point, the data are en-
crypted and privacy preserved. Afterwards, the front-end
driver decrypts the data in the shared memory using Kblk,
and re-encrypt them with hardware-based encryption with
Kvek. The write process is similar in the reverse path, ex-
cept that it will batch the I/O write requests and process in
sector granularity.

SEV based I/O protection For processors without AES-
NI support, Fidelius can still provide another efficient mech-
anism which novelly reuses the SEV interfaces, as shown in
the right part of Figure 4. During the initialization, Fidelius
executes the LAUNCH serial API with the parameters of
guest VM’s handle, so that firmware will create the SEV
context for the s-dom, which shares the same Kvek with
the guest VM. Then Fidelius executes the SEND START
API to transfer the state of s-dom into the sending state.
Afterwards, Fidelius executes RECEIVE START to create
the SEV context for the r-dom, which shares the same Kvek

and Ktek with the guest VM and s-dom respectively, and
turns its state to the receiving state. During runtime for
I/O write, instead of directly using AES-NI instruction to
encrypt data to the shared I/O buffer, the front-end driver
first copies the memory to another dedicated buffer Md, and
leverages the retrofitted event channel mechanism, in which
Fidelius uses SEND UPDATE to do the data encryption us-
ing the SEV context of the s-dom. Specifically, the firmware
first decrypts the data in the Md with Kvek and then re-
encrypt them using Ktek to the shared I/O buffer. I/O
read is similar using the RECEIVE UPDATE API with the
SEV context of the r-dom. Here the s-dom and r-dom are
the helper domains stored in the firmware for the protected
guest VM, they are required since the SEND UPDATE and
RECEIVE UPDATE can only be executed when the SEV
context in the firmware is in sending or receiving state, while
it is in running state for the guest VM.

4.3.6 VM migration

SEV has already provided interfaces for VM snapshot,
restore, as well as migration. These are the exact APIs
that Fidelius used to make the kernel image and load it into
memory during boot time. Specifically, when a guest starts
to initiate the migration process, it first invokes the SEND
serial APIs to decrypt current memory pages with Kvek, and
re-encrypt them with the transport encryption key (TEK)
to generate the memory snapshot, as well as calculate the
measurement of this snapshot with the transport integrity
key (TIK). The target machine does the receiving process by
executing the RECEIVE APIs step by step. The TEK and
TIK are wrapped by the origin and sent to the target, and
the key to unwrapping them is negotiated by two parties
through the key agreement algorithm, so that the target
can decrypt the memory snapshot, then re-encrypt it for
the SEV-enabled guest with integrity verified.

It is noted that these operations are all done by the SEV
hardware. We assume that the origin and target machines
are all SEV supported, otherwise the privacy of memory con-
tent cannot be guaranteed. Meanwhile, currently, Fidelius
does not support live migration, since the SEND START
API transfers the running state of guest VM into sending

447

state, which first stops the VM execution.

4.3.7 VM memory sharing

Originally before sharing the memory with other guests,
the initiator should first offer the memory pages by creating
the grant table entry through grant table op hypercall with
setup table command, then the other guest takes the grant
reference and maps it by the same grant table op hypercall
with map grant ref command. Since the shared memory is
in plaintext, even though Fidelius revokes the permissions
of accessing them from the hypervisor, the latter can still
deceive the guest by manipulating the grant table. To en-
able a secure memory sharing mechanism, Fidelius provides
an addition hypercall pre sharing op that is called by the
initiator guest before creating the grant table entry, with
the parameters of the target domain ID, the shared memory
address and the number of shared frames. Fidelius directly
handles this hypercall and records the information in the
GIT structure. Afterwards, when the hypervisor handles
the grant table op hypercalls to create or update grant ta-
ble entries since the grant table is write-protected, it calls
through the type 1 gate into Fidelius’s context, and the GIT
policies are enforced on all grant table operations.

4.3.8 VM shutdown

The termination of guest VM involves the Fidelius to first
invoke the DEACTIVATE API to disengage the guest VM
from the corresponding ASID, and uninstall the guest’s key
from the memory controller, then invoke the DECOMMIS-
SION API to erase the guest context in the firmware. Be-
sides, Fidelius revokes the memory pages of this guest VM,
and modifies the PIT entries for each of these pages, as well
as GIT entries if this guest VM ever shared memory with
others, and finally deletes the SEV metadata.

5. POLICY ENFORCEMENT
Fidelius is in the position of updating critical resources,

that proper policies are required to enforce the critical re-
sources protection. In this section, we explore several sample
policies used in Fidelius, which demonstrate good examples
of protecting critical resources in a predictably secure man-
ner.

5.1 Classified Policies with Exit Reasons
Some representative resources (e.g., VMCB) are compactly

organized and may be frequently accessed by the hypervi-
sor. If we strictly write protect them, there may be extensive
context switches incurring large overhead. Instead, Fidelius
shadows these resources. When hypervisor finishes its task
and is about to re-execute the guest VM, Fidelius verifies
the modification basing on different exit reasons.

Taking VMCB as an example. When vmexit happens,
Fidelius first copies the entire VMCB to a pre-allocated pri-
vate memory region, and checks the exit reason, according
to which it decides which fields in VMCB should be masked.
For instance, if it is due to a nested page fault, Fidelius will
mask all guest states since the fault address used by hyper-
visor is in the exitinfo field. Similarly, if the exit reason is
CPUID, then all states are masked except for specific four
registers. Before executing VMRUN, Fidelius compares the
previously shadowed version with the resources passed to
the hypervisor and verifies the updates to check if the fields
in two versions are different according to the exit reason.

Taking the example of CPUID exit again, the correspond-
ing policy should guarantee that only those four registers
can be updated by the hypervisor.

5.2 Information Table Based Enforcement
For memory mapping data (page tables of the hypervi-

sor, and NPT of guest VM), as well as grant tables used in
VM memory sharing, Fidelius adopts the write-protecting
mechanism. Therefore Fidelius is involved in the updating
process of them. To ensure the updates are valid, Fidelius
maintains one page information table (PIT) and one grant
information table (GIT), through which Fidelius can enforce
correct updates.

For memory mapping data update, when the hypervisor
calls through the type 1 gate to the Fidelius’s context, Fi-
delius queries on the PIT using the physical frame number
(PFN). PIT is a three-level radix tree similar to normal page
table, however, instead of storing PFN of next level page,
PIT uses virtual frame number to accelerate page walking.
The last level PIT page (4KB) holds page information of
1024 PFNs each of which is a 32-bit entry indicating the
owner, usage, ASID and validity of the corresponding PFN.
For example, when the hypervisor requires updating a page
table entry (PTE), Fidelius first queries on the PIT using the
PFN of this page-table-page and makes sure that its owner
is the hypervisor, it is used as a last level page-table-page,
and it is valid. Then Fidelius queries on the PIT using the
PFN of the new mapped page, to check whether this page
can be mapped by the hypervisor. During this process, any
illegal mapping update will be aborted.

On the other hand, the GIT consists of an array of grant
information entries, each of which stores the information of
one grant, including the initiator guest domain ID as in-
dex, the target domain ID, as well as the shared memory
address and the number of page frames. Before the initia-
tor guest creating the grant table entry, it first invokes the
pre sharing op hypercall to create the corresponding GIT
entry with the grant information. Afterwards, when the hy-
pervisor requires to create or update the grant table entries,
it goes through the type 1 gate to the Fidelius’s context.
The latter queries on the GIT using the ID to ensure the
new entries are consistent with those saved in GIT.

5.3 Other Policies
Similar to PerspicuOS [8], Fidelius also defines other poli-

cies to enforce more fine-grained and flexible protections.
For example, the write-once policy is enforced for start info
page and shared info pages; the execute-once policy is en-
forced for some privileged instructions (e.g., lgdt, lidt), that
the hypervisor can only write these pages or execute these
instructions once during its initialization, and latter modifi-
cation and execution are not allowed. This policy is enforced
by using a bit-vector to record specific memory regions with
one bit per byte. Since the write-once and execute-once
policies will not frequently be used, Fidelius ensures that
these data and instructions pages are allocated from pre-
defined memory regions, which are mapped as read-only or
non-executable in the hypervisor. The modification or exe-
cution of them are mediated by Fidelius through page fault
handler, where the bit-vector is checked to make sure there
is no previous write or execution to them, and the corre-
sponding bit is set to forbid further operation.

Meanwhile, Fidelius also enforces the write-forbidding pol-

448

icy for the code pages of the hypervisor. Fidelius tracks the
code pages at the very beginning by recording the address
and size of the text section. Since the code pages are marked
as read-only in the hypervisor’s page tables, any attempt of
modification to them either goes through type 1 gate or re-
sults in a page fault, then Fidelius is involved in to simply
impede the write operation, and log this operation for fur-
ther auditing.

6. SECURITY ANALYSIS

6.1 Defending against Hardware Attacks
The intrinsic features of memory encryption benefited from

AMD SEV can be directly leveraged to protect software from
hardware-based attacks, including cold-boot and bus snoop-
ing, and so on. Suppose an attacker is able to directly dump
the memory, what she can see are all encrypted data, and
the cryptographic keys only reside in the secure processor,
which cannot be obtained by the attacker. Meanwhile, for
disk data, the disk I/O is encrypted through the key Kblk,
which resides in the encrypted kernel memory of the guest
VM, and is concealed from hardware-based stealing.

6.2 Preventing against Malicious Host System
The most important security problems resolved by Fi-

delius is to protect guest VMs from the malicious host sys-
tem. In this section, we first explain how Fidelius protect
guest VM from following potential attacks, and then give a
quantitative analysis using the XSA statistics.

Breaking memory privacy. Except for side-channel
attacks, which are out of scope, the only way for the hyper-
visor to read memory is to have permissions to access them.
There are two possible approaches: directly mapping the
physical memory of guest VM to its page tables, or using
inter-VM remapping attacks by mapping the guest memory
to its conspirator VM’s NPT. In the latter approach, since
CPU caches are in plaintext, when the conspirator VM tries
to access the memory, a cache-hit may happen in a high
probability to leak privacy. These attacks can be defeated
using Fidelius. Since the page tables of hypervisor and guest
VM’s NPT are all write protected, PIT based policies are en-
forced on their updates. Fidelius will find that the memory
pages belong to the protected guest VM, it simply forbids
these mappings, thus prevents such attacks.

Violating memory integrity. Malicious hypervisors
can violate the integrity protection of guest VM’s memory
through direct or indirect tampering. Fidelius strictly pre-
vents direct memory tampering through memory permission
control, that hypervisor has no permission to modify it arbi-
trarily. However, hypervisor needs to load the kernel image
into the memory during guest VM creating, at that point,
it temporarily obtains write permissions. Fortunately, the
integrity can be guaranteed by the measurement verification
with Ktik in the RECEIVE process, thus preventing tam-
pering at that phase. For indirect approaches, Rowhammer
attacks [11] can flip specific memory bits by consecutively
accessing the memory in its adjacent rows. Generally, Fi-
delius cannot strictly eradicate this malevolent bit flipping,
however as the memory is encrypted, it is terribly difficult
for attackers to exploit this for further destruction.

Disabling protection. The memory protection can be
disabled by executing specific privileged instructions (Ta-
ble 2). Our binary scanner ensures that these instructions

only exist in pre-defined locations. Normally the hypervisor
can execute them through either the type 2 gate or even
ROP based attacks, however, since the checking loop are
placed right after the instruction with policy enforcement,
the invalid operations will be detected and prevented. For
other instructions that may immediately alter the control
flow (VMRUN) or switch the context (mov CR3), Fidelius
unmaps them in the hypervisor’s address space, and the san-
ity check is placed right after the instruction to remap them
with policy enforcement.

I/O data stealing and tampering. Disk I/O is another
attack surface for the malicious driver domain since it is in
the middle of the I/O path. However since the data sent to
the shared buffer or received from the disk are all encrypted,
no privacy will be leaked.

Other issues. Fidelius is designed to prevent other pos-
sible attacks. For instance, the replay attacks [2] can be de-
feated since the hypervisor cannot directly manipulate the
NPT. The Iago attacks [12] can be avoided since Fidelius lies
in the middle of hypervisor and guest, appropriate policies
can be defined to check the values returned by the hypervisor
before VMRUN.

Quantitative analysis. To quantitatively present how
Fidelius can benefit guest VM, we analyzed 235 Xen vul-
nerabilities from Xen Security Advisories (XSA). We found
that among the 235 XSAs, 177 are related to the hypervisor
(while others are related to the Qemu and are out of scope).
For these 177 vulnerabilities, Fidelius can thwart 31(17.5%)
which is used to escalate privilege and 22(12.4%) which lead
to information leakage. While others are not considered by
Fidelius (e.g., 14(7.9%) of them are due to flaws inside the
guest VM, and the remaining are all related to DoS attacks.).

6.3 Security Analysis of Fidelius Extension
Fidelius introduces a small portion of context lying in the

same privileged level with the hypervisor. Therefore the se-
curity of this extension must be ensured. It is noted that
different with some other approaches [8, 9], Fidelius shares
most of its context with the hypervisor, e.g., most of the
Fidelius’s code is also executable in the hypervisor, and the
data are also mapped in the hypervisor’s address space ex-
cept some special ones. To guarantee that the Fidelius’s
code will not be exploited by the malicious hypervisor, and
the critical data are prevented from being arbitrarily manip-
ulated, the Fidelius is required to satisfy following rules:

• The critical data are either unmapped or mapped as read-
only in the hypervisor’s address space, that only through
type 1 or type 3 gates, they are turned to writable.

• The privileged instructions listed in Table 2 are ensured to
be monopolized (only has one instance) in the Fidelius’s
code section, and their executions are sanity checked with
policies enforcement.

• The TCB of the Fidelius’s code should be small enough so
that verification can be leveraged to prove its correctness.

• The integrity of the code itself is guaranteed by the PIT
based policy enforcement, that no code injection is al-
lowed, and the system is armed with data execution pre-
vention mechanism.

Totally Fidelius introduces 1780 lines of C code (LoCs) as
the TCB. Though in the Fidelius’s context, the hypervisor’s

449

code is also executable, we can remove them out of the TCB,
as far as the Fidelius’s code is verified to be secure enough,
that no control will flow to other code, and it includes no
vulnerability for ROP-like exploits. Since currently verifica-
tion can be applied to more than ten thousand LoCs [13], it
is reasonable to verify the correctness of Fidelius, which is
left as our future work.

7. PERFORMANCE EVALUATION
To evaluate the efficiency of Fidelius, we measured the

performance slowdown for applications under protection by
Fidelius, as well as some micro benchmarks to shed light
on the factors introducing this overhead. All experiments
are done on a machine with 8 AMD Ryzen cores (16 hard-
ware threads) running at 3.4 GHz and with 8 GB memory.
The hypervisor Xen is 4.5.1. Both of management VM and
guest VM are with Linux kernel 4.10.2. Each guest VM is
configured with 2 virtual cores and 2 GB memory.

7.1 Macro Benchmarks
Currently, there is no motherboard supporting AMD SEV

feature, thus we use the SME to simulate the performance
overhead. Since the two features share the same hardware
encryption engine, we believe this simulated overhead is con-
vincing. Specifically, when the guest finishes booting up, it
invokes a hypercall to the Fidelius, which set the C-bits in
the nested page tables for all of the free pages, so that the
subsequently allocated memory pages are encrypted by the
SME hardware.

SPECCPU 2006. We measured all C programs in the
SPECCPU 2006 benchmarks in guest VM running upon
original Xen, Fidelius (without SME enabled) and Fidelius-
enc (with SME enabled). Figure 5 shows the normalized
overhead of Fidelius and Fidelius-enc compared with orig-
inal Xen. The average overhead caused by Fidelius is less
than 1%, and for Fidelius-enc the average overhead is 5.38%.
Particularly, for CPU-intensive benchmarks like bzip2, hm-
mer, and h264ref, there is nearly no overhead. While for
benchmarks with large memory access, like mcf and om-
netpp, Fidelius-enc shows relatively high slowdown (17.3%
and 16.3%) as a result of memory encryption.

 0

 3

 6

 9

 12

 15

 18

perlbench

bzip2

gcc
m

cf
om

netpp

gobm
k

sjeng

libquantum

h264ref

astar
hm

m
er

average

0.88%

5.38%

N
o
rm

al
iz

ed
 O

v
er

h
ea

d
 (

%
) Fidelius

Fidelius-enc

Figure 5: Performance evaluation: SPECCPU 2006

PARSEC. We evaluated the PARSEC benchmark suites.
The results are shown in Figure 6. It implies that Fidelius
introduces negligible overhead (0.43%) compared to original
Xen. When SME is enabled, only canneal benchmark shows
relatively large overhead (14.27%) since it has an unstruc-
tured data model and will access a huge amount of memory.

For other benchmarks, the average overhead of Fidelius-enc
is (0.95%), which is imperceptible.

 0

 3

 6

 9

 12

 15

stream
cluster

bodytrack

canneal

dedup

facesim

ferret

fluidanim
ate

freqm
ine

raytrace

blackscholes

sw
aptions

vips
x264

average

0.43%

1.97%

N
o
rm

al
iz

ed
 O

v
er

h
ea

d
 (

%
) Fidelius

Fidelius-enc

Figure 6: Performance evaluation: PARSEC

Fio. To test the overhead caused by the I/O protection,
we selected the fio benchmark with sequential and random
read/write configurations. The results are presented in Ta-
ble 3. It is noted that decryption incurs more overhead in
seq-read for two reasons: 1) write requests are encrypted in
a batched manner, while read requests are not, and the de-
cryption may be duplicated due to sector level granularity;
2) encryption is apart from the critical path of the writing
process, while the driver has to wait for decrypted data for
subsequent processing.

Table 3: Performance evalutaion: FIO
Operation Xen Fidelius AES-NI Slowdown

rand-read (KB/s) 1506.8 1486 1.38%
seq-read (MB/s) 1196.8 922.6 22.91%

rand-write (KB/s) 21066.8 20920 0.70%
seq-write (MB/s) 152.7 147.2 3.61%

7.2 Micro Benchmarks
To better understand the factors causing the performance

overhead, we conduct some micro benchmarks to answer fol-
lowing three questions. These tests are all run for 100,000
times to get the average values.

What is the overhead of runtime transition between Xen
and Fidelius? We measure the additional CPU cycles of
different gates. The results show that the overhead of type
1 gate (disable WP) is 306 cycles, type 2 gate (checking
loop) is 16 cycles, and type 3 gate (add new mappings) is
339 cycles. For the type 3 gate, flushing TLB uses 128 cycles
and writing data into cache uses less than 2 cycles.

What is the overhead of shadowing critical resources? We
write a kernel module in the guest to invoke a void hypercall
and calculate the round-trip cycles. The overhead shadow-
ing and checking are averagely 661 cycles.

What is the overhead of I/O protection using AES-NI,
SEV API and software emulated encryption? We evaluate
this overhead by copying 512 MB memory in the guest ker-
nel using the three encryption techniques, then compare the
time cost with normal memory copy. The results show that
the slowdown of AES-NI is 11.49%, while SME is 8.69%.
And both of them perform much better than software emu-
lated encryption which incurs more than 20X overhead. This
implies that the SEV based I/O protection is more attractive
considering its efficiency.

450

8. REFLECTION ON HARDWARE
Fidelius demonstrated one direction of providing encrypted

VM protection using SEV. Nonetheless, our experience of
working on SME and SEV suggests the following possible
hardware suggestions for a more secure and lightweight de-
sign: 1). Hardware-based integrity checking. Currently, the
integrity of Fidelius is not guaranteed if the memory is tam-
pered with by hardware-based attacks (e.g., RowHammer),
or the I/O data is maliciously manipulated. This can be
addressed by integrating a Bonsai Merkle Tree (BMT) [3]
to enable hardware-based integrity in the secure processor.
2). Customized keys. Currently, it takes a plenty of effort
for the guest owner to deploy its VM to the Fidelius envi-
ronment. The guest owner should first create an encrypted
kernel image using the SEND APIs in a trusted environ-
ment. Meanwhile, the key agreement protocol between the
guest owner and the target machine requires them to pre-
identify each other, which means, the encrypted kernel im-
age can only be loaded into one pre-defined machine. On
the other hand, currently we can only use the SEND API to
do the SEV-based I/O protection, which is restricted by its
hardware design. To address such issues, we find a better
solution is to add a series of instructions which are simi-
lar to SEND and RECEIVE APIs except that they allow
customized keys. Specifically, we can use a SETENC GEK
instruction to generate a customized guest encryption key
(GEK), which is then used to encrypt and decrypt specified
memory range through the ENC and DEC series of APIs.

9. RELATED WORK

9.1 Hardware-based Memory Encryption
Secure processor has been extensively studied during the

last decade [14, 15, 16, 17, 18, 19, 20, 21, 22, 3]. AEGIS [20]
was an architecture for a single-chip processor that provides
users with tamper-evident, authenticated environments. XO-
MOS [15] leveraged its secure processor architecture XOM [14]
to support normal mechanisms in existing operating systems
like shared libraries, IPC, etc. Researchers continued the
lines of techniques to improve memory encryption [23, 18,
19] and integrity verification [16, 24, 19]. E.g., Brian et
al. [19] proposed the address independent seed encryption
(AISE) to further optimize the counter-mode based memory
encryption scheme, as well as bonsai merkle tree (BMT) to
optimize the security and performance of merkle tree based
memory integrity verification. Based on these optimizations,
Bastion [21] and SecureME [22] were proposed to protect
security-critical applications from physical attacks and un-
trusted OS. Similar with Fidelius, HyperCoffer [3, 25] was
the first to consider about running VM on untrusted hy-
pervisor through the help of secure processor, it was based
on AISE and BMT, and introduced a shim layer to enable
a transparent approach on commercial off-the-shelf virtual-
ization stack.

Besides these academic prototypes, mainstream proces-
sor manufacturers also proposed products with memory en-
cryption support. Intel proposed SGX, a hardware exten-
sion to the processor, provides user-level software a set of
new instructions for allocating encrypted memory regions in
the so-called enclaves, that even higher privileged software
can not access enclave memory. Extensive studies have at-
tempted to leverage SGX to shield software [26, 27, 28, 29,
30, 31] or to strengthen the security of SGX itself [32, 33].

E.g., Haven [26] introduced the idea of shielded execution,
which the code and data of the unmodified application can
be placed in the SGX enclaves thus are shielded from com-
promised OS. SCONE [27] leveraged SGX to provide a se-
cure container mechanism. Ryoan [28] was proposed to pro-
vide a distributed sandbox using SGX for preserving privacy
in the data processing services, in the presence of multiple
untrusted service providers. M2R [29] and VC3 [29] both
utilized SGX to secure the MapReduce framework. In the
direction of hardening security inside SGX enclaves, SGX-
Shiled [32] was proposed to bring address space randomiza-
tion feature to the programs running within the enclaves,
and T-SGX [32] utilized hardware transactional memory to
eradicate page fault based side channel attacks targeted on
critical applications executing in the enclaves.

As explained in Section 2, AMD proposed another proces-
sor solutions called SME and SEV to do memory encryption,
that privileged software can selectively encrypt memory by
simply setting the C-bits in the page table entries. One
recent work [2] tried to analyze the security of SEV, which
shows that there are at least three possible shortcomings of
current SEV design, which can be abused to conduct various
attacks. Fidelius is the first to leverage SEV for comprehen-
sive guest VM protection, and to evaluate its efficiency using
the real hardware-based memory encryption.

9.2 Defending Against Untrusted Hypervisor
Besides HyperCoffer [3], some other approaches also con-

sider removing hypervisor out of the TCB [34, 35, 7, 36,
37, 38, 39, 9, 40]. For architectural support, H-SVM [35]
extended the hardware of memory virtualization, that ev-
ery NPT mapping should be verified by the secure hard-
ware extension instead of directly modified by the hyper-
visor. Similarly, HyperWall [36] made minor modifications
to the microprocessor and MMU, to construct and main-
tain a CIP table preventing untrusted hypervisor and DMA
mechanism from arbitrarily accessing memory of guest VM.
For software-based methods, CloudVisor [7] proposed nested
virtualization to intercept communications between hyper-
visor and guest VM. Analogously, Dichotomy [39] presented
the ephemeral virtualization, to divide hypervisor into a
hyperplexor running in the nested mode and a featurevisor
executing in the guest mode. The featurevisor is designed to
voluntarily relinquish control to the hyperplexor to reduce
the overhead of nested virtualization. In the other direc-
tion, NOVA [34], HyperLock [37] and DeHype [38] shared
the similar ideas of splitting the monolithic hypervisor into
pieces, that only one concise and verifiable core component
remains in the privileged mode, while others functional com-
ponents are executed in either user mode [34, 38] or non-root
environment [37] for each VM, so that least privilege prin-
ciple is reserved. Similar to Fidelius, Nexen [9] and Liang
et al. [40] both leveraged the same privilege level protec-
tion for an untrusted hypervisor. Nexen [9] deconstructed
the xen hypervisor into one privileged security monitor, one
component for shared service, and duplicated xen code and
data called xen-slice for each VM, to thwart a large num-
ber of known Xen vulnerabilities. Liang et al. [40] further
eliminated the relatively expensive cross-boundary instruc-
tions like mov cr0 through privilege instruction interception
and address space randomization. On the other hand, re-
searchers also considered about extracting the control VM
(domain-0 in Xen) out of the TCB [41, 42, 43].

451

Pure software based extensions like CloudVisor, Nexen,
Nova cannot defend against hardware attacks in nature. So-
lutions like H-SVM, HyperWall mainly aim to isolate privi-
leged operations from hypervisor instead of encrypting mem-
ory. Therefore, all of these work trust the whole hardware
stack (including memory) and excluding physical attacks like
cold-boot or bus snooping attacks in their threat models.
Meanwhile, some of them incur large performance overhead
due to extra layer indirections. Fidelius, by contrast, is
designed to defend against physical attacks with acceptable
overhead, facing threat model of untrusted host systems.

10. CONCLUSION
In this paper, we presented Fidelius, which is the first

to leverage the AMD’s SEV hardware feature to protect
guest VMs from hardware-based stealing and to provide
a software-based extension to enable a comprehensive VM
protection without trusting the underlying host systems. Fi-
delius revokes the permissions of accessing critical resources
from the privileged hypervisor by non-bypassable memory
isolation and provides efficient and effective gate mecha-
nisms to secure the transition between isolated address spaces.
It also adopts the para-virtualized approaches for a secure
and efficient disk I/O protection. The life-cycle protection
of guest VM proves the effectiveness of Fidelius. And the
performance evaluation shows its efficiency by introducing
negligible overhead during system runtime.

Acknowledgment

We thank the anonymous reviewers and shepherd for their
constructive comments. This work is supported in part by
National Key Research and Development Program of China
(No. 2016YFB1000104), China National Natural Science
Foundation (No. 61572314, 61525204), a research grant
from Huawei Technologies, Inc., National Top-notch Youth
Talents Program of China, and Singapore NRF (CREATE
E2S2).

11. REFERENCES
[1] I. Anati, S. Gueron, S. Johnson, and V. Scarlata,

“Innovative technology for cpu based attestation and
sealing,” in Proceedings of the 2nd international
workshop on hardware and architectural support for
security and privacy, vol. 13, 2013.

[2] F. Hetzelt and R. Buhren, “Security analysis of
encrypted virtual machines,” in Proc. VEE, 2017.

[3] Y. Xia, Y. Liu, and H. Chen, “Architecture support
for guest-transparent vm protection from untrusted
hypervisor and physical attacks,” in High Performance
Computer Architecture (HPCA2013), 2013 IEEE 19th
International Symposium on, pp. 246–257, IEEE, 2013.

[4] D. Kaplan, J. Powell, and T. Woller, “Amd memory
encryption,”White paper, Apr, 2016.

[5] D. Kaplan, “Protecting vm register state with sev-es,”
White paper, Feb, 2017.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield, “Xen and the art of virtualization,” in
ACM SIGOPS operating systems review, vol. 37,
pp. 164–177, ACM, 2003.

[7] F. Zhang, J. Chen, H. Chen, and B. Zang,
“Cloudvisor: retrofitting protection of virtual

machines in multi-tenant cloud with nested
virtualization,” in Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles,
pp. 203–216, ACM, 2011.

[8] N. Dautenhahn, T. Kasampalis, W. Dietz, J. Criswell,
and V. Adve, “Nested kernel: An operating system
architecture for intra-kernel privilege separation,”
ACM SIGPLAN Notices, vol. 50, no. 4, pp. 191–206,
2015.

[9] L. Shi, Y. Wu, Y. Xia, N. Dautenhahn, H. Chen,
B. Zang, H. Guan, and J. Li, “Deconstructing xen,”
2017.

[10] Z. Wang and X. Jiang, “Hypersafe: A lightweight
approach to provide lifetime hypervisor control-flow
integrity,” in Security and Privacy (SP), 2010 IEEE
Symposium on, pp. 380–395, IEEE, 2010.

[11] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee,
C. Wilkerson, K. Lai, and O. Mutlu, “Flipping bits in
memory without accessing them: An experimental
study of dram disturbance errors,” in ACM SIGARCH
Computer Architecture News, vol. 42, pp. 361–372,
IEEE Press, 2014.

[12] S. Checkoway and H. Shacham, Iago attacks: Why the
system call api is a bad untrusted rpc interface,
vol. 41. ACM, 2013.

[13] R. Gu, Z. Shao, H. Chen, X. N. Wu, J. Kim,
V. Sjöberg, and D. Costanzo, “Certikos: an extensible
architecture for building certified concurrent os
kernels,” in 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16),
USENIX Association, 2016.

[14] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln,
D. Boneh, J. Mitchell, and M. Horowitz,
“Architectural support for copy and tamper resistant
software,”ACM SIGPLAN Notices, vol. 35, no. 11,
pp. 168–177, 2000.

[15] D. Lie, C. A. Thekkath, and M. Horowitz,
“Implementing an untrusted operating system on
trusted hardware,”ACM SIGOPS Operating Systems
Review, vol. 37, no. 5, pp. 178–192, 2003.

[16] G. E. Suh, D. Clarke, B. Gassend, M. v. Dijk, and
S. Devadas, “Efficient memory integrity verification
and encryption for secure processors,” in Proceedings
of the 36th annual IEEE/ACM International
Symposium on Microarchitecture, p. 339, IEEE
Computer Society, 2003.

[17] W. Shi and H.-H. S. Lee, “Authentication control
point and its implications for secure processor design,”
in Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture,
pp. 103–112, IEEE Computer Society, 2006.

[18] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and
Y. Solihin, “Improving cost, performance, and security
of memory encryption and authentication,” in ACM
SIGARCH Computer Architecture News, vol. 34,
pp. 179–190, IEEE Computer Society, 2006.

[19] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin,
“Using address independent seed encryption and
bonsai merkle trees to make secure processors os-and
performance-friendly,” in Microarchitecture, 2007.
MICRO 2007. 40th Annual IEEE/ACM International
Symposium on, pp. 183–196, IEEE, 2007.

452

[20] G. E. Suh, D. Clarke, B. Gassend, M. Van Dijk, and
S. Devadas, “Aegis: architecture for tamper-evident
and tamper-resistant processing,” in Proceedings of the
17th annual international conference on
Supercomputing, pp. 160–171, ACM, 2003.

[21] D. Champagne and R. B. Lee, “Scalable architectural
support for trusted software,” in High Performance
Computer Architecture (HPCA), 2010 IEEE 16th
International Symposium on, pp. 1–12, IEEE, 2010.

[22] S. Chhabra, B. Rogers, Y. Solihin, and M. Prvulovic,
“Secureme: a hardware-software approach to full
system security,” in Proceedings of the international
conference on Supercomputing, pp. 108–119, ACM,
2011.

[23] B. Rogers, M. Prvulovic, and Y. Solihin, “Efficient
data protection for distributed shared memory
multiprocessors,” in Proceedings of the 15th
international conference on Parallel architectures and
compilation techniques, pp. 84–94, ACM, 2006.

[24] B. Gassend, G. E. Suh, D. Clarke, M. Van Dijk, and
S. Devadas, “Caches and hash trees for efficient
memory integrity verification,” in High-Performance
Computer Architecture, 2003. HPCA-9 2003.
Proceedings. The Ninth International Symposium on,
pp. 295–306, IEEE, 2003.

[25] Y. Xia, Y. Liu, H. Guan, Y. Chen, T. Chen, B. Zang,
and H. Chen, “Secure outsourcing of virtual
appliance,” IEEE Transactions on Cloud Computing,
2015.

[26] A. Baumann, M. Peinado, and G. Hunt, “Shielding
applications from an untrusted cloud with haven,”
ACM Transactions on Computer Systems (TOCS),
vol. 33, no. 3, p. 8, 2015.

[27] S. Arnautov, B. Trach, F. Gregor, T. Knauth,
A. Martin, C. Priebe, J. Lind, D. Muthukumaran,
D. OâĂŹKeeffe, M. L. Stillwell, et al., “Scone: Secure
linux containers with intel sgx,” in 12th USENIX
Symp. Operating Systems Design and Implementation,
2016.

[28] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel,
“Ryoan: a distributed sandbox for untrusted
computation on secret data,” in 12th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI 16), pp. 533–549, USENIX
Association, 2016.

[29] T. T. A. Dinh, P. Saxena, E.-C. Chang, B. C. Ooi,
and C. Zhang, “M2r: Enabling stronger privacy in
mapreduce computation,” in USENIX Security,
vol. 15, pp. 447–462, 2015.

[30] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis,
M. Peinado, G. Mainar-Ruiz, and M. Russinovich,
“Vc3: Trustworthy data analytics in the cloud using
sgx,” in Security and Privacy (SP), 2015 IEEE
Symposium on, pp. 38–54, IEEE, 2015.

[31] M.-W. Shih, M. Kumar, T. Kim, and A. Gavrilovska,
“S-nfv: securing nfv states by using sgx,” in
Proceedings of the 2016 ACM International Workshop
on Security in Software Defined Networks & Network
Function Virtualization, pp. 45–48, ACM, 2016.

[32] J. Seo, B. Lee, S. Kim, M.-W. Shih, I. Shin, D. Han,
and T. Kim, “Sgx-shield: Enabling address space
layout randomization for sgx programs,” in Proceedings
of the 2017 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, 2017.

[33] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-sgx:
Eradicating controlled-channel attacks against enclave
programs,” in Proceedings of the 2017 Annual Network
and Distributed System Security Symposium (NDSS),
San Diego, CA, 2017.

[34] U. Steinberg and B. Kauer, “Nova: a
microhypervisor-based secure virtualization
architecture,” in Proceedings of the 5th European
conference on Computer systems, pp. 209–222, ACM,
2010.

[35] S. Jin, J. Ahn, S. Cha, and J. Huh, “Architectural
support for secure virtualization under a vulnerable
hypervisor,” in Proceedings of the 44th Annual
IEEE/ACM International Symposium on
Microarchitecture, pp. 272–283, ACM, 2011.

[36] J. Szefer and R. B. Lee, “Architectural support for
hypervisor-secure virtualization,” in ACM SIGPLAN
Notices, vol. 47, pp. 437–450, ACM, 2012.

[37] Z. Wang, C. Wu, M. Grace, and X. Jiang, “Isolating
commodity hosted hypervisors with hyperlock,” in
Proceedings of the 7th ACM european conference on
Computer Systems, pp. 127–140, ACM, 2012.

[38] C. Wu, Z. Wang, and X. Jiang, “Taming hosted
hypervisors with (mostly) deprivileged execution.,” in
NDSS, Citeseer, 2013.

[39] D. Williams, Y. Hu, U. Deshpande, P. K. Sinha,
N. Bila, K. Gopalan, and H. Jamjoom, “Enabling
efficient hypervisor-as-a-service clouds with eemeral
virtualization,” in Proceedings of the12th ACM
SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, pp. 79–92, ACM,
2016.

[40] L. Deng, P. Liu, J. Xu, P. Chen, and Q. Zeng,
“Dancing with wolves: Towards practical event-driven
vmm monitoring,” in Proceedings of the 13th ACM
SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, pp. 83–96, ACM,
2017.

[41] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker,
T. Deegan, P. Loscocco, and A. Warfield, “Breaking
up is hard to do: security and functionality in a
commodity hypervisor,” in Proceedings of the
Twenty-Third ACM Symposium on Operating Systems
Principles, pp. 189–202, ACM, 2011.

[42] S. Butt, H. A. Lagar-Cavilla, A. Srivastava, and
V. Ganapathy, “Self-service cloud computing,” in
Proceedings of the 2012 ACM conference on Computer
and communications security, pp. 253–264, ACM,
2012.

[43] A. Nguyen, H. Raj, S. Rayanchu, S. Saroiu, and
A. Wolman, “Delusional boot: securing hypervisors
without massive re-engineering,” in Proceedings of the
7th ACM european conference on Computer Systems,
pp. 141–154, ACM, 2012.

453

