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Abstract

Large-scale graph-structured computation usually exhibits iterative
and convergence-oriented computing nature, where input data is
computed iteratively until a convergence condition is reached. Such
features have led to the development of two different computation
modes for graph-structured programs, namely synchronous (Sync)
and asynchronous (Async) modes. Unfortunately, there is currently
no in-depth study on their execution properties and thus program-
mers have to manually choose a mode, either requiring a deep un-
derstanding of underlying graph engines, or suffering from subop-
timal performance.

This paper makes the first comprehensive characterization on
the performance of the two modes on a set of typical graph-parallel
applications. Our study shows that the performance of the two
modes varies significantly with different graph algorithms, parti-
tioning methods, execution stages, input graphs and cluster scales,
and no single mode consistently outperforms the other. To this
end, this paper proposes Hsync, a hybrid graph computation mode
that adaptively switches a graph-parallel program between the two
modes for optimal performance. Hsync constantly collects execu-
tion statistics on-the-fly and leverages a set of heuristics to predict
future performance and determine when a mode switch could be
profitable. We have built online sampling and offline profiling ap-
proaches combined with a set of heuristics to accurately predict-
ing future performance in the two modes. A prototype called Pow-
erSwitch has been built based on PowerGraph, a state-of-the-art
distributed graph-parallel system, to support adaptive execution of
graph algorithms. On a 48-node EC2-like cluster, PowerSwitch con-
sistently outperforms the best of both modes, with a speedup rang-
ing from 9% to 73% due to timely switch between two modes.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Distributed programming

Keywords Distributed Graph-parallel Computation; Computa-
tion Modes
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1. Introduction

Large-scale graph-structured computation has emerged to address
a number of machine learning and data mining (MLDM) prob-
lems in a wide range of areas, including social computation,
web search, natural language processing and recommendation sys-
tems [7, 19, 29, 34, 40, 44, 47]. As the concept of “Big Data”
gains increasing momentum, it is now common to run parallel and
distributed MLDM algorithms on a cluster of machines to accom-
modate the increasing data size and problem complexity. This has
driven the design and development of many graph-structured com-
putation systems, including Pregel [31] and its open-source alterna-
tives [2, 3, 37], GraphLab [18, 30], Cyclops [9] and GraphX [20].

Many graph computation systems usually take the “think as a
vertex” philosophy [31] by coding graph computation as vertex-
centric programs to process vertices in parallel and communicate
along edges. Typically, many MLDM problems usually exhibit it-
erative computation nature by iteratively computing (e.g., refining)
input data until a convergence condition has been reached. Such
iterative and convergence-oriented computation have driven the de-
velopment of two execution modes: 1) synchronous (Sync), which
synchronously computes over a set of active vertices in each itera-
tion (i.e., super-step) and propagates the updates to other vertices
at the end of each iteration in a batch. A vertex can only see up-
dates from its neighboring vertices after the end of the iteration; 2)
asynchronous (Async), which provides no explicit synchronization
points but allows the state of a vertex to be visible to its neighboring
vertices as soon as possible.

Prior theoretical analysis on graph algorithms has shown that
many graph algorithms can be executed both synchronously and
asynchronously [6, 41]. Hence, many state-of-the-art graph-parallel
systems, such as PowerGraph [18], Trinity [38], GRACE [42]
and PowerLyra [10] have been built with support for both execu-
tion modes by separating computation logic and scheduling orders.
Hence, the same graph algorithm can run in both Sync and Async
modes. This flexibility, however, also forces programmers to either
blindly select a mode for execution or experience a long learning
curve to understand the internals of underlying graph engines. Fur-
ther, for most graph algorithms, different stages in a single execu-
tion demand different modes to achieve optimal performance. This
leads to either unwanted complexity to users, or suboptimal perfor-
mance, or both. Worse even, choosing a wrong mode may cause a
graph algorithm to run infinitely without being converged.

This paper presents the first comprehensive study on the execu-
tion properties of the two modes, by using a state-of-the-art graph-
parallel system (i.e., PowerGraph [18]) supporting both modes. Un-
like conventional wisdom that Async mode generally has superior
performance [6, 30] than Sync mode, our study shows that the two



modes exhibit different properties such as communication, conver-
gence and resource utilization, which lead to different performance
not only across various graph algorithms but also within differ-
ent execution stages of the same graph algorithm. For example,
Sync mode can group messages together to reduce communication
cost and favors I/O-bound algorithms, while Async mode may con-
verge faster and favors CPU-bound algorithms. As a concrete exam-
ple, PageRank [7] performs much better in Sync mode, while LBP
(Loopy Belief Propagation) [19] performs notably better in Async
mode and Graph Coloring [17] cannot even converge under syn-
chronous execution. More interestingly, Async mode performs very
good in the beginning and the end of SSSP (Single-Source Short-
est Path) [5], but Sync mode has superior performance during the
middle of execution, due to the effect of execution behavior on con-
vergence speed, computation and communication load in different
execution stages. Finally, configurations like input data size, scale
of clusters and graph partitioning approaches all impact the effi-
ciency of the two modes. Based on our study, this paper provides a
general guideline on the properties of the two modes'.

To gain optimal performance while insulating programmers
from tedious low-level details, this paper further proposes Hsync,
a hybrid graph execution mode that adaptively switches execution
between Sync and Async modes. PowerSwitch constantly collects
execution statistics like throughput, active vertices and convergence
speed, and leverages online sampling, offline profiling and a set of
heuristics to accurately predict optimal mode switch points.

PowerSwitch is built with an efficient approach to allowing
fast and seamless mode switches, while preserving the consistency
of graph states. The key of PowerSwitch is allowing an efficient
sharing of states between the two modes, enforcing a safe point for
consistent switch states and providing automatic mode switch at the
appropriate time.

We have implemented a full-fledged version of Hsync based
on the state-of-the-art PowerGraph [18] framework. Our system,
called PowerSwitch?, is implemented as a separate engine and
thus fully retains compatibility with existing applications in Pow-
erGraph. A comprehensive performance evaluation using four typ-
ical graph algorithms, namely PageRank, SSSP, LBP and Graph
Coloring, shows that PowerSwitch can accurately predict future ex-
ecution performance and make a near-optimal decision of mode
switches. The efficient mode switches and highly accurate predic-
tion not only makes PowerSwitch enjoy the best of the two execu-
tion modes, but also leads to notable performance boost over the
best performance of Sync and Async modes, ranging from 9% to
73% (from 9% to 123% over Sync and from 30% to 183% over
Async). The mode switch time is also small (around 0.1s and 0.6s
from Sync to Async and vice versa) even for a graph with several
millions of vertices and billions of edges.

This paper makes the following contributions:

e The first comprehensive study on the performance characteris-
tics of Sync and Async modes on different graph algorithms, par-
titioning methods, execution stages, graph and machine scales
(Section 2).

e The Hsync graph computation mode that enjoys the best of both
worlds of the two modes, by adaptive switching between Sync
and Async modes (Section 3 and 4).

e An algorithm to determine which mode is efficient combined
with optimized online sampling, offline profiling and a set of
heuristics (Section 5).

I'We choose PowerGraph because it is a best-known distributed graph-
parallel system that has already been commercialized.

2 The source code and a brief instruction of how to use PowerSwitch are at
http://ipads.se.sjtu.edu.cn/projects/powerswitch.html

Table 1: A comparison between Sync and Async mode

| Sync | Async
Properties
Communication Regular Irregular
Convergence Slow Fast
Favorites
Algorithm I/O-intensive CPU-intensive
Execution Stage | High Workload | Low Workload
Scalability Graph Size Cluster Size

e A full-fledged implementation based on PowerGraph and a
thorough evaluation that demonstrates the performance gain of
PowerSwitch (Section 7).

2. Performance Characterization of Different
Execution Modes

Many graph-parallel systems like Pregel [31], GraphLab [30] and
PowerGraph [18] follow the “think as a vertex” philosophy and
model a graph algorithm as a vertex-centric program. Specifically,
a vertex program P runs on a(n) (un)directed graph G = {V,E, D}
and computes in parallel on each vertex v € V. Users can associate
arbitrary vertex data D, where v € V, and edge data D, ; where
(s,t) € E. The graph execution engine controls the scheduling
of computation on vertices, either synchronously (Sync) or asyn-
chronously (Async), through making updates of D,, or D, ; visible
to other vertices at different times and activating the vertices to do
the computation.

This section briefly introduces the two execution modes combin-
ing with their different emphases in implementation, and then char-
acterizes the execution properties resulting from these emphases
using a state-of-the-art graph engine (i.e., PowerGraph [18]). As
the graph algorithm as well as the source code are the same for
both modes, it is possible to perform an “apple-to-apple” compar-
ative study. Base on the study, this section summarizes the impact
of different modes on different graph algorithms, machine scales,
graph properties, execution stages, and convergence speed.

2.1 Execution Modes of Graph-parallel Systems

State-of-the-art graph-parallel systems usually separate computa-
tion logic from scheduling order. Hence, the major difference be-
tween Sync and Async modes is the scheduling order of vertex com-
putation, which provides different visibility timing of updated val-
ues for subsequent vertex computation. These differences in visi-
bility and dependency result in various technical choices for the
efficient implementation of the scheduling. Hence, different execu-
tion modes may have different execution properties, as summarized
in Table 1 according to our study.

Algorithm 1: Synchronous Mode

Input: Data Graph G = (V, E, D)
Input: Initial active vertex set V,

1 while iteration < max_iteration do

2 if V, == 0 then break
3

4 vV, 0

5 foreach v € V, do

6 \\ A <+ compute (v)

7 V.« V,UA

8 Vo V),

o | iteration ++
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Figure 1: A comparison of execution flows between different modes.

Synchronous mode (Sync), presented in Algorithm 1, abstracts
a graph algorithm as a sequence of iterations (i.e., super-step), in
which all active vertices in V, execute vertex programs (compute)
in parallel using the values of neighboring vertices updated in the
previous iteration. Activated vertices (A) are saved for the compu-
tation in the next iteration. The communication for updating vertex
data between workers employs batched message passing, which is
similar to the Bulk Synchronous Parallel (BSP) [41] model.

The upper part of Figure 1 illustrates the execution flow of Sync
mode. All vertices in the sample graph are executed in a fixed
order within each iteration. A global barrier between consecutive
iterations ensures that all vertex updates in current iteration are
simultaneously visible in the next iteration for all workers. This
mode prefers to handle larger graphs under limited computing
resources. The delay of visibility and synchronized stages make
it possible for batched data update and well-optimized network
message dispatching with high resource utilization.

Table 1 illustrates the major properties and favorite scenarios
of Sync mode. First, since the batched communication messages
make network bandwidth better utilized, Sync mode favors I/O-
intensive algorithms (e.g., PageRank [7]) in which the computation
on each vertex is lightweight. Second, iterative computation con-
verges asymmetrically in many graph algorithms, which implies
that a large number of vertices will rapidly converge in a few it-
erations, while the remaining vertices will converge slowly over
many iterations [15]. Furthermore, the number of active vertices
may vary during execution. For example, the number of active ver-
tices in Single-Source Shortest Path (SSSP) [5] increases and then
decreases along its execution. Sync mode prefers execution stages
at which there are a large number of active vertices and provides
better scalability with the increase of graph size. This is because
the overhead in each iteration caused by the global barrier can be
largely amortized. Finally, Sync mode is not suitable for graph al-
gorithms requiring coordination of adjacent vertices. For example,
Graph Coloring [17] aims at assigning different colors to adjacent
vertices using a minimal number of colors. In a greedy implementa-
tion, all vertices simultaneously pick minimum colors not used by
any of their adjacent vertices. The greedy algorithm for graph col-
oring may not converge in Sync mode, since adjacent vertices with
the same color will simultaneously pick the same colors back and
forth according to the same previous color.

Algorithm 2: Asynchronous Mode

Input: Data Graph G = (V, E, D)
Input: Initial active vertex set V,

1 whileV, ! = 0do

2 v — dequeue (V,)
3 A < compute (v)
4 Vo < Vo, UA

In asynchronous mode (Async), the computation on a vertex
is scheduled on the fly, and uses the new state of neighboring
vertices immediately without a global barrier. Algorithm 2 shows

the semantics of Async mode engine, which dequeues an active
vertex v from scheduling queue V, and runs vertex computation
on it. Newly activated vertices A are enqueued to V.

The lower part of Figure 1 illustrates the execution flow of
Async mode. Compared to Sync, there is no global barrier to syn-
chronize vertex execution on workers, and the update on vertex is
visible to neighboring vertices as soon as possible. Async mode is
designed for timely visibility of update, and emphasizes the fast
convergence speed under sufficient hardware resources. In addition,
Async mode could employ pipeline of vertex processing to hide
the network latency. However, since the message communication
in Async mode happens at any time between different machines, it
is difficult to batch enough messages to amortize network cost and
any delay of batched messages will hurt the timely visibility of up-
dates. Worse even, the mixed read and write for vertex data also
require to maintain the atomic vertex data update, which causes
significant scheduling overhead.

Table 1 also illustrates the major properties and favorite scenar-
ios of Async mode. First, Async mode can accelerate the conver-
gence of program [16]. It prefers CPU-intensive algorithms (e.g.,
Loopy Belief Propagation (LBP) [19]), in which the piped vertex
computation can fully hide communication cost in a lack of mes-
sage batching. Second, overhead of execution in Async systems is
mainly from the lock contention on a vertex during vertex com-
putation, which depends on the number and degree of active ver-
tices. The increase of active vertices with their edges on multiple
machines also results in a heavy contention of network resources.
Since the communication in Async mode could happen at any time,
it is difficult to make a full utilization of network resources. There-
fore, Async mode has better performance on the stage of execution
with less amount and fewer degree of active vertices than those
of Sync mode, and provides better scalability with the increase of
machines. Finally, some graph algorithms like Graph Coloring and
Clustering based on Gibbs Sampling [30], may only converge in
Async mode.

2.2 Performance of the Two Modes

Since Sync and Async modes have different favorite scenarios, us-
ing a single mode can hardly achieve optimal performance for dif-
ferent scenarios. In the following, we will use PowerGraph [18],
a well-known distributed graph-parallel framework that provides
both Sync and Async modes, to illustrate performance variation of
the two modes with typical algorithms and configurations.

Graph Algorithms: Since Sync mode has more efficient com-
munication but slower convergence than that of Async mode, the
performance of various algorithms on different modes is hard to
predict. In Figure 2(a), we evaluate three graph algorithms (Page-
Rank, SSSP and LBP) on 48 machines using Sync and Async modes.
All performance results are normalized to the Sync mode. Sync
mode outperforms Async mode by 2.60X for PageRank with Twit-
ter Follower graph [26]. In contrast, Async outperforms Sync by
2.86X and 1.43X for SSSP with RoadCA [28] and LBP with 3-
million pixels [30] respectively. Hence, using an inappropriate exe-
cution mode may result in a significant performance loss.

Graph and Machine Scales: Even for the same graph algo-
rithm, different configurations can also lead to different choices of
execution modes. As shown in Figure 2(b), the execution time of
Async mode for LBP algorithm on a 3-million vertex graph rapidly
decreases with the increase of machines. The convergence point
is on 36 machines, and Async outperforms Sync by 1.43X on 48
machines. In contrast, the increase of execution time using Sync
mode for LBP on 48 machines is obviously slower than Async mode
with the increase of graph size, and the inflection point is on the 6-
million pixels graph (Figure 2(c)). In Figure 2(d), we evaluate the
performance of the LBP algorithm on a 3-million pixels graph us-
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ing various graph partitioning algorithms. The replication factor is
4.79, 2.18, and 4.04 using Random, Grid [25] and Oblivious [18]
partitioning accordingly. All performance results are normalized
to the Sync mode. Sync outperforms Async by 1.89X and 1.96X
using Random and Oblivious partitioning respectively. In contrast,
Async outperforms Sync by 1.43X using Grid partitioning. Hence,
for same algorithm, such as the CPU-intensive algorithm LBP, it is
still difficult for the user to judge whether the algorithm of vertex
computation is complicated enough under certain configuration to
make Async mode outperform Sync mode.

Execution Stages: Even with the same algorithm and config-
uration, using only a single-mode may only achieve suboptimal
performance, because different execution stages of a single algo-
rithm also require different modes. Figure 3(a) shows the normal-
ized throughput of Sync and Async for SSSP using the RoadCA
graph on 12 machines®. In SSSP, only the source nodes are active
initially, and the number of active vertices rapidly increases with
the propagation of shortest distance. When most vertices have the
shortest distance, the number of active vertices would decrease to
none. Note that the vertex computation throughput is normalized
with the speed of convergence of Async and Sync modes for SSSP.
Async mode has relatively higher throughput in the initial and final
stages, while Sync mode is with superior performance in the middle
stage.

Convergence Speed: Some algorithms hardly converge in Sync
mode due to conflicts in vertex computation and can only converge
in Async mode (e.g., Graph Coloring). However, Async mode may
result in sub-optimal performance due to slow computation. In
contrast, Sync mode can accelerate convergence in certain stages
but cannot finally converge afterward. Such a conflict between
efficiency and convergence makes it hard or impossible to embrace
both under a single mode. Figure 3(b) illustrates a comparison
of the progress of Sync and Async modes for Graph Coloring
algorithm [17] with the Twitter Follow graph [26].

In short, under a combined effect of varying degrees from vari-
ous factors (e.g. algorithm design, configuration, properties of dif-

3We only use 12 machines as SSSP is essentially not scalable with the
increasing number of machines.

ferent execution stages), the execution mode can be improved or it
might not even be known without executing the program.

Hence, our system, PowerSwitch, attempts to gain optimal per-
formance by employing right mode of different execution stages,
with the following challenges:

e Correctness in Semantics: When combining Sync mode with
Async, the dependency of data update changes between different
scheduling. The consistency level should be illustrated to define
supported algorithms and ensure the correctness.

e Efficient Switch: The switch between different modes involves
different data structures in the scheduling implementation and
the maintenance of data consistency. Besides, the efficient state
conversion with low overhead is necessary to get enough benefit
from a better mode.

e Accurate Switch: The uncertainty of the better mode without
actual execution has been presented above. With the sampling
and statistics during program execution, some quantified strat-
egy should be defined to compare the efficiency of the two
modes.

mode switch

SYNC > ASYNC

batched
-> new state

------ » new state

mode swnch

Figure 4: An example of execution flows on Hsync mode.

3. Hybrid-synchronous Execution

This section introduces Hsync, a hybrid-synchronous execution
mode, which embraces the best of both worlds in Sync and Async
modes by adaptively switching graph computation between the two
modes. Hence, Hsync insulates users from being concerned with
the underlying execution engines.

3.1 Graph-parallel Abstraction and Mode

Hybrid-synchronous (Hsync) mode shares the same graph abstrac-
tion as Sync and Async modes of graph-parallel systems, including
graph organization and programming interface, as well as graph
computation logic. The major difference lies in how Hsync sched-
ules vertex computation and when the updated vertex and edge data
will be visible for the following computation. Like Sync and Async
modes, the data graph is partitioned to multiple nodes, and ver-
tices are replicated to provide local cache for shared memory ac-
cess in computation. Hsync uses the “think as a vertex” philosophy
to provide vertex-centric interfaces and runs a user-defined vertex-
program P on a sequence of vertices in loop, which updates the



Algorithm 3: Hybrid-synchronous Mode

Input: data graph G = (V,E, D)
Input: initial active vertex set V
Input: parameters for predicting O

mode < init_mode (G, V, O)
while V, | = (0 do

AR RN

if is_sync(mode) then
sync Vo)

5 mode < eval (mode)
6 if is_async (mode) then
7 | mode_switch(Vq, 4SYNC)
8 else
9 async (V)
10 mode < eval (mode)
11 if is_sync(mode) then
12 |_ mode_switch(V,, SYNC)

state of vertices through interaction with neighboring vertices. Un-
like Sync and Async modes, Hsync splits a sequence of executions
into multiple time intervals (epochs) and periodically evaluates the
potential benefit from a mode switch in the next epoch. The speed
of the mode in use is monitored, while that of future modes is pre-
dicted. Within each epoch, Hsync adopts Sync or Async mode to
schedule and update vertices.

Figure 4 illustrates two sample execution flows on Hsync mode.
The upper part starts from Sync mode and then switches to Async
mode, and the lower part starts from Async mode and then switches
back to Sync mode. It is important to note that the mode switch is
transparent to a graph algorithm and may happen multiple times
during a single execution.

3.2 Execution of Hsync Mode

The execution of Hsync mode follows the semantics in Algorithm 3.
According to some initial information, Hsync engine first predicts a
suitable initial mode to start vertex computation (line 1). The initial
information contains input graph properties, initial state of graph
algorithm and parameters for predicting. While there are active
vertices remaining in V,, Hsync executes an epoch in synchronous
(line 4) or asynchronous (line 9) semantics. The length of an epoch
is irregular and depends on the condition to switch of the two
modes. Hsync forms an epoch from a few iterations in Sync mode,
and several seconds in Async mode. The epoch-based synchronous
and asynchronous execution is similar to the original semantics in
Algorithm 1 and Algorithm 2, except the loop condition. Hsync re-
evaluates the mode for the next epoch at the end of current epoch,
and initiates a mode switch if necessary.

3.3 Semantics of Hsync

Even though Hsync switches execution modes between Sync and
Async, it still maintains the same consistency level with the ver-
tex consistency [18, 30] in asynchronous graph-parallel execution,
which supports vertex-level atomic update. Though there are also
other more strict consistency modes like edge consistency and full
consistency, vertex consistency is the most generally used consis-
tency level of Async mode with a faster convergence speed. For
example, though GraphLab [30] raises the notion of edge consis-
tency and full consistency, the full consistency is never supported
and edge consistency is rarely used; almost all graph algorithms use
vertex consistency in GraphLab.

Here, we informally show that Hsync retains the vertex consis-
tency by mapping the synchronous scheduling order to a special
case in asynchronous scheduling. First, we assume there is a par-
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tition that divides all adjacent vertices of the input graph onto dif-
ferent machines. This is possible if there are more machines than
neighboring vertices. At the beginning, there will be a few vertices
that have been activated. In Async mode with vertex consistency,
if the updates of current active vertices are broadcasted with delay
longer than the total computation time of all the local active ver-
tices, no latest vertex data for neighbor vertices will be observed.
In this case, the local computation will continue execution with a
consistent but stale data of its neighbors, which is equivalent to an
iteration in Sync mode. Hence, Sync mode can be regarded as a
special case of Async mode in vertex consistency, and the hybrid
scheduling of the two modes could ensure at least the same seman-
tic as Async mode.

4. Supporting Mode Switch

The key to Hsync’s performance is supporting fast and consistent
switches between two execution modes. This section describes the
graph execution engine to accommodate the two modes simultane-
ously and to support efficient mode switches.

4.1 Architecture

Figure 5 illustrates a high-level overview of PowerSwitch. Power-
Switch runs two execution modes in a single graph engine and al-
lows adaptive switches between the two modes. Before running a
graph algorithm, the performance sampler collects some execution
statistics of a new graph algorithm on PowerSwitch by running an
algorithm with very small input for several seconds. Such statistics
will be stored into a knowledge base in PowerSwitch for later use
by the performance predictor (Section 5). During graph execution,
the predictor estimates the key performance metrics of the current
mode, and predicts the performance of algorithms running on Sync
and Async modes periodically (Section 5). When a mode switch is
predicted to be profitable, the mode switcher will perform dynamic
switches between Sync and Async modes.

4.2 Mode Switch

The key in switching execution modes is ensuring consistency of
graph states. There are two execution modes coexisting in a single
graph engine and different execution modes have their own states,
including graph structures, scheduling queues and intermediate
messages. A naive approach would be maintaining two separate
copies of state for different execution modes and performing a
state transformation between the two copies during a mode switch.
However, such an approach will be extremely slow and complex,
due to the amount of state to be transformed and the difficulty in
writing the state transforming functions.
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PowerSwitch takes a hybrid design by sharing as much state as
possible between the two modes and only transforming the portion
of the state that are different. Specifically, the graph structure state,
including vertices, edges and their values, is shared between two
execution modes. PowerSwitch only needs to ensure that such
state is consistent after a mode switch such that a new mode can
directly continue execution upon the previous execution mode’s
graph state. PowerSwitch could also have used a shared schedule
queue for two execution modes to accelerate mode switch speed.
However, scheduling for Sync mode is bulk-synchronous and that
for Async requires discriminated priorities, and thus the essential
differences of scheduling in two modes impede efficiently sharing
of the schedule queue.

As shown in Figure 6, to allow consistent transformation of
schedule queues, PowerSwitch uses two bitmaps in Sync mode to
identify active vertices in current and next iterations accordingly.
The bitmaps are updated when a message activates a vertex. After
an iteration, all messages have been processed and two bitmaps
in each worker are flipped. For Async mode, a global priority (e.g.,
FIFO) queue is used to schedule active vertices. Each worker thread
has a local pending queue to save the stalled active vertices, which
may wait for the response of messages from neighboring vertices.

To guarantee consistency during a mode switch, Hsync ensures
that the graph state is consistent and no pending vertex computa-
tion and messages are in progress. During a switch from Sync to
Async mode, all active vertices in the bitmap for the next iteration
are imported to a global queue of Async mode. During a switch
from Async to Sync mode, PowerSwitch enforces a safe point by
prohibiting all worker threads from fetching new vertices from the
global queue and then starts importing all active vertices in the
global queue to the bitmap of current iteration in Sync engine until
all computation on pending active vertices has been done.

4.3 Fault Tolerance

Both Sync and Async modes have their own fault tolerance support
using distributed checkpointing. However, Sync mode generates
synchronous snapshots during global barriers, but Async mode gen-
erates incremental asynchronous snapshots based on the Chandy-
Lamport snapshot algorithm [8] at fixed intervals. Hsync can follow
the same checkpointing and snapshot mechanisms to support fault
tolerance in the two modes. To ensure the integrity of asynchronous
snapshot, Hsync can generate an extra synchronous snapshot during
a mode switch from Async to Sync.

5. Switch Timing

The key to gain optimal performance on PowerSwitch is deciding
the right timing of a mode switch. This section first describes the
ultimate metrics to characterize the performance in different modes,
and then illustrates how to predict such metrics in both Sync and
Async modes. Finally, the accuracy of prediction is validated by
comparing the predicted and optimal switch points.

5.1 Performance Metrics

There are a number of factors that may impact the performance of
Sync and Async modes, including the amount of messages, num-
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ber of active vertices, changing rate of active vertices, application
properties, hardware environments and the specific options such as
the policy of scheduler used in Async mode. It is not easy to bal-
ance these factors to derive an optimal model to characterize the
performance. Fortunately, we observe that all these factors can be
reflected as the Throughput (T'hro) of graph processing, which is
the amount of vertices processed per unit time:

[Vorocl
T'hro = ——
0

However, Sync and Async modes have different convergence speed,
which results in different amount of vertex computation to reach
convergence for the same graph algorithm. Consequently, it is not
viable to use raw throughput to directly compare the performance
of Sync and Async modes. The convergence ratio p, which is the
total amount of vertex computation in Async mode to that of Sync
mode, should be considered to normalize the throughput of differ-
ent modes. Note that the ratio is mainly determined by graph algo-
rithms and the properties of input graphs, but with only slight effect
from the size of input graphs and hardware configurations. There-
fore, it can be either set by experience or offline profiling results
on application with a small input. For example, the convergence
ratios u for PageRank, SSSP and LBP with typical input graphs
are 0.8, 0.5 and 0.8 respectively, which are used to normalize the
throughput of Sync mode for all experiments.

5.2 Predicting Throughput of Current Mode

Sync Mode: there is a constant overhead from the global barrier in
Sync scheduling, which should be amortized over all active vertices.
PowerSwitch uses Equation 1 to model the throughput of next
iteration in current mode:

|‘/7L€(L't‘
Tcomp + Tbar‘rier
_ 1
Tvertnemt + Tbarrier/‘vnezt‘

where Tpqrrier denotes the constant overhead, and can be measured
online. |Vyez¢| denotes the number of active vertices in next itera-
tion, which is collected at the end of current iteration. T+ denotes
the average time to process a single vertex, which is estimated as
weighted average of current and history (Equation 2).

Thronezt =

()]

Tvertnemt = E’ethuTrent + (1 - a) ) Tvm"thistory (2)

where « is constant weighting factor (0 < a < 1), and we fix
o = 2 in our experiments.

Async Mode: the model in Async mode is simplified to Equa-
tion 3 without the constant overhead in Sync mode.

1
Thronest = ———— 3
nes Tvertnem ( )

where Tyert,, ., 1 calculated the same as that in Sync mode (Equa-
tion 2).
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5.3 Predicting Throughput of Alternate Mode

Compared with predicting throughput of the current mode, it is
harder to exactly predict the throughput of the other mode. Ac-
cording to our study on typical algorithms with various graphs,
PowerSwitch combines online sampling, offline profiling and some
heuristics to provide a reasonable prediction.

Async Mode: since software pipelining is widely used in Async
scheduling, the throughput of Async mode is mostly stable as long
as there are enough active vertices to be processed. Figure 7(a) illus-
trate the real throughput in Async mode for three typical algorithms
(SSSP, LBP and PageRank). As expected, the throughput of Async
mode is fairly stable during the whole execution.

Based on the above observation, PowerSwitch provides either
an online sampling or an offline profiling to predict the throughput
of Async mode in Sync execution.

For online sampling, PowerSwitch initiates graph computation
in Async mode, and then switches to the original initial mode.
Throughput sampling of Async mode is executed with current input
graph in a short time (e.g., 500ms). There is a little overhead for
graph algorithms inherently started in Sync mode (e.g., PageRank).

For offline profiling, we use a set of training graphs to build
a neural network model (NN), which predicts the throughput of
Async mode for current input graphs. The NN-based offline pro-
filing is relatively friendly to the scenario in which one algorithm
is repeatedly used for various input graphs, since the training over-
head can be amortized and there are abundant input graphs for more
accurate training.

For Gather-Apply-Scatter (GAS) model [18] in PowerGraph,
the processing time spent on a single vertex consists of three parts:
1) the unit computation time in the Gather (Tz) and Scatter (Tz)
phase, which are proportional to the degree of vertex (|D]); 2)
the unit computation time in the Apply (7°4) phase; 3) the unit
communication time (7’r), which is proportional to the replication
factor (| R|). Equation 4 illustrates our model for the throughput of
Async mode in GAS model.

1
(Ta+Ts) - |D|+ T - |R| +Ta

C)

Throasync =

where | D| denotes the average degree of vertex (i.e., |[E|/|V]), and
|R| denotes the average number of replicas. Therefore, our neural
network model adopts two dimensions (i.e., | D| and | R|) of input
vectors to model the throughput of Async mode, which present the
main properties of input graph.

To evaluate the flexibility of our neural network model, we train
the neural network with a large number of synthetic graphs [18]
with various graph sizes. Figure 7(b) validates that the throughput
of Async mode is sensitive to the properties of input graph (e.g.
power-law constants) rather than the size of training graph.

Sync Mode: the throughput of Sync mode highly depends on
the number of active vertices, which is costly to collect in Async
mode since there are a large number of in-flight messages and the
scheduling queue in each machine is frequently updated.

Fortunately, we observe that the throughput of Sync mode is bet-
ter than that of Async mode when there are sufficient active vertices,
thanks to the message batching and lower scheduling cost. There-
fore, PowerSwitch employs a simple heuristic rule to indirectly
make the decision. PowerSwitch first samples the increment speed
of active vertices in the scheduling queue, and then compares it
with the predicted throughput of Async mode. When the number of
newly generated active vertices during a time interval (e.g., 500ms)
exceeds the throughput of Async mode, it implies that Async mode
is overloaded and it is time to switch mode.

5.4 Heuristic Rules

Besides the normalized throughput that is the major factor to guide
the switch timing, PowerSwitch also combines several heuristics to
improve the accuracy of decision.

To balance the trade-off between performance boost and switch-
ing overhead and avoid thrashing between two modes, Power-
Switch employs a pessimistic strategy that prefers staying in the
current mode, to minimize overhead due to mode switches. The wa-
termark value is set to 10% above the throughput of current mode,
which guarantees the benefit from a mode switch is enough to over-
come the switching cost.

Further, in our experience, Async mode does not work well
under heavy workload due to potentially heavy lock contention.
Hence, PowerSwitch not only samples the number of active vertices
to estimate throughput, but also computes the changing rate of ac-
tive vertices as an indication of workload prediction. PowerSwitch
will switch to Sync mode during the increase of active vertices and
back to Async mode during the decrease of active vertices.

Finally, if the algorithm only converges in a specific mode (e.g.
Async mode for Graph Coloring), a user-defined progress function
will be used to calculate the current convergence. For example, the
percentage of converged vertices is used to measure the progress for
Graph Coloring. When no progress is made, PowerSwitch will prior
switch the current mode to the user-defined convergence mode.

5.5 Accuracy of Prediction

To evaluate the accuracy of prediction, we first compare the
throughput of Sync and Async modes predicted by history in current
mode with the real throughput online estimated, and then present
an integrated analysis of switch timing for PageRank under the sam-
pled convergence ratio 1 = 0.8 (see Section 5.1). Finally, we com-
pare the throughput of Async mode predicted by online sampling
and offline profiling with the real one.

Figure 8(a) and (b) compare the real and predicted throughput
in Sync and Async mode accordingly. The dashed lines present the
real throughput online estimated, while the solid lines present the
predicted throughput by history using equations in Section 5.2. As
shown in the figures, the throughput of both Sync and Async modes
can be accurately predicted.

We further study the prediction mechanisms by collecting the
switch points predicted by PowerSwitch. To find an optimal switch
point, we repeatedly run PageRank algorithm for the LJournal



Table 2: A collection of real-world and synthetic graphs.

Algorithm Graph 4 |E|
LJournal [13] 5.4M 79M
PageRank [7] Wiki [22] 5. M 130M
Twitter [26] DM | 1478
LBP [19] SYN-ImageData [30] | 1-12M | 2-24M
SSSP [5] RoadCA [28] 1.9M 5.5M
Coloring [17] Twitter [26] 42M 1.47B

graph [13], and manually switch modes from Sync to Async at
different points during the execution. As shown in Figure 8(c), with
the switch point being postponed, the overall execution time would
decrease efficiently and then gradually increases; the best switching
point is at time 12.6 seconds, with the execution time of 14.5
seconds. The predicted switch point by PowerSwitch is at time 13.1
seconds, with the execution time of 15.2 seconds, which is only
slower by 4.6% compared to the optimal one. Due to the additional
online sampling overhead, the total execution time of Hsync mode
is 15.9 seconds. As the sampling cost is mostly constant, the cost
could be further amortized for processing larger graphs.

Figure 8(d) shows the Async throughputs predicted by both
online sampling and NN-based offline profiling are close to the
real throughput. The error of predicted throughput using online
sampling and offline profiling are from 0.5% to 7.9% and from
10.8% to 11.5% respectively. Since online sampling provides more
accurate throughput while causes a few runtime overhead, users can
on-demand select either one to predict accurate Async throughput.

6. Case Studies

In this section, we analyze the behavior of Hsync using four typ-
ical graph algorithms: PageRank [7], Loopy Belief Propagation
(LBP) [19], Single-Source Shortest Path (SSSP) [5] and Graph Col-
oring [17]. The detailed performance of the four algorithms under
Hsync mode will be presented in next section.

PageRank is widely used to evaluate the relative importance
of webpages, which models webpages and their relationships as an
unweighted graph and updates the rank of webpages based on inter-
action between neighbors. In PageRank, all vertices will be initially
activated and converge asymmetrically. Hence, PowerSwitch initi-
ates PageRank in Sync mode for batching computation tasks and
communication messages at the beginning stage. With the decreas-
ing of active vertices, constant overhead from global barrier grad-
ually becomes the major cost, which decreases the throughput of
Sync mode. When the throughput of Sync mode is lower than that
of Async mode, PowerSwitch switches to Async mode for more ef-
ficient convergence.

Loopy Belief Propagation (LBP) is an approximate inference
algorithm, which used to estimate the marginal distributions by
iteratively re-computing parameters associated with each edge until
convergence. Due to similar behavior to PageRank, PowerSwitch
also initiates LBP in Sync mode and switches to Async mode when
the throughput of Sync mode is lower than that of Async mode.
However, PageRank is sensitive to the size of graph while LBP is
more sensitive to the hardware configuration and partitioning.

Single-Source Shortest Path (SSSP) provided by PowerGraph
applies data-driven execution of the Bellman-Ford algorithm [5],
which starts from a single source and propagates shortest path to
neighbors until convergence. In SSSP, the number of active vertices
first increases and then decreases, which gives the throughput of
Sync mode a parabolic shape ( like in Figure 2(e)). In addition, the
peak throughput of Sync mode is notably higher than that of Async
mode. Hence, PowerSwitch initiates SSSP in Async mode due
to lower initial workload, and switches execution mode between
Async and Sync according to the change of workload.
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Figure 9: A performance comparison between PowerSwitch and GraphLab
using different modes for various algorithms and datasets.

Graph Coloring assigns a color to each vertex of input graph
such that no adjacent vertices share the same color. In Sync mode,
all vertices concurrently adjust their colors relying on stale colors
of neighbors. Even if Sync mode has good throughput thanks to
high parallelism, the stale color causes slow or even failed conver-
gence due to frequent conflicts. In Async mode, the latest colors
of neighbors will be used to update vertex color, which may re-
sult in fast convergence. However, the throughput of Async mode is
restricted by the network performance, which is much lower than
that of Sync mode, especially for large graphs (e.g., Twitter Fol-
low graph). Hence, PowerSwitch initiates Graph Coloring in Sync
mode, and then switches to Async mode.

7. Evaluation

We have implemented PowerSwitch based on GraphLab 2.2 (re-
leased in July 2013), which runs the PowerGraph [18] engine. Pow-
erSwitch is implemented as a separate engine in GraphLab and thus
can seamlessly run all existing graph algorithms for GraphLab.

In this section, we first present the overall performance improve-
ment of PowerSwitch using four typical graph algorithms (i.e.,
PageRank, SSSP, LBP and Graph Coloring) from the GraphLab
toolkits. We then analyze performance using two graph algorithms
under different graph configurations, including machine scales, in-
put size scales and graph partitioning approaches. We also analyze
the computation stages changes of SSSP and Graph Coloring to
study the benefit of fine-grained mode switches.

Table 2 lists a collection of large graphs used in our experiments.
Most of them are from Stanford Large Network Dataset Collec-
tion [35] and The Laboratory for Web Algorithmics [1]. The Wiki
dataset is from [22]. The dataset for the LBP algorithm is synthet-
ically generated by tools provided from that used in the Gonzalez
et al. [18]. The SSSP algorithm requires the input graph to be di-
rected and weighted. Since the RoadCA graph [28] is not origi-
nally weighted, we synthetically assign a weight value to each edge,
where the weight is generated based on a log-normal distribution
(p = 0.4,0 = 1.2) from the Facebook user interaction graph [43].

The correctness of all algorithms is validated by comparing with
the result of the original Sync and Async modes alone. As many
MLDM algorithms are non-deterministic in essence, different runs
may cause results with a very small deviation. We set the same
threshold of convergence for the evaluated algorithms and compare
the final results to ensure they are within the tolerable range of
differences.

All experiments are performed on a 48-node EC2-like cluster.
Each node has four AMD Opteron cores, 12GB of RAM, and con-
nected via a 1 GigE network. Unless specified, all experiments were
performed using online sampling for PowerSwitch, and the sam-
pling overhead has been included in results. The reported through-
puts* of Sync mode is also normalized using the convergence ratio
in Section 5.1.

4 All of reported throughputs are measured on a single machine of cluster.
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7.1 Overall Performance Improvement

Figure 9 shows the overall speedup of PowerSwitch for the four
algorithms with different datasets on 48 machines. PowerSwitch
outperforms both Sync and Async engines of GraphLab on all four
algorithms by up to 2.23X (from 1.09X) and 2.71X (from 1.31X)
accordingly, which mainly stem from the accurate prediction and
timely mode switches. As PowerSwitch can always choose a best
mode for execution, it can accelerate the convergence speed and
vertex processing throughput. For SSSP, since it essentially does
not scale with machine scale, we run the test dataset with only 12
machines, though the performance trend in larger setting is similar.

We evaluate the performance scalability with the increasing
number of machines on PageRank with LJournal and LBP with
3-million pixels, which confirms the properties and favorites sce-
narios of Sync and Async modes as analyzed before. As shown
in Figure 10(a) and (b), Async mode does scale with machines,
and Sync mode actually gets performance degradation when the
machine number is larger than 36, since the synchronization cost
is also increased with machine scale. However, with large dataset
such as in PageRank, Sync mode has significant performance advan-
tages. For applications with long computation time and low commu-
nication traffic (e.g., LBP), Async mode has superior performance.
In such cases, Sync mode still has advantages with a small number
of machines. This may be because when the number of machines
is small, each machine will be assigned with a very heavy work-
load at beginning of the execution but the communication is small,
a configuration in which Sync mode can process vertices more effi-
ciently.

In Figure 10(a) and (b), the Hsync mode outperforms all the two
modes alone by up to 1.87X (from 1.04X) and 5.43X (from 1.31X)
accordingly, since PowerSwitch essentially embraces the best of
both modes. Even in the worst case, performance of PowerSwitch
is still comparable with the faster one of Sync and Async modes.

7.2 Evaluation of Different Configurations

As mentioned in Section 2, different configurations such as various
input size and partition methods may result in different choices of
execution modes. Hence, we compare Hsync mode with Sync and
Async modes in various configurations, to show Hsyrnc mode could
get superior performance in all cases.
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Input Sizes: Figure 11(a) evaluates the performance using dif-
ferent modes for LBP with increasing graph size. Async mode out-
performs Sync mode with smaller inputs due to convergence accel-
eration without synchronization delay, while Sync mode has bet-
ter performance with large inputs due to batching computation and
network communication. Hsync mode outperforms both Sync and
Async modes alone by up to 2.00X and 2.47X accordingly.

Graph Partitioning: Figure 11(b) shows the speedup of LBP
with 3-million pixels using different graph partitioning algorithms,
which have different trade-offs in graph ingress, runtime and
load balance. Random simplifies graph ingress phase, Oblivious
achieves better partition results (i.e., lower replication factor), and
Grid provides a compromise. As shown in Figure 11(b), execution
modes are affected by partition algorithm in varying degrees, but
Hsync mode still provides better performance compared to both
Sync and Async modes.

7.3 Execution Stage Analysis

In this part, we present the benefit of our system by a performance
comparison of the entire execution with SSSP and Graph Coloring
algorithms.

Figure 12(a) compares the normalized throughput in different
stages for SSSP on 12 machines. The throughput of Hsync always
stays at a high level, and only drops at the switch point due to state
transfer, especially from Async to Sync, which requires waiting for
pending vertex computations to be completed. Since Hsync mode
embraces the best throughput of both Async (at the duration of Os to
54s, and 78s to 84s) and Sync (at the duration of 55s to 77s) modes,
Hsync can outperform Async and Sync mode by 1.45X and 2.29X
respectively (84s vs. 192s and 122s).

Figure 12(b) compares the progress of vertex convergence in
Graph Coloring algorithm, which is evaluated in different execu-
tion modes on 48 machines. We can find that Sync mode does not
converge, while the convergence speed of Async mode will grad-
ually decrease. Hsync has the best performance by combining the
benefits of both Sync and Async modes. Hsync accelerates the con-
vergence of the latter half of execution, and obtains notable perfor-
mance improvement compared to Async. Figure 13 further breaks
down the execution status after executing about 100 seconds for
Async and Hsync modes, and compares the distributions of remain-
ing active vertices on each machine. In Async mode, when resource
contention becomes a bottleneck of some machines, the skewed
delay of vertex computation causes the imbalanced distribution of
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remaining jobs over the entire cluster. However, in Hsync mode,
this phenomenon is avoided by early synchronous scheduling, and
the balanced job distribution contributes to a fast convergence in
asynchronous scheduling of the later execution.

7.4 Overhead

We evaluate the mode switch cost of PowerSwitch using a micro-
benchmark, as shown in Figure 14(a). Since graph structures are
shared by both modes in PowerSwitch, PowerSwitch only needs to
transform the activation of vertices between the two modes. The
mode switch cost from Sync to Async mode and vice versa is only
around 0.1 and 0.6 second respectively. The switch cost from Async
to Sync mode is relatively high and unstable, as PowerSwitch needs
to wait until all pending vertex computation and flying messages
have been done and delivered.

To evaluate the overhead of online sampling, we compare the to-
tal execution time for PageRank using different modes. We also es-
timate the optimal execution time by manually adjusting the switch
point with full information of the execution procedure. As shown in
Figure 14(b), Hsync outperforms both Sync and Async modes, and
only incurs less than 10% overhead compared to optimal results
even with online sampling.

7.5 Limitation Discussion

The performance difference of the two modes is mainly due to
their design strategies. Sync mode mainly aims to reduce the mes-
sage communication overhead and improve the hardware utiliza-
tion, while Async mode aims to accelerate convergence speed un-
der sufficient hardware support. Even if both of these two modes
can be well optimized, PowerSwitch could still leverage the per-
formance difference to get an extra speedup. However, the perfor-
mance speedup has limitations in some cases. For instance, when
the execution procedure of specific application is relatively sta-
ble, e.g. without workload change or communication request burst,
PowerSwitch may only help to choose a better mode to execute the
application with no need to switch.

8. Related Work

There have been a consider number of work extending MapRe-
duce [14] to support iterative graph processing. To accommo-
date the unique characteristics of graph processing, Pregel [31]
and its open-source alternatives [2, 3, 37], Cyclops [9] and
GraphX [20] adopt the bulk-synchronous parallel (BSP) process-
ing. All these frameworks essentially use synchronous scheduling.
GraphLab [30] pioneers in supporting asynchronous scheduling.

Both PowerGraph [18], PowerLyra [10] and Trinity [38] pro-
vides a unified graph abstraction for a program to run in either
Sync or Async engine. GRACE [42] also at unifying the graph inter-
face through allowing the same graph algorithm to run either Sync
or Async modes. However, none of them supports adaptive mode
switching.

PowerSwitch departs from existing work in separating graph
abstraction and computation logic from scheduling, by additionally

allowing accurate prediction to adaptively choose an optimal mode
for execution. The optimization in existing work could also be used
to improve the scheduling implementation in PowerSwitch.

In addition, PowerSwitch also shares the similarity in finding
an optimal configuration for MapReduce applications [23, 24], but
targeted at finding optimal switch points. There are also several
efforts [4, 45] aiming at dynamically and automatically switching
traversal strategies for breadth first search algorithm (BFS).

The importance of graph processing has also popularized it to
a number of usage scenarios and generated a number optimization
efforts. Much of work has attempted to optimize graph processing
on multicore [27, 33, 36, 39, 46] and GPU [48, 49]. There are
also a few systems considering streaming processing [12, 32] or
the graph properties [11, 21]. For graph algorithms with different
performance characteristics, it could also be beneficial to apply the
adaptive mode switching approach in PowerSwitch to boost their
performance.

9. Conclusion

This paper made a comprehensive study on execution character-
istics of two typical execution modes of a state-of-the-art graph-
parallel system. The study revealed that performance between the
two modes varies significantly for different graph algorithms, parti-
tioning algorithms, execution stages, graph and cluster scales, and
thus no single mode consistently outperforms the other. Based on
this observation, this paper proposed Hsync, a hybrid-synchronous
execution mode that allows dynamic switching between syn-
chronous and asynchronous modes to gain optimal performance.
The resulting system, called PowerSwitch, periodically collects ex-
ecution statistics and combines online sampling or offline profiling
with domain-specific knowledge to predict a best execution mode
for next stages. Evaluation shows that PowerSwitch consistently
outperforms the best of each mode alone.
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