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ABSTRACT

Mobile advertisement (ad for short) is a major financial pillar for
developers to provide free mobile apps. However, it is frequently
thwarted by ad fraud, where rogue code tricks ad providers by forg-
ing ad display or user clicks, or both. With the mobile ad market
growing drastically (e.g., from $8.76 billion in 2012 to $17.96 bil-
lion in 2013), it is vitally important to provide a verifiable mobile
ad framework to detect and prevent ad frauds. Unfortunately, this
is notoriously hard as mobile ads usually run in an execution envi-
ronment with a huge TCB.

This paper proposes a verifiable mobile ad framework called
AdAttester, based on ARM’s TrustZone technology. AdAttester
provides two novel security primitives, namely unforgeable clicks
and verifiable display. The two primitives attest that ad-related op-
erations (e.g., user clicks) are initiated by the end user (instead of a
bot) and that the ad is displayed intact and timely. AdAttester lever-
ages the secure world of TrustZone to implement these two prim-
itives to collect proofs, which are piggybacked on ad requests to
ad providers for attestation. AdAttester is non-intrusive to mobile
users and can be incrementally deployed in existing ad ecosystem.
A prototype of AdAttester is implemented for Android running on
a Samsung Exynos 4412 board. Evaluation using 182 typical mo-
bile apps with ad frauds shows that AdAttester can accurately dis-
tinguish ad fraud from legitimate ad operations, yet incurs small
performance overhead and little impact on user experience.

1. INTRODUCTION
Mobile ad is a key pillar to the mobile app ecosystem: develop-

ers provide free mobile apps with embedded ad libraries from ad
providers to users and get paid by the ad provider for the ads dis-
played and/or clicked. A recent report shows that the mobile ad
market revenue increases from $8.76 billion to $17.96 billion and
is predicted to reach $31.45 billion in 2014 [19].

Unfortunately, this huge-revenue ecosystem is severely thwarted
by ad frauds, where rouge code tricks the ad provider with forged
display (also called impression [26]) or clicks. For example, recent
studies pointed out that ads in mobile apps are plagued by various
types of frauds: mobile ad providers are estimated to lose nearly
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1 billion dollars in 2013 due to these frauds and around one third
of mobile ad clicks may constitute click-spam [18]. The most re-
cent research study [33] shows that, one of the largest click fraud
botnets, called ZeroAccess, induces advertising losses on the or-
der of $100,000 per day. Ad frauds can typically be characterized
into two types [26]: (1) Bot-driven frauds employ bot networks to
initiate forged ad impressions and clicks; (2) Interaction frauds ma-
nipulate visual layouts of ads to trigger ad impressions and unaware
clicks from the end users.

Because of the urgent need to detecting mobile ad frauds, prior
approaches have made important first steps by using an offline-
based approach [16, 26]. Specifically, they trigger the execution
of mobile apps in a controlled environment to observe deviated
behavior to detect ad frauds. However, such approaches are lim-
ited to interaction frauds whose behavior can be triggered by auto-
matic testing; it is hard for them to detect bot-driven frauds because
botnets are compromised bots (thus real devices) that have been
installed with the ad fraudulent applications, which could be in-
structed to make arbitrary network requests stealthily to users (such
as ZeroAccess [33]). Further, such approaches suffer from both rel-
atively high false positives and false negatives because the lack of
reliable proofs to ad providers for attestation.

Reliably and securely detecting ad fraud raises two important
questions: 1) display integrity: how could the ad providers know
that their ads are displayed in the users’ screen without their ad-
vertising policies being violated? 2) user action authenticity: how
do the ad providers know that an ad request is from a user click
but not a bot? Unfortunately, answering the two questions in cur-
rent mobile platforms are notoriously hard due to the complex soft-
ware stack that is potentially controlled by malicious botnets and/or
rouge app code, which can forge arbitrary actions on mobile ads
without users’ awareness, making it hard (if not impossible) for ad
providers to distinguish such forged actions from legitimate ones in
a reliable way.

In this paper, we propose AdAttester, a system that reliably de-
tects and prevents well-known ad frauds. The key insight of AdAt-
tester is to provide attestable proofs to ad providers. To achieve
this, we provide two novel security primitives:

• Unforgeable clicks: A user action, such as an ad click, could
not be forged by malicious code that sends ad click net-
work requests silently without users’ awareness. Thus, ad
providers can reliably detect the forged ad clicks.

• Verifiable display: If an ad’s content is displayed on the
mobile screen, a verifiable proof of the display content and
the displaying duration will be generated and sent to the ad
provider for verification.
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AdAttester uses a trusted extension of hardware, namely ARM
TrustZone [10], to implement these two primitives, which avoids
the need to trust the mobile software stack. AdAttester leverages
the split execution mode in TrustZone and assigns specific periph-
eral devices to be accessible by the secure world only. Specifically,
AdAttester puts the touch and display device drivers to the secure
world, so as to securely get the ad click event and read the display
content. To ensure that the user actions are unforgeable, AdAttester
will sign each touch input whenever the touch positions lies within
the ad view area, then send the signed touch inputs and the eigen-
value of the clicked ad area in the display screen to the ad provider
(i.e., ad server) together with the ad request. Providing verifiable
display is done by checking the ad display content periodically and
calculating the eigenvalue of the display content. These eigenval-
ues will also be sent to the ad server together with the ad request;
the ad providers will compare the requested eigenvalues with the
correct ones that are calculated at the time of releasing the ads.

With these two security primitives, the bot-driven frauds and in-
teraction frauds can be detected reliably. The ad providers may
define some policies to determine whether a sequence of ad re-
quests conform the predefined policies and whether such ad re-
quests should be paid.

To deploy AdAttester, mobile users need to install a small trusted
ad attestation application in secure world and AdAttester provides
a list of ad attestation APIs in normal world OS for ad providers
to adopt to their ad SDKs. Note that the trusted ad attestation ap-
plication needs to be certified by trusted parties and unauthorized
code such as code provided by ad providers could not run in secure
world, and the TCB of AdAttester is small: only the hardware and
software running in secure world of TrustZone.

We have implemented AdAttester in a Samsung Exynos 4412
board. We show that AdAttester can effectively detect all types of
mobile ad frauds found in [16]. Evaluation shows that AdAttester
incurs small performance overhead and little impact on user expe-
rience.

In summary, we make the following contributions:

• Two novel security primitives: unforgeable clicks and veri-
fiable display, which provide attestable proofs of user inter-
action and can be deployed to effectively detect and prevent
mobile ad frauds.

• The design and implementation of a verifiable mobile adver-
tising framework named AdAttester, the first system to detect
and prevent well-known mobile ad frauds online on the real
hardware with small overhead.

• A comprehensive evaluation on performance and using a set
of mobile apps with ad frauds to confirm the effectiveness
and efficiency.

The rest of this paper is organized as follows. The next section
describes some background information on mobile ads, ad frauds
and ARM TrustZone. Section 3 describes the threat model, design
goal and an overview of AdAttester. Section 4 presents the two
primitives, followed by how they are leveraged for detecting ad
frauds (section 5). Section 6 describes the security and deployment
analysis. Section 7 describes some implementation issues using
ARM TrustZone. Section 8 and 9 evaluate the effectiveness, per-
formance and disruption of AdAttester. Section 10 discusses po-
tential limitations of AdAttester and possible future work. Finally,
section 11 relates AdAttester to state-of-the-art and section 12 con-
cludes this paper.

2. BACKGROUND AND MOTIVATION
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Figure 1: The ecosystem of mobile advertising

2.1 Mobile App Advertising and Ad Frauds
Mobile ads are the key to the ecosystem of mobile app develop-

ment: developers design and implement mobile apps and distribute
them to users for free; instead they get paid when users click or
view ads, which are fetched from ad providers through the ad li-
braries embedded in mobile apps, as shown in Figure 1. Specif-
ically, to embed ads in an app, an app publisher (developer) first
registers with an ad provider, who provides the developer with a
publisher ID and an ad library which will be embedded in her apps.
Then the developer includes this ad library in her apps and allocates
some screen real estate to the ads. The ad library is responsible
for fetching, displaying and handling ads when the app is running.
The app developer then uploads the apps to some app markets (e.g.,
Google Play) for users to download and use. App developer is paid
by the ad provider based on the number of ad clicks or impressions,
or both.

To make sure ads are delivered and displayed non-intrusively, ad
providers usually have strict guidelines on how ads should be used
and displayed in apps; otherwise the ad providers may refuse to pay
for the ads. For example, AdMob’s guidelines and policies clearly
state that developers are strictly prohibited from using any means to
inflate impressions or clicks artificially, and the number of visible
ads per page must not exceed one [7].

App developers, however, have the incentives to violate those
policies in order to earn more money, which are called violation
frauds. Such frauds could be intentional or unintentional. In gen-
eral, the types of ad frauds can be characterized into two cate-
gories [26]:

Bot-driven frauds: These frauds employ bot networks to initiate
forged ad impressions and clicks. The bot networks could be com-
promised mobile devices, PCs or desktops, similar to the traditional
web advertising bot networks. Violators may first carefully analyze
the correct sequence of how a paid ad could be made successfully,
and then distribute an automated tool to the bot network to process
the ad requests secretly. Bot-driven frauds widely exist; a conser-
vative estimation concludes that 2% to 40% of ad traffics are botnet
traffic and the accumulated monthly figure could be $6.2 billion in
web advertising [3, 5]. These frauds are now targeting at mobile
ads [4].

Interaction-driven frauds: These frauds include placement fraud
that ads are placed in violation of the ad guidelines or even use a
display view to cover the ad view so as to receive impression fee
while not affecting user experience. In general, this can be done
in multiple ways, including resizing ads to too small to read, hid-
ing them behind other display elements or placing them outside the
display screen. There could also be unaware fraud that an app
sends ad requests in the background or forges ad click requests
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without user’s consciousness. Evaluation by Crussell et al. [16]
over 130,339 apps shows that 12,421 apps have background im-
pressions and 21 apps fabricate user clicks. Liu et al. [26] show
that 2% to 54% apps have certain types of placement frauds.

Although ad providers have guidelines to restrict the behavior
of developers, there are few technical ways to guarantee that the
guidelines are not violated. Currently, an ad server will analyze all
the received clicks to identify suspicious ones that might be forged
click, using some heuristic methods such as pattern matching or
anomaly detection. However, these methods are known to have
high false positives as well as false negatives, since they are based
on inferring, which is intrinsically not accurate.

2.2 ARM TrustZone
Split CPU Mode Execution: The lack of a secure execution en-

vironment in mobile devices motivated the design of ARM Trust-
Zone. Though TrustZone was designed more than 10 years ago, it
is manufactured for the mass market only until recent years, due
to the urgent need of a foundation for mobile security. Briefly
speaking, ARM TrustZone is a security extension introduced to
achieve strong isolation between a security-sensitive execution en-
vironment (secure world) and a commodity environment (normal
world). This is done by dividing access permissions of the proces-
sor, memory and peripherals between the two worlds. The secure
world can access all states of normal world but not vice-versa. As
shown in Figure 2, there is a higher privileged mode called Trust-
Zone secure monitor mode that is responsible for switching be-
tween the two worlds by either executing the SMC instruction or
receiving interrupts.

Secure Monitor Mode

Hyp Mode

Kernel Mode

User Mode User Mode

Kernel Mode

Figure 2: Split CPU mode with TrustZone support

Memory and Peripheral Protection: TrustZone supports mem-
ory partitioning between the two worlds. The DRAM could be par-
titioned into several memory regions by TrustZone Address Space
Controller (TZASC), each of which can be configured to be used
in either worlds or both. By default, secure world applications can
access normal world memory but not vice-versa. System peripher-
als such as touch input or display controller could be configured as
secure by TrustZone Protection Controller (TZPC) to ensure these
peripherals could only be accessed in the secure world. Currently
most of mobile phones run their OSes in the normal world, desig-
nate touch input and display controller as non-secure peripherals.
By setting the touch input and display controller as secure periph-
erals using TZPC, we can have a secure input and display that are
isolated from the normal world OS. Besides, DMA is also world-
awareness and a normal world DMA that transfers data to or from
secure memory will be denied.

Secure OS and Trusted Application: To leverage the benefits
from ARM TrustZone, many mobile vendors nowadays, including
Samsung, Apple and Huawei, deploy a secure OS (i.e., Trusted Ex-
ecution Environment [2] ) in the secure world, which runs in paral-
lel with the commodity OS such as Android and iOS in the normal
world in their mobile devices. They also provide some SDKs for

some trustworthy third-parties to deploy their secure services called
Trusted Applications (TA) running in the secure world. Typical
Trusted Application in today’s mobile devices are Digital Rights
Management (DRM) and mobile secure payment. Note that TAs
running in secure world are certified by trusted parties and unau-
thorized code such as code provided by ad providers will not be
permitted to run in the secure world of TrustZone.

With this trend of deploying secure OS and TA on mobile devices
in industry, we observe that it is practical to run an ad service as
a TA to provide more secure and verifiable information about the
validity of ad operations. Hence, AdAttester mainly runs as a TA
in the secure world.

3. THREAT MODEL AND OVERVIEW

3.1 Goals
The main goal of AdAttester is to provide secure online ad attes-

tation to effectively detect mobile ad frauds. Unlike prior offline-
based analysis, AdAttester aims to provide a framework to en-
hance the mobile ad ecosystem by making mobile ad related op-
erations attestable, even facing the challenges that the commodity
mobile software stack is not trustworthy. Further, AdAttester is
designed to provide verifiable attestation to detect both bot-driven
and interaction-driven frauds. These two types of frauds constitute
the most common ways by ad frauds nowadays and there is still no
effective way to reliably detect them on-the-fly. Note that AdAt-
tester is currently not designed with the capability to detect some
app-specific policies like how many ads may be placed in a single
page.

Besides providing secure online attestation to detect ad frauds,
there are four extra requirements to make AdAttester practical.

• Non-intrusiveness: AdAttester must attest the requests on
behalf of user’s actions automatically without users’ involve-
ment and awareness. Thus, ad providers, developers and
users have the incentives to use and deploy AdAttester.

• Incremental deployable: For a new ad fraud detection frame-
work to be deployable, AdAttester should be compatible to
existing ad deployment ecosystem such that existing ad de-
livery and accounting framework can still run under AdAt-
tester.

• Privacy-preserving: AdAttester should preserve the existing
properties of privacy semantics and should not leak out more
privacy information than existing ad solutions.

• Small TCB: To make the process of ad attestation secure, the
TCB of AdAttester must be small enough.

3.2 Threat Model and Assumptions
AdAttester assumes the mobile device is equipped with ARM

TrustZone (TrustZone is already widely deployed in mobile de-
vices) and the device manufacturer implements TrustZone features
correctly without hardware security flaws. Further, AdAttester as-
sumes that the device contains a persistent per-device public key
pair, which constitutes a unique device identity. This identity is
used to uniquely identify the ad proofs from a mobile device.

AdAttester trusts the hardware of mobile devices including the
TrustZone extension and thus precludes physical attacks that may
read the protected memory and tamper with TrustZone. Like other
systems leveraging TrustZone, AdAttester trusts the software stack
running inside the secure world. AdAttester strives to keep the TCB
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of the code running in the secure world small, which makes it rea-
sonable to trust the secure world as a whole. In contrast, the entire
OS and its applications in the normal world are not trusted and are
susceptible to be compromised. This is because the software stack
for the normal world, which usually contains a full-fledged Linux,
an application framework and/or a Java virtual machine, comprises
millions of lines of code. Attackers who compromise the OS could
launch various software attacks and modify any code of the OS or
even the mobile ad apps. Since software running in secure world
may leak some side-channel traces to attackers controlling the nor-
mal world, we will discuss how to mitigate the potential risk of
leaking device private key through side-channels attacks in sec-
tion 6, though there are no such kind of attacks yet.

In the current scheme, AdAttester assumes the ad provider (mo-
bile advertiser) is trustworthy and will not be compromised by at-
tackers. This assumption can be relaxed by requiring a secure pro-
cessor or a trusted hypervisor [41, 42, 45] in the ad server (like
ObliviAd [11]).

3.3 Overview
Figure 3 illustrates an overview of how AdAttester works. On

the client side, when a user clicks an ad, AdAttester will generate a
proof, which contains eigenvalues of the displayed ad view that the
user clicks and a nonce that comes from ad server to avoid replay
attack. For show-ad, instead of sending messages per click, the mo-
bile device will collect proofs in a random interval, e.g., every five
seconds, which also contains eigenvalues of ad image and nonce.
The proof will be signed using the private key of the mobile device
and sent to the ad server for attestation.

The ad server maintains a per-ad repository, which contains the
related ad information, like eigenvalues of some image or video
ads, and valid ad positions and sizes. A new module, named AdVer-
ifier, is introduced to check the proof of each click and impression.
Once receiving a message, the AdVerifier first checks its signature,
nonce and proofs. If all checks pass, the AdVerifier will deliver the
click message to the ad server for further processing.

To make the proof reliable, AdAttester must ensure the following
conditions. First, the click is actually from user, instead of being
forged. Second, the eigenvalues are actually calculated from the
screen data, instead of some data not shown to users. This is guar-
anteed by two primitives, namely verifiable display and unforge-
able clicks, which are enabled by AdAttester’s non-bypassable use
of TrustZone (section 4).

Figure 4 further shows the overall architecture of AdAttester.
Commodity operating system (e.g., Android) runs in the normal
world and a secure OS runs in the secure world. In AdAttester, the
touch screen and display devices are only controlled by the secure
OS to provide a reliable source of user input and display informa-
tion. The trusted TZAttester, which runs in the secure world as a
Trusted Application, is deployed to generate attestation blob. An
untrusted AdAttester Service runs as a system service in the un-
trusted OS framework. The AdAttester Service cooperates with the
TZAttester and provides ad libraries in applications with interfaces
of getting attestation data whenever the ad libraries need to send ad
requests and the application runs in the foreground. The TrustZone
driver (TZ Driver in the figure) in the normal world provides APIs
for AdAttester Service to call the TZAttester in the secure world.

4. AdAttester PRIMITIVES
This section first describes the necessary information to be col-

lected for the two primitives and then describe how such informa-
tion is collected securely.

Ad Verifier

Ad Server

eigenvalue
meta_data

Figure 3: An overview of how AdAttester works. When a user viewing
and/or clicking a mobile ad, AdAttester will generate a signed proof de-
scribing the impressions and/or user clicks. The Ad server managed by
the ad provider will attest this ad operation by comparing the proof with a
per-ad repository

TZAttester

Secure OS KernelUntrusted Rich OS

TZ 
Driver

Framebuf
Driver Proxy

NIC Framebuf Display
Controller TouchpadUnsecure Secure

Memory
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Software

Hardware

Display
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AdVerifier
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Figure 4: AdAttester architecture. AdAttester consists of three parts, two in
the local mobile device and one in the remote ad server. The local mobile
side consists of (1) a trusted TZAttester running in secure world and (2)
an AdAttester Service running in the OS framework in normal world. The
remote ad server has (3) a trusted AdVerifier that verifies the ad requests

4.1 Primitives
As the primary means for an ad provider to decide how much to

pay for a developer is through counting the times of impressions
and clicks, AdAttester provides two primitives, namely verifiable
display and unforgeable clicks. The verifiable display ensures that a
verifiable proof of ad impression (i.e., display) in the mobile screen
and its duration will be generated and sent to the ad provider for
attestation. Similarly, unforgeable clicks ensures that a proof is
generated to attest that a click to a specific ad is initiated by a user,
instead of malware such as a bot. These two primitives serve as the
key building blocks to build a secure online ad attestation.

The message format of these two primitives is shown in Figure 5.
A signed proof message for ad impression contains a sequence of
hash values of the displayed ad, a nonce which is used to defend

impression_blob = { 
displayed ad hashes, nonce, interval, 
duration, ad_info, device_info 

}
signed_ad_impression = { 

Kpriv{SHA(impression_blob)}, 
impression_blob, certified Kpub, meta_data

}

click_blob = { 
clicked ad hash, nonce, ad_info, device_info 

}
signed_ad_click = { 

Kpriv{SHA(click_blob)}, click_blob, 
certified Kpub, meta_data

}

Attested Message Format

Figure 5: AdAttester primitives message format
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message reuse attack (called replay attack), display timestamps de-
scribing the duration of ad display and interval of sampling, ad in-
formation including ad ID, displayed ad size and position in the
screen, device information such as screen size and resolution, some
other ad library-specific metadata and a certified public key. Simi-
larly, a signed proof message for an ad click contains the hash value
of the displayed ad around the click point, a nonce, ad information,
device information, metadata and certified public key.

4.2 Obtaining Verifiable Ad Proofs
Generating verifiable ad proofs means that AdAttester must have

a way to determine the origin of a user’s click and what was dis-
played on the mobile screen. AdAttester achieves this by lever-
aging the secure OS in the secure world to control the input and
display devices. This is achieved by assigning the input and dis-
play devices to be only accessible by the secure world. The secure
OS provides touch input driver and secure configuration of display
controller handler so that TZAttester in the secure world can get
reliable information of input and display. AdAttester uses both
the trusted TZAttester in the secure world and the untrusted AdAt-
tester Service in the normal world to cooperatively collect neces-
sary proofs for attestation. Note that the developers may control
the untrusted part of AdAttester to refuse to cooperate with TZAt-
tester, which, however, may cause a valid ad impression/click not
to be attested correctly.

The first proof can be reliably obtained by collecting a user click
from the secure input and signing it with a private key. A straight-
forward way to obtain display information is to get a snapshot of
the displayed ad and send it to the ad server for attestation. This
method, however, may leak user’s privacy and violate our privacy-
preserving requirement. To preserve user’s privacy while providing
verifiable display, we do not directly send the raw display data to
ad server, but calculate and send the eigenvalue of the display data
(i.e., data hash), which is a one-way operation and server can hardly
reverse it to get the original data.

The display device driver puts the framebuffer region to the un-
trusted memory used by the normal world software. Hence, ex-
isting display libraries can still write display data directly to the
framebuffer without trapping to the secure world, which will not
greatly decrease performance. As TZAttester in the secure world
could control the framebuffer, it can also get reliable display infor-
mation, for example, the framebuffer region address. This is im-
portant because if the display controller is controlled by the normal
world software, the normal world software could deceive TZAt-
tester into getting a wrong framebuffer region and thus attesting on
an incorrect display region.

The touch input is only accessible in the secure world, and the
touch input driver is implemented in the secure world. Hence,
whenever an input interrupt arrives, the touch input driver will first
get the input data (i.e., input position on the screen), then the input
data will be saved by TZAttester before being sent to the untrusted
OS in the normal world. On getting the input data, TZAttester will
check whether: (1) an ad is currently displayed; (2) the touch posi-
tion locates within the ad display. If both conditions are satisfied,
TZAttester will calculate the eigenvalue of the ad view region from
the framebuffer. The information for checking whether an ad is cur-
rently displayed and its exact display region is provided by AdAt-
tester Service in the untrusted OS. Note that if the information is
incorrect, then the signed advertising information could be easily
detected by the remote AdVerifier. The eigenvalue of the clicked
ad view together with some other information such as a message
nonce and device resolution, will be signed using the device pri-
vate key and thus a piece of verifiable advertising information is

generated. Besides, to attest ads (such as video ads) that need to
attest for a period, a secure timer is used to periodically attest the
display data. One possibly bypassable case is that an adversary
knowing the interval can display the ad only when AdAttester is
about to attest the displayed ad. The ad may be displayed short
enough so that a user will not even notice it, yet from AdAttester’s
point of view, the ad was displayed continuously. To defend against
this case, AdAttester chooses a random start time to attest with a
random interval check or attest consecutively for several times in
one interval period.

To retain good performance, AdAttester Service works cooper-
atively with TZAttester to provide necessary information so that
TZAttester could decide whether an attestation proof should be
generated. AdAttester Service tracks the view system of the un-
trusted OS and will notify TZAttester with some necessary infor-
mation, including the position of the ad view whenever an ad view
is displayed, hidden or resized.

4.2.1 Tracking Ad View
As a mobile ad will change it views during the execution of mo-

bile apps, AdAttester needs to track the ad views to correctly gen-
erate proofs.

AdAttester instruments the view system of the untrusted OS to
track the status of ad views. This step is necessary to reduce perfor-
mance impact incurred by AdAttester; otherwise, TZAttester needs
to attest the display view every time a touch input event generates.
To identify ad views, ad libraries need to register ad view elements
to the view system and AdAttester Service. If an ad view is shown
on screen, updated or hidden from screen, the view system will in-
voke the notification method of AdAttester Service, which in turn
will notify TZAttester in the secure world.

4.2.2 Identifying Ad Display Region
To calculate the eigenvalue of the ad view, TZAttester needs to

identify and read the display content. Directly reading this data
from framebuffer is feasible because the secure display driver sets
the address of the framebuffer, which could not be forged by at-
tackers in our threat model. To get the correct display data, the
untrusted AdAttester Service must tell TZAttester the exact posi-
tion in the display screen, otherwise an incorrect eigenvalue will be
calculated, which will be detected by the remote AdVerifier.

In the hardware abstraction layer, the display device driver in se-
cure OS allocates twice the screen size of memory and uses one as a
back buffer while other as the primary surface. The drawing is done
on the back buffer while the content of the primary surface is used
to display the current screen content. Page flipping is used so that
when the drawing is complete on the back buffer, the back buffer
becomes the primary surface and the old primary surface becomes
the back buffer. Since the driver is controlled by the secure world,
TZAttester could get the currently primary surface and retrieve the
ad content using the provided ad position information.

4.2.3 Calculating Eigenvalue
There are many algorithms to calculate eigenvalues for an image

(and video). Example include SIFT [29] and SURF [12], which
can tolerate complex transformations like rotation and scale down
and have also recently been parallelized [15, 20]. Basically, they
represent an image as a set of 64-bit or 128-bit vectors and com-
pare their similarities by comparing the bit vectors. Originally,
we used SIFT to calculate eigenvalue for attestation. However,
the generated eigenvalue is sometimes too big (may even exceed
the original image size), which may consume too much network
bandwidth. We observed that for images in mobile ad views, it is
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unlikely that an image would be rotated (though it may be scaled
up/down). Hence, a scale-resistant algorithm is enough for our pur-
pose. Hence, we use the perceptual hash algorithm [24] to reduce
the eigenvalue size to 64 bit. This significantly reduce the size com-
pared to SIFT, but can still accurately calculate the similarity of
images.

5. SECURE ONLINE AD ATTESTATION
This section describes how the two primitives are used to con-

struct the secure online ad attestation by slightly adjusting the ad
libraries using APIs provided by AdAttester. Note that AdAttester
is completely transparent to mobile apps.

5.1 Attesting Ads
Mobile ads have several types, including banner ad, rectangle

ad and interstitial ad. Banner ads use a small portion of the screen
to tempt users to “click through" to a richer, full-screen experience
such as a website or app store page. They can have a variety of file
formats, from static JPEG and GIF banners to simple text and in-
banner video ads. Rectangle ads are similar to banner ads, except
that they usually have a larger height than banner ads occupying a
larger portion of screen. Interstitial ads, on the other hand, immedi-
ately present rich HTML5 experiences or “web apps" at natural app
transition points such as launch, video pre-roll or game level load.
Besides directly showing ads on screen, some ads are displayed on
the notification bar to tempt users into a higher click rate.

We classify these kinds of ads into two categories: image ads
(i.e., text and static image) and video ads (i.e., video media). Ta-
ble 1 shows the overall APIs provided by AdAttester to ad libraries.
In the following, we describe how to attest such ads using these
APIs.

Adopt AdAttester to Ad SDK. Adopting AdAttester to ex-
isting ad SDKs requires minor changes on impression and click
tracking. The first change is to notify the trusted TZAttester
when an impression ad is shown and hidden by calling one of the
APIs: adattester_track_videoad, adattester_track_imagead and
adattester_track_update. The second change is to call the trusted
TZAttester to generate attestation when a click is triggered or
an impression is finished by calling one of the two APIs: adat-
tester_attest_impression and adattester_click and add the attested
blob to ad request. When an app comes to background, AdAttester
Service will not accept any ad attestation requests from that app
because in that case, a malicious app or ad could forge a faked ad
attestation request on behalf of the foreground app, which in turn,
may leak out some sensitive information such as the area a user
clicks.

Ad Impression Attestation: To attest impression-based paid
ads (e.g., the video ads), the adattester_track_videoad, adat-
tester_track_imagead and adattester_track_update APIs are pro-
vided to keep tracking of the giving ad views. TZAttester keeps
a secure timer and will calculate the signature (i.e., the eigen-
value) of the displayed ad view at a random interval. These APIs
will return a track ID so that subsequent calls (namely the adat-
tester_track_update that updates an ad which is being tracked,
adattester_attest_impression that generates impression attestation
and atttester_attest_click that generates click attestation) could find
the right tracked ad. When the impression time expires and an at-
testation is needed, the normal world software will call function
adattester_attest_impression and provide necessary ad information
to do an attestation.

Ad Click Attestation: Click-based paid ads, on the other hand,
are slightly different from impression-based ones. TZAttester
tracks status of currently visible ad views with the help of the un-

trusted AdAttester Service in the normal world, which will in turn
notify TZAttester by invoking the create, update and delete ads
API. When a user click triggers ad events, the normal world AdAt-
tester Service will call function adattester_attest_click to attest the
user click. When the API adattester_attest_click is invoked, it will
check whether the attested ad is currently being tracked and will
put the tracked data into the attested blob to handle the situation
when a user clicks an impression ad (i.e., a video ad) if so.

5.2 Ad Attestation Proofs

TZAttester

{Kpriv{SHA(msg’),nonce},
 msg’, certified Kpub}

msg

msg’ = {msg, display eigenvalues blob}

Secure WorldNormal World

AdAttester 
Service

Figure 7: The attestation process of AdAttester

Device Keys. An AdAttester-enabled device contains a persis-
tent per-device public key pair, which constitutes a unique device
identity. The per-device public key pair widely exists in TrustZone-
enabled mobile devices nowadays. At manufacturing time, the
key pair is flashed into secure fuses (write-once persistent mem-
ory) using eFuse technology and is accessible only in the secure
world. For privacy, the device generates an attestation public key
pair (called attestation identity keys or AIKs), which is used to sign
data inside attestation blob and will be certified by the trusted pri-
vate CAs after confirming that the key is generated by TrustZone-
enabled devices. Another alternative design is to use group signa-
tures [13] to improve anonymity.

Attestation Structure. Figure 7 shows message format of the
attestation proofs. An attestation message contains several parts:
a hash of the attested message which is the combination of an
application-specific data blob and the blob of the corresponding
display data, a nonce that is used to check freshness of the request
to protect against replay attacks, a certificate of the device attesta-
tion identity key. The nonce is stored in the ad server, increased
and synchronized between the ad server and a mobile device when
an ad session starts.

5.3 Detecting Fraud Behavior
Detecting ad frauds consists of three phases (Figure 6): a feature

extraction phase, in which an ad preprocessing tool generates and
saves an ad signature database; an online checking phase, which ex-
tracts and checks the legality of ad requests which may be signed; a
log analysis phase, which uses existing advertising analytics tools
to further detect frauds.

Feature Extraction. The feature extraction phase takes a set
of ad images or videos as input source and splits the input source
into a list of images. For each image, we calculate the eigenvalue
(section 4.2.3). For a video, we generate a list of images and their
corresponding eigenvalues to be used for proof.

Online Checking. When an ad request comes, the ad server will
first check whether the request is attested. If the request not is at-
tested, the legacy fraud detection and request processing modules
will process that request, otherwise the AdVerifier will check the
attested request. The AdVerifier will verify the certificate of the
AIK to assure that the AIK comes from a TrustZone-enabled de-
vice by traversing the public-key chain enclosed in the attestation
blob and use the certified public key to decrypt the nonce and the
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Figure 6: The ad fraud checking framework of AdAttester

Table 1: APIs provided by AdAttester to ad libraries
Command and parameters Description
adattester_register_adview(ad_view) Register an ad view to AdAttester Service for view tracking
adattester_create_ad(ad_info) Notification to AdAttester Service when an ad view is created
adattester_update_ad(ad_info) Notification to AdAttester Service when an ad view is updated
adattester_delete_ad(ad_info) Notification to AdAttester Service when an ad view is destroyed or hidden
adattester_track_videoad(ad_info, seconds) Tell AdAttester Service to attest a video ad for a period of time
adattester_track_imagead(ad_info, seconds) Tell AdAttester Service to attest an image ad for a period of time
adattester_track_update(track_id, ad_info, new_seconds) Update tracking of a tracking ad
adattester_attest_impression(track_id, ad_info, device_info, metadata) Call AdAttester Service to attest an impression-triggered ad packet
adattester_attest_click(ad_info, device_info, metadata) Call AdAttester Service to attest a click-triggered ad packet

payload hash value. Since the certified public key will consume
a relatively large portion of ad network traffic, the ad server will
maintain an ID to certified public key mapping so that client only
needs to transfer its public key for the first time and uses the ID got
from ad server for the rest of requests. The integrity of the message
payload is checked by recalculating the hash value of the payload
and comparing it with the decrypted one. The AdVerifier will re-
trieve the image feature data according to the ad ID from the ad
request and compare the data with the ad request one. If the differ-
ence between the pre-stored image feature and the ad request one is
within a predefined deviation (currently we set the maximum sim-
ilarity distance value to 10 using perceptual hash algorithm), we
could confirm the ad request comes from a legitimate user action
from a real device. At last, the ad request will be processed by the
request processing module and an ad response will be returned to
the client.

Log Analysis. During the online checking phase, the necessary
information (i.e., ad request payload and client IP) will be logged
for further analysis. This phase is necessary even for the attested ad
requests because some fraudsters may employ teams of people to
click on ads using TrustZone-enabled devices, which could not be
directly detected by AdAttester and AdAttester relies on existing
fraud checking approaches to detecting this kind of frauds.

6. SECURITY ANALYSIS AND DEPLOY-
MENT

Attacks On Untrusted AdAttester Service: Though AdAt-
tester relies on untrusted AdAttester Service running on the nor-
mal world to collect necessary information for proofs, AdAttester
still ensures that the ad impressions and clicks cannot be forged.

If AdAttester Service refuses to corporate with AdAttester, such
as DOS attacks, the generated proofs will not be attested by Ad-
Verifier. This essentially violates the sole purpose of mobile ad
developers and attackers, who would try their best to avoid this.

Side-channel Attacks on Device Keys: Side-channel attacks
that target on device keys is a potential threat to the security of
AdAttester and even the whole TrustZone platform. Existing ap-
proaches such as Prime-and-probe [40], Flush-and-reload [43] may
be also feasible to stealing the device keys, though to our best
knowledge, there are no such successful attacks on TrustZone. De-
fensive methods against such attacks include: using lock-down
cache lines for key calculation in secure world, using hardware
encrypt/decrypt engines on the SoC (most of mobile devices are
equipped with this feature), flushes sensitive cache on world-switch
or using cache or SoC internal RAM for private key computa-
tion [21,32].

Potential Abuses: Given the capabilities AdAttester could peek
the device input and screen through TrustZone’s eyes, AdAttester
needs to mitigate the potentially possible abuses that could be
gained by either malicious ads or applications. For screen display
data, since AdAttester calculates the eigenvalue of the displayed
ads and transfers the 64-bit-long eigenvalue to normal world AdAt-
tester Service upon an attested call, this eigenvalue could be leaked
to attackers. However, the algorithm for generating the eigenvalue
is a one-way operation and attackers could get little valuable infor-
mation from it. For input data, although AdAttester does not send
the touch position outside the secure world, there are two scenar-
ios to be discussed based on different threat model: one is that the
normal world is completely compromised and the other is that only
the ads or applications are malicious.
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In the first scenario, because the touch input data will eventu-
ally be delivered to the normal world, attackers could easily get the
input data even without AdAttester. In the second scenario, a ma-
licious ad or app may ask TZAttester to attest non-existent ads so
that after requesting for attesting ads, the malicious ad or app could
know the regions where a user clicks. However, this is not feasible
because AdAttester Service in the untrusted OS will keep track of
ad view states and if an ad asks for tracking a non-display ad or asks
for tracking when the application is not in the foreground, AdAt-
tester Service will refuse to serve it. AdAttester may suffer from
deputy or mediation attacks [14] which also exist in current mobile
ads, AdAttester doesn’t make it easier or leak out more privacy in-
formation than existing solutions and this kind of attacks could be
prevented using ad separation (see Section 11).

Deployability and Incentives: Although AdAttester requires
slight modification to existing mobile OS and ad libraries, ad
providers and users as well as vendors could have the incentives to
use and deploy, and the deployment effort of AdAttester for each
party is small, the solution, on the other hand, could benefit the
whole ecosystem of mobile advertising. (1) For ad providers, they
have the incentives to deploy AdVerifier in their ad server on top
of their existing ad infrastructures and adopt the APIs for attest-
ing ads to their mobile ad SDKs which only requires several lines
of code modification because it could significant prevent mobile
ad frauds and thus reduce their loss. (2) Although mobile ven-
dors are required to modify normal world OS to track ad views, the
modification is largely independent and only requires adding hun-
dreds of Java code. Besides, mobile vendors today are always op-
timistic to provide new features in their products, especially giving
that mobile advertisement is now a major income for application
developers. (3) For mobile users, they are required to install TZAt-
tester as a trusted application in the secure OS, which is easy to
deploy. By deploying TZAttester, mobile users benefit from cost-
ing network consumption due to stealthy ad requests reduction and
from potential risks when a bot steals ad requests on behalf of the
user. Besides, AdAttester could bring some new business scenar-
ios where mobile users could benefit directly. For example, content
providers could pay for the traffic generated by mobile users watch-
ing their ads, promotions or visiting their websites and AdAttester
could provide trusted proofs to content providers.

7. IMPLEMENTATION
We have implemented the mobile side of AdAttester on a

TrustZone-enabled development board called Samsung Exynos
4412, which is equipped ARM Cortex-A9 processor at the fre-
quency of 1.4GHz. The system running in the normal world is
Android Ice Cream Sandwich (Android 4.0 version), with Linux
kernel version 3.0.2. The secure OS running in the secure world is
T6 [9], a secure OS for ARM with TrustZone support. The trusted
TZAttester runs as a Trusted Application in T6. We implemented
the server side (the AdVerifier of AdAttester) on a 2-core machine
equipped with Intel Xeon CPU E3-1230 V2 at 3.30GHz, which
runs Ubuntu 12.04.

Device Configuration We use a development board instead of
a mobile phone to implement and evaluate AdAttester as we need
to get the authority from the phone manufactures to sign the TZAt-
tester as a Trusted Application. Through the development board,
we have full control of the secure world and thus can deploy our
own secure OS and the TZAttester. One limitation with our board
is that it does not have fused a public key pair and disallows us
from flashing one into the secure fuses. We address this problem
by hard-coding the public key pair in the secure OS image and envi-

sion a future in which device key is certified by trusted CAs instead
of the vendors themselves.

System Boot Devices with TrustZone support will start in the
secure world and run a secure world firmware after executing a
vender-specific bootloader. Originally, in Samsung SoC, the secure
world firmware (called tzsw) is proprietary and close-sourced. We
replace it with a secure bootloader to control the secure world soft-
ware. The secure bootloader will load the secure OS image and
check the signature of the image using its embedded public key
to ensure the integrity before executing T6. T6 will setup the se-
cure environment, including partitioning the secure and non-secure
memory in TZASC (reserving 16MB for the secure world used by
T6 and leaving others for the normal world), setting the touch in-
put and display controller peripheral as secure peripherals in TZPC.
Note that interrupts that belongs to the touch input and display con-
troller will be set as secure interrupt and thus will be handled by T6.
After configuration, T6 will switch to the normal world to execute
the normal world bootloader and boot Android.

get_display_mode() {
…
register int r0 asm(“r0”);
register int r1 asm(“r1”);
register int r2 asm(“r2”);
r0 = SMC_SEC_READ;
r1 = SMC_SEC_DISPLAY;
r2 = S3C_VIDCON0;
asm volatile(“smc #0”);
cfg = r0;
return cfg;

}

void read_sec_display(reg, base) {
int cfg;
check_parameter(reg, base);
cfg = t6_readl(base + reg);
return_to_ns(cfg);

}

Normal World Secure World

Figure 8: World switch when accessing display controller. A read or write
operation on secure registers is changed to a crossing world call

Secure Input and Reliable Display Touch screen peripheral is
protected from the normal world by setting the TZPC at startup
and its driver is implemented in the secure world. A shared mem-
ory region between worlds is created for exchanging input data. We
created a kernel workqueue, which waits on a variable and copies
the input data in the shared memory region to the input buffer (us-
ing linked list) of the Linux input core (input subsystem). When
the touch input driver in the secure world receives a completed se-
quence of input data (ABS_X, ABS_Y, ABS_PRESSURE, etc.), it
will copy the data to the shared buffer and notify the normal world
kernel workqueue by setting its waited variable.

Display controller is also set to be a secure peripheral in TZPC
at system startup. Because the purpose of setting the display con-
troller as secure is to get a reliable display content, which could not
be faked by the normal world software. Specifically, TZAttester
needs to get the exact display data from display framebuffer and
if the display controller is controlled by untrusted software, TZAt-
tester may get a faked framebuffer. To achieve this while keeping
the modification of original code as small as possible, we mod-
ify the display controller driver in the normal world explicitly by
changing the access of the peripheral registers to an SMC call (see
Figure 8). To determine the exact address of the framebuffer, TZAt-
tester could directly read the corresponding registers of the display
controller in the secure world. The data format read from the frame-
buffer is RGB and TZAttester will convert it into jpeg format and
use average hash algorithm [24] to calculate the eigenvalue of the
displayed data.
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TZAttester Execution AdAttester tracks all ad views in the An-
droid view system layer and will notify the trusted TZAttester in se-
cure world when an ad view is shown, resized and hidden. To omit
some unnecessary crossing world notifications, changes of those ad
views that are covered at least half of their size, either unintentional
or on purpose (e.g., placement fraud), will not be notified to trusted
TZAttester.

AdAttester Service is implemented as a privileged system ser-
vice of Android that passively waits for attestation requests from
ad libraries in applications. Ad libraries need to be modified to use
attestation interface, but their modifications are quite small. The
only change is to call AdAttester Service using the provided APIs
to obtain an attestation blob when tracking ad actions and sending
ad requests.

AdVerifier Implementation The AdVerifier of AdAttester lo-
cates at the ad server to process ad requests. The feature extraction
phase module is a separated program implemented in Python. It
takes images or videos as inputs, splits the images or videos into
separated image frames and uses an image feature extraction algo-
rithm to generate ad image features. Note that the image feature
extraction algorithm is the same as the one implemented in mobile
trusted TZAttester.

The online checking phase module is implemented in PHP code
and we use nginx as its HTTP server. When an ad request comes,
it will first check whether the request is signed. If so, it will de-
crypt the packet and check the validity of the nonce value. Here is
the validating process on nonce value: each ad response from ad
server contains a server timestamp (i.e., 2014-12-05-23-18-18), the
mobile client incrementally generates the nonce value based on this
timestamp. The server checks the nonce value assuring it is strictly
larger than the old one it previously receives which is stored in the
server but does not exceed the one based on current timestamp. If
the nonce is valid, it will get the ad view display image feature from
the packet, then retrieve the image feature data according to the ad
ID from the ad request and compare the data with the ad request
one.

8. AD FRAUD DETECTION EVALUATION
This section evaluates the effectiveness of AdAttester by the ad

fraud apps from MAdFraud [16], which were crawled from several
major app markets and filtered from 130,339 apps. As some of the
ads in the fraudulent apps cannot be executed in our phones and
we only instrument one version of each Ad SDK, we only use 182
out of 1,000 typical ad fraud apps from MAdFraud, as shown in
Table 2

8.1 Dataset and Evaluation Methods

8.1.1 Ad SDK Instrumentation
Since the ad libraries need to be modified to use AdAttester, we

need to instrument those ad libraries to invoke the APIs provided by
AdAttester. Table 2 shows the ad SDKs we instrumented and their
corresponding number of tested ad fraud apps. Admob and Dou-
bleclick are grouped into ’Admob’ as they appear together at most
of time and apps that contain more than one ad SDKs are counted
several times. Ad SDKs are either close-sourced or open-sourced.
For the open-sourced ones, we instrument the source code by call-
ing AdAttester Service and adding the attested blob to the ad re-
quest before the SDK wants to send ad request and then generate a
jar package. Then we replace the existing ad package with our new
one and repackage the apps. For the close-sourced ones, we man-
ually decompile and analyze ad SDKs to instrument the necessary
code. Here we show how we instrument the SDKs by explaining a

Table 2: Top instrumented ad SDKs. Total: number of fraud apps in total,
Version: instrumented SDK version, Tested Num: number of tested apps

SDK Name Total Percentage Version Tested Num
Google Ads 791 79.1% 6.0.1 48
Millennialmedia 155 15.5% 4.2.6 21
Inmobi 95 9.5% 3.6.x 23
Airpush 64 6.4% 4.0.2 33
Mobfox 60 6.0% 1.4 12
Mobclix 46 4.6% 4.0.x 10
Cauly 40 4.0% 1.2.5 8
Smaato 38 3.8% 2.5.2 13
Mdotm 29 2.9% 2.0.2 3
Waps 28 2.8% 1.5.x 14
Inneractive 27 2.7% 3.1.7 9
Adlantis 26 2.6% 1.3.7 5
Domob 24 2.4% 1.5 12
Adwo 19 1.9% 2.5.1 5
Youmi 18 1.8% 3.0 10
Mopub 17 1.7% 1.9.x 5
Nend 15 1.5% 1.2.1 7
Vpon 14 1.4% 3.0.3 5
Wiyun 13 1.3% 1.2.3 2
Chartboost 10 1.0% 3.1.5 2
Guohead 8 0.8% 1.6.8 3
Applovin 8 0.8% 5.0.0 4
Appmedia 7 0.7% 1.1.0 3
Wooboo 7 0.7% 1.2 3
Casee 5 0.5% 2.7 3
Adsmogo 2 0.2% 1.2.8 1

close-sourced ad SDK named Admob and an open-sourced ad SDK
named Mopub.

Admob: Admob SDK is a closed-source ad library owned by
Google and is now offered through Google Play services. Google
uses code obfuscation techniques to protect its SDK library, which
increases the difficulty of analysis tremendously. By careful in-
strumentations, we locate the exact location (i.e., AdActivity.smali)
where an URL is opened as a response to the click event. We insert
code there to call the system service to get attested blob and ap-
pend it to the URL as parameter. Impression tracking, however, is
more complex because we need to instrument several methods dis-
tributed in different files, namely internal/d.smali, internal/c.smali
and internal/g.smali.

MoPub: MoPub SDK [6] is an open-source ad library owned by
MoPub Inc. and is used as an ad mediation network provider. It is
easy to instrument with the availability of source code and official
documents. We download version v3.2 from Github and modify the
following files. First, we add a function getAttesterBlob() in MoP-
ubView to get attesterBlob by calling AdAttester Service. Then,
we modify adClicked() in MoPubView to call getAttesterBlob()
and store the attesterBlob value in AdConfiguration, which con-
tains the configuration information of MoPub SDK. Finally, in reg-
isterClick(), which is located in AdViewController.java and starts a
new thread to handle the click event(naming starting a new Activity,
such as browser or APP market), we update the mClickThroughUrl
using the attesterBlob in AdConfiguration. Thus, the attesterBlob
is added to the requesting URL. The impression tracking is easy
because there is an isolated file called ImpressionTrackingMan-
ager.java that manages the impression tracking and we just need
to instrument this file.

For each ad SDK, we only instrumented one version of it.
Among the instrumented ones, some ad fraud apps are useless and
discarded due to at least one of the three problems: (1) they cannot
display ad views in our board, probably because their fraud be-
havior has already been discovered by ad providers; (2) they can-
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Table 3: Fraudulent behavior among the tested apps

Fraud Type Fraud Apps
Frequent Ad Requests 154
Ads Outside Screen 23
Ads Covered/Hidden 63
Ads Too Small 9
Unaware Click 0

not run due to incompatibility in Android SDK version; (3) some
apps have self-integrity check and refuses to start after being instru-
mented. The right two columns of Table 2 show the SDK versions
we instrumented and the number of fraud apps we successfully ran.

We discarded a few ad SDKs including Madhouse, Adhub and
Energysource because most of apps that embedded these SDKs
also include some other ad SDKs which we have instrumented.
We manually double checked that the instrumentation for each app
worked correctly.

8.1.2 Online And Offline Analysis through Proxy
Since we do not have the original ad data, we set up a proxy

server to redirect all ad network packets of our device so that we
could get the ad data for testing the effectiveness of AdAttester.
Our requirement is that this test environment should not require
any modification to our ad framework AdAttester and existing ad
ecosystem. To meet this requirement, we use iptables to configure
network of target ad apps in our test device and redirect all ad net-
work packets to our own server for analysis by creating a daemon
with root privileged to execute the iptables scripts. The remote Ad-
Verifier components are deployed in the proxy server. The proxy
server will receive all the ad network packets and send them to
the AdVerifier, which will validate ad frauds of those requests and
write the result and behavior into a file for further analysis. Then
it will modify the ad packets by removing the attestation blob that
added by TZAttester in the mobile client and send them to the real
ad server.

Each fraudulent app was run twice, each for around 90 seconds
to 2 minutes. In the first run, we open the app and traverse all pages
to find pages that contain ads without clicking them. In the second
run, we reopen the app and click every visible ad we could see. In
both runs, we use an Android tool called hierarchyviewer to see
detail structure of hierarchy view of the app and manually find any
placement frauds and/or unaware user click frauds. After the two
rounds, we analyze the ad request log in our proxy server. Together
with the potential placement frauds, we compare the results derived
from AdVerifier with our manual analysis to determine if they were
accurately detected.

We also simulated a bot-like ad fraud by writing a script in the
test board to simulate clicks. Not surprisingly, as these bot-driven
clicks are not signed by AdAttester and thus can by easily identified
by the AdVerifier in the ad server.

8.2 Ad Fraud Findings
Fraudulent Behavior: Table 3 shows the fraudulent behavior

among our tested apps. Most of the apps send ad requests fre-
quently (at an interval of 3s to 20s), even when there are no ads
visible on the screen. However, most of these frequent ad requests
are not signed by TZAttester and thus will not be paid. We then
carefully read the developer manual of several ad SDKs and find
many of them provide an API to periodically fetch ads from ad
server. We conclude that most of these frequent fetching ad re-
quests are not intentional frauds, probably due to the carelessness
of misusing the provided API or app developers want to have differ-

Table 4: Benchmark scores using AnTuTu
AuTuTu Test Original Android AdAttester Android Overhead
Total Score 16322 16191 0.80%
2D Graphic 2280 2268 0.53%
3D Graphic 4580 4561 0.41%

ent ad content displayed to users to have a higher click rate. Besides
the frequent ad requests, a large portion of ad requests contain im-
pression frauds. The fraudulent behavior includes: using a floating
and user-friendly element (such as an image) to cover displayed ad,
putting an ad outside of the screen and a user needs to scroll up to
see the ad, setting the height of an ad to zero to hide the ad from
the user. These impression requests are signed by our TZAttester
and considered fraudulent by our AdVerifier.

Interestingly, we find some apps put several ad views from dif-
ferent ad SDKs to the same position and these ad libraries send im-
pression almost simultaneously but at most one of them is treated
legal by our AdVerifier. We also find several apps resize ad views
to too small to be recognized (since we don’t know how small a
view will be considered fraudulent by ad providers, we treat any ad
views smaller than 32*32 as illegal in our test). However, in our
tested applications we did not find apps that have unaware click
frauds and all clicks the ad AdVerifier has checked are triggered by
our clicks and legally signed by TZAttester.

False Positives: Among over 600 legal ad clicks, 13 of them are
considered illegal by the ad AdVerifier. Further analysis shows all
the 13 clicks are banner ad clicks and happened when banner ads
are changing their image content to another ad content with ani-
mation. When the content of an ad region is changing from one
ad image to another in progress with animation, the eigenvalue of
the ad region is quite different with all possible values we have in
our database and thus is considered invalid ad request. To elimi-
nate this kind of false positives, we suggest ad SDK providers to
disable click event dispatching when a banner ad is changing its ad
image with animation or more aggressively, they could disable ad
animation directly during changing content to another ad image. It
should be noted that all these false positives occurred only when an
ad view is changing its content from one ad to another and video
ads (i.e., video media and GIF image) will not have any false pos-
itive because all the possible eigenvalues of video ads are already
calculated and included during offline feature extraction phase.

There is also another possible source of false positive. If a user
happens to click an ad during the ad’s self-animation, a wrong
eigenvalue might be generated. A trivial solution is to simply dis-
able self-animation, which is not general enough. We propose an-
other solution called Double-Snapshot to detect and handle such
rare cases. During offline feature extraction phase, we calculate
eigenvalue of all the possible animating frame that an ad image may
have and discard some eigenvalues that could violate the ad guide-
lines (i.e., 80% of ad image is hidden). When a user clicks the ad,
TZAttester will get two snapshots: the first one on the touch-down
event and the second on the touch-up event. TZAttester then de-
tects “click in the middle of self-animation” by the two snapshots.
If that is the case, TZAttester will use the eigenvalues of animation
set in AdVerifier to verify the legality of the ad click.

9. PERFORMANCE EVALUATION

9.1 Ad View Tracking Overhead
We evaluate the performance impact of tracking ad views on ap-

plications. We use a popular Android benchmarking tool named
AnTuTu [8], which runs a series of tests and provides a score re-
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Table 5: Input latency comparison

Original Android Android with AdAttester
66.92 ms 66.94 ms

port. We run the benchmark 10 times, each time with a reboot
to eliminate impact caused by other factors (i.e., different system
workload), then calculate the average score. Table 4 shows the per-
formance data (higher score is better). Most of the impact from
AdAttester is in the view system of Android graphics and other
parts such as SDCard, memory access, float operation and inte-
ger operation are not affected by AdAttester. Thus, we omit those
scores from the final results. From the result, it can be seen that
AdAttester imposes almost no overhead on 2D graphics (0.53%)
and 3D graphics (0.41%). This is because the access of display
controller (read and write operation) is mostly done at system starts
and will not be frequently updated in latter usage.

9.2 Input Event Handling Latency
The input latency is calculated by the execution time from the

moment an input interrupt comes to the point that the input data is
received by applications. Specifically, the input latency is the inter-
val between an input interrupt which is generated by a user’s touch
input arrives at the interrupt handler in ft5x0x_ts_interrupt() and
the touch input data is received by the applications through touch
handler called onTouchEvent() in Android app. The extra input la-
tency introduced by AdAttester includes two world switches, some
ad states checking and shared data copy. World switch from se-
cure world to normal world costs 1858 cycles and switches from
normal world to secure world costs 2041 cycles. We measured the
input latency of AdAttester and the latency running in the original
Android for 50 times separately and calculated the averaged value.
Evaluation result in Table 5 shows that there is almost no overhead
incurred by putting input device driver to secure world.

9.3 Ad Network Traffic
We evaluate the increase on ad network traffic using 20 apps

embedded with different ad SDKs from the top list in Google Play.
First, we run these apps for 2 minutes normally without clicking
ads. Second, we run them for 2 minutes and click every ad the app
holds. Table 6 shows the results. The network traffic increase is less
than 3.3%, which is very small compared to the original ad network
traffic because the only traffic increase is from tracking impressions
and clicks, which is quite small comparing to the overall traffic.
During tracking ad impressions and clicks, the additional network
traffic for one attested packet is never larger than 35% and mostly
less than 20%.

9.4 AdVerifier Response Latency
AdVerifier processes ad attestation requests and we measured the

introduced performance slowdown by simulating 100 to 1,500 con-
current user requests using Apache Benchmark [1]. The test was
done in a local network environment and we used SHA1 hash algo-
rithm to calculate the hash of message blob and 1024-bit modulus
for RSA signature. The number of public keys stored in the server
is 500,00. Figure 9 shows the service latency (in ms) results with
and without AdVerifier. The average latency increased is 0.04 ms,
which should be an acceptable overhead.

9.5 Other Evaluation
Time Cost to Generate Attestation Blob in AdAttester: Gen-

erating an attestation blob is computing-intensive and we used
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Figure 9: AdVerifier response latency compared with ad service without
AdVerifier in a 2-core server. We used SHA1 for hashing and 1024-bit
modulus for RSA signature

Table 7: Duration for getting an attestation blob

RSA Key Size (byte) Duration (ms)
512 0.68
1024 3.73
2048 25.56

SHA1 hashing algorithm and RSA signing with different size of
keys for generating attestation blob. The hashing time is negligible
compared with RSA signing. Table 7 shows the evaluation result.
AdAttester uses an asynchronous notification for generating attes-
tation blob and ad libraries could use batching to attest ad requests
if this overhead matters. The above results were got using software-
only encryptions and this duration could be further reduced using
hardware accelerated RSA encryption available in SoC, which will
be our future improvement work.

Implementation Complexity and TCB Size: The TCB of
AdAttester in the mobile client is the software running in the secure
world. The secure OS, T6, contains about 6,000 LoC. TZAttester
is less than 600 LoC. The secure input driver and display peripheral
operation handling contain about 800 LoC. The TCB size in total
is less than 7,400 LoC, which is very small. In the normal world,
the implementation of tracking ad views in Android view system
contains 164 source lines of java code distributed in two files and
AdAttester Service has 325 source lines of Java code. In the remote
AdVerifier, the feature extraction program contains 234 source lines
of Python code and AdVerifier online checking contains 467 source
lines of PHP code in our prototype.

10. DISCUSSIONS AND FUTURE WORK
Relaxing Threat Model of AdAttester by Trusting OS: While

AdAttester could securely fight against malicious application de-
velopers and botnets, it requires the availability of per-device key,
which may prevent AdAttester from being widely adopted. The
main purpose of using device key is to prove that the request comes
from a real mobile device which is hard to be compromised (using
TrustZone) instead of a rogue device. Directly relaxing our threat
model by trusting the OS and putting the secure TZAttester to nor-
mal OS could solve this problem, but comes at cost: it may become
a little hard to defect frauds from botnets. This problem could be
mitigated by using software-based attestation [36] [38], which will
be our future work to explore.

Attest Ads to Developers: Currently, AdAttester mainly con-
sider the case of mobile ad frauds by the developers and botnets.
One interesting question is how to attest ad impressions and clicks
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Table 6: Network traffic increase

App Name Ad SDK
Total
/bytes

Impression
/bytes

Click
/bytes

Impression Increase
/bytes, percentage

Click Increase
/bytes, percentage

Overall Increase
/bytes, percentage

Jumper

Inmobi
Mobclix
Smaato

63277 3728 1991 1280, 34.3% 128, 6.4% 1408, 2.2%

English Norwegian Google Ads 17245 1314 6071 320, 24.4% 256, 42.8% 576, 3.3%

Solitaire

Inmobi
Google Ads
Millennialmedia

42495 3989 4378 960, 24.1% 128, 19.7% 1088, 2.6%

Big Snake

Mopub
Airpush
Google Ads
Millennialmedia

25398 2760 876 640, 23.2% 128, 14.3% 768, 3.0%

Despicable Me
Skills Google Ads 11957 1235 1573 160, 13.0% 128, 14.3% 288, 2.4%

Electric Bliss
Wallpapers

Inneractive
Google Ads
Millennialmedia

49220 2357 1140 480, 13.0% 128, 14.3% 608, 1.2%

Zimane Kurdi Google Ads 37144 2357 4024 480, 20.4% 128, 7.1% 608, 1.6%

Alien Destroyer
Google Ads
Airpush 35188 2358 6343 480, 20.4% 256, 17.2% 736, 2.1%

Indian Newspapers

Inneractive
Google Ads
Millennialmedia

97292 7973 1137 1600, 20.1% 128, 9.4% 1728, 1.8%

Quiz des
Communestet Google Ads 59806 4829 2111 960, 19.9% 128, 11.6% 1088, 1.8%

to the developers. Though many ad providers are relatively reputed,
this research question is still relevant since the ad providers may
also have the incentives to deceive the developers in order to pay
less. Considering mutual distrust between ad providers and de-
velopers, AdAttester could be further extended to send collected
proofs (could be summary stats) to developers such that they can
use the proofs to attest the ad providers if developers found signifi-
cant deviation in their revenues. We leave this as our future work.

Multiple Ads on One Page: Currently, as AdAttester relies
on the commodity software stack to know which ad is current on
screen, AdAttester cannot detect mobile ads that violate the ad pol-
icy of the ad provider, which usually only allow one ad on one page
to minimize impact on users’ experiences. Fortunately, this may
still be distinguished by the ad providers though statistical analy-
sis, which we will study in our future work.

11. RELATED WORK
AdAttester is motivated by the urgent need of a verifiable ap-

proach for ad impression and clicks; it differs from prior work in
that it is the first to provide verifiable mobile ad attestation to reli-
ably detect mobile ad frauds online.

Mobile Ad Separation There are several systems focusing on
restricting the privilege of advertising code in the mobile client.
AdSplit [37] puts the advertisement into a separate activity and

passes all requests from the activity onto a newly introduced adver-
tisement service. AdDroid [34] encapsulates the ad libraries into
Android framework and introduces a new advertising API to allow
applications to show ads without requesting privacy-sensitive per-
missions. AFrame [46] isolates ad libraries by covering not only
the process and permission isolation, but also the display and input
isolation.

Ad Privacy Preserving. Another line of research on advertise-
ment is to protect users’ private information. Privad [22] provides
a faster and more private advertising framework by using a client
to locally serve ad and introducing a dealer server to separate ad
requests in web advertising. Adnostic [39] proposes client-side
software that provides target ads to a user without compromising
user privacy. ObliviAd [11] uses secure hardware (i.e., secure pro-
cessor) in the ad server for private information retrieval aiming at
providing two privacy goals: profile privacy and profile unlinka-
bility. These systems are complementary to AdAttester and may
further improve the privacy of AdAttester.

Web Advertising Fraud. Ad fraud has been studied exten-
sively for years in online web advertising. Daswani [17] gives an
overview on techniques of web ad frauds; Miller et al. [31] summa-
rize techniques and innovations of today’s clickbots. Prior work on
detecting bot-driven click frauds mainly analyzes query logs [44]
in search engine to aggregate ad traffic across IP addresses [30],
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or through complex analysis from peer-to-peer measurements and
command-and-control telemetry [33]. NAB [23] uses TPM to at-
test user actions by analyzing mouse and keyboard activity to iden-
tify and certify human-generated activity, thus filter out bot-driven
clicks and spam. However, NAB doesn’t address the problem of
ad verification and the approach they took to deal with bot-driven
clicks isn’t feasible for mobile devices.

Mobile Advertising Fraud. Though ad frauds have been rel-
atively well-studied in desktop environments, there are very few
research studies on mobile ad frauds. Existing approaches mainly
focus on offline testing to detect ad frauds. DECAF [26] charac-
terizes ad fraud in mobile apps and proposes offline techniques to
detect display fraud on Windows-based mobile platforms by using
automated testing. The techniques they used are analyzing the sta-
tus of ad UI offline to determine whether ads are hidden, obfuscated
or stacked. MAdFraud [16] studies mobile ad fraud perpetrated by
Android apps and identifies two kinds of fraudulent behavior: re-
questing ads in the background and clicking on ads without user
interaction. They further developed an analysis tool to automati-
cally trigger and expose ad fraud in Android emulators. However,
the intrinsic limitation of offline testing on coverage and the lack of
a reliable way to distinguish benign from fraud ads make it hard for
such approaches to detecting sophisticated means of doing frauds,
especially bot-driven frauds. In contrast, the verifiable nature of
AdAttester makes it cryptographically reliable to identify ad frauds.

Attestation Using TrustZone. There are several systems that
use TrustZone to provide attested data or actions. VeriUI [27] runs
a Linux in TrustZone secure world to provide an attested login for
users, which demonstrates that a responsive UI could be provided
with a small attack surface. The attested login augments user cre-
dentials with a certificate describing the software and hardware that
handled the credentials. TrustedSensors [28] uses TrustZone to at-
test sensors data and provides two sensor abstractions, namely sen-
sor attestation and sensor seal. SIMlets [35] splits the bill for mo-
bile data using TrustZone and allows content providers to pay for
the traffic generated by mobile users visiting their websites or using
their services. TrustUI [25] uses TrustZone to provde trusted paths
between mobile user and mobile device as well as between mobile
device and remote service without trusting the device drivers.

12. CONCLUSION
This paper argued that the lack of verifiable ad attestation proofs

is a key obstacle to defend against mobile ad frauds. To this end,
this paper described AdAttester, a system that effectively detects
and prevents well-known ad frauds. AdAttester is enabled by two
primitives, namely verifiable display and unforgeable clicks, which
securely attests to the ad sever whether an impression or a click is
actually delivered to or conducted by a real user. The two prim-
itives have been implemented using ARM TrustZone to exclude
the commodity software stack out of the TCB. Based on these two
primitives, AdAttester successfully checked the legality of every ad
click and impression request by determining whether the ad request
violates predefined rules. We have implemented AdAttester on a
Samsung Exynos 4412 board, which runs Android as the mobile
operating systems. Evaluations with a set of mobile ad frauds that
use all well-known ad SDKs confirmed that AdAttester can reliably
detect ad frauds, while incurring small performance overhead and
little impact on user experience.
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