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Abstract
Serverless platforms essentially face a tradeoff between con-
tainer startup time and provisioned concurrency (i.e., cached
instances), which is further exaggerated by the frequent need
for remote container initialization. This paper presents MITO-
SIS, an operating system primitive that provides fast remote
fork, which exploits a deep codesign of the OS kernel with
RDMA. By leveraging the fast remote read capability of
RDMA and partial state transfer across serverless contain-
ers, MITOSIS bridges the performance gap between local and
remote container initialization. MITOSIS is the first to fork
over 10,000 new containers from one instance across multiple
machines within a second, while allowing the new contain-
ers to efficiently transfer the pre-materialized states of the
forked one. We have implemented MITOSIS on Linux and in-
tegrated it with FN, a popular serverless platform. Under load
spikes in real-world serverless workloads, MITOSIS reduces
the function tail latency by 89% with orders of magnitude
lower memory usage. For serverless workflow that requires
state transfer, MITOSIS improves its execution time by 86%.

1 Introduction
Serverless computing is an emerging cloud computing
paradigm supported by major cloud providers, including
AWS Lambda [23], Azure Functions [91], Google Server-
less [44], Alibaba Serverless Application Engine [30] and
Huawei Cloud Functions [58]. One of its key promises is auto-
scaling—users only provide serverless functions, and server-
less platforms automatically allocate computing resources
(e.g., containers1) to execute them. Auto-scaling makes server-
less computing economical: the platform only bills when
functions are executed (no charge for idle time).

However, coldstart (i.e., launching a container from scratch
for each function) is a key challenge for fast auto-scaling, as
the start time (over 100 ms) can be orders of magnitude higher
than the execution time for ephemeral serverless functions [37,
94, 121]. Accelerating coldstart has become a hot topic in
both academia and industry [41, 122, 94, 17, 102, 37, 20].
Most of them resort to a form of ‘warmstart’ by provisioned

1We focus on executing serverless functions with containers in this paper,
which is widely adopted by existing platforms [122, 123, 54, 64].

Figure 1. The timelines of call frequency (top) and sufficient re-
source provisioning (bottom) for two serverless functions in a real-
world trace from Azure Functions [102].

concurrency, e.g., launching a container from a cached one.
However, they require non-trivial resources when scaling
functions to a distributed setting, e.g., each machine should
deploy many cached containers.

Unfortunately, scaling functions to multiple machines is
common because a single machine has a limited function ca-
pacity to handle the timely load spikes. Consider the functions
sampled from real-world traces of Azure Functions [102].
The request frequency of function 9a3e4e can surge to over
150 K calls per minute, increased by 33,000× within one
minute (see the top of Figure 1). To avoid stalling numerous
newly arriving function calls, the platform should immedi-
ately launch sufficient containers across multiple machines
(see the bottom part of Figure 1). Due to the unpredictable
nature of the serverless workload, it is challenging for the
platform to decide the number of cached instances for the
warmstart. Hence, there is “no free lunch” for such resources:
commercial platforms require users to reserve and pay for
them to achieve better performance (i.e., lower response time),
e.g., AWS Lambda Provisioned Concurrency [12].

Even worse, dependent functions that run in separate con-
tainers cannot directly transfer states. Instead, they must re-
sort to message passing or cloud storage for state transfer,
which introduces data serialization/de-serialization, memory
copy and storage stack overheads. Recent reports have shown
that these may count up to 95% of the function execution
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time [71, 53]. Unfortunately, transferring states between func-
tions is common in serverless workflows—a mechanism to
compose functions into more complex applications [4, 2].
Though recent research [71] bypasses these overheads for lo-
cal state transfer (i.e., functions that run on the same machine)
by co-locating local functions in the same container, it is still
unclear how to do so in a remote setting.

We argue that remote fork (forking containers across ma-
chines like a local fork) is a promising primitive to enable
both efficient function launching and fast function state shar-
ing. First, the fork mechanism has been shown efficient in
both performance and resource usage for launching contain-
ers on a single machine: one cached container is sufficient
to start numerous containers with 1 ms time [17, 37, 36]. By
extending the fork mechanism to remote, one active con-
tainer is sufficient to start numerous containers efficiently
on all the machines, achieving no provisioned concurrency
in a distributed setting. Second, remote fork provides trans-
parent intermediate state sharing between remote functions:
the code in the container created by the fork can access the
pre-materialized states of the forked container transparently
bypassing message passing or cloud storage.

However, state-of-the-art systems can only achieve a con-
servative remote fork with Checkpoint/Restore techniques
(C/R) [7, 117]. Our analysis reveals that they are not efficient
for serverless computing, i.e., even slower than coldstart due
to the costs of checkpointing the memory of parent container
into files, transferring the files through the network and ac-
cessing the files through a distributed file system (§3). Even
though we have utilized modern interconnects (i.e., RDMA)
to reduce these costs, the software overhead of checkpointing
and distributed file accesses still make C/R underutilize the
low latency and high throughput of RDMA.

We present MITOSIS, an operating system primitive that
provides a fast remote fork by deeply co-designing with
RDMA. The key insight is that the OS can directly access the
physical memory on remote machines via RDMA-capable
NICs (RNICs) [115], which is extremely fast thanks to by-
passing remote OS and remote CPU. Therefore, we can re-
alize remote fork by imitating local fork through mapping
a child container’s virtual memory to its parent container’s
physical memory without checkpointing the memory. The
child container can directly read the parent memory in a copy-
on-write fashion using RNIC, bypassing the software stacks
(e.g., distributed file system) introduced by traditional C/R.

Leveraging RDMA for remote fork with kernel poses sev-
eral new challenges (§4.1): (1) fast and scalable RDMA-
capable connection establishment, (2) efficient access control
of the parent container’s physical memory and (3) efficient
parent container lifecycle management at scale. MITOSIS ad-
dresses these challenges by (1) retrofitting advanced RDMA
feature (i.e., DCT [1]), (2) proposing a new connection-based
memory access control method designed for remote fork and
(3) co-designing container lifecycle management with the

help of serverless platform. We also introduce techniques
including generalized lean container [94] to reduce container-
ization overhead for the remote fork. In summary, we show
that remote fork can be made efficient, feasible and practical
on commodity RNICs for serverless computing.

We implemented MITOSIS on Linux with its core func-
tionalities written in Rust as a loadable kernel module. It can
remote-fork 10, 000 containers on 5 machines within 0.86 sec-
ond. MITOSIS is fully compatible with mainstream containers
(e.g., runC [13]), making integration with existing container-
based serverless platforms seamlessly. To demonstrate the
efficiency and efficacy, we integrated MITOSIS with Fn [123],
a popular open-source serverless platform. Under load spikes
in real-world serverless workloads, MITOSIS reduces the 99th

percentile latency of the spiked function by 89% with orders
of magnitude lower memory usage. For a real-world server-
less workflow (i.e., FINRA [14]) that requires state transfer,
MITOSIS reduces its execution time by 86%.

Contributions. We highlight the contributions as follows:
• Problem: An analysis of the performance-resource provi-

sioning trade-off of existing container startup techniques,
and the costs of state transfer between functions (§2).

• MITOSIS: An RDMA-co-designed OS remote fork that
quickly launches containers on remote machines without
provisioned concurrency and enables efficient function
state transfer (§4–5).

• Demonstration: An implementation on Linux integrated
with Fn (§6) and evaluations on both microbenchmarks
and real-world serverless applications demonstrate the effi-
cacy of MITOSIS (§7). MITOSIS is publically available at
https://github.com/ProjectMitosisOS.

2 Background and Motivation
2.1 Serverless computing and container
Serverless computing is a popular programming paradigm.
It abstracts resource management from the developers: they
only need to write the application as functions in a popular
programming language (e.g., Python), upload these functions
(as container images) to the platform, and specify how to
call them. The platform can auto-scale according to function
requests by dynamically spawning a container [54, 123, 59,
94, 22, 30, 91, 44, 22, 70]2 to handle each call. The spawned
containers will also be automatically reclaimed after functions
return, making serverless economical: the developers only pay
for the in-used containers.

Container is a popular host for executing functions. It
not only packages the application’s dependencies into a sin-
gle image that eases the function deployment, but also pro-
vides lightweight isolation through Linux’s cgroups and
namespaces, which is necessary to run applications in a
multi-tenancy environment. Unfortunately, enabling container
2Serverless platform may use virtual machines to run functions, which is not
the focus of this paper.
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Table 1: A comparison of startup techniques for autoscaling n concurrent invocations of one function to m machines. Local means the
resources for the startup are provisioned on the function execution machine. The function is a simple python program that prints ‘hello world’.

Coldstart Caching Fork Checkpoint/Restore Remote fork
[9, 119] [63, 123, 94, 102, 122] [37, 17, 36] [120, 37, 117, 20] MITOSIS

Local startup performance Very slow (100ms) Very fast (< 1ms) Fast (1ms) Medium (5ms) Fast (1ms)

Remote startup performance Very slow (1, 000ms) N/A N/A Slow (24ms) Fast (3ms)

Overall resource provisioning O(1) O(n) O(m) O(1) O(1)

introduces additional function startup costs and state transfer-
ring costs due to container bootstrap and segregated function
address spaces, respectively.

2.2 Startup and resource provisioning costs

Coldstart performance cost. Starting a container from
scratch, commonly named as ‘coldstart’, is notoriously slow.
The startup includes pulling the container image, setting up
the container configurations and initializing the function lan-
guage runtime. All the above steps are costly, which take
even more than hundreds of milliseconds [37, 94]. As a
result, coldstart may dominate the end-to-end latency of
ephemeral serverless functions [37, 94, 119, 33]. For exam-
ple, Lambda@Eedge reports that 67% of its functions run in
less than 20 ms [33]. In comparison, starting a Hello-world
python container with runC [13]—a state-of-the-art container
runtime—takes 167 ms and 1783 ms when the container im-
age is stored locally and remotely, respectively (see Table 1).

Warmstart resource cost due to provisioned concurrency.
A wealth of researches focus on reducing the startup time of
coldstart with ‘warmstart’ techniques [94, 17, 37, 102, 113,
42, 119, 131, 106]. However, they must pay more resource
provisioning cost (see Table 1):

Caching [63, 64, 123, 41, 122, 94, 17, 102]. By caching fin-
ished containers (e.g., via Docker pause [8]) instead of
reclaiming them, future functions can reuse cached ones
(e.g., via Docker unpause) with nearly no startup cost (less
than 1 ms). However, Caching consumes large in-memory
resources: the resource provisioned—number of the cached
instances (O(n)) should match the number of concurrent
functions (n), because a paused container can only unpause
for one function. Given the unpredictability of the number
of function invocations (e.g., load spikes in Figure 1), it is
challenging for the developers or the platform to decide how
many cached instances are required. Thus, Caching inevitably
faces the trade-off between fast startup and low resource pro-
visioning, resulting in huge cache misses.

Fork [37, 17, 36]. A cached container (parent) can call the
fork system call (instead of unpause) to start new contain-
ers (children). Since fork can be called multiple times, each
machine only requires one cached instance to fork new con-
tainers. Thus, fork reduces resource provisioned of Caching—
cached containers from O(n) to O(m), where m is the num-
ber of machines that require function startup. However, it is

Start FINRA

Fetch Portfolio Data

Fetch Market Data

Run AuditRule #1

Run AuditRule #2

Run AuditRule #n

…

Market data  

(10-20MB)

Portfolio data 

(1-2KB)

Serverless 

functionsRaw data

Figure 2. The workflow graph of a real-world serverless applica-
tion, Financial Industry Regulatory Authority, FINRA [14].

still proportional to the number of machines (m) since fork
cannot generalize to a distributed setting.

Checkpoint/Restore (C/R) [120, 37, 117]. C/R starts contain-
ers from container checkpoints stored in a file. It only needs
O(1) resource (the file) to warmstart, because the file can be
transferred through the network if necessary. Though being
optimal in resource usage, C/R is orders of magnitude slower
than Caching and fork. We analyze it in §3 in detail.

2.3 (Remote) state transfer cost

Transferring states between functions is common in server-
less workflows [36, 17, 95, 64, 4, 2]. A workflow is a graph
describing the producer-consumer relationships between
functions. Consider the real-world example FINRA [14]
shown in Figure 2. It is a financial application that validates
trades according to the trade (Portfolio) and market (Mar-
ket) data. Upstream functions (the ones that produce states),
i.e., fetchPortfolioData and fetchMarketData
first read data from external sources. Afterward, they trans-
fer the results to many downstream functions (the one that
consumes states), i.e., runAuditRules to process them
concurrently for a better performance.

Functions run in different containers can only transfer
states either by copying them through the network via mes-
sage passing or exchanging them at a cloud storage service.
Figure 3 (a) shows a simplified code for running FINRA on
AWS Lambda. For small states transfers (less than 32KB,
e.g., Portfolio), Lambda piggybacks the states in messages
exchanged between the coordinator and the function contain-
ers [131]. For large ones (Market), functions must exchange
them with S3—Lambda’s cloud storage service.

Transferring states via messages and cloud storage in-
evitably faces the overheads of data serialization, memory
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global_market_data = None

def fetchPortfolioData():
    return query_portfolio_data() #1-2KB

def fetchMarketData():                   
    market_data = query_market_data();
    global_market_data = market_data

def runAuditRule(portfolio):
    marketdata = global_market_data
    return handle(portfolio, marketdata)

### Per-container orchestrator (hidden from user)
while True:
    func_name, arg, need_fork = get_reqs()
    ret = globals[func_name](arg)
    send_results(ret) # back to coordinator
    if need_fork: ## may fork many times
       remote_fork()

1

2
3

4

5
6

7
8
9

10
11
12
13
14
15
16

path = 'market_data_file.o'

def fetchPortfolioData():
    return query_portfolio_data() #1-2KB

def fetchMarketData():
    s3 = boto3.resource('s3')                                 
    market_data = query_market_data();
    s3.meta.upload_file(path, market_data)

def runAuditRule(portfolio):
    s3 = boto3.resource('s3')
    marketdata = global_market_data
    return handle(portfolio, marketdata)

### Per-container orchestrator (hidden from user)
while True:
    func_name, arg = get_reqs() 
    ret = globals[func_name](arg) # call function
    send_results(ret) # back to coordinator

1

2
3

4
5
6
7

8
9
10
11

12
13
14
15
16

Functions 

(Containers)
Coordinator

portfolio_data

market_data

(remote) fork

Functions 

(Containers)
Coordinator

portfolio_data
market_data

Storage

(a) State-passing via messaging & cloud storage (b) State-passing with remote fork

Messaging Messaging

1

1

2

22

x Execution order

1

1

2

2

2

Figure 3. (a) A simplified code of FINRA (see Figure 2) on existing serverless platforms. (b) A simplified code of using (remote) fork to
transfer states between FINRA functions. globals records a mapping between function name and its pointer.

copies, and cloud storage stacks, causing up to a 1,000X slow-
down [53, 71]. To cope with the issue, existing work proposes
serverless-optimized messaging primitives [17] or specialized
storage systems [110, 69, 96], but none of the mentioned over-
head is completely eliminated [71]. Faastlane [71] co-locates
functions in the same container with threads so that it can by-
pass these overheads with shared memory accesses. However,
threads cannot generalize to a distributed setting. Faastlane
fallbacks to message passing if the upstream and downstream
functions are on different machines. SPRIGHT [97] achieves
a similar effect by retrofitting eBPF. However, they don’t
support efficient data sharing across nodes.

3 Remote Fork for Serverless Computing
We show the following two benefits of remote fork to address
the issues mentioned in the previous section.

Efficient (remote) function launching. When generalizing the
FORK primitive to a remote setting, a single parent container
is sufficient to launch subsequent child3 containers across
the cluster, similar to C/R (see Table 1). We believe O(1)
resource provisioning is desirable for the developers/tenants
since they only need to specify whether they need resource for
warmstart, instead of how many (e.g., the number of machines
for forking or cached instances [12] for Caching).

Fast and transparent (remote) state transfer. The FORK prim-
itive essentially bridges the address spaces of parent and
child containers. The transferred states are pre-materialized in
the parent memory, so the child can seamlessly access them
with shared memory abstraction with no data serialization,
zero-copy (for read-only accesses4) and cloud storage costs.
Meanwhile, the copy-on-write semantic in the FORK primitive
avoids the costly memory coherence protocol in traditional
distributed shared memory systems [75, 57].
3We may also call the kernel/machine hosting the parent/child container as
parent/child in this paper without losing generality.

4In the case of the traditional fork. MITOSIS further optimizes with one-sided
RDMA (§4), allowing zero-copy even for read-write accesses.

Figure 4. Analysis of using C/R for remote fork. Setup: CRIU-
local: CRIU with a local file system (e.g., tmpfs), which uses RDMA
to transfer files between machines. CRIU-remote: CRIU with an
RDMA-accelerated distributed file system (e.g., Ceph [89]).

Figure 3 (b) presents a concrete example of using fork to
transfer market data in FINRA (see Figure 2). In this setup, all
functions are packaged in the same container, which has an or-
chestrator dispatching function requests to user-implemented
functions (lines 11–14).5 We further assume the coordina-
tor issuing requests to the orchestrators is fork-aware (§6.1):
based on the function dependencies in the workflow graph
(e.g., Figure 2), it will request the orchestrator to fork chil-
dren if necessary (line 12). After the orchestrator finishes
fetchMarketData (line 13), it forks (lines 15–16) to
run downstream functions (runAuditRule), which can di-
rectly access the global_market_data pre-materialized
by the parent (line 8).

Challenge: remote fork efficiency. To the best of our knowl-
edge, existing containers can only remote fork with a C/R-
based approach [108, 32]. To fork a child, the parent first
checkpoints its states (e.g., register values and memory pages)
by copying them to a file, and then transfers the file to the
child—either using a remote file copy—see CRIU-local in
Figure 5 (a), or a distributed file system (see CRIU-remote
in Figure 5 (b)). After receiving the file, the child restores
the parent’s execution by loading the container states from
the checkpointed file. Note that C/R may load some states
(i.e., memory pages) on-demand for better performance [120].

5This setup is common in serverless platforms [70, 71, 2].
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(b) C/R with a DFS (CRIU-remote)
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Figure 5. An overview of different approaches to achieve ultra-fast remote fork, including (a) C/R with a local filesystem (e.g., tmpfs), (b) C/R
with a fast distributed filesystem (e.g., Ceph [5]), and (c) MITOSIS.

Unfortunately, the C/R-based remote fork is not efficient
enough for serverless computing. Figure 4 (a) shows the exe-
cution time of serverless functions on a remote machine using
CRIU [7]—the state-of-the-art C/R on Linux (with careful
optimizations, see §7 for details) to realize CRIU-local and
CRIU-remote. The synthetic function randomly touches the
entire parent’s memory. We observe that C/R-based remote
fork can even be 2.7× slower than coldstart if it accesses
1 GB remote memory. We attribute it to one or more of the
following aspects.

Checkpoint container memory. CRIU takes 9 ms (resp.
518 ms) and 15.5 ms (resp. 590 ms) to checkpoint 1 MB (resp.
1 GB) memory of the parent container using local or dis-
tributed file systems, respectively. The overhead is dominated
by copying the memory to the files: unlike the local fork, the
child’s OS resides on another machine and thus, lacks direct
memory access capability to the parent’s memory pages.

Copy checkpointed file. For CRIU-local, transferring the en-
tire file from the parent to the child takes 11–734 ms for
1 MB–1 GB image (compared to the 0.61–570 ms execution
time), respectively. The whole file copy is typically unneces-
sary since serverless functions typically access a partial state
of the parent container [120] (see also Figure 16 (b)).

Additional restore software overhead. CRIU-remote enables
on-demand file transfer6: it only reads the required remote file
pages during page faults. However, the execution time is 1.3–
3.1× longer than CRIU-local because each page fault requires
a DFS request to read the page: the DFS latency (100µs) is
much higher than local file accesses. More importantly, the
latency is much higher than one network round-trip time
(3µs) due to the software overhead.

4 The MITOSIS Operating System Primitive

Opportunity: kernel-space RDMA. Remote Direct Memory
Access (RDMA) is a fast networking feature widely deployed
in data-centers [115, 47, 43]. Though commonly used in the
user-space, RDMA further gives the kernel the ability to
read/write the physical memory of remote machines [115]
6CRIU lazy migration [6] also supports on-demand transfer. However, it
is not optimized for RDMA and is orders of magnitude slower than our
evaluated CRIU-remote (210 vs. 42 ms) for the python hello function.
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Figure 6. The MITOSIS architecture.

bypassing remote CPUs (i.e., one-sided RDMA READ), with
low latency (e.g., 2µs) and high bandwidth (400 Gbps).

Approach: imitate fork with RDMA. MITOSIS achieves an
efficient remote fork by imitating the local fork with RDMA.
Figure 5 (c) shows an overview. First, we copy the parent’s
metadata (e.g., page table) to a condensed descriptor (§5.1)
to fork a child (¶). Note that unlike C/R, we don’t copy the
parent’s memory pages to the descriptor. The descriptor is
then copied to the child via RDMA to recover the parent’s
metadata, similar to copy_process in the local fork (·).
During execution, we configure the child’s remote memory
accesses to trigger page faults, and the kernel will read the
remote pages accordingly. The fault handler is triggered nat-
urally in an on-demand pattern, which avoids transferring
the entire container state. Meanwhile, MITOSIS directly uses
one-sided RDMA READ to read the remote physical memory
(¸), bypassing all the software overheads.

Architecture. We target a decentralized architecture—each
machine can fork from others and vice versa. Note that we do
not require dedicated resources (e.g., pinned memory) to fork
containers, thus, non-serverless applications can co-run with
MITOSIS. We realize MITOSIS by adding four components to
the kernel (see Figure 6): The fork orchestrator rehearsals the
remote fork execution (§5.1 and 5.2). The network daemon
manages a scalable RDMA connection pool (§5.3) for com-
municating between kernels. We extend OS’s virtual memory
subsystems to utilize the remote memory with RDMA (§5.4).
Finally, fallback daemon provides RPC handlers to restore
rare remote memory accesses that cannot utilize RDMA.

Security model. We preserve the security model of contain-
ers, i.e., the OS and hardware (RNIC) are trustworthy while
malicious containers (functions) may exist.
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4.1 Challenges and approaches

Efficient and scalable RDMA connection setup. Though
RDMA is fast (e.g., 2µs), it is traditionally only supported
in the connection-oriented transport (RC) [35, 83, 126, 125,
105, 127, 124], where connection establishment is much
slower (e.g., 4 ms [11] with a limited 700 connections/sec-
ond throughput). Caching connections to other machines can
mitigate the issue, but it is impractical when RDMA-capable
clusters have scaled to more than 10,000 nodes [43].

We retrofit DCT [1], an underutilized but widely supported
advanced RDMA feature with fast and scalable connection
setups to carry out communications between kernels (§5.3).

Efficient remote physical memory control. MITOSIS ex-
poses the parent’s physical memory to the children for the
fastest remote fork. However, this approach introduces consis-
tency problems in corner cases. If the OS changes a parent’s
virtual–physical mappings [77, 80, 78, 79] (e.g., swap [78]),
the children will read an incorrect page. User-space RDMA
can use memory registration (MR) [93] for the access con-
trol. However, MR has non-trivial registration overheads [49].
Further, kernel-space RDMA has limited support for MR—it
only supports MR on RCQP (with FRMR [90]).

We propose a registration-free memory control method
(§5.4) that transforms RNIC’s memory checks to connection
permission checks. We further make the checks efficient by
utilizing DCT’s scalable connection setup feature.

Parent container lifecycle management. For correctness,
we must ensure a forked container (parent) is alive until all
its successors (including children forked from the children)
finish. A naive approach is letting each machine track the
lifecycles of the successors of its hosting parents. However,
it would pose significant management burdens: a parent’s
successors may span multiple machines, forming a distributed
fork tree. Meanwhile, each machine may have multiple trees.
Consequently, each machine needs extensive communications
with the others following paths in the trees to ensure a parent
can be safely reclaimed.

To this end, we onload the lifecycle management to the
serverless platform (§6.3). The observation is that serverless
coordinators (nodes that invoke functions via fork) naturally
maintain the runtime information of the forked containers.
Thus, they can trivially decide when to reclaim parents.

5 Design and Implementation
For simplicity, we first assume one-hop fork (i.e., no cascad-
ing) and then extend to multi-hops fork (see §5.5).

API. We decouple the fork into two phases (see Figure 7): The
user can first call fork_prepare to generate the parent’s
metadata (called descriptor) related to remote fork. The de-
scriptor is globally identified by the local unique handle_-
id and key (generated and returned by the prepared call)
and the parent machine’s RDMA address. Given the identifier,

// Prepare the container descriptor at the parent machine
status_t fork_prepare(uint64_t *handler_id, uint64_t *key);

// Resume from a parent descriptor at the child machine 
status_t fork_resume(char *addr, uint64_t handler_id, uint64_t key); 

Figure 7. The major MITOSIS remote fork system calls.

users can start a child via fork_resume at another machine
(can be the same as the parent, i.e., local fork).

Compared to the traditional one-stage fork system call, a
two-phase fork API (prepare and resume)—similar to pause
and unpause in Caching is more flexible for serverless com-
puting. For example, after preparing and recording the par-
ent’s identifier at the coordinator, it can later start children
without communicating with the parent machine.

Visibility of the parent’s data structures. By default, MI-
TOSIS exposes all the parent’s data structures—including
virtual memory and file descriptors, to the child after fork_-
prepare. MITOSIS could introduce APIs to let the applica-
tion limit the scope of the exposure, but currently, we find it
unnecessary: parents must trust the children since they are
from the same application.

5.1 Fork prepare
fork_prepare will generate a local in-memory data struc-
ture (container descriptor) capturing the parent states, which
contains (1) cgroup configurations and namespace flags—for
containerization, (2) CPU register values—for recovering the
execution states, (3) page table and virtual memory areas
(VMAs)—for restoring the virtual memory, and (4) opened
file information—for recovering the I/O. We follow local
fork (e.g., Linux’s copy_process()) to capture (1)–(3)
and CRIU [7] for (4). Since deciding when to reclaim a de-
scriptor is challenging, we always keep the prepared parents
(and their descriptors) alive unless the serverless platform
explicitly frees them (i.e., via fork_reclaim).

Though the descriptor plays a similar role as C/R check-
pointed file, we emphasize one key difference: the descriptor
only stores the page table, not the memory pages. As a result,
it is orders of magnitude smaller (KB vs. MB) and orders of
magnitude faster to generate and transfer.

5.2 Fork resume
fork_resume resumes the parent’s execution state by
fetching the parent descriptor and then restoring from it. We
now describe how to make the above two steps fast. For now,
we assume the child OS has established network connections
capable of issuing RPCs and one-sided RDMAs to the parent.
The next section describes the connection setup.

Fast descriptor fetch with one-sided RDMA. A straightfor-
ward implementation of fetching the descriptor is using RPC.
However, RPC’s memory copy overhead is non-trivial (see
Figure 18), as the descriptor of a moderate-sized container
may consume several KBs. The ideal fetch is using one one-
sided RDMA READ, which requires (1) storing the parent’s
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descriptor into a consecutive memory area and (2) informing
the child’s OS of the memory’s address and size in advance.

The first requirement can be trivially achieved by serializ-
ing the descriptor into a well-format message. Data serializa-
tion has little cost (sub-millisecond) due to the simple data
structure of descriptor. For the second requirement, a naive
solution is to encode the memory information in the descrip-
tor identifier (e.g., handler_id) that is directly passed to
the resume system call. However, this approach is insecure
because a malicious user could pass a malformed ID, caus-
ing the child to read and use a malformed descriptor. We
adopt a simple solution to remedy this: MITOSIS will send an
authentication RPC to query the descriptor memory informa-
tion with the descriptor identifier. If the authentication passes,
the parent will send back the descriptor’s stored address and
payload so that the child can directly read it with one-sided
RDMA. We chose a simple design because the overhead of an
additional RPC (several bytes) is typically negligible: reading
the descriptor (several KBs) will dominate the fetch time.

Fast restore with generalized lean containers. With the
fetched descriptor, child OS uses the following two steps to
resume a child to the parent’s execution states: (1) Container-
ization: set the cgroups and namespaces to match the
parent’s setup; (2) Switch: replace the caller’s CPU registers,
page table, and I/O descriptors with the parent’s. The switch
is efficient (finishes in sub-milliseconds): it just imitates the
local fork—e.g., unmapping the caller’s current memory map-
ping and mapping the child’s virtual memory to the parents by
copying parent’s page table to the child . On the other hand,
containerization can take tens of milliseconds due to the cost
of setting cgroups and namespaces.

Fortunately, fast containerization has been well-studied [94,
17, 27, 112]. For instance, SOCK [94] introduces lean con-
tainer, which is a special container having the minimal con-
figurations necessary for serverless computing. It further uses
pooling to hide the cost of container bootstrap, reducing its
time from tens of milliseconds to a few milliseconds. We
generalize SOCK’s lean container to a distributed setting to
accelerate the containerization of the remote fork. Specifi-
cally, before resuming a remote parent, we will use SOCK
to create an empty lean container that satisfies the parent’s
isolation requirements. Afterward, the empty container calls
MITOSIS to resume execution. Since the container has been
properly configured with SOCK, we can skip the costly con-
tainerization.

5.3 Network daemon
The network daemon aims to reduce the costs of creating
RDMA connections (commonly called RCQP) on the critical
path of the remote fork. Meanwhile, it also avoids caching
RCQPs connected to all the servers to save memory.

Solution: Retrofit advanced RDMA transport (DCT). The
essential requirement behind the goal is that we need QP
to be connectionless. RDMA does provide a connectionless
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Figure 8. A comparison of a client (CL) using two RCQPs and
DCQP to communicate with two machines (M1 and M2).

transport—unreliable datagram (UD), but it only supports
messaging, so we can just use it for RPC.

We find dynamic connected transport (DCT) [1]—a less
studied but widely supported RDMA feature suits remote
fork well. DCT preserves the functionality of RC and further
provides a connectionless illusion: a single DCQP can com-
municate with different nodes. The target node only needs to
create a DC target, which is identified by the node’s RDMA
address and a 12B DC key.7 After knowing the keys, a child
node can send one-sided RDMA requests to the correspond-
ing targets without connection—the hardware will piggyback
the connection with data processing and is extremely fast
(within 1µs [11, 67]), as shown in Figure 8.

Based on DCT, the network daemon manages a small
kernel-space DCQP pool for handling RDMA requests from
children. Typically, one DCQP per-CPU is sufficient to uti-
lize RDMA [11]. However, using DCT alone is insufficient
because the child needs to know the DCT key in advance to
communicate with the parent. Therefore, we also implement
a kernel-space FaSST RPC [67] to bootstrap DCT. FaSST
is a UD-based RPC that supports connectionless. With RPC,
we piggyback the DCT key associated with the parent in the
RPC request to query the parent’s descriptor. To save CPU
resources, we only deploy two kernel threads to handle RPCs,
which is sufficient for our workloads (see Figure 13 (b)).

Discussion on DCT overheads. DCT has known perfor-
mance issue due to extra reconnection messages. Compared
with RC, it causes up to 55.3% performance degradations for
small (32B) one-sided RDMA READs [67]. Nevertheless, the
reconnection has no effect on the large (e.g., more than 1 KB)
transfer because transferring data dominates the time [11].
Since the workload pattern of MITOSIS is dominated by large
transfers, e.g., reading remote pages in 4KB granularity, we
empirically found no influence from this issue.

5.4 RDMA-Aware virtual memory management

For resume efficiency, we directly set the page table entries
(PTE) of the children’s mapped pages to the parent’s physical
addresses (PA) during the resume phase. However, the orig-
inal OS is unaware of the remote PA in the PTE. Thus, we
dedicate a remote bit in the PTE for distinction. In particular,
the OS will set the remote bit to be 1 and clear the present
bit of the PTE during the switch process at the resume phase.
Afterward, child’s remote page access will trap in the kernel

7The key consists of a 4 B NIC-generated number and 8 B user-passed key.
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Table 2: A summary of page fault handling related to remote fork at
the child categorized by whether the virtual address (VA) is mapped
to remote and whether the remote physical address (PA) is stored.

Example VA mapped Parent PA in PTE Method

Stack grows No No Local
Code in .text Yes Yes RDMA
Mapped file Yes No RPC

after the switch. Consequently, MITOSIS can handle them
in the RDMA-aware page fault handler. Note that we don’t
change the table entry data structure: we utilize an ignored
PTE bit (i.e., one in [58 : 52] [60]) for the remote bit.

RDMA-aware page fault handler. Table 2 summarizes how
we handle different faults related to remote fork. If the fault
page has not mapped to the parent, e.g., stack grows, we
handle it locally like a normal page fault. Otherwise, we
check whether the fault virtual address (VA) has a mapped
remote PA. If so, we use one-sided RDMA to read the remote
page to a local page. Most child pages can be restored via
RDMA because serverless function typically touches a subset
of the previous run [120, 37]. In case of a missed mapping,
we fallback to RPC.

Fallback daemon. Each node hosts a fallback daemon that
spawns kernel threads to handle children’s paging requests,
which contains the parent identifier and the requested virtual
address. The fallback logic is simple: After checking the
validity of the request, the daemon thread will load the page
on behalf of the parent. If the load succeeds, we will send the
result back to the child.

Connection-based memory access control and isolation.
Direct exposing the parent’s physical memory improves the
remote fork speed. Nevertheless, we need to reject accesses to
mapped pages that no longer belong to a parent and properly
isolate accesses to different containers. Since we expose the
memory via one-sided RDMA in a CPU-bypassing way, we
can only leverage RNIC for the control.

MITOSIS proposes a connection-based memory access con-
trol method. Specifically, we assign different RDMA connec-
tions to different portions of the parent’s virtual memory area
(VMA), e.g., one connection per VMA. If a mapped physical
page no longer belongs to a parent, we will destroy the con-
nection related to the page’s VMA. Consequently, the child’s
access to the page will be rejected by the RNIC. The connec-
tions are all managed in the kernel to prevent malicious users
from accessing the wrong remote container memory.

To make connection-based access control practical, each
connection must be efficient in creation and storage. Fortu-
nately, the DCQP satisfies these requirements well. At the
child-side, each connection (DC key) only consumes 12B—
different DC connections can share the same DCQP. Mean-
while, the parent-side DC target consumes 144B. Note that
creating DCQPs and targets also has overheads. Yet, they are
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Figure 9. An illustration of the extended virtual memory subsystems
to map children’s virtual addresses to remote memory. The memory
space is divided into a list of virtual memory area (VMA)s, each
managed by a vm_area_struct. DC target pool and DCT keys
are used by connection-based memory access control.

logically independent of the parent’s memory. Therefore, we
use pooling to amortize their creation time (several ms).

Figure 9 shows the DCT-based access control in action.
Upon fork preparation, MITOSIS assigns one DC target—
selected from a target pool—to each parent VMA. The pool
is initialized during boot time and is periodically filled in the
background. The DC keys of these targets are piggybacked in
the parent’s descriptor so that the children can record them
in their VMA during resume. Upon reading a parent’s page,
the child will use the key corresponding to the page’s VMA
to issue the RDMA request. With this scheme, if the par-
ent wants to reject accesses to this page, it can destroy the
corresponding DC target.

Connection-based control has false positives: after destroy-
ing a VMA’s assigned target, all remote accesses to it are
rejected. Assigning DC targets in a more fine-grained way
(e.g., multiple targets per VMA) can mitigate the issue at the
cost of increased memory usage. We found it is unnecessary
because VA–PA changes are rare at the parent. For example,
swap never happens if the OS has sufficient memory.

Security analysis. Compared with normal containers, MI-
TOSIS additionally exposes its physical memory to remote
machines via RDMA. Nevertheless, since remote containers
must leverage their kernels to read the exposed memory, a ma-
licious container cannot read others states as long as its kernel
is not compromised. Besides this, the inherent security issues
of RDMA [111, 99, 128] may also endanger MITOSIS. While
such security threats are out of the scope of our work, it is
possible to integrate orthogonal solutions [111, 99, 128, 115]
to improve the security of MITOSIS.

Optimizations: prefetching and caching. Even with RDMA,
reading remote pages is still much slower than local memory
accesses [35] (3µs vs. 100 ns). Thus, we apply two standard
optimizations: Prefetching prefetches adjacent remote pages
upon page faults. Empirically, we found a prefetch size of one
is sufficient to improve the performance of remote fork at a
small cost to the runtime memory (see Figure 15). Thus, MI-
TOSIS only prefetches one adjacent page by default. Caching
caches the finished children’s page table (and the read pages)
in the kernel. A later child forking the same parent can then
reuse the page table in a copy-on-write way to avoid reading
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data = [] #shared via fork

def func0():
    data.append(…) 

def func1():
    new = process(data[0])
    data.append(new)

def func2():
    return process(data[1])
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Figure 10. An illustration of multi-hops remote fork.

the touched pages again. This is essentially a combination
of local-remote fork. To avoid extra memory cost, we only
keep the cached page table for a short period (usually several
seconds) to cope with load spikes (e.g., see Figure 1).

5.5 Supporting multi-hops remote fork
MITOSIS supports multi-hops fork: a child can be forked
again with its children possibly on the third machine. It is
similar to one-hop fork except that we need to further track the
ownership of remote pages in a fine-grained way. As shown
in Figure 10, the pages behind data[1] and data[0]
resides on two different machines. A naive approach would
be maintaining a map to track the owner of each virtual page.
However, it would consume non-trivial storage overhead. To
reduce memory usage, MITOSIS encodes the owner in the
PTE: we dedicate 4 bits in the PTE’s ignored bits to encode
the remote page machine—supporting a maximum of 15-hops
remote fork (up to 15 ancestors)

6 Bringing MITOSIS to Serverless Computing
This section describes how we apply MITOSIS to FN [123]—
a popular open source serverless platform. Though we focus
on FN, we believe our methodology can also apply to other
serverless platforms (e.g., OpenWhisk [122]) because they
follow a similar system architecture (see Figure 11).

Basic FN. Figure 11 shows an overview of FN. It handles the
function request that is either an invocation of a single func-
tion, or an execution of a serverless workflow (e.g., see Fig-
ure 2). A dedicated coordinator is responsible for scheduling
the executions of these requests. The function code must be
packed to a container and uploaded to a Docker registry [34]
managed by the platform.

To handle the invocation of a single function, the coordina-
tor will direct the request to an invoker chosen from a pool
of servers. After receiving the request, the invoker spawns
a container with Caching to accelerate startups to execute
the function. Note that FN hides the mapping of request to
user-function (e.g., 12–16 in Figure 3 (a)) with function de-
velopment kit (FDK): i.e., the user only needs to provide
the code for the function, not the code that dispatches the
requests to the function. Thanks to this abstraction, we can
extend FDK to add the fork capabilities.

To execute a workflow, the coordinator will first de-
compose the workflow into single-function calls (one
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I I I…
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…
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Func 1 Func 2
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Fork tree manager

MITOSIS 
Kernel

Fork

Fork

Serverless workflow

Seed store

User code
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Figure 11. Integrating MITOSIS to FN. The gray boxes are our
added (or extended) components.

for each workflow graph node), then schedule them
based on the dependency relationship. In particular,
the coordinator will only execute a downstream func-
tion (e.g., defrunAuditRule in Figure 2) after all
its upstream functions (fetchPortfolioData and
fetchMarketData) finish.

6.1 Fork-aware serverless platform

Being aware of MITOSIS, the platform can leverage parents
that have prepared themselves via fork_prepare (we term
them as seeds in this paper) to accelerate function startup and
state transfer. Besides, it is also responsible for reclaiming the
seeds. Based on the use cases, we further categorize seeds into
two classes. 1) For seeds that are used for boosting function
startups, the frequency of reclamation is low. Hence, we name
them long-lived seeds and use a coarse-grained reclamation
scheme (§6.2). 2) For seeds that are used for state transfer,
they only live during the lifecycle of a serverless workflow.
We name them short-lived seeds and use a fine-grained fork
tree-based mechanism to free them (§6.3).

The steps to accelerate FN with MITOSIS are: (1) Extend
the FN coordinator to send prepare/resume requests to the
invoker to fork containers if necessary and (2) Instrument
FDK so that it can recognize the new (fork) requests from
the coordinator (e.g., line 12–16 in Figure 3 (b)). Since the
extensions to the FDK are trivial, we focus on describing the
extensions to the coordinator.

Fork-aware coordinator. For a single function call, the co-
ordinator first looks up an available (long-lived) seed. The
locations of seeds are stored at a seed store. If one seed is
available, it sends a fork resume request to the invoker. Other-
wise, we fallback to the vanilla function startup mechanism.

During workflow execution, the coordinator dynamically
creates short-lived based on state transfer relationship. Specif-
ically, it will tell the invoker to call fork_prepare if it
executes an upstream function in the workflow. The prepared
results are piggybacked in the reply of the function. Afterward,
the coordinator can use fork_resume to start downstream
functions, which transparently inherit the pre-materialized
results of the upstream one.

Note that one function may have multiple upstream func-
tions (e.g., run AuditRule in Figure 2). For such cases, we
require the user to specify which function to fork by annotat-
ing the workflow graph or fuse the upstream functions.
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6.2 Long-lived seed management

Deployment. We deploy long-lived seeds as cached contain-
ers because they naturally load the function’s working set into
the memory. If the invoker decides to cache a container, it will
call fork_prepare to generate a seed. Note that we must
also adjust FN’s cache policy to be fork-aware. For example,
FN always caches a container if it experiences a coldstart,
which is unnecessary considering MITOSIS because the fork
can accelerate startups more resource-efficiently. Therefore,
we only cache the first container facing coldstart across the
platform. Moreover, we also detect whether a container is a
multi-hop one, i.e., forked from a long-lived seed. We don’t
cache such containers as they are short-lived seeds.

Seed store. To find the seed information, we record a map-
ping between function name and the corresponding seed’s
RDMA address, the handle_id and key (the latter two are
returned by fork_prepare) at the coordinator. We also
record the time when the seed was deployed, which is neces-
sary to prevent the coordinator forking from a near-expired
cache instance. The seed store can be co-located with the
coordinator or implemented as a distributed key-value store.

Reclamation. Similar to Caching, the long-lived seeds are
reclaimed by timeout. Unlike Caching, seeds can have a much
longer keep-alive time (e.g., 10 minutes vs. 1 minute) since
they consume orders of magnitude smaller memory. The co-
ordinators can renew the seed if it doesn’t live long enough
for the forked function.

6.3 Fork tree and short-lived seed management

Fork tree granularity and structure. Each serverless work-
flow has a dedicated fork tree stored and maintained at the
coordinator executing it. The upper-layer nodes in the tree cor-
respond to the upstream functions (parents) in the workflow
and the lower-layer nodes represent the downstream func-
tions (children). Each node encodes the container IDs and
locations, which is sufficient for the coordinator to reclaim
the corresponding seed.

Fork tree construction and destroy. The construction of the
fork tree is straightforward: After the coordinator forks a new
child from a short-lived seed, it will add the seed to the tree.
When all functions in the tree finish, MITOSIS will reclaim
all the nodes except for the root node: the root node can be a
long-lived seed and MITOSIS will not reclaim it.

Fault tolerance. The fork tree should be fault-tolerant to pre-
vent memory leakage caused by dangling seeds. Replicating
the tree with common replication protocols (e.g., Paxos [74])
can tolerate the failure, but adds non-trivial overheads dur-
ing the workflow execution. Observing that serverless func-
tions have a maximum lifetime (e.g., 15 minutes in AWS
Lambda [3]), we use a simple timeout-based mechanism to
tolerate the failures. Specifically, invokers will periodically
garbage collect short-lived seeds if they run beyond the func-

tion’s maximum allowed runtime.

6.4 Limitation
First, fork still needs a long-lived seed to quickly bootstrap
others. If no seed is available, we can leverage existing ap-
proaches that optimize coldstart (e.g., FaasNET [119]) to first
start one. Second, fork only enables a read-only state transfer.
Yet, it is sufficient for serverless workflow—the dominant
function composition method. Finally, fork cannot transfer
states between multiple upstream functions. Thus, MITOSIS
must fuse these upstream functions into one or fallback to
messaging (see Portfolio in Figure 3) for such cases. We
are addressing this limitation by further introducing a remote
merge primitive to complement the remote fork.

7 Evaluation
Experimental setup. We conduct all our experiments on a
local cluster with 24 machines. Each machine has two 12-core
Intel Xeon E5-2650 v4 processors and 128GB of DRAM. 16
machines are connected to two Mellanox SB7890 100Gbps
switches with two 100 Gbps ConnectX-4 MCX455A Infini-
Band RNICs. We use them as invokers to execute the server-
less functions. Nodes without RDMA are left as coordinators.

Comparing targets. The evaluating setups of MITOSIS and
its baselines are listed as follows. Note that we apply our
generalized lean container (§5.2) to all the systems to hide
the cost of containerization.

1. Caching is the de facto warmstart technique that provides
a near-optimal function startup.

2. CRIU-local leverages CRIU [7] to implement remote fork
(see Figure 5 (a)) and stores all files in an in-memory
local filesystem (tmpfs). The file is transferred via our
optimized transfer library with one-sided RDMA. We also
apply existing on-demand restore optimization [120].

3. CRIU-remote leverages CRIU and a distributed file system
for the remote fork (see Figure 5 (b)). We use Ceph [89]—
a state-of-the-art production DFS that embraces RDMA.
We also apply optimizations from CRIU-local: in-memory
storage and on-demand restore.

4. FaasNET [119] optimizes the container image pulling
of coldstart with function trees. We evaluate an optimal
setup of FaasNET (for performance) that pre-provisions
the images at all the invokers.8

5. MITOSIS is configured with on-demand execution and
reads all pages from remote with a prefetch size of one.

6. MITOSIS+cache is the version of MITOSIS that always
caches and shares the fetched pages among children. It
essentially fallbacks to the local fork.

8The setup has been confirmed by the FaasNET authors.
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Figure 12. (a) End-to-end latency comparisons of MITOSIS and baselines. (b) Analyses of different phases using microbenchmarks. Note that
the working set of the execution is smaller than the prepare and startup because child only touches a subset of the parent’s memory.

Functions evaluated. We chose functions from represen-
tative serverless benchmarks (i.e., ServerlessBench [131],
FunctionBench [68], and SeBS [31]), which cover a wide
range of scenarios, including simple function (hello/H—print
‘Hello world’), file processing (compression/CO—compress a
file), web requests (json/J—(de)serialize json data, pyaes/P—
encrypt messages, chameleon/CH—generate HTML pages),
image processing (image/I—apply image processing al-
gorithms to an image), graph processing (pagerank/PR—
execute the pagerank algorithm on a graph) and machine
learning (recognition/R—image recognition using ResNet).
These functions are written in python—the dominant server-
less language [33]. Besides, we also use a synthetic micro-
function that touches a variant portion of the memory to ana-
lyze the overhead introduced by MITOSIS. It is written in C
to minimize the language runtime overhead interference.

7.1 End-to-end latency and memory consumption

Figure 12 shows the results of end-to-end latency: the left sub-
figure is the time of different phases of the functions during
remote fork, and the right is each phase’s result on micro-
function. The function request is sent by a single client. To
rule out the impact of disk accesses, we put all the function’s
related files (e.g., images used by image/I) in tmpfs.

Prepare time. The prepare time is the time for the parent to
prepare a remote fork. For CRIU-local and CRIU-remote, it is
the time to checkpoint a container. For variants of MITOSIS,
it is the fork_prepare time. Caching and FaasNET do
not have this phase because they do not support fork.

MITOSIS is orders of magnitude faster in preparation than
CRIU-local and CRIU-remote. On average, it reduces the
prepare time by 94%. For example, MITOSIS prepared a
467 MB recognition/R container in 11 ms, while CRIU-local

and CRIU-remote took 223 ms and 253 ms, respectively. The
variants of CRIU are bottlenecked by copying the container
state from the memory to the filesystems.

Startup time. We measure the startup time as the time be-
tween an invoker receiving the function request and the time
the first line of the function executes. As shown in the middle
of Figure 12, caching is the fastest (0.5 ms) because starting a
cached container only requires a simple unpause operation.
MITOSIS comes next, it can start all the functions within
6 ms. It is up to 99%, 94%, and 97% (from 98%, 86%, and
77%) faster than CRIU-local, CRIU-remote, and FaasNET,
respectively. The startup time of MITOSIS is dominated by
the generalized lean container setup time since reading the de-
scriptor with RDMA is extremely fast with our fast descriptor
fetch protocol.

The startup of CRIU-local is dominated by copying the en-
tire file (shown in Figure 12 (b)). Using CRIU-remote avoids
transferring the file, but the overhead of communicating with
the DFS meta server (from 23–90 ms) is still non-trivial. Com-
pared to CRIU-remote, MITOSIS can directly read the con-
tainer metadata (descriptor) from the remote machine’s kernel.
Finally, the startup cost of FaasNET (coldstart) is dominated
by the runtime initialization of the function, as we skipped
the image pull process of it. The overhead depends on the ap-
plication characteristics. For example, recognition/R requires
loading a ResNet model from PyTorch, which takes 875 ms.
Other techniques can skip the loading process since the model
has been loaded in the parents or the cached containers.

Note that the results of CRIU-remote and FaasNET are not
significantly higher in the startup microbenchmark (Figure 12
(b)). For CRIU-remote, it is because the time (40ms) is rela-
tively small compared to CRIU-local (>191ms for working-
set larger than 256MB). For FaasNET, we use a native lan-
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Figure 13. (a) Peak throughput comparisons of MITOSIS and baselines. (b) Bottleneck analysis of MITOSIS using a single parent seed.

Figure 14. The per-function memory usage (in MB) for each tech-
nique before running (hatched) and during runtime (colored).

guage in the microbenchmark (C), so it doesn’t suffer from
the runtime initialization and library loading costs of the ap-
plication functions in Figure 12 (a).

Execution time. For function execution, MITOSIS is up to
2.24×, 1.46× and 1.14× (from 1.04×, 1.04×, and 1.02×)
slower than Caching, CRIU-local and FaasNET, respectively,
except for hello/H. The overhead is mainly due to page faults
and reading remote memory, which is proportional to the func-
tion working set (see Figure 12 (b)). Consequently, the over-
head is most significant in recognition/R that reads 321 MB of
the parent memory: MITOSIS is 2.24× (477 vs. 213 ms) and
1.46× (477 vs. 326 ms) slower than Caching and CRIU-local,
respectively. CRIU-local is faster since it reads files from
the local memory (tmpfs). To remedy this, MITOSIS+cache
reduces the number of remote memory accesses by reading
from the local cached copies of the remote pages. It improves
performance by up to 17%, making MITOSIS close to or bet-
ter than CRIU-local and FaasNET during execution. Note
that Caching is always optimal (i.e., faster than FaasNET and
CRIU-local) because it has no page fault overhead. Finally,
MITOSIS is up to 3.02× (from 1.02×) faster than CRIU-
remote thanks to bypassing DFS for reading remote pages.

Memory consumption. Figure 14 reports the amortized per-
machine memory consumed for each function categorized
by provisioned memory (before running) and runtime mem-
ory. An ideal serverless platform should use minimal pro-
visioned memory for each function. On average, MITOSIS
only consumes 6.5% of the provisioned memory (one cached
instance across 16 machines) while Caching requires at least
16 instances. CRIU-local/remote consumes a slightly lower
memory (77% on average) than MITOSIS, because it reuses

the local OS’s shared libraries to prevent storing them in the
checkpointed files. This works at the cost of requiring storing
all the function’s required libraries on all the machines, oth-
erwise the restored container will fail. For the same reason,
MITOSIS consumes a slightly larger runtime memory (8%
on average) than CRIU-remote. Yet, its runtime memory is
smaller than CRIU-local because the CRIU-local will read
the entire file before it can execute the function.

7.2 Bottleneck analysis and throughput comparisons

Bottleneck analysis. Using a single seed function is ideal for
resource usage. However, the parent-side network bandwidth
(RDMA) and two RPC threads can become the bottleneck.
Meanwhile, MITOSIS is also bottlenecked by the aggregated
client-side CPU resources processing the function logic. The
peak client-side performance for each function is the peak
throughput of running functions with Caching.

Figure 13 (b) analyzes the impact of the above factors.
We utilize all 16 invokers to achieve the peak throughput.
For H, CO, J, and R, RDMA is the bottleneck. For example,
recognition/R touches 321 MB of the parent’s memory, so the
RDMA (200 Gbps) can only serve (ideal) 80 forks/sec. Thus,
MITOSIS achieves 69 reqs/sec and is lower than Caching (960
reqs/sec). In contrast, if the children CPU is the bottleneck,
MITOSIS is similar to Caching (P, CH, I, and PR). For exam-
ple, Caching can only execute 384 reqs/sec for pagerank/PR.
In comparison, RDMA can handle an ideal 544 PR forks/sec
(the working set is 47 MB). Thus, MITOSIS can achieve a
slightly lower throughput (249 reqs/sec). Finally, the RPC
would never become the bottleneck: two kernel threads can
handle up to 1.1 million reqs/sec, which is always faster than
RDMA for working set from 1 MB to 1 GB.

Throughput comparison. Figure 13 (a) further compares the
peak throughput of different approaches. Note that we exclude
the prepare phase of CRIU—otherwise, it will be bottlenecked
by this phase. MITOSIS is up to 8.0× (from 2.1×) faster than
CRIU-local, thanks to avoiding the whole file during the
restore phase. Compared with CRIU-remote, MITOSIS is also
up to 20.4× (from 2.1×) faster except for R (69 vs. 81): CRIU-
remote reads a smaller amount of remote memory because it
reuses local copies of the shared libraries. R has the largest
working set, so it is mostly affected by the network. For the
others, MITOSIS is faster as it bypasses the overhead of DFS.
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Figure 15. Effects of the number of pages prefetched per-fault on
(a) execution time (in ms) and (b) memory consumption (in MB).

Figure 16. Effects of COW to latencies on (a) the micro-function
(with a 64 MB parent working set) and (b) serverless functions.

We omit the comparison between MITOSIS and Caching,
which has been studied in the bottleneck analysis.

7.3 Effects of prefetching
We next explore how the prefetch number affects MITOSIS in
Figure 15 (a). As we can see, prefetching can significantly im-
prove the execution time of functions: prefetching 1, 2, and 6
pages improve the average time by 10%, 16%, and 18% (up to
30%, 50%, and 50%), respectively. More importantly, a small
prefetch size (6) can achieve a near-identical performance as
the optimal, i.e., no remote access, (MITOSIS+cache). Note
that for small prefetch size the cost to the throughput is negli-
gible, so we omit the results.

Prefetching has additional runtime memory consumption:
as shown in Figure 15 (b), prefetching 1, 2, and 6 consumes
average 1.1×, 1.3×, and 1.5× (up to 1.15×, 1.6×, and 2.5×)
more memory than no prefetching. Therefore, we currently
adopt a prefetch size of 1 to reduce runtime memory usage.

7.4 Effects of copy-on-write (COW)
MITOSIS reads the child’s pages in an on-demand way (copy-
on-write). This section presents the benefits and costs of COW

Figure 17. Effects of COW to peak thpt on (a) the micro-function
(with a 64 MB parent working set) and (b) serverless functions.

Figure 18. Effects of optimizations applied by MITOSIS.

compared to a non-COW design—the child will read all the
parent’s memory before executing the functions.

Latency. Figure 16 reports the latency results. The benefit
of COW in latency depends on the amount of the parent’s
memory touched by the child (touch ratio): the cross points
in the microbenchmark are 60% and 90% when the prefetch
size is 1 and 2, respectively. For larger prefetch size, the cross
point is close to 100%. Non-COW has a longer startup time
due to extra remote memory reading, but it is more efficient
in reading pages with RDMA because it can batch multiple
paging requests [66]. Nevertheless, serverless functions typ-
ically have a moderate touch ratio (i.e., < 67%). Therefore,
COW has averages of 8.7% (from 0.6% to 44%) and 3.7%
(from -5% to 31%) lower latency than Non-COW when the
prefetch size is 1 and 2, respectively.

Throughput. Figure 17 further reports the throughput results.
Unlike latency, COW is always faster in throughput (except
for 100% touch ratio) because non-COW will issue more
RDMA requests. Consequently, COW is 1.03X–10.2X faster
than Non-COW on serverless functions.

7.5 Effects of optimizations

Due to space limitation, Figure 18 briefly shows the effects
of optimizations introduced in §5 on the end-to-end fork time
using a short function (json/J) and a long function (recogni-
tion/R). First, generalized lean container (+GL) reduced a
fixed offset of the latency (100 ms) to all the functions com-
pared with a baseline of using runC [13]. Compared with
RPC, fast descriptor fetch with one-sided RDMA (+FD) fur-
ther contributes 10% and 25% latency reduction for both
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Figure 19. (a) The latency CDF, (b) average latency, and (c) memory consumption timelines on image processing (I) under spikes.

Figure 20. (a) The state-transfer performance between two func-
tions and (b) performance of FINRA.

functions. The improvement is more obvious for R because
its descriptor is much larger (1.3 MB vs. 31 KB). Using DCT
instead of RC reduced a 10–20 ms to the functions, and di-
rectly exposing the physical memory with RDMA instead of
copying them (+no copy) further reduced the fork time by
12% and 20% for J and R, respectively. Finally, prefetching
(+prefetch) shortens the time by 9% and 15%.

7.6 State-transfer performance
Microbenchmark. We use the data-transfer testcase (5) in
ServerlessBench [131] to compare different approaches to
transfer states between two remote functions. As shown in
Figure 20 (a), MITOSIS is up to 1.4–5× faster than Fn, which
leverages Redis to transfer data between functions, when
transferring 1 MB–1 GB data. Note that we exclude the data
(de)serialization overhead (by skipping the phase) and cold-
start overhead (by pre-warming the containers) in Fn. Other-
wise, the gap between Fn and MITOSIS would become larger.
Compared to CRIU-local/remote, MITOSIS is faster thanks
to the design for a fast remote fork (see §7.1).

Application: FINRA. We next present the performance of
MITOSIS on FINRA [14], whose workflow graph is shown in
Figure 2. We manually fuse the fetchPortfolioData
and fetchMarketData into one function to fully lever-
age remote fork for MITOSIS and CRIU variants. For FN,
functions use Redis to transfer states. Figure 20 (b) re-
ports the end-to-end latency w.r.t the number of instances
of runAuditRule, where FINRA spawns about 200 in-
stances [10]. We select the market data from seven stocks,
resulting in a total 6 MB states transferred between functions.

As we can see, MITOSIS is 84–86%, 47–66% and 71–83%
faster than the baseline Fn, CRIU-local and CRIU-remote,
respectively. Note that we have pre-warmed Fn to prevent the
effects of coldstart—which is unnecessary for MITOSIS. Fn
is bottlenecked by Redis (27 ms) and data serialization and

de-serialization (600 ms). MITOSIS has no such overhead and
it further makes state transfer between machines optimal via
RDMA. Moreover, MITOSIS can scale to a distributed setting
with little COST [88]—it can outperform a single-function
sequentially processing all the rules (Single-function). This
is because MITOSIS can concurrently run functions across
machines with minimal cost transferring data between them.

7.7 Performance under load spikes

Finally, we evaluate the performance of MITOSIS under load
spike using image/I on the real-world traces (660323 [102]).
Figure 19 (a) summarizes the latency CDFs. The 99th per-
centile latency of FN+MITOSIS is 73.64% and 89.08%
smaller than FN+FaasNET and FN, respectively, thanks to
avoiding the coldstart with remote fork. Nevertheless, its
median latency is 1.85× longer than FaasNET (799 ms vs.
430 ms), because FaasNET leverages Caching and has a
65.1% cache hit during spikes. However, Caching incurs
non-trivial memory consumption: Fn (and Fn+FaasNET) will
cache a container for 30 seconds if it is a coldstart, result-
ing in a significant amount of memory usage (see Figure 19
(c)). In comparison, MITOSIS only caches a single seed and
saves orders of magnitude memory during the idle time. For
example, at time 2.3 min, MITOSIS only consumes 29 MB
memory per-machine, which is 3% and 2% of Fn (914 MB)
and Fn+FaasNET (1,199 MB), respectively.

8 Discussion
Seed placement and selection policies. We currently choose
a random placement policy. A better policy may further con-
sider network topology and system-wide load balance. Mean-
while, we simply choose the first container experiencing
coldstart as the long-lived seed, yet, a better selection policy
should further consider the status of the running container.
For instance, recent works have discovered that containers
may need multiple invocations to warm up properly [28, 107],
e.g., to JIT a function written in a managed language. There-
fore, choosing a properly warm-up container as the seed can
significantly improve the function performance after the fork.
As these policies are orthogonal to MITOSIS, we plan to in-
vestigate them in the future.

Frequency and cost of fallbacks. The frequency of fall-
backs can significantly impact the performance of remote
forks. During our experiment, we encountered no fallbacks
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because the parent (cached container) had loaded all the chil-
dren’s memory. However, fallbacks can happen in corner
cases (e.g., swapping). The per-page overhead is 22× (65
vs. 3µs) due to the cost of RPC and loading the page from
disk (SSD). Currently, one fallback handler can process 16 K
paging requests per second, so it will not become a bottleneck.

The benefits of implementing MITOSIS in the kernel. We
choose to implement MITOSIS in the kernel for performance
considerations. First, a user-space solution cannot directly
access the physical memory of the container, so it pays
the checkpointing overhead (see §3). Moreover, the kernel
can establish RDMA connections more efficiently (see KR-
Core [11]), and the kernel-space page fault handler is much
faster than the user-space fault handler.

9 Related Work
Optimizing serverless computing. MITOSIS continues the
line of research on optimizing serverless computing, includ-
ing but not limited to accelerating function startups [94, 17,
106, 37, 117, 101, 119], state transfer [110, 69, 96, 71, 17, 86],
stateful serverless functions [132, 63], transactions [84], im-
proving the cost-efficiency [134, 42, 100, 76, 98, 40, 38], and
others [109, 133, 65, 36, 64, 15, 114, 85, 130, 136]. While
most of these works are orthogonal to MITOSIS, we believe
they can also benefit from our work. In particular, we propose
using the remote fork abstraction to simultaneously acceler-
ate function startups and state transfer, which is critical to
all serverless applications. We also compare our work exten-
sively to its closest related approaches in §2. Moreover, while
the implementation of Linux fork may not be optimal in some
scenarios [129, 24, 135], it has been shown to be suitable for
serverless functions [17, 37]. Thus, we generalize the fork
abstraction to accelerate functions running across machines.

Checkpoint and restore (C/R). C/R has been investigated
by OSes for a long time [39, 82]. e.g., KeyKOS [51],
EROS [104], Aurora [116] and others [52, 72, 7, 137, 118,
21, 26, 48]. Aurora [116] leverages C/R to realizing efficient
single level store, it introduces techniques including system
shadowing for efficient incremental checkpointing. MITO-
SIS eliminates checkpointing in the context of remote fork
via OS-RDMA co-design. VAS-CRIU [118] also noticed the
overhead of C/R introduced by filesystems. It leverages mul-
tiple independent address spaces (MVAS) [50] to bypass the
filesystem for C/R on a single machine. We further use kernel-
space RDMA to build a global distributed address space and
scale fast C/R to a distributed setting.

Remote fork (migrations). Besides using C/R for remote
fork [108, 32], MITOSIS is also inspired by works on virtual
machine fork (SnowFlock [73]) and migrations [18, 29, 45,
56, 55, 92, 81], just to name a few. For example, the MITOSIS
container descriptor is inspired by the VM descriptor used in
SnowFlock, which only captures the critical metadata used for
instantiating a child container at the remote side. We further

consider the opportunities and challenges when embracing
RDMA for remote fork in the context of serverless computing.
We believe our techniques can benefit existing works not
utilizing RDMA.

RDMA-based remote paging and RDMA multicast. Read-
ing pages from remote hosts via RDMA is not a so new
technique in modern OSes [19, 46, 16, 87, 103]. For example,
Infiniswap [46] leverages RDMA to build a fast swap device
for memory disaggregation. Remote regions [16] proposes a
remote file-like abstraction to simplify exposing an applica-
tion’s memory with RDMA. MITOSIS further builds efficient
remote fork by reading remote pages in a “copy-on-write”
fashion with RDMA.

MITOSIS exhibits a pull-based RDMA multicast commu-
nication pattern, where multiple children pull from the same
parent’s memory during load spikes. Push-based RDMA mul-
ticast has been extensively studied in the literature [25, 61, 62].
For example, RDMC [25] proposes a binomial pipeline pro-
tocol where a sender can efficiently push data to a group of
nodes using RDMA. We believe MITOSIS can further benefit
from research on pull-based RDMA multicast.

10 Conclusion

We present MITOSIS, a new OS primitive designed for fast re-
mote fork by co-designing with RDMA. MITOSIS possesses
two key attributes for serverless computing. (1) Startup effi-
ciency: MITOSIS is orders of magnitude faster than coldstart
while consuming orders of magnitude fewer resources than
warmstart (with comparable performance). (2) State trans-
fer efficiency: functions can directly access pre-materialized
states from the forked function. Extensive evaluation using
real-world serverless applications confirmed the efficacy and
efficiency of MITOSIS on commodity RDMA-capable clus-
ters. While we focus on serverless computing in this paper, we
believe MITOSIS also shines with other tasks, e.g., container
migrations.
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