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ABSTRACT

Current control flow integrity (CFI) enforcement approaches

either require instrumenting application executables and even
shared libraries, or are unable to defend against sophisti-
cated attacks due to relaxed security policies, or both; many
of them also incur high runtime overhead. This paper ob-
serves that the main obstacle of providing transparent and
strong defense against sophisticated adversaries is the lack
of sufficient runtime control flow information. To this end,
this paper describes FlowGuard, a lightweight, transparent
CFT enforcement approach by a novel reuse of Intel Proces-
sor Trace (IPT), a recent hardware feature that efficiently
captures the entire runtime control flow. The main challenge
is that IPT is designed for offline performance analysis and
software debugging such that decoding collected control flow
traces is prohibitively slow on the fly. FlowGuard addresses
this challenge by reconstructing applications’ conservative
control flow graphs (CFG) to be compatible with the com-
pressed encoding format of IPT, and labeling the CFG edges
with credits in the help of fuzzing-like dynamic training. At
runtime, FlowGuard separates fast and slow paths such that
the fast path compares the labeled CFGs with the IPT traces
for fast filtering, while the slow path decodes necessary IPT
traces for strong security. We have implemented and eval-
uated FlowGuard on a commodity Intel Skylake machine
with IPT support. Evaluation results show that FlowGuard
is effective in enforcing CF1I for several applications, while
introducing only small performance overhead. We also show
that, with minor hardware extensions, the performance over-
head can be further reduced.

1. INTRODUCTION

The race between advanced attacking means and sophis-
ticated defenses persists. With novel defenses like data ex-
ecution prevention (DEP) or no-execute (NX) that prevent
code injection, attackers have resorted to using sophisti-
cated means that reuses existing code. For example, re-
turn oriented programming [1] and its variants, as the ma-
jor advancement along the line of evolution of code reuse
attacks, have emerged as the major attacking means for arbi-
trary code execution even under DEP. Control flow integrity
(CFI) [2], a general property that thwarts attacks manipu-
lating execution flow, has gained considerable interests over
the last decade.

Enforcing CFI: challenges. While CFI is a very intrigu-
ing idea, efficiently and securely enforcing CFI in a practi-
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cal way is challenging. Despite sustained interests in CFI
enforcement, prior approaches usually have to strike a bal-
ance among the following requirements, which we believe are
keys to practical CFI enforcement: 1). Precision, by which
the enforcement must be fine-grained enough to eliminate
as much attack surface as possible; 2). Efficiency, by which
the imposed runtime overhead should be small; 3). Trans-
parency, i.e., the approach should be transparent to appli-
cations, easily deployable on existing OS and hardware and
are generally compatible with existing security mechanisms.

More specifically, while approaches using binary rewrit-
ing [2, 3, 4, 5, 6, 7] maintains reasonable transparency,
they inevitably break the binary code integrity that leads
to incompatibility with some existing security mechanisms
(e.g., Window 7 system library protection and remote attes-
tation). Besides, most classic binary-based approaches [3,
4] usually relax constraints on the set of legal targets of
branches and thus sacrifice fine-grained CFI enforcement
at the risk of exposing intensive attack surfaces. Many
compiler-based approaches [8, 9, 10, 11, 12] implement finer-
grained CFI protection by generating more precise backward
(e.g., shadow stack) and forward (e.g., indirect call checks)
control edges, which, however, are unfriendly to shared li-
braries, and not applicable to deployed COTS applications.
Architectural approaches [13, 14, 15, 16] require changes to
processor architecture and/or ISA and thus are not read-
ily deployable in commodity platforms. While there have
been approaches leveraging existing hardware supports for
CFT enforcement [17, 18, 19, 20, 21], they either impose
high overhead [17], or are imprecise and thus vulnerable to
sophisticated attacks [19, 18]. PathArmor [20] uses context-
sensitive protection, however it suffers from the problem of
LBR pollution, thus has to resort to instrumenting libraries.

Lightweight and Transparent Protection with IPT.
In this paper, we present a novel CFI enforcement approach
that we believe simultaneously meets the three requirements.
Our approach, namely FlowGuard, is the first to make a
novel reuse of Intel Processor Trace (IPT) to efficiently col-
lect runtime control flow traces, which are compared with a
statically derived control flow graph to detect abnormal con-
trol flow. FlowGuard is precise since IPT has all program’s
control flow traces; it is efficient thanks to the low-overhead
runtime tracing capability of IPT; finally it is transparent
such that it requires no binary instrumentation, and can be
readily deployable on commodity hardware.

However, as an offline tracing mechanism, IPT poses a
significant challenge for being used as an online detection
mechanism: the runtime traces are highly compressed for
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efficiency and decoding the traces is usually orders of mag-
nitude slower than tracing, which prevents IPT from be-
ing used as an online detection mechanism. FlowGuard ad-
dresses this challenge in two ways. First, instead of dy-
namically decoding the traces for CFI checking, FlowGuard
constructs a control flow graph offline in a form that can be
directly compared with IPT traces. Specifically, FlowGuard
reconstructs a conservatively generated CFG to an indirect
targets connected one (ITC-CFG) which conforms to IPT’s
trace packets, and then uses a coverage-oriented fuzzing to
label the edges with credits and branch taking information.
Second, FlowGuard adopts a hybrid flow checking mecha-
nism that separates the fast and slow paths: most of the
runtime flow traces can be checked in a fast path by directly
searching on the reconstructed ITC-CFG with credits, while
only some rare abnormal flow traces are passed to the slow
path for precise CFI checking and enforcement. Such a sep-
aration of fast and slow paths makes FlowGuard embrace
both runtime efficiency and CF1I detection precision.

To demonstrate the effectiveness and efficiency of Flow-
Guard, we have implemented FlowGuard on an Intel Sky-
lake machine with IPT support. Like prior approaches,
FlowGuard uses critical system calls as endpoints for CFI
checking. We have applied FlowGuard to defend against
ROP-like control flow hijacking attacks in a transparent
way. Our evaluation shows that FlowGuard is effective in
significantly reducing the average indirect targets allowed
(AIA) [22]. Performance evaluation shows that FlowGuard
incurs only small performance slowdown. Our investiga-
tion also shows that with minor hardware extensions, e.g.,
hardware-assisted fast decoder, etc., FlowGuard can further
reduce the overhead of reusing IPT for CFI enforcement.

Contributions. In summary, this paper makes the follow-
ing contributions:

e Nowel reuse of offline IPT mechanism for online CFI
enforcement. We take the first step of leveraging IPT
to trace control flow and detect violation of CFI. We
analyze the feasibility in such an approach, and ad-
dress the challenges using IPT in a novel way (§3).

Hybrid flow checking that embraces efficiency and pre-
cision. We present FlowGuard, a fully transparent
approach to detecting CFI violation. FlowGuard uses
static binary analysis to generate the complete CFG
and reconstruct it adapting to the IPT output pat-
tern, and dynamically trains it with a fuzzing-like ap-
proach, to label edges with credits and branch taking
information(§4), which is important in implementing
a hybrid flow checking mechanism with fast and slow
paths at runtime (8§5).

Implementation and evaluation. We implemented and
evaluated FlowGuard on a commodity Intel machine
using popular vulnerable server applications like Ng-
inx, and Linux utilities. The evaluation confirms its
effectiveness in detecting control flow violation and re-
ducing possible legal target sets, as well as its efficiency
in introducing small performance overhead (§7). Our
experience of using IPT also gives effective suggestions
on improving hardware for a better CFI enabler(§6).

EXECUTION TRACING IN HARDWARE
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Currently, there are several control flow tracing mecha-
nisms in hardware, each representing a different set of trade-
offs (as shown in Table 1). Branch Trace Store (BTS) can
capture all control transfer events (e.g., call, return and all
types of jumps) to a memory-resident BTS buffer. Each
record contains the addresses of source and target of the
branch instruction, thus there is no need to decode it. How-
ever, BTS introduces very high overhead during tracing and
is inflexible due to the lack of event filtering mechanisms.
While Last Brach Record (LBR) has some support of event
filtering (e.g., filtering out conditional branches), it can only
record 16 or 32 most recent branch pairs (source and tar-
get) into a register stack. Though it incurs very low tracing
overhead, it can hardly provide precise protection.

Table 1: A comparison of hardware control flow
tracing mechanisms. Tracing overhead is the geo-
metric mean tested on SPECCPU 2006. Other non
CPU-intensive applications have lower overhead.

Precise Tracing Decoding Filtering
overhead overhead mechanisms
BTS Full High (50X) None None
LBR Low Very Low (<1%) None CPL, CoFT type
IPT Full Low (3%) High CPL, CR3, IP

Due to the capability of dynamically tracing control flow,

BTS and LBR have been exploited to defend against ROP-
like attacks, which, however, either incur high overhead (those
using BTS [17]) or sacrifice security due to imprecise tracing
(LBR [18, 19, 20, 21]).
Intel Processor Trace. IPT is introduced in Intel Core M
and 5th generation Intel Core processors. Each CPU core
has its own IPT hardware that generates trace information
of running programs in the form of packets. IPT configu-
ration can only be done by the privileged agents (e.g., OS)
using certain model-specific registers (MSRs). The traced
packets are written to the pre-configured memory buffer in
a compressed form to minimize the output bandwidth and
reduce the tracing overhead. The software decoder can de-
code the traced packets based on pre-defined format, with
the extra information like the program binaries, as well as
some runtime data provided by the control agent, to pre-
cisely reconstruct the program flow. Thanks to the aggres-
sive compression of traces, it can collect more control flow
tracing information including control flow, execution modes,
and timings than BTS, yet incurring much less tracing over-
head compared to BTS. This, however, also incurs orders of
magnitude slower decoding speed than tracing.

Table 2: An example of how IPT traces execution

No. | Execution Flow Traced Packets
1 0x8fa jg 0x8fe // taken TNT(1)
2 0x8fe jmpq *%rax // %rax = 0x905 | TIP(0x905)
3 0x905 callg funl
4 0x90a mov -0x18(%rbp),%rax
funl:
5 0x940 ...
6 0x970 cmp %rax, %rax
7 0x974 je 0x983 // not-taken TNT(0)
8 0x979 jmpq OxelO
9 0xel0 leaveq; retq TIP(0x90a)

Table 2 explicates an example of how IPT traces execution
flow. Each packet is generated only for non-statically known
control flow changes, i.e., unconditional direct branches are



not logged (e.g., no output for No.3 and No.8 branches).
Each conditional branch is compressed to a single bit to
imply taken or non-taken (e.g., TNT packets for No.1 and
No.7 branch); other control flow will generate the target ad-
dresses of indirect branches, exceptions and interrupts (e.g.,
TIP packets for No.2 and No.9 instructions), or the source
addresses for asynchronous events (e.g., FUP packets, not
shown in Table 2). Table 3 lists all of the change of flow
instructions (CoFI), as well as their respective output pack-
ets traced by IPT. Using this degree of compression, there
is less than 1 bit information recorded for each retired in-
struction on average. Further, IPT supports powerful event
filtering based on current privilege level (CPL), CR3 value
which represents the page directory base register, or certain
instruction pointer (IP) ranges, which can be leveraged to
filter out unnecessary packets.

Table 3: CoFI and associated IPT output

CoFI type Scenarios Output

Unconditional Direct Branch JI\{[P and CALL No output
(direct)

Conditional Branch Jee, J¥*CXZ, LOOP TNT

Indirect Branch JAMP.‘ and CALL TIP
(indirect)

Near Ret RET TIP

Far Transfers Interrupts, traps, etc. [ TIP | FUP

Undoubtedly there is a price to this fast tracing mecha-
nism: the performance overhead is shifted from the tracing
to the decoding. Since the traced information is compressed
and incomplete, the decoder must associate the traced pack-
ets with the binaries, to precisely reconstruct the program
flow. For example, in order to reconstruct the execution
flow, the Intel’s reference implementation of its IPT decoder
library uses the instruction flow layer of abstraction, which
parses the program binary instruction by instruction, and
combines the traced packets for the entire decoding. We
conduct a simple evaluation to provide an intuition about
how slow the decoding could be. We run SPECCPU 2006
benchmarks and trace their execution flow using IPT, when-
ever the traced buffer is filled, we pause the execution and
decode the packets by associating corresponding binaries.
The geometric mean of the overhead is about 230X, and 8
out of 12 benchmarks incur more than 500X overhead.

3. REUSING IPT FOR CFI
3.1 Challenges

While IPT provides several useful features like precise
tracing, low tracing overhead and event filtering that are
promising for runtime CFI checking, there is also a major
challenge due to incomplete trace packet and slow decoding.
This is because the initial purpose of IPT is for offline analy-
sis such as performance profiling, tuning and software debug-
ging, it aggressively trades slow decoding for fast tracing and
relies on offline reconstruction to derive the complete control
flow information. One particularly observation is that with
traditional CFG, where basic blocks are connected with each
other using (in)direct branch edges, is unfriendly to the IPT
recorded flow checking. For example, as known control flow
changes like unconditional direct branches as well as pro-
gram counter information are incomplete, it is impossible
to derive complete control flow traces for runtime control
flow checking without slow full decoding. Worse even, with
the IPT tracing format, there are generally only 2 types of

531

packets (TNT and TIP) available for control flow checking.
An analyzer has no idea about the type (e.g., call, return,
or jump) of the related instruction for each packet.

3.2 FlowGuard Overview

Like prior approaches [17, 18, 19, 20, 21], FlowGuard com-
bines offline CFG construction and online control flow check-
ing to enforce CFI. To address the challenge of slow decoding
of IPT, FlowGuard instead resorts to enhancing the offline
CFG construction to generate a CFG that conforms to IPT’s
packet format for efficient runtime checking.

CFG generation and reconstruction. FlowGuard con-
structs an IPT-compatible CFG by eliminating the direct
branch edges and connecting the target basic blocks of in-
direct branches. For the convenience’s sake, we call it as
indirect targets connected CFG (ITC-CFG). Though ITC-
CFG lacks information like direct call/jmp and conditional
jmp, it is guaranteed not to introduce false positive. The
IPT traced packets can be directly and efficiently searched
on the ITC-CFG to minimize runtime checking overhead.

Refining CFG via a best-effort dynamic approach.
Since the static CFG is generated conservatively, for each in-
direct branch, its legal target set may unfortunately be too
large that it provides more degrees of freedom for the attack-
ers. FlowGuard uses a novel refinement of the ITC-CFG
with a fuzzing-like dynamic training phase. In a nutshell,
FlowGuard generates inputs for the protected application
using coverage-oriented fuzzing and then enhances the IPT-
compatible CFG with some strongly credible edges and ad-
ditional branch taken information. Since the training phase
is best-effort without full coverage, the rest of edges should
not be discarded, but labeled with less credits. The credits
of the edges will be considered to see if there is a need for
further checking during the runtime CFI enforcement phase.

Hybrid control flow checking. FlowGuard adopts
a hybrid checking scheme to separate fast and slow paths
based on the labeled credits. Starting from the triggering
point, FlowGuard checks a specific number of TIP pack-
ets traced by IPT. The checking fails upon any violation of
the CFG. Such a checking is fast and incurs no false posi-
tive. If all checked edges are with high credits, the checking
passes, otherwise, FlowGuard resorts to a slow but precise
flow checking with the help of more runtime context and bi-
naries. Since entering into the slow path is rare thanks to
the high-coverage training and relatively fixed boundaries of
protected endpoints in normal cases, FlowGuard can enjoy
good performance without sacrificing security.

Architecture overview. The FlowGuard overview is
shown in Figure 1. The protected executable and libraries
are parsed by the static analysis module (step D) to gener-
ate an ITC-CFG, whose edges are then labeled with cred-
its using the fuzzing training module (step @): the trained
edges are labeled with high credits, and associated with TNT
information, while the others are with low credits. Given the
reconstructed and weighted CFG, the CFI of the protected
processes can be checked during runtime. FlowGuard re-
lies on a kernel module to do the flow checking. The kernel
module configures the CPU cores to start and keep tracing
the protected process filtered by specific CR3 values (step
®), the traced packets are recorded to the pre-configured
memory buffer. During runtime, FlowGuard intercepts the
security-sensitive system calls, if any of them is issued by the
protected process (step @), the flow checking is triggered.



During the flow checking phase (step (9)), the fast path takes
precedence over the slow one, the former can rapidly check
out if the flow is out of the ITC-CFG thus malicious, or it
is suspicious without all edges with high credits. The latter
will trigger a full checking in the slow path.

Static
O
inary
Process Analysis
Executable Credit
Dynamic Labeled
Libraries Fuzzing ITC-CFG
Training s
User A it - -
—————— e i it
Kernel 11 / |
I 7 ;
PO il B i [y ety
. . . “ | |interceptor Checker P25t nath Kernel
Module

Figure 1: The architecture of FlowGuard

3.3 Threat Model and Assumptions

We consider a remote adversary targeting at a user-level
application and on purpose of launching code reuse attacks
by elaborately constructing input. The sophisticated adver-
sary knows everything about the application, so that she
can leverage the vulnerabilities within it and utilize the pos-
sible gadgets inside the executables and shared libraries.
Nonetheless, the kernel is trusted thus its services (e.g.,
MMU protection) cannot be subverted. Furthermore, Flow-
Guard assumes that mechanisms (e.g., DEP, NX, etc.) are
provided by the OS, and the code pages are read-only. Flow-
Guard makes no assumption of the Address Space Layout
Randomization (ASLR) mechanism in the system, it does
not rely on but can be adapted to it. Finally, before the
distribution of the protected software, the static CFG gen-
eration and dynamic training are securely conducted, the
binaries are not created with malicious purpose and there is
no self-modification logic in them. Thus the generated CFG
is well-intentioned and trusted.

4. CONTROL FLOW GRAPH

FlowGuard constructs an IPT-compatible CFG from the
protected binaries during the offline analysis phase. As
shown in Figure 2, the construction can be divided into
three steps: static binary analysis to generate a conservative
CFG, CFG parsing to construct the IPT-compatible ITC-
CFG, and dynamic fuzzing training to label the ITC-CFG
edges with credits and TNT information.

RRSS——
i Static Intel PT
1 Binary CFG Compatible —>{ ITC-CFG
o i Analysis Reconstruction:
Libraries bl
Binaries 3
Dynamic
Fuzzing
Training

Figure 2: The process of final CFG construction
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4.1 Conservative CFG Generation

Without relying on source code, FlowGuard uses exist-
ing binary-based approaches [4, 23] to disassembling and
analyzing a binary executable and its dependent shared li-
braries. As prior approaches, the CFG is conservative such
that the possible outgoing edges for indeterminable indirect
branches may be more than necessary, to avoid false posi-
tives under which FlowGuard rejects legitimate flow during
runtime checking.

FlowGuard first analyzes different modules such as exe-
cutable and libraries independently and constructs the intra-
module CFGs. It then constructs the inter-module edges
by using the procedure linkage table (PLT) exposed by the
dynamic linking mechanism. Different modules can only
be connected by the indirect jumps in the PLT as well as
the corresponding return instructions from callees to callers.
FlowGuard adds edges among these particular basic blocks
accordingly. To handle the global symbol interpose prob-
lem where one symbol may exist in different modules, Flow-
Guard likewise uses the information (e.g., DT_NEEDED)
fields in the binaries to find the prior library and binds a
symbol to the specific address. Another type of inter-module
branches is due to the virtual dynamically-linked shared ob-
ject (VDSO) mechanism, which is used to accelerate syscall
invocation. For instance, the gettimeofday() usually results
in VDSO function call instead of library call. The functions
within the VDSO segments take precedence over libraries.

To generate the intra-module CFG, each direct call/jump
instruction has one exact outgoing target, and each condi-
tional branch has two possible targets. For indirect calls,
FlowGuard restricts the targets using the TypeArmor’s [7]
use-def and liveness analysis, and connects the return in-
structions to the valid return addresses right after the call
sites in a manner like call/return matching, and finally re-
sorts to the underlying binary analysis framework to conser-
vatively resolve the indirect jumps.

Another issue is handling tail-call optimization. A tail call
is normally issued in the final part of a function (e.g., fun_b).
The tail call reuses the current stack frame and uses jump
instead of call to the target function (fun_c), pretending that
it is being called by the caller (fun_a) of the current func-
tion (fun_b). In this case, the return instruction of the fun_c
should go back to fun_a, even though there is no call from
fun_a to fun_c. FlowGuard adapts a prior approach [22] to
detect and handle such tail calls. Specifically, at each call
site, FlowGuard emulates the execution of the target func-
tion and sequentially follows the branch instructions, collects
any inter-procedure jump instructions targeted at function
entries, and connects the return instructions of those func-
tions to the return address right after the very beginning
call site, until encountering specific stop conditions.

An example of the generated CFG is shown in part (a) of
Figure 3, which uses only 10 basic blocks for clarity. After
generating the conservative CFG, the basic blocks are con-
nected with each other by either direct or indirect branches
as edges. One such edge associates the exit address of the
source basic block to the entry address of the target one.

4.2 IPT-compatible CFG Construction

The generated CFG above is, however, incompatible with
the traces collected by IPT. FlowGuard further refines the
above CFG to generate an IPT-compatible CFG that is
connected using indirect branches only. As elaborated in
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Figure 3: An example of reconstructing O-CFG (a) to ITC-CFG (b) and credit labeled ITC-CFG (c)

82, IPT generates respective packets for specific CoFI type.
We observe that within these packets, only two types are
supportive for CFI checking: the TNT packet indicating
whether the conditional branch is taken or not, and the TIP
packet recording the target address of the indirect branch.

To support fast online searching over an ITC-CFG, Flow-
Guard only considers TIP packets to avoid path explosion.
Specifically, FlowGuard collapses all edges with direct types
such that the target basic blocks of the indirect branches
are connected to each other, and each edge associates the
entry address of one indirect target basic block to the entry
address of another indirect target basic block.

An example of the conversion of the CFG in part (a) is
shown in part (b) of Figure 3. For simplicity, in the fol-
lowing paragraphs, we name the original CFG as O-CFG,
the reconstructed one as ITC-CFG, and BB-n is short for
the nth basic block in Figure 3. In the O-CFG, edges are
divided into direct and indirect categories, FlowGuard only
considers the basic blocks which are targets of at least one
indirect edges, e.g., BB-2 is the target basic block of indi-
rect edge incoming from BB-1, while BB-4 does not belong
to any incoming indirect edges. Thus the basic blocks of
number (2, 3, 5, 7, 9, 10) are left in the ITC-CFG, we call
them the indirect target basic blocks (IT-BB). For the edge
reconnection, each edge is re-associated from one IT-BB to
its nearest I'T-BBs if there is one indirect edge in the path in
O-CFG. For instance, in O-CFG from BB-3 to BB-9, there
is one indirect edge from BB-6 to BB-9, thus in ITC-CFG,
there is one edge connected from BB-3 to BB-9. While there
is no indirect edge in the path from BB-3 to BB-10 in O-
CFG, BB-3 is not connected to BB-10 in ITC-CFG. This
makes sense that, if there is no indirect branch from one
IT-BB to another, then no TIP packet will be generated
by IPT during runtime, thus there should be no connection
between them even if they are both IT-BBs and connected
by direct edges. Furthermore, since the TIP packets reveal
the target memory addresses of indirect branches, the edges
of ITC-CFG connect the entry addresses of the IT-BBs to
each other, instead of bridging the exit of one with the entry
of another, as shown in Figure 3. For example, there are 6
IT-BBs out of 10 basic blocks left in the ITC-CFG, and the
edges are reconnected so that the TIP packet flow generated
by IPT can be directly searched on the ITC-CFG.

For the correctness of this constructed ITC-CFG, sup-
pose at a randomly selected time the entry address of BB-x
is recorded, then BB-x must be one of the IT-BBs, other-
wise there is no indirect branch targeting at it, thus no TIP
packet should be traced according to the tracing scheme of
IPT. Now suppose the next immediate time another entry
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address of BB-y is recorded, then we should prove that there
is one edge connecting from BB-x to BB-y in the ITC-CFG.
By reduction, if there is no edge from BB-x to BB-y in the
ITC-CFG, which means there is no edge of indirect branch
in the path from BB-x to BB-y in the O-CFG. Then, BB-y
should not be executed or traced. Therefore, for any two
consecutive TIP packets traced by IPT, there must be an
edge in ITC-CFG to represent this control flow, otherwise
some anomalies have happened.

4.3 Fuzzing Training for Edges Labeling

While the ITC-CFG allows direct searching of IPT traces,
there are still two security issues.

Coarse-grained CFI. There are still large false negatives
during runtime flow checking due to coarse-grained CFI. As
demonstrated in recent sophisticated attacks [24, 25, 26],
coarse-grained CFI from conservative CFG generation can
lead to superfluous legal targets for each branch, resulting in
bypassed protection. Though IPT provides a terrific oppor-
tunity to provide better precision during runtime by com-
bining online decoding and offline CFG, this usually comes
with unacceptable overhead.

Precision loss. Worse even, the constructed ITC-CFG
may weaken the security provided by the O-CFG due to
CFG coarsening. We illustrate it by using one metric called
Average Indirect targets Allowed (AIA) proposed by [22]:

1 n
ATA= =S|y
n;\ |

where n is the number of indirect branch instructions, T;
is the set of allowed targets for the ith indirect branch in-
struction. Intuitively, a smaller ATA represents more pre-
cise CFG. It was argued that AIA is one of the most proper
metrics for measuring CFI strength [22], especially when the
protected software involves large code base.

Considering the CFG reconstruction shown in Figure 4, in
O-CFG, the AIA is 2, while in ITC-CFG, the AIA is 3, which
means the ITC-CFG is less precise than the original one.
Specifically in this example, the number of allowed targets
for BB-2 and BB-3 changes from 2 to 3 after the reconstruc-
tion. This precision derogation is due to the absence of direct
branches information that may fork the control flow. We
observe that the only possible direct branches being able to
fork the execution flow is the conditional branches, the taken
or non-taken (TNT) branches from BB-1 to BB-2 or BB-3
in this specific example. I'TC-CFG removes these edges to
avoid path explosion. Fortunately this TNT information is
traced by IPT, which can be used to strengthen the ITC-
CFG during the training phase.
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Figure 4: An example of ATA derogation caused by
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Coverage-oriented fuzzing training. FlowGuard uses a train-
ing phase to label selective edges with credits and additional
TNT information. The decision of whether labeling an edge
with high credit depends on whether this edge exists during
the training phase. In consideration of achieving high cover-
age to minimize the requirement of heavy context-sensitive
analysis, FlowGuard adopts a coverage-oriented fuzzing-like
inputs generation [27] for dynamic training.

Fuzzing [28] is one of the most effective approaches that
have been leveraged to identify vulnerabilities in real-world
software. It involves in generating as many randomly se-
lected data as possible, and uses them as inputs for the
tested software to brute-force the possible paths and seek to
trigger security issues. We choose fuzzing instead of other
dynamic techniques (e.g., symbolic execution) because it is
simple and practical to deploy. Briefly, the overall process
of this training phase consists of three steps:

In step 1, the trained application runs in QEMU with the
instrumentation logics implemented on top of it in user emu-
lation mode. The instrumentation is responsible for discov-
ering any new state transition caused by the input. In step
2, some initial test cases are provided and stored into one
queue. The test cases in the queue are fetched one by one,
and mutated to generate new test cases using a balanced
and well-researched variety of traditional fuzzing strategies.
These test cases are sequentially fed to the software running
in QEMU. If any mutated test case results in a new state
transition as observed by the QEMU, it will be added to
the queue for subsequent mutation. This phase will gener-
ate a bunch of test cases that may triggers different path
explorations. In step 3, FlowGuard collects the test cases
generated in step 2, uses them as inputs to feed the trained
application running on the real hardware, leverages IPT to
trace its execution flow, and finally labels the edges in ITC-
CFG with high credits based on these traced data.

The policy of labeling edges with credits can be varied
for different needs. For instance, one can use more than
two levels of credit values to label the edges, based on their
number of occurrences during the training phase. For sim-
plicity, we choose the binary-based labeling such that each
edge is either with a high credit or a low one. The part
(c) of Figure 3 presents one possible result of training the
ITC-CFG. In this case, all edges except the one from BB-2
to BB-7 in the ITC-CFG are labeled with high credits, and
the sequences of TNT packets obtained during the training
phase are associated with corresponding edges. This TNT
information is important, that with the direct forking infor-
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mation, FlowGuard can prevent attackers from derogating
the ATA (e.g., with TNT information within the edge from
BB-3 to BB-9 in Figure 3, the attacker cannot flow to BB-9
through BB-10, which is allowed using the ITC-CFG). Thus,
the labeling resolves the precision loss problem.

It should be noted that the security of FlowGuard does
not rely on the path coverage, though a higher coverage
usually leads to better performance (§7).

S. RUNTIME PROTECTION

FlowGuard relies on a kernel module to protect the user-
level processes. As illustrated in Figure 1, the kernel module
is generally responsible for three parts: (i) configuring IPT
to trace the execution flow of the target process, (ii) inter-
cepting specific security-sensitive system calls to trigger sub-
sequent operations, and (iii) checking the traced execution
flow in fast and/or slow paths.

5.1 Execution Flow Tracing

IPT is configured by the kernel module to start and keep
tracing control flow of the protected process. It briefly con-
sists of two basic steps:

Enabling controls for packet generation. There are a
variety of controls to determine whether the branch packets
can be generated, these controls are enabled and configured
by a collection of TA32_RTIT_* family model-specific regis-
ters (MSRs), among which the most important one is the
TIA32_RTIT_CTL MSR. It is the primary enable and control
MSR for trace packet generation. FlowGuard’s kernel mod-
ule sets the TraceEn and BranchEn bits to enable CoFI-
based packets tracing. It clears the OS bit and sets the
User bit in order to exclusively trace user-level control flow.
Meanwhile, it sets the CR3Filter bit to enable CR3 filtering
mechanism, and configures the IA32 RTIT_CR3_MATCH
MSR to the CR3 of the protected process. Finally it clears
the FabricEn bit to directly send the trace output to the
memory subsystem, and sets the ToPA bit to enable ToPA
output scheme which will be explained latter. While other
bits of the IA32_RTIT_CTL MSR are left as default.

Configuring memory regions for trace output. The
trace output of IPT can be configured by one of two out-
put schemes, A single contiguous region of physical address
space, or a collection of variable-sized regions of physical
memory which are linked together by tables of pointers.
FlowGuard opts for the latter one, which is referred to as
Table of Physical Addresses (ToPA), and stores the trace
output into one ToPA with two regions.

5.2 System Call Interception

Selecting appropriate trigger points of flow checking is
one of the important criteria of effective protection. It de-
termines the timeliness and performance of the protection.
One intuitive approach is triggering upon PMI and check-
ing all of the packets in the interrupted region. This ap-
proach can ensure all of the execution flow of the protected
process being checked, however it may introduce significant
overhead. Instead, FlowGuard uses a similar approach as
prior work [18, 20] by performing flow checking at speci-
fied security-sensitive endpoints. While such endpoints are
configurable, FlowGuard pre-defines some default ones to
provide reasonable security guarantee.

The pre-defined endpoints mainly consists of the speci-
fied security-sensitive syscalls, e.g., execve, mmap, mprotect.



For the sake of simplicity, we select the same sets of syscalls
as PathArmor [20] since they represent the major threats
that can be utilized by the attackers. FlowGuard chooses
to intercept these security-sensitive syscalls by temporarily
modifying the syscall table and installing one alternative
syscall handler for each of them. Whenever such a syscall is
invoked, the newly installed handler first checks whether it
is called by the protected process through the information
like CR3, process name, or process ID. If the answer is yes,
the flow checking is issued, otherwise, it simply forwards the
execution to the corresponding original syscall handler.

It is noted that the security-sensitive syscalls may be in-
voked from either shared libraries or the executable. There-
fore, FlowGuard is responsible for checking the execution
flow of both executable and shared libraries. If the flow
checking failed, the kernel module sends SIGKILL signal to
the process and reports the detection of control flow viola-
tion to the administrators or users.

5.3 Flow Checking

The general process of flow checking is as follows: the
fast path matches the generated flow to ITC-CFG labeled
with credits and TNT information, a security alarm is raised
upon an edge mismatch. Otherwise, if any matched edge is
with low credit or different TNT information, the slow path
is launched.

Fast path. The fast path logic justifies the traced flow
based on the pre-generated credit-labeled ITC-CFG. It starts
from fast decoding the traced packet stored in the ToPA
memory region. It is noted that at this stage, it only parses
the packets based on the IPT formats and extracts out the
TIP and TNT packets, without referring to the binaries with
the instruction flow layer of abstraction. Meanwhile, with
the help of packet stream boundary (PSB) packets, which
are served as sync points for the decoder, this process can
be done in parallel to further accelerate the decoding. On
the other hand, it is not required to decode the whole ToPA
buffer, FlowGuard only checks a specified number of TIP
packets. And in consideration of guarding against attacks
which hack in one module and invoke syscall in another,
FlowGuard is ensured to decode TIP packets striding across
more than one modules’ memory regions, and at least one
of them is within the executable.

With the runtime collected indirect target addresses, Flow-
Guard matches them to the credit-labeled ITC-CFG. Specif-
ically, FlowGuard maintains an array of data structures for
source nodes in the ITC-CFG, each source node has a count
field indicating the number of its outgoing edges, and a
pointer pointing to the start of the array of its target ad-
dresses. All of the arrays are sorted according to the ad-
dresses, so that binary search is used to reduce the time com-
plexity. To further accelerate the matching process, Flow-
Guard preserves separate memory to store the source nodes
and their targets connected by edges with high credits and
TNT information, and use it as the cache for fast matching.
During the fast path checking, for each address recorded in
the TIP packet, FlowGuard first checks it by searching on
the array of source nodes, then checks that its successor ad-
dress can be found in the array of its target addresses. If any
of these two checks is unsatisfied, the whole flow checking
failed, and the positive result (which means attack detected)
is returned back to the syscall handler.

Till the whole flow of indirect targets is confirmed to be
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compliance to the ITC-CFG, FlowGuard starts to evaluate
the credibility of this fast path check. As explained in §4, the
conservative CFG grants attackers superfluous legal targets
to utilize, during the fuzzing training phase, each edge of
the ITC-CFG is labeled with credit and TNT information.
Hence at this stage, FlowGuard needs to assess the credi-
bility of the fast path check. If the assessed credibility is
higher than the specified threshold, FlowGuard reports the
result as negative (no attack), otherwise, the flow checking
is forwarded to the slow path engine.

Slow path. Besides the TIP and TNT packets used in the
fast path logic, the inputs for the slow path engine also in-
clude the binaries being protected. The analysis performed
in slow path is referred to the Intel’s reference implementa-
tion of its IPT decoder library, which uses instruction flow
layer of abstraction, parses the binaries instruction by in-
struction, and combines the traced packets for the entire
decoding. Whenever the slow path checking is triggered,
FlowGuard issues an upcall to the waiting user-level process
to finish this task.

The policies enforced in the slow path can be very pre-
cise, as it can capture the whole execution flow and further
perform a context-sensitive analysis. At a very basic level,
FlowGuard is responsible for guaranteeing that the traced
flow conforms to the O-CFG with the fine-grained forward-
edge analysis [7]. In addition, for backward-edges, shadow
stack is maintained using the instruction flow layer of ab-
straction, and compared with the traced packets to enforce
single-target policy for the return branches.

6. REFLECTION ON HARDWARE

Hardware-assisted approaches are becoming big trends for
enforcing CFI, to minimize performance impact, and retain
transparency for software. For instance, Intel recently re-
leased a new specification called Control-flow Enforcement
Technology (CET), which proposes a shadow stack exclu-
sively used for control transfer operations, and defines a
new ENDBRANCH instruction to mark legal targets for
indirect branches. Though Intel CET seems like a killer for
ROP attacks, its coarse-grained protection for forward edges
makes it still problematic for other code reuse attacks, e.g.,
JOP [29], COOP [30], CFB [31], etc.

Our novel reuse of IPT resolves its main problem of slow
decoding, and shows that it is a potentially complementary
approach to CET for complete CFI protection. Nonetheless
our experience of using IPT gives possible hardware sug-
gestions for a better and more efficient CFI enabler: 1).
Hardware for fast decoding, without sacrificing precise and
fast tracing for IPT, we believe the only possible way to fun-
damentally resolve the relatively slow decoding is adopting
a dedicated hardware for regular patterns of packets decod-
ing, this hardware decoder can be very simple that it only
requires a pattern-matching engine to process the buffer ac-
cording to patterns with two 8-bits words, and route cor-
responding packets to specific memory location; 2). More
CFI friendly filtering mechanisms, e.g., for applications with
multiple processes, one CR3 related MSR is not enough,
the configurations should be more flexible for filtering poli-
cies; 3). Configurable hardware logics for simple CFI poli-
cies enforcement, the hardware can arm with simple logics,
e.g., identifying exact patterns of execution, etc., so that
heuristic or simple CFG policies can be defined for non end-



points runtime traces to improve security; 4). More trigger-
ing mechanisms, besides buffer-filled PMI interrupt, more
configurable event handlers can be added, e.g., when certain
system events happen, etc., so that the time to check is more
controllable and flexible. The first two are beneficial for per-
formance (§7), while the latters create an opportunity for a
full CFI checker.

7. EVALUATION

We have implemented a working prototype of FlowGuard
on a commodity Intel Skylake machine with IPT support.
All experiments are done on that machine with 8 Intel i7-
6700K cores running at 4.0 GHz and 16 GB RAM. The
underlying OS is Debian 8 with Linux kernel 4.3.0. The
static CFG generation component is implemented as a plu-
gin for the Dyninst [32] binary analysis framework. The
fuzzing-based test cases discovery component is based on the
open-source, coverage-assisted fuzzer AFL [27] with Qemu
running unmodified binaries and discovering new state tran-
sitions. Since the AFL cannot directly handle network in-
put, for the network based software (e.g., nginx), FlowGuard
uses the desock module in the preeny project [33] to chan-
nel socket communication to the console. The runtime pro-
tection engine is implemented as a kernel module that can
be enabled by a user-level software. The slow path logic is
based on the Intel’s reference implementation of the decoder
library [34], which runs as a user-level process which can be
triggered using an upcall from the kernel module. In total,
FlowGuard adds 1829 lines of C code to the kernel module,
the Dyninst plugin consists of 3736 lines of C++ code and
153 lines of script code, and the slow path logic has 856 lines
of C code except for the decoder library.

7.1 Security Test and Analysis

7.1.1 Decisions on Parameters

There are two parameters that may affect the security
level of the whole mechanism. The number of TIP packets
(pkt_count) to be checked when the specified endpoints are
triggered, and the ratio of edges with high credits (cred_ratio)
during the checking. These two parameters mainly balance
the tradeoff between performance and security.

pkt_count is important to defeat against attacks that lever-
age legal control flow to flush the illegal one and bypass
security check. One intuitive example is library pollution
that attackers invoke lib-calls instead of sys-calls to trigger
security-sensitive endpoints (e.g., return-to-lib). Another
history flushing attack is shown in [35], which combines
the short flushing gadgets and long termination gadget to
bypass heuristic checks [18, 19]. In FlowGuard, we choose
30 as the lower-bound of pkt_count such that at least 30 TIP
packets are checked. Meanwhile, it is ensured to check pack-
ets striding across more than one modules, and at least one
of them is within the executable. Based on this strategy, the
control flow violation before library calls will not be omit-
ted; thus attacks using return-to-lib can be prevented, On
the latter case, the only possible way to flush the history of
FlowGuard is to craft a valid path of more than 30 NOP-like
gadgets conforming to the high credits labeled ITC-CFG,
which is significantly more difficult than chaining arbitrary
and CFG-agnostic gadgets. Hence, FlowGuard significantly
raises the bar of attacks.

On the other hand, cred_ratio is the parameter to control
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the granularity of CFI enforcement. As the cred_ratio in-
creases, the AIA of the checked indirect branches decreases
roughly in a manner of the following formula:

Al Aratio = ratio x AIAgine + (1 — ratio) x AI A

where AIAyine is the AIA of fine-granularity analysis in
the slow path, Al A;. is the ATA of ITC-CFG without TNT
information. We find in our evaluation that when cred_ratio
exceeds 70%, the ATA of all benchmarks can be better than
the O-CFG protection. To achieve the best security guar-
antee and prevent attacks combining a few low-credit edges
with many high-credit edges to bypass slow path checking,
we set cred_ratio to 1 so that any high-credit CFG edge
violation leads to slow path. Thanks to the high-coverage
training and relatively fixed boundaries of syscall endpoints
in normal cases, the violation happens rarely, and the nega-
tive (no attack) results of slow path checking are cached for
the subsequent fast path checking, thus makes the perfor-
mance better and better.

7.1.2  Security Analysis

ATA optimization. Table 4 shows the statistics col-
lected during the evolving steps of final CFG generation
across different server applications that FlowGuard is de-
ployed to protect. The second column lists the number of
dependent libraries for each application, the third and fourth
groups of columns present the number of basic blocks and
edges for executables and libraries in the CFG which is used
by the traditional CFI and the slow path of FlowGuard.
The AIA statistics are shown in the last three groups of
columns. Meanwhile, it also presents the number of basic
blocks (|V]) and edges (|E|) in the ITC-CFG. The average
ATA is reduced from 72 to 20.

Real attacks prevention. To show the abilities of Flow-
Guard in stopping real-world control flow hijacking attacks,
we artificially implant an obvious vulnerability in nginx code

and conduct one traditional ROP attack and another SROP [36]

attack on it. These two attacks have different attack routes,
while both end up with writing arbitrary data into a speci-
fied file. With FlowGuard protection, the control flow viola-
tion is detected during write syscall for the traditional ROP
and sigreturn syscall for the SROP.

Fine-grained protection. Some attacks [37, 35] use
techniques (e.g., history flushing, evasion attacks, etc.) to
bypass heuristic protections [18, 19]. As showing above, the
default setting of FlowGuard significantly raises the bar for
them. Other more sophisticated attacks [24, 25] unearth at-
tack friendly gadgets to bypass coarse-grained binary-based
CFI mechanisms [3, 4]. FlowGuard is not vulnerable to
them, as these attacks in FlowGuard is equivalent to the
attackers crafting more than 30 gadgets chained by high-
credit edges, or bypassing the context-sensitive analysis in
the slow path, which is hardly possible. We can also make
the fast path more context-sensitive by matching the high-
credit paths, each of which consisting of multiple consecutive
high-credit edges. This can significantly strengthen the se-
curity of fast path, however, it may introduce larger number
of slow path checking; we leave this as our future work.

Endpoints bypassing. As prior work [18, 20], Flow-
Guard relies on an assumption that attacks will finally trig-
ger some specified security-sensitive endpoints to achieve
their goals. Hence, it is vulnerable to the endpoint-pruning
attack, where an attacker leverages alternative approaches



Table 4: Statistics about CFG nodes (|V|) and edges (|E|), as well as CFI metrics like ATA
Application Library | Basic Block # Edge # O-CFG ITC-CFG FlowGuard

# EXEC LIB | EXEC  LIB AIA % |E| AIA (w/ tnt) AIA

nginx 8 29660 124749 | 297333 768745 76.77 34183 6164493  192.86 (76.77) 26.65

vsftpd 3 6832 68679 10456 606575 110.60 13495 4135272  351.79 (110.6) 25.98

openssh 21 14166 165942 23729 796010 44.54 41893 5439232  173.69 (44.54) 11.31

exim 18 9996 237702 14864 1174948 54.81 52010 6368066  128.07 (54.81) 16.92

without triggering the predefined endpoints. Based on lessons
from prior solution [20], FlowGuard provides an interface for

users to specify their own endpoints in case our default set-

tings cannot satisfy their requirements. In the worst case,

FlowGuard can rely on periodic performance monitoring in-

terrupts (PMIs) generated when the trace buffer is full as

endpoints. Meanwhile, since we assume the kernel and hard-

ware, which are isolated from user-level apps, are trusted,

FlowGuard can hardly be hacked under this model to give

erroneous reports.

False positives and false negatives. FlowGuard intro-
duces no false positive as it uses the conservatively generated
CFG. For false negatives, with the slow path checking, Flow-
Guard can largely trim the AIA of backward edges with the
shadow stack policy. For attacks conducted in control ju-
jutsu [26] and control-flow bending [31] that modify function
pointers to violate forward edge CFI, FlowGuard can stop
them using the CFG generation mechanism like that in Ty-
peArmor [7], while share the same false negatives due to the
limitation of static analysis. It is worth noting that even the
state-of-the-art compiler-based approaches with fine-grained
static analysis cannot completely stop those attacks abusing
functions with valid signatures but invalid intention. These
categories of data-only attacks may be defended by other
approaches like control-data isolation [12, 38], which are or-
thogonal to FlowGuard.

7.2 Performance Evaluation

We focus our performance evaluation on four aspects: 1).
Macro benchmarks to give an overall picture about the run-
time performance of real-world software running on Flow-
Guard; 2). Micro benchmarks to shed light on the factors in-
troducing this overhead; 3). A discussion about the fuzzing-
like dynamic training; 4). The breakdown of overhead to
show the benefits of our hardware suggestions.

7.2.1 Macro Benchmarks

We evaluate three categories of applications: servers, Linux

utilities, and CPU intensive benchmarks like SPECCPU 2006.

The protections are all binary-based, and these applications
are configured with their default settings. We set the lower
bound of pkt_count to 30, and ensure to check packets in
executable and libraries. The cred_ratio is strictly set to
100%, that any violation of high-credit edge triggers slow
path checking. The experiments for all of the software are
conducted about 20 times, and the geometric means of the
incurred overhead are reported. With the above configura-
tion, we find that the slow path happens rarely (less than
1%) thanks to the fuzzing training.

Server software. Considering FlowGuard represents an
approach to monitoring, server daemons are the most suit-
able scenarios for it to protect, as they keep running on
the system and are the most pervasive targets for attackers.
We choose 4 servers including web server nginx-1.6.3, FTP
server vsftpd-3.0.3, SSH server OpenSSH-6.7pl and email
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server exim4. For nginx, we rely on the Apache benchmarks
(ab) to simulate 10 concurrent clients constantly sending
20K requests, each of them asks for one 20B-sized file. For
FTP server, we use pyftpbench to download 10MB-sized
files. For OpenSSH and exim, we write homegrown scripts to
constantly login the server and execute common commands,
or send emails respectively. Part (a) of Figure 5 shows their
normalized overhead compared to the ones without Flow-
Guard protection. The geometric mean is about 4%.

Linux utilities. We also evaluate the category of applica-
tions that simply execute once and instantly exit, like most
of the Linux utilities. We select four representative ones
including tar, dd, make, scp to show the overhead caused
by FlowGuard mechanism. We write a program that fork
a child process to execute these utilities. Before the ez-
ecv syscall, the child process first calls ptrace with the flag
PTRACE_TRACEME on, so that the parent process can
get the CR3 of the child process before it runs. With CR3
filtering, FlowGuard can selectively trace corresponding pro-
cess and do the protection. Part (b) of Figure 5 shows the
normalized overhead of these Linux utilities. It implies that
the overhead for these utilities is negligible (geometric mean
is 0.82), especially for dd, which has small number of branch
instructions and seldomly invokes system calls.

SPECCPU 2006. We also measure the time of running
all the C programs in the SPECCPU 2006 benchmarks, the
results are shown in part (c) of Figure 5. It implies that the
geometric mean is 3.79%, and most benchmarks introduce
less than 10% overhead, except 1 anomaly: h264ref. We
found that the core logic of h264ref is a loop with many
indirect calls, and it generated much more traces (90%) than
other benchmarks at runtime.

7.2.2  Micro Benchmarks

Checking time. §2 gives an overall intuition about the
slow decoding compared to fast tracing. With the ITC-
CFG, fast decoding is enabled, and the checking takes little
time by virtue of the efficient search algorithm. Therefore
the fast path of flow checking can be very rapid. However,
since the security still relies on the slow path, thus we also
draw a picture about how much time it may take to have a
context-sensitive analysis during the slow path for ranges of
memory containing 100 TIP packets. The results show that
the context-sensitive analysis takes about 0.23ms, which is
averagely 60 times slower than the fast path.

Table 5: Memory usage and CFG generation time

nginx | vsftpd | openssh | exim
Memory usage (MB) 54.51 35.84 43.96 52.67
CFG generation time (s) 443 362 462 490

Memory usage. Additional kernel memory are used for
control flow tracing and ITC-CFG maintaining. Our default
configuration of ToPA buffer consumes about 16KB-sized
buffer for each core running the application, and the mem-
ory consumption of ITC-CFG depends on the complexity of
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Figure 5: Performance evaluation: (a) to (c) show the slowdown of using FlowGuard to protect three cate-
gories of applications; (d) presents the performance benefits brought by fuzzing training

the protected software. Table 5 shows the size of ITC-CFG
for server applications, which can be optimized using more
compact data structures.

CFG generation time. We also measure the time of
ITC-CFG generation for different applications. The results
are also shown in Table 5. The average CFG generation
time is about seven minutes, which is acceptable since it is
a one-time effort. Meanwhile, we found that more than 90%
of time spends on analyzing libraries (e.g., libc), which are
shared among all applications, thus it is reasonable to cache
the resulted CFGs of them and reuse them accordingly to
optimize the CFG generation time.

7.2.3  Fuzzing Training

Though the security of FlowGuard does not rely on the
training process, it plays an important role in improving
performance. A thorough fuzzing test is time consuming,
nonetheless since the training results are for performance
consideration, we can relax the expected path coverage. On
the other hand, there may be time ranging from weeks to
months before software deployment, thus the fuzz test is still
one of the most potential approaches to generating enough
inputs for high coverage of control flow paths. Due to space
limit, we simply provide an intuition about the benefits
brought by the fuzzing training phase.

We use nginx protection as the example. During the
fuzzing training of nginx, it may discover ascending num-
ber of inputs that can result in different paths as time goes
on. As illustrated in part (d) of Figure 5, we feed these in-
puts generated during different training time to the running
nginx server, and combine the traced packets with ITC-CFG
to label edges with high credits. And then run the ab bench-
marks multiple times to see the average ratio of edges with
high credits during the checking phase. It shows that the
number of newly probed paths is growing, and the ratio of
highly credible edges can be more than 97%. We believe
that the result can be further improved with longer training
time and larger number of inputs.

7.2.4  Benefits from Minor Hardware Extensions

We provided several suggestions on improving hardware
for a better CFI enabler (§6). To show its benefits, we break
down the overhead of macro benchmarks into 4 phases: trac-
ing, decoding, checking and others, as shown in Figure 5.
We can see that in most situations, decoding contributes to
a large fraction of the overhead (more than 30% for server
applications). Thus, a dedicated hardware decoder can sig-
nificantly reduce such overhead. The tracing overhead de-
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pends on the applications: single-process applications (e.g.,
nginx) outperforms multi-processes ones due to the single
CRS3 filtering mechanism. Therefore, more CFI-friendly fil-
tering mechanisms (e.g., using configurable numbers to filter
CR3s) are valuable for efficiency. Moreover, we can see that
the overall tracing overhead is small. Hence, with hardware
logics to enforce simple CFI policies as well as more config-
urable triggering mechanisms, FlowGuard can provide com-
plete CFI checking at low overhead.

8. RELATED WORK

8.1 Software-based Control-flow Protection

To defend against a variant of code-reuse attacks [1, 29,
39], researchers mainly focus on two techniques: random-
ization and enforcement. Randomization-based approaches
try to conceal the runtime execution flow from attackers.
Software diversity [40], address space randomization [41] are
all possible solutions. Enforcement approaches instead try
to preserve pre-defined policies at runtime. Control flow
integrity (CFI) [2], and its variants, when properly imple-
mented, can be used to prevent attackers from executing
control flow edges outside a statically generated CFG.

Compiler-based CFI: With the availability of source
code, a compiler can generate more fine-grained CFG with
the help of detailed side information. For instance, both
Modular CFI [8] and IFCC [9] proposed to use the type in-
formation as call signatures for the forward-edge CFG gen-
eration. CCFI [10] cryptographically computed and veri-
fied the MAC for every control-flow object so that it could
hardly be abused. wCFI [11] differentiated the static CFG
(SCFG) and the enforced CFG (ECFG), and lazily added
edges to the ECFG for the concrete input. CDI [12] even
eliminated all of the ret and indirect call/jmp instructions,
and replaced them with a sled of conditional branch or di-
rect jmp pairs. KCoF1I [42] enforced the kernel CFI by using
secure virtual architecture (SVA) based approach, and the
fine-grained kernel CFI [22] approach leveraged LLVM to
protect the CFI of FreeBSD and MINIX kernels.

Binary instrumentation based CFI: The original CFI
proposal [2] and its variants resorted to the binary based ap-
proaches. CCFIR [3] statically rewrote the PE binary file
embedded with a springboard section, and enforced a 3-ID
CFI. binCFI [4] generated the CFG for an ELF executable
even without the debug and relocation information. Lock-
Down [43] adopted dynamic binary translation technique to
enable fine-grained binary based CFI with shadow stack en-
forcement. RCAP Stack [5] was another binary-based ap-

cred-ratio (%)



proach that systematically resolved the challenges of shadow
stack, like automatically analyzing all possible non-standard
returns. Opaque CFI [6] combined the fine-grained code-
randomization and coarse-grained CFI checking, and made
it a bound checking problem. TypeArmor [7] implemented
the binary-level use-def and liveness analysis to significantly
reduce the number of possible targets for indirect call sites.

While compiler- or binary-based approaches are effective
in enforcing CF1I, they generally have two issues. First, they
usually have to make a tradeoff between efficiency and pre-
cision as instrumenting and checking every indirect branch
would incur significant runtime overhead. Second, there may
be compatibility issues for the protected software. While
binary-based approaches have better compatibility compared
to compiler-based approaches by requiring no compilation,
binary rewriting still needs to change the code layout and
signatures, which may be incompatible with some existing
security mechanisms (e.g., Window 7 system library protec-
tion, remote attestation, etc.), and usually have difficulties
in dealing with shared libraries.

8.2 Hardware-assisted CFI Enforcement

Hardware-assisted approaches address the compatibility
issue by using transparent runtime monitoring. There are
generally two directions: designing new hardware features
and reusing existing ones.

Designing new hardware: SCRAP [14] defined a set
of formal grammars to represent the code reuse attacks,
changed the microarchitecture of the superscalar processors,
and implemented the detection logic at the commit stage of
the pipeline for the signature-based protection. ControlF-
reak [15] pre-computed the signature for each basic block us-
ing its instructions as well as its possible successors, then de-
signed a hardware watchdog to calculate the runtime signa-
ture and detect violation. Similarly, approaches like BR [13]
and HCFI [16] also proposed new hardwares for both for-
ward and backward edges checking, but they still required
rewriting the binaries.

Reusing existing hardware: Vasudevan et al. [44] and
Yuan et al. [45] were first to present case studies of using
PMU to detect code reuse attacks on AMD and Intel pro-
cessors accordingly. CFIMon [17] was a first effort to lever-
age BTS for transparent CFI enforcement. kBouncer [18]
and ROPecker [19] both leveraged LBR to record the run-
time flow, and used heuristic approaches to detect control
flow violation. Similar with kBouncer, PathArmor [20] trig-
gered CFI checking in some specific sensitive points, and
traced the runtime data using LBR. Furthermore, it pro-
posed a context-sensitive verification, and the binaries were
instrumented to enforce the context sensitive CFI invariants
on the monitored paths. FlowGuard continues this line of
research and is the first to make a novel reuse of IPT des-
ignated for offline analysis to runtime CFI checking, which
embraces precision, efficiency and transparency.

8.3 Retrofitted Hardware Features

Aside from using hardware for CFI, there are also a large
body of research in the architecture community leveraging
commodity hardware features for software security and reli-
ability, including applying performance counters to improve
malware detection [46], using control speculation for infor-
mation flow tracking [47, 48], adopting hardware transac-
tional memory for virtual machine introspection [49], as well
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as reusing cache allocation technology for side channel pro-
tection [50]. FlowGuard adds to the literature by showing
that IPT designed for debugging and profiling can also be
retrofitted for control flow protection.

9. CONCLUSION

This paper described FlowGuard, an efficient and trans-
parent approach that effectively enforces CFI by a novel
reuse of Intel Processor Trace to collect and check runtime
control flow. FlowGuard addresses the challenges such as
slow decoding and incomplete control traces by construct-
ing an IPT-compatible control flow graph such that IPT
traces can be directly searched over the CFG. FlowGuard
embraces efficiency and precision through separating fast
and slow path checking. Evaluation confirmed the security
and efficiency of FlowGuard. And hardware suggestions are
proposed by experience for a better CFI enabler.
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