NUMA-Aware Graph-Structured Analytics

Kaiyuan Zhang

Abstract

Graph-structured analytics has been widely adopted in a number
of big data applications such as social computation, web-search
and recommendation systems. Though much prior research focuses
on scaling graph-analytics on distributed environments, the strong
desire on performance per core, dollar and joule has generated
considerable interests of processing large-scale graphs on a single
server-class machine, which may have several terabytes of RAM
and 80 or more cores. However, prior graph-analytics systems are
largely neutral to NUMA characteristics and thus have suboptimal
performance.

This paper presents a detailed study of NUMA characteristics
and their impact on the efficiency of graph-analytics. Our study
uncovers two insights: 1) either random or interleaved allocation
of graph data will significantly hamper data locality and paral-
lelism; 2) sequential inter-node (i.e., remote) memory accesses
have much higher bandwidth than both intra- and inter-node ran-
dom ones. Based on them, this paper describes Polymer, a NUMA-
aware graph-analytics system on multicore with two key design
decisions. First, Polymer differentially allocates and places topol-
ogy data, application-defined data and mutable runtime states of a
graph system according to their access patterns to minimize remote
accesses. Second, for some remaining random accesses, Polymer
carefully converts random remote accesses into sequential remote
accesses, by using lightweight replication of vertices across NUMA
nodes. To improve load balance and vertex convergence, Polymer
is further built with a hierarchical barrier to boost parallelism and
locality, an edge-oriented balanced partitioning for skewed graphs,
and adaptive data structures according to the proportion of ac-
tive vertices. A detailed evaluation on an 80-core machine shows
that Polymer often outperforms the state-of-the-art single-machine
graph-analytics systems, including Ligra, X-Stream and Galois, for
a set of popular real-world and synthetic graphs.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Distributed programming

Keywords Graph-structured Analytics; Non-uniform Memory
Access (NUMA)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

PPoPP’15, February 7-11, 2015, San Francisco, CA, USA

Copyright 2015 ACM 978-1-4503-3205-7/15/02...$15.00
http://dx.doi.org/10.1145/2688500.2688507

Rong Chen

Shanghai Key Laboratory of Scalable Computing and Systems
Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University, China

183

Haibo Chen

1.

Many machine learning, data mining and scientific computation
can be modeled as graph-structured computation, resulting in a new
application domain called graph analytics. Nowadays, it has been
widely adopted in areas including social computation, web search,
natural language processing, and recommendation systems [7, 31,
40, 44, 47]. The strong desire for efficiency has driven the design
of a number of distributed graph analytics frameworks such as
Pregel [35], GraphLab [22, 32] and Cyclops [13].

The multicore evolution has led to drastic increases in CPU core
counts and memory sizes. Actually it iS now not uncommon to
see server-class machines with 80 or more cores and several ter-
abyte of memory. This has led to the design and implementation of
several recent single-machine graph-analytics systems to achieve
more performance per core, dollar and joule, due to the signifi-
cantly cheaper cost and lower latency in communication. Examples
include GraphChi [28], Ligra [43], X-Stream [42], and Galois [39],
which can usually process graphs on a single machine with hun-
dreds of billions of edges.

On the other hand, commodity multicore machines have shifted
into cache-coherent NUMA (cc-NUMA) architectures, where the
latency of memory accesses on remote chips is much higher than
that on local ones [18]. Though the NUMA effects may have
significant impact on the efficiency of graph analytics, existing
systems are largely NUMA-oblivious but focus on other aspects
such as improving out-of-core accesses [28], selecting appropriate
execution modes [43], supporting sophisticated task scheduler [39],
and reducing random operations on edges [42].

In this paper, we make a comprehensive study on the character-
istics of commodity NUMA machines and how they affect the effi-
ciency of existing single-machine graph analytics systems. Though
conventional wisdom is that remote memory accesses have higher
latency and lower throughput than local ones, we quantitatively
show that sequential remote accesses have much higher bandwidth
than both random local and random remote ones (2.92X and 6.85X
on our tested machines). Further, either interleaved or centralized
allocation of graph data on existing graph analytics systems causes
poor data locality and limited parallelism.

Based on the above observations, this paper describes Polymer!,
a NUMA-aware graph-analytics system that inherits the scatter-
gather programming interface from Ligra [43] but is built with
several NUMA-aware designs. The key of Polymer is to minimize
both random and remote memory accesses by optimizing graph
data layout and access strategies.

Polymer adopts a general design principle for NUMA machines
by co-locating graph data and computation within NUMA-nodes
as much as possible, with the goal of reducing remote memory ac-
cesses and balancing cross-node interconnect bandwidth. Specifi-

Introduction

! The source code and a brief instruction of how to use Polymer are at
http://ipads.se.sjtu.edu.cn/projects/polymer.html

cally, Polymer differentially allocates and places graph data accord-
ing to their access patterns. For graph topology data such as vertices
and edges that are always accessed only their own threads, Polymer
uses corporative allocation by letting an accessing thread to allocate
the memory in its local memory node, and thus eliminating remote
accesses. Second, for application-defined data (like the ranks of
a web page in PageRank) whose memory locations are static but
data will be updated dynamically, though corporative allocation
may eliminate a lot of remote accesses, there are still inevitable
remote accesses due to frequent exchanges of application-defined
data during computation. Hence, Polymer allocates such data with
contiguous virtual addresses, but distributes actual physical mem-
ory frames to the NUMA-node of the owning thread. This makes
it seamless to access cross-node data. For mutable graph runtime
states such as the current active vertices, as they are dynamically
allocated in each iteration, Polymer allocates and updates such data
in a distributed way but accesses it through a global lookup table to
avoid contention.

Graph analytics has been long recognized to have many ran-
dom access and poor data locality [33]. Based on the observa-
tion that sequential inter-node (i.e., remote) memory accesses have
much higher bandwidth than both intra- and inter-node random
ones, Polymer borrows the idea from distributed graph systems [22]
by replicating vertex data across NUMA-nodes in a lightweight
way. (This essentially follows the philosophy of current multi-
core OS designs by treating a large-scale machine as a distributed
system [5]). Specifically, a vertex only conducts computation on
edges within the local NUMA-node and uses its replicas in other
NUMA-node to initiate the computation on other edges. Unlike
distributed graph systems, Polymer does not distribute application-
defined data but still applies all updates to a vertex within a single
copy of application-defined data.

Polymer has three optimizations to improve scheduling on
NUMA machines and handle different properties of graphs. First,
being aware of the hierarchical parallelism and locality in NUMA
machines, Polymer is extended with a hierarchical scheduler to re-
duce the cost for synchronizing threads on multiple NUMA-nodes.
Second, inspired by vertex-cuts [22] from distributed graph sys-
tems, Polymer improves the balance of workload among NUMA-
nodes by evenly partitioning edges rather than vertices for skewed
graphs [20]. Finally, as most graph algorithms converge asymmet-
rically, using a single data structure for runtime states may drasti-
cally degrade the performance, especially for traversal algorithms
on high-diameter graphs, Polymer adopts adaptive data structures
boost performance.

We have implemented Polymer and several typical graph appli-
cations, which comprise about 5,300 lines of C++ code. Our evalua-
tion on both an 80-core Intel machine and a 64-core AMD machine
with a number of graph algorithms using both real-world and syn-
thetic graph datasets shows that Polymer often outperforms existing
state-of-the-art graph-parallel systems and scales well in terms of
the number of sockets, due to its graph-aware data layout, NUMA-
aware computation, reduced synchronization and traversal cost, and
improved load balance.

This paper makes the following contributions:

e A comprehensive analysis that uncovers several NUMA charac-
teristics and issues with existing NUMA-oblivious graph ana-
Iytics systems (Section 3).

e The Polymer system that exploits both NUMA- and graph-
aware data layout and memory access strategies (Section 4)

e Three optimizations that improve global synchronization effi-
ciency, load balance and data structure flexibility (Section 5).

e A detailed evaluation that demonstrates the performance and
scalability benefit of Polymer (Section 6).

~
curr |1 01101 State

~
curr |D; D, D3 D4 Ds Dg| Data

(app-spec)

next

\J!
vertices W@

in-edges

.
out-edges [2 3[3 5[20576]1 3 5[1 2 3 6]2]
= |E] N|
< >

v
J

N\
Topology

J

Figure 1. The in-memory data structure of scatter-gather model.

2. Background
2.1 Graph Analytics

In-memory data structure: It mainly consists of three parts: graph
topology data, application-defined data and graph runtime states.
As shown in Figure 1, existing systems commonly split graph topol-
ogy into separately ordered arrays for vertices and edges. The array
for in-edges of all vertices are partitioned by their target vertex
and storing the source vertices. Similarly, the array for out-edges
of all vertices are partitioned by their target vertex and storing
the source vertices. Both of them are optional. The metadata of
all vertices are kept in one array, in which each one stores the
start of its in-edge and out-edge partitions, and also maintains
the in-degree and out-degree. Two arrays store two versions of
the application-defined vertex data separately. One (i.e., current)
maintains the value computed in the previous iteration, and the
other (i.e., next) keeps the update value computed in current exe-
cution. The application-defined edge data can be handled similarly
if necessary. The optional runtime states, i.e., active or not, of ver-
tex for current and next execution are also stored in two arrays
respectively to support dynamic computation [32].

Graph computation: Existing graph analytics systems follow
a scatter-gather iterative computation model [22], which abstracts
the computation in each iteration as consecutive scatter and gather
phases. The scatter phase propagates the current value of a vertex
to its neighbors along edges, while the gather phase accumulates
values from neighbors to compute the next value of a vertex. There
are two main approaches to implementing the scatter-gather model,
namely vertex-centric [35] and edge-centric [42].

The vertex-centric system such as Ligra [43] iterates over all
active vertices in both scatter and gather phases. The propagation
of vertex data in scatter phase can be implemented in either push or
pull mode. The left part of Ligra system in Figure 2 illustrates the
execution flow and in-memory data access patterns under the two
modes for vertex 3.

In the push mode, the worker thread first scans the current
state array (SEQ|R) to identify an active vertex in vertices array
(SEQIR), and then obtains its neighbors through the out-edges
array (SEQ|R). Further, the worker thread pushes the value of the
active vertex in the current data array (SEQ|R) to its neighbors
in the next data array (RAND|W), and sets the next state array
(RAND | W). For example, the value of vertex 3 will be pushed to its
neighboring vertex 2, 5 and 6 along out-edges, which are labeled
bold arrow on the sample graph.

In the pull mode, for each vertex in the vertices array (SEQ|R),
the worker thread first obtains its active neighbors through the
in-edges (SEQIR) and current state arrays (RAND|R). Further,
the worker thread pulls the value from active neighbors in the

Access

| Pattern |

Stat/curr

Topo/vertex

Topo/out-edge

Data/curr D3 Dy Ds D)

Data/next

Stat/next

Y sequential [R] Read Local
X0 Rrandom W] write &l Global

@ [] Local Memory —> Local R/W

g

Remote Memory —> Remote R/W

Access
Pattern

seQ I

Loop
06000

Topo/vertex

stat/curr

rAND Y

rAND I

¢
)
O

&

Data/curr

0, D, D,[D4Ds O

NS
w|
o

[w]

«n

Topo/in-edge [4 5[1 3 5 6|1 2 4 5[2 3 4[3 5]

Data/next

Data/curr

Stat/curr

Stat/next

SEQ 1) Data/Uout

!

108 0

J— -
=)

&

Data/Uin

=)
o
P

[IXBIW[L] Data/next

P

]

© o

1 = F 1 R T B)

g/x,“

[IXBJW[L] stat/next

1
X-Stream

Figure 2. The in-memory data layout and execution flow of existing graph-analytics systems for a sample graph. The pattern to access in-memory data is
labeled by SEQ/RAND, R/W and L/G. Yellow indicates source vertex, and blue indicates target vertex.

[Inst. [0-hop | 1-hop [2-hop | [Access [0-hop | 1-hop [2-hop | Interleaved |
80-core Intel Xeon machine 80-core Intel Xeon machine
Load 117 271 372 Sequential 3207 2455 2101 2333
Store 108 304 409 Random 720 348 307 344
64-core AMD Opteron machine 64-core AMD Opteron machine
Load 228 419 498 Sequential 3241 | 2806/2406 1997 2509
Store 256 463 544 Random 533 509/487 415 466

(a) System topology

(b) Latencies (cycles) on the distance

Figure 3. The characteristics of NUMA machines for experiments.

current data array (RAND |R) to update the vertex in the next data
array (SEQ|W) and set the next state array (SEQ|W). For example,
the vertex 3 will pull the value of its neighboring vertex 1, 2, 4 and
5 along in-edges to update its value. The inactive vertex 2 will be
skipped.

The edge-centric system such X-Stream [42] iterates over all
edges rather than vertices to avoid random accesses to edges, in-
stead of sequentially accessing them. Further, it introduces an addi-
tional shuffle phase and “tiling strategy” to improve random access
to vertices. As shown in Figure 2, all edges are split by their source
vertex into two partitions and the engine processes one partition as-
sociated with their source vertices at a time. In the scatter phase,
the worker thread iterates over edges array (SEQ|R) and appends
the update from the current data array (RAND|R) to a list Uout
(SEQ|W) for active edges, which are identified by the state of its
source vertex from the current state array (RAND |R). In the shuf-
fle phase, all updates in the list Uout (SEQ|R) are re-arranged to the
update list Uin (SEQ|W) by their target vertex. Finally, all updates
will be applied to the next data array (RAND | W) in the gather phase,
and the next state array (RAND|W) will be set simultaneously. For
example, in the second partition, the update along the edge from
vertex 4 to vertex 3 will be appended to local Uout first and then
shuffled to the Uin of partition 1, and finally written to vertex 3.

2.2 NUMA Characteristics

A commodity NUMA machine consists of several processor nodes
(i.e., socket), each of which contains multiple cores and a local
DRAM. The nodes are connected by the high-speed interconnect
into a cache-coherent system, forming a globally shared memory
abstraction to applications.

The distribution of memory to processor nodes leads to non-
uniform memory access: the latency of accessing locally-attached

185

Figure 4. The bandwidth (MB/s) of memory access on the distance.

cache and memory is significantly lower than those attached to
other processor. Further, the latency highly depends on the distance
(i.e., hops) between nodes.

To make a quantitative study on the non-uniform feature of
commodity NUMA machines, we measure the latency of memory
accesses along with distance on both an 80-core (8 sockets X 10
cores) Intel machine and a 64-core (4 sockets X 2 dies X 8 cores)
AMD machine. The dies within a socket have a 1-hop distance. The
topologies of the two machines are depicted in Figure 3(a)2.

As shown in Figure 3(b), for the 80-core machine, the latency
of load and store on the same node through memory are 117 and
108 cycles respectively, whereas an access over one or two hop(s)
is approximately 2 or 3 times more expensive than an access on the
same node accordingly>. The 64-core machine has a close trend.

Figure 4 shows the bandwidth of memory access along with
distances on the 80-core machine*. The bandwidth of remote ac-
cesses is unsurprisingly quite lower than that of local access, up
to 34% and 57% performance degradation for sequential and ran-
dom access over two hops respectively. Further, the bandwidth of
interleaved access, where the maximum distance between the two
cores is 2 hops, is even lower than that of remote access with 1-hop
distance. The results on 64-core AMD machine are similar, and the
two values for 1-hop distance indicate within a socket or not.

Further, it is a little bit surprising that sequential remote ac-
cesses, have much higher throughput than random ones (both lo-
cal and remote), by factors from 2.92X to 6.85X with increasing
distance on 80-core Intel machine (see Figure 4). For example, ran-
dom local accesses only have 720 MB/s throughput, which is far
smaller than sequential accesses with 2-hop distance (2101 MB/s).

2 Detailed machine configurations can be found in Section 6
3 The latency is evaluated by ccbench [18].
4 The bandwidth is evaluated by numademo [3] with some extensions.

L -5 Ligra
L =¥~ X-Stream
L - Galois]

| & Ligra
¥~ X-Stream
[< Galois

Normalized Speedup
Normalized Speedup

Exec-Time (Sec)

N
WO

Ligra &
X-Stream -
Galois ©-

| & Ligra
- X-Stream
[- Galois

D 0 O N
9 o O o
T T

S
o
Normalized Speedup

n
o
T

K

= N WhHooON®O©Oo
T
- N W H» OO N ©

2 9 10 2 3 4 5 6
Number of Sockets

(b) Sockets

3 4 5 6 7
Number of Cores

(a) Cores

- N W H» OO N ©
T

o

T 2 2 7 8

3 4 5 6
Number of Sockets

(d) Sockets(AMD)

3 4 5 6
Number of Sockets

(c) Runtime

Figure 5. (a) The speedup with the increasing number of cores within one socket. (b) and (c) The speedup and execution time with the increasing number of
sockets with fixed 10 cores per socket. (d) The speedup with the increasing number of sockets with fixed 8 cores per socket on the 64-core AMD machine.

3. Challenges and Issues

This section discusses why prior single-machine graph-analytics
systems fall shorts on NUMA platforms, by attributing them to two
issues: data layout and access strategy.

3.1 Issue 1: Data Layout

By default, Linux employs the “first-touch” policy to bind virtual
pages to physical frames locating on a memory node where a thread
first touches the pages.

Graph analytics usually consists of two stages: graph con-
struction and computation. In existing frameworks, the long-term
in-memory data structures, including both graph topology and
application-defined data, are allocated and initialized by multiple
constructing threads on different NUMA-nodes during the con-
struction stage. Such data is then accessed by graph processing
threads bound to such NUMA-nodes at the computation stage. Un-
der the default allocation policy, namely “first-touch”, there is mis-
match between allocation threads and processing threads, which
forms interleaved page allocation. This notably hurts locality and
degrade performance due to a large number of remote and random
memory accesses. As shown in Section 2.2, both remote random
memory accesses have much higher latency and throughput than
sequential and random ones.

Further, the short-term in-memory data structures, such as run-
time states, are allocated and initiated by the main thread at the
beginning of each iteration, and accessed by all processing threads
from NUMA-nodes in each iteration. Such centralized allocation
will result in not only excessive remote memory accesses, but also
congestion on interconnects and memory controllers [17].

3.2 Issue 2: Access Strategy

For graph analytics, it is inevitable to access remote memory even
under ideal data layout, due to the lack of access locality when
traversing edges. However, as we observed in Section 2.2, sequen-
tial remote accesses have much higher bandwidth than both ran-
dom local and random remote accesses. Yet, the access pattern (i.e.,
sequential or random) for the remote memory access is either com-
pletely overlooked or restricted in an inefficient way, leading to sub-
optimal performance and scalability by prior work.

In vertex-centric system such as Ligra [43], even if the local
accesses to in-memory data structures have been carefully arranged
in a sequential order, the remote accesses to next or curr data
and state arrays for push or pull mode are coupled with random
orders accordingly. Worse even, concurrent remote accesses by
threads bound on different processors will further cause congestion
on interconnect.

The right part of Ligra system in Figure 2 shows the execution
on a 2-node NUMA machine using push and pull modes. Note
that each operation is labeled with access pattern, and local(L) or
global(G) symbol associated for the NUMA case. In the push mode,
the worker thread randomly pushes the value of the vertex 3 to its

186

neighbors allocated on remote memory nodes (e.g., vertex 5 and 6),
and also randomly writes the state array for these neighbors. They
are labeled as random, write and global (i.e., RAND|W|G). In the
pull mode, the worker thread randomly pulls the value from active
neighbors allocated on remote memory nodes (e.g. vertex 4 and 5)
to update vertex 3. They are labeled as random, read and global
(i.e., RAND |R|G).

In edge-centric system such as X-Stream [42], based on “tiling
strategy” [10], each core can independently process one partition
in both the gather and the scatter phases, and only exchanges data
among all of memory nodes in the shuffle phase. Even if the remote
access is sequential, the shuffle phase causes additional memory
allocation and remote copy overhead. Worse even, it is quite costly
to identify the state of edges instead of vertices, since the number of
edges is commonly a few tens or hundreds of times than the number
of vertices. It will significantly degrade performance and scalability
for traversal algorithms (e.g., SSSP), especially for high-diameter
graphs like road networks (see Table 3).

The X-Stream system in Figure 2 also illustrates the execution
on a 2-node NUMA machine. The updates to target vertices in a
set of Uouts allocated on different memory node are shuffled to
different Uins by their target vertices. It is labeled as sequential,
write and global (i.e., SEQ|W|G). For example, all updates on vertex
3 will be grouped and eventually updated to the next data array on
the same node.

3.3 Quantitive Performance and Scalability on NUMA

We study the scalability of Ligra, Galois and X-Stream using
PageRank algorithm for Twitter follower graph from two dimen-
sions. We increase the number of cores within one socket first and
then increase the number of sockets with fixed 10 cores per socket
on our 80-core machine.

Figure 5(a) shows that existing systems can scale well in terms
of number of cores, up to 6.92X using 8 cores on X-Stream. How-
ever, none of them has a very good scalability in terms of number
of sockets, because of inefficient data layout and access strategy on
NUMA machines. As shown in Figure 5(b) and (c), X-Stream has a
slightly better scalability (4.58X) but the worst performance due to
additional time-consuming shuffling. On the contrary, Galois has
currently best performance due to fully optimized infrastructure,
while its scalability is very poor (2.90X on 8 sockets). We also reran
the experiment on our 64-core AMD machine, and gained a worse
scalability (see Figure 5(d)). The performance of X-Stream and Ga-
lois even degrades when the number of sockets exceeds 4, since the
HyperTransport interconnect in AMD systems can only ensure the
distance between two nodes to one hop for at most 4 sockets. In
short, existing systems are still largely NUMA-oblivious, resulting
in less optimal performance and scalability.

5We select sockets with minimized total distances. Since the number of
threads in X-Stream must be a power of 2, we evaluate it using up to 8
cores in each socket.

4. NUMA-Aware Graph-Analytics

This section describes Polymer, a NUMA-aware graph analytics
system, which provides a vertex-centric programming interface.
The key to Polymer is aligning graph-specific data structure and
computation with the NUMA characteristics to reduce remote and
random memory accesses as much as possible.

4.1 Computation Model and Interface

Polymer follows the typical scatter-gather model by providing two
interfaces inherited from Ligra [43]: EdgeMap and VertexMap. A
graph program P in Polymer synchronously runs on a directed
graph G = (V,E), where V is the vertex set and E is the edge set.
For undirected graphs, each of their edges is presented by a pair
of directed edges, one per direction. The topology data of vertex
v includes the set of in- or out-neighbors (Nj,(v) or Nyu (v)) and
its in- or out-degree (|Nj,(v)| or |Nou: (v)|). A SubVertex type is
used to define a subset of vertices U C V. Like most prior systems,
Polymer assumes that the graph topology is immutable during
graph computation; how to extend Polymer to support mutable
topology is our future work.
The following describes the main interface of Polymer.

1. EdgeMap(G,A,F) : SubVertex
For the input directed graph G = (V,E), EdgeMap applies the
application-define function F to all edges whose source ver-
tices belong to an active vertex set A. More precisely, for an
active edge set Egcive = {(v, u) €E ! ve A} , the function F is
applied to each edge in E,ive, and returns an updated vertex
set SubVertex: R = {u | (v,u) € Egetive N\F(v,u) = true} .

. VertexMap(G,A,F) : SubVertex
VertexMap applies the application-define function F to all ver-
tices in an active set A, and also returns an updated vertex set
SubVertex: R={veA | F(v) =true}.

Algorithm 4.1 illustrates the pseudocode of PageRank [7] in
Polymer. It assumes that the graph topology data is stored in G.
Dy 1s used to store the current rank of vertices and initiated to
1/|V| (line 1), while the new rank of vertices will be stored to
Dyext, which is initiated to O (line 2). The PREdgeF function (line
3-6) passed to EdgeMap atomically pushes the current rank of a
source vertex v to the target vertex ¢ by AtomicAdd (line 4). The
PRVertF function (line 7-12) passed to VertexMap normalizes
the sum of updates from in-neighbors by multiplying a factor of
0.85, and adds a rank of “random surfer” (line 8). If the absolute
difference of the new rank is larger than a user-defined threshold €,
the vertex will be alive in next iteration (line 9). The main function,
namely PageRank, iteratively calls EdgeMap and VertexMap until
the iteration number exceeds the threshold or all vertices have
converged (line 17-23). The runtime states A maintains the active
vertices.

To enjoy the benefit of appropriate execution modes, like
Ligra [43], Polymer also provides two execution modes (i.e., push
and pull). Figure 6 demonstrates the execution flow and in-memory
data access pattern under two modes on a 2-node NUMA machine.
In the following sections, we will introduce our design on data lay-
out and graph computation in detail based on this figure.

4.2 Graph-Aware Data Structure and Layout

The in-memory data structure of Polymer is similar with
other vertex-centric systems, which consist of graph topology,
application-defined data and runtime states. However, Polymer is
designed specifically for NUMA by co-locating graph data and
computation within the same NUMA node as much as possi-
ble, with the goal of reducing remote memory accesses and bal-
ancing cross-node interconnect bandwidth. The key is leveraging

187

Algorithm 4.1: PageRank

Deurr <= {1/[V|, 1/V], ... 1/[V[}

Dyext +{0.0, 0.0, ... 0.0}

PREdgeF (s,7) begin

AtomicAdd (&Dyext[t], Dewrr[s]/|Now (s)])
return true

end

RVertF(v) begin

Dlzext [V] « 0. 15/“/‘ + (085 X D’lé’Xf [V])
alive < |Dyext [V] — Dewrr V]| > €

Dcurr [V] «0.0

return alive

o

end

PageRank(G, €, max_iter) begin

iter < 0

AV

while iter < max_iter N A # 0 do
A < EdgeMap (G, A, PREdgeF)
A < VertexMap(G, A, PRVertF)
Swap(Deyrr, Dpext)
iter ++

end

end

the unique access patterns of graph computation to place the in-
memory graph data.

NUMA-aware graph partitioning: Polymer treats a NUMA
machine as a distributed system and partitions graph data structures
across nodes. For a NUMA-machine with N memory nodes, Poly-
mer splits its in-memory data structures P into N disjoint partitions
Py, P>...Py, where U?’: 1 P; = P. All vertices are indexed from 0 to
|[V| — 1 and evenly assigned to N disjoint vertex sets Vi, V,...Vy,
where the V; belongs to P;. All edges are also assigned to N dis-
joint out-edge or in-edge sets by their rarget vertex or source vertex
respectively, where the E; also belongs to P;.

One approach is co-locating all edges with its source vertices
to a single node [43]. However, as we discussed in Section 3.2
(Figure 2), this will lead to excessive random remote accesses of
application-defined data (such as rank) and runtime states. Hence,
Polymer only co-locates edges with their target vertices in a NUMA
node in the push mode. All other application-defined data and
runtime states are stored together with its owning vertices.

Further, to eliminate remote accesses due to accesses to graph
topology data, Polymer borrows the idea of vertex replication from
distributed graph systems [13, 22], and introduces lightweight ver-
tex replicas, namely agents, for the vertices owned by other parti-
tions. An agent is immutable and only maintains partial topology
data, such as the start of neighboring edges and the degree of the
vertex. The sole purpose of the agent is used to initiate computation
over its master vertex within the node. This essentially eliminates
random remote accesses when accessing application-defined data
and runtime states. Since the number of vertices is much smaller
than that of edges for most graphs, the agents will not cause much
memory pressure (see Section 6.5).

Figure 6 shows an example of partitioning and placing graph
data structures for the sample graph in Figure 2 for both push and
pull modes. Vertices 1 to 3 are assigned to node 1 and vertices 4 to 6
are assigned to node 2. In push mode, Polymer co-locates out-edges
with their target vertices (vertices 1 to 3). For such edges, Polymer
also creates agents for edges whose source vertices are not located
in this node. As a result, Polymer creates agents for vertices 4 to 6
accordingly.

Access | Access |

Pattern | | Pattern | Loop
Stat/curr QTPR[L]| Topo/vertex
Topo/vertex Topo/in-edge [1 3[1 2]2 3[3] | [4 5[5 6[4 5]4]5]
Topo/out-edge [2 3[3[2]1 3]1 2 372] Data/next B

pull pull
SR Data/curr [IEIR[L| pata/curr [ByD, D30, D; D! D, D, D:[Da D3 Dy
T 1

[IYGJW[L]| Data/next [IXBJR[L| stat/curr [T e1]1 10 10 1]1 1 o]
[IXBJW[L] stat/next Stat/next :ﬁ] *:

J Lookup Table

m Sequential
X0 Rrandom

Stat/next

[R] Read
W] write

m Local

& G1obal

—> Local R/W

@ Master

|:| Local Memory
{1} Agent |

" Remote Memory

—> Remote R/W

Figure 6. The in-memory data layout and execution flow of Polymer for two modes on the sample graph in Figure 2. The pattern to access in-memory data
is also labeled by SEQ/RAND, R/W and L/G. Yellow indicates source vertex, and blue indicates target vertex.

NUMA -aware allocation of graph data: To overcome the ran-
dom or interleaved allocation of graph data due to Linux’s “first
touch” policy, Polymer tackles the mismatch between the allocat-
ing threads and the computing threads by letting threads on the ith
NUMA-node to allocate and initiate all of data in partition P,. How-
ever, simply using co-location may cause the physical addresses of
in-memory data discrete, which may result in additional cost for
indirect accesses.

To this end, Polymer differentiates the placement policy of vir-
tual address for these data according to their memory access be-
havior. First, since the graph topology data is immutable and only
accessed in local, Polymer simply uses multiple worker threads
bound on different NUMA-nodes to allocate and initiate them,
which results in discrete virtual addresses. Second, the application-
defined data is mutable and globally accessed in sequential order
(see Section 4.3). Fortunately, we observe that such data is only al-
located once at the construction stage and then repeatedly accessed
at the computation stage. Hence, Polymer maps all partitions of
application-defined data on discrete physical pages to a contiguous
virtual address space, to avoid indirect accesses.

Finally, the runtime states are mutable. They are also globally
read in sequential order, but are re-allocated and locally updated in
each iteration. Hence, it may not be worthwhile to repeatedly con-
struct a contiguous virtual address space for them due to high over-
head of doing this. Instead, Polymer uses a lock-less tree-structure
lookup table to collect all partitions of the runtime states allocated
on different NUMA nodes (see lower-left corner of Figure 6). Each
partition is concurrently allocated and linked to an indirect router
array without contention.

Table 1 summarizes the data layout of various in-memory data
in Polymer. Compared to existing systems, Polymer exploits co-
located accesses for all in-memory data and selectively constructs
the contiguous virtual address space for them. This may signifi-
cantly reduce remote accesses.

4.3 NUMA-Aware Graph Computation

Even under co-located data layout, Polymer can still not thoroughly
eliminate remote accesses as well as random accesses when ac-
cessing neighboring vertices owned by other partitions. One ap-
proach would use an additional phase like global shuffling in X-
Stream after each iteration, which, however, would incur non-trivial
overhead. To this end, Polymer borrows the idea from distributed
graph systems [22] to distribute the computations on a singe ver-
tex over multiple machines. However unlike distributed graph sys-
tems, Polymer only replicates the immutable topology data by us-

188

Table 1. A summary of the data layout of for various systems. P and V
represent physical and virtual address, while D and C represent discrete
and contiguous memory address. CE, IL and CO represent centralized,
interleaved and co-located memory access respectively.

Data Existing Systems Polymer
Layout | Alloc(P,V) | Access | Alloc(P,V) [Access
Topo D, C IL D, D co
Data D, C IL D, C co
Stat c, C CE D, D co

ing agent. For application-defined data, all updates are still applied
into a single copy of them by shard memory rather than using repli-
cation and explicit messages for synchronization.

By factoring computations, the worker threads of each NUMA
node only perform part of computations for all of vertices, instead
of all of computations for part of vertices. For example, in the push
mode of Figure 6, the computation on three out-edges of vertex 3
are distributed to different threads on two partitions. The first thread
will only push the value of vertex 3 to its local neighboring vertex
2, and the second thread will also push the value of vertex 3 to its
two local neighboring vertices 5 and 6. In contrasts to Ligra, where
all computations are performed by the first thread (see Figure 2).
This neat change of strategy drastically converts the combination
of access patterns. For example, in push mode, compared to the
combination of local sequential read (SEQ|R|L) and global random
write (RAND |W|G) in Ligra, Polymer adopts global sequential read
for the data of source vertices (SEQ|R|G) and local random write
for the data of target vertices (RAND|W|L). This access pattern
during computation essentially conforms to our observations on
NUMA characteristics

Unfortunately, in the pull mode, the access pattern is first lo-
cal random read from source vertices (RAND |R|L, and then global
sequential write for the target vertices (SEQ|W|G). For example,
in Figure 6, both worker threads will pull the data from local in-
neighbors to the vertex 3 in parallel. Due to the same sequential
order of updating, the same vertex may be updated simultaneously
or closely by multiple worker threads on different NUMA-nodes,
which may cause heavy contention and frequent cache invalidation.
Similarly, in the push mode, the simultaneous read operations on
nearby vertices owned by the same NUMA-node may cause conges-
tion on interconnects and memory controllers. Inspired by solutions
to the similar problem for handling messages in distributed graph
systems [12], Polymer makes worker threads on different NUMA-
nodes process vertices in a rolling order, starting with the own ver-
tices. For example, the worker thread in the second partition will
start with vertex 4.

5. Optimization on Polymer

This section describes three optimizations that aim at improving
scheduling on NUMA machines and leveraging different properties
of graphs.

Hierarchical and Efficient Barrier: As a result of the hier-
archical structure of cache and memory in NUMA machines, the
cost of synchronization among threads on different cores rapidly
increases with the growing of involved sockets. This leads to the
necessity of a topology-aware synchronization mechanism. The de-
fault pthread_barrier uses a uniform “flat” model to make all partic-
ipants on different cores wait on a globally shared variable and trap
into the kernel, which can lead to one order of magnitude perfor-
mance degradation from intra-node to inter-node synchronization
(30us vs. 570us).

Inspired by hierarchical scheduling in Tiled-MapReduce [11],
Polymer designs a hierarchical barrier. The worker threads on the
same NUMA-node are grouped to share a partition of data and com-
putation tasks. All worker threads are synchronized within a group
first, and then the last thread of each group will further synchronize
across the groups. With the increase of involved sockets, the hierar-
chical barrier can obviously decrease cache coherence broadcasts.

However, the hierarchical implementation based on
pthread_barrier still suffers from the penalty of trapping into
kernel. Polymer implements a sense_reversing centralized bar-
rier [36] based on the atomic fetch-and-add instruction, which is
used as a building block for our hierarchical NUMA-aware barrier.

Balanced Partitioning: For synchronous execution, it is cru-
cial to balance the load among worker threads, especially with hi-
erarchical scheduling. First, it is relatively simple to balance the
load among threads within a group on the same NUMA node, since
all of them share the same partition and the memory access is uni-
formed. Polymer adopts dynamic task scheduling among worker
threads within a NUMA node, in which each worker thread dynam-
ically fetch a portion of tasks after finished its previous tasks.

Second, Polymer still has to balance the load across NUMA
nodes. However, due to the co-location of data and computation,
Polymer requires a balanced partitioning to evenly split the entire
workload into multiple groups, and separately processes them on
different NUMA nodes. A natural approach is evenly assigning
vertices to multiple nodes, whereas the computation complexity
and memory access frequency of the scatter and gather phases is
linear to the number of edges.

However, for skewed graphs, such partitioning can lead to sub-
stantial work imbalance. Inspired by vertex-cut [22] in distributed
graph systems, Polymer treats edges as first-class citizen in parti-
tioning, and evenly assigns edges to groups on different NUMA-
nodes. For a graph G = (V, E), the edge-oriented balanced partition-
ing splits vertices into disjoint sets Vi, V;...Vy to minimize the de-
viation of {¥,ev, [Nj jous (V)] | 1 <i < N}. Polymer can efficiently
implement such balanced partitioning due to little communication
cost in single machine. In addition, it should be noted that it is hard
to evenly partition both in-edges and out-edges at same time. Fortu-
nately, in most cases, Polymer only uses one type of edges in either
push or pull mode, so that it is enough to evenly partition edges in
one direction.

Adaptive Data Structures: As shown in Figure 6, Polymer
uses a lock-less tree-structure lookup table to represent the runtime
states. Each leaf partition of the table is a bitmap, which is effi-
cient for a large proportion of active vertices. However, as most
graph algorithms converge asymmetrically, the proportion of active
vertices will sustainedly decline and reach zero. The overhead of
traversing through sparse bitmaps is non-trivial in each iteration,
leading to non-trivial performance slowdown, especially for traver-
sal algorithms with high-diameter graphs.

189

Table 2. A collection of real-world and synthetic graphs.

Graph | Num. Vertices Num. Edges
twitter 41.7 M 1.47 B
rMat24 16.8 M 268 M
rMat27 134.2 M 2.14 B
powerlaw 10.0 M 105 M
roadUS 23.9 M 58 M

Inspired by the solution in Ligra [43], Polymer uses adaptive
data structures for runtime states within the tree-structure table and
automatically switches data structure for leaf partitions according
to the proportion of active vertices. Unlike the bitmap shared by
all worker threads within a NUMA-node, each thread on different
cores will allocate a private queue and append active vertex ID to
it without contention. The queues within a NUMA-node can be
merged when de-duplication of vertex ID if necessary or linked to a
local indirect router array to form a two-level tree-structure. Finally,
Polymer uses the total degrees of active vertices and the application-
defined threshold to decide whether to switch data structures.

6. Evaluation

Polymer is implemented in C++ using the Pthreads library. It cur-
rently supports both push and pull mode using a synchronous sched-
uler. Polymer and its applications are approximately 5,300 LOC,
and are compiled using gcc version 4.8.1.

We evaluate Polymer against other three state-of-the-art graph
analytics systems on a single machine: Ligra, X-Stream v0.9 and
Galois v2.2. We omit comparison with GraphChi, which were
shown to have inferior performance than others when the input
graphs fit in memory [39, 43]. Unless otherwise mentioned, all
experiments were performed on the 80-core Intel machine (with-
out hyper-threading), which consists of eight 2.0GHz Intel Xeon
E7-8850 processors connected with QPI. These form a twisted hy-
percube, maximizing the distance between two nodes to two hops.
Each NUMA socket has 10 cores and a 128GB local DRAM. We
also ran all experiments on our 64-core AMD machine, which con-
sists of four multi-chip modules connected with HT. Each module
has two 8-core die with independent memory controllers, thereby
the system comprises eight memory nodes (i.e., sockets). Due to
the space restriction, we only report representative results for scal-
ability and skip the rest similar results on the AMD machine.

6.1 Algorithms and Graphs

We use six popular graph algorithms to evaluate Polymer.

PageRank (PR) computes the rank of each vertex based on the
ranks of its neighbors [7]. We use the synchronous, push-based
PageRank for Polymer, Ligra and X-Stream in all cases because
it is relatively faster. Galois chooses a synchronously pull-based
implementation to reduce synchronization overhead.

Sparse matrix-vector multiplication (SpMV) multiplies the
sparse adjacency matrix of a directed graph with a dense vector
of values, one per vertex.

Bayesian belief propagation (BP) estimates the probabilities
of vertices by iterative message passing between vertices along
weighted edges [25]. Since only X-Stream provides SpMV and BP
applications, we implement the algorithms for other three systems.

Breadth-first search (BFS) traverses an unweighted graph by
visiting the sibling vertices before visiting the child vertices. Ligra
follows a data-driven hybrid implementation [6] by switching be-
tween sparse and dense representation of runtime states. Galois
mixes synchronous and asynchronous scheduling to implement the
BFS application.

Connected components (CC) calculates a maximal set of ver-
tices that are reachable from each other for a directed graph. Poly-
mer, Ligra and X-Stream all adopt label propagation [49] to im-

Table 3. Runtimes (in seconds) of algorithms over various datasets with
80 threads on the 80-core Intel machine. Red times are the best for each
input and graph problem pair. (1) Galois adopts different algorithms.

| Algo. | Graph | Polymer | Ligra | X-Stream | Galois |
twitter 5.28 | 15.03 28.91 11.55
rMat24 1.84 4.10 4.80 2.89
PR rMat27 9.63 | 28.00 18.20 19.61
powerlaw 1.61 | 30.50 6.06 6.62
roadUS 1.21 2.32 2.79 1.38
twitter 7.55 | 29.00 59.57 11.68
rMat24 1.86 4.30 5.24 6.02
SpMV rMat27 19.15 | 54.25 52.54 41.86
powerlaw 1.80 | 31.00 5.53 6.21
roadUS 1.29 2.83 2.98 3.55
twitter 38.00 | 63.10 2017.29 57.06
rMat24 7.73 9.88 44.27 12.20
BP rMat27 58.30 | 92.80 736.62 74.98
powerlaw 8.08 | 30.70 38.26 8.58
roadUS 5.18 2.59 19.99 7.05
twitter 0.90 1.13 28.70 2.67
rMat24 0.53 0.50 4.30 0.40
BFS rMat27 1.56 1.86 30.18 2.54
powerlaw 0.36 0.39 2.58 0.36
roadUS 1.16 6.93 557.68 5.01
twitter 4.60 5.51 54.80 31.91
rMat24 1.11 0.98 11.01 11.55
cC rMat27 8.72 7.74 39.95 33.86
powerlaw 1.23 2.56 5.13 3.51
roadUS 57.50 | 63.20 985.15 71.18
twitter 2.26 3.17 165.15 26.29
rMat24 1.04 1.25 17.86 1.95
SSSP rMat27 5.78 5.26 126.38 28.50
powerlaw 0.85 1.12 12.36 26.58
roadUs 341 338 1225 70.33

plement this algorithm, while Galois provides a topology-driven
algorithm based on a concurrent union-find data structure [39].

Single-source shortest-paths (SSSP) computes the distance of
the shortest path from a given source vertex to each vertex. The
SSSP implementation on Polymer, Ligra and X-Stream is based on
the Bellman-Ford algorithm [16] with synchronously data-driven
scheduling, while Galois uses a data-driven and asynchronously
scheduled delta-stepping algorithm [37].

The input graphs used in our experiments are shown in Table 2.
twitter is a real-world social follower graph [27]. The synthetic
scale-free graphs, rMat24 and rMat27, are generated by the R-
MAT generator [9] in Graph500 [2]. The synthetic power-law graph
(powerlaw) with fixed power-law constant 2.0 was generated by
tools in PowerGraph [22], which randomly sample the degree of
each vertex from a Zipf distribution [4] and then add edges. Finally,
the road network of the United States (roadUS) is from the 9th
DIMACS shortest paths challenge [1] with much high diameter.
All graphs are unweighted except roadUSA. To provide a weighted
input for the SpMV and SSSP algorithms, we add a random edge
weight in the range (0, 100] to each edge. For the other applications,
we simply ignore the weights of roadUSA.

6.2 Overall Performance

Table 3 gives a complete runtime comparison between Polymer
and other three state-of-the-art graph-analytics systems on a single
machine: Ligra, X-Stream and Galois. We report the execution
time of first five iterations for PageRank, SpMV and BP, as other
systems.

For three sparse matrix multiplication algorithms (PR, SpMV
and BP), Polymer achieves optimal performance against other sys-
tems in all cases using 80 threads on multiple NUMA memory
nodes, except BP on the roadUS graph. The largest improvement is

190

—-
N

140
Ligra & a -&- Ligra

6120 X-Stream %~ %12 [% X-Stream
b 100 Galois ©- | ©10 | - Galois
GE) 80 Polymer -©- g 8l -©- Polymer
= 60 g 6F]
3 ©
& 40 E 4l k
Y g0 S

=z

ol
0 1

3 4 5 6
Number of Sockets
(b) Normalized Speedup (Intel)

3 4 5 6
Number of Sockets
(a) Execution Time (Intel)

Figure 7. The execution time and normalized speedup for PageRank with
the increasing number of sockets (using full cores) on the Intel machines.

200 - 8 -
,\175 Ligra = 2,0 -5 Ligra
S50 X-Stream %~ 3 —¥- X-Stream
b Galois ¢ | & B[< Galois
;125 Polymer - 0 5| -©- Polymer
€100 9
= fR4r
& 75 b ®
o] 3t
< 50 €
u S

251 z 27
073 8 w3

3 4 5 6
Number of Sockets
(b) Normalized Speedup (AMD)

3 4 5 6
Number of Sockets
(a) Execution Time (AMD)

Figure 8. The execution time and normalized speedup for PageRank with
the increasing number of sockets (using full cores) on the AMD machines.

from BP on the twitter graph with respect of X-Stream by 53.09X.
For PR and SpMV, Polymer still outperforms X-Stream by up to
5.48X and 7.89X accordingly. Compared with Ligra, the largest
improvements for three algorithms are all on the powerlaw graph
by 18.9X, 17.3X and 3.80X respectively, benefiting from load bal-
ancing. Polymer also outperforms Galois by up to 4.11X, 3.46X
and 1.58X respectively.

The graph traversal algorithms, including BFS, CC and SSSP,
are not sensitive to the memory accesses of NUMA systems, since
they have much fewer active vertices in each iteration, and then
resulting in fewer memory accesses. Polymer still can provide
optimal or close performance due to several optimizations, such
as balance partitioning for power-law graphs and adaptive data
structure for high-diameter graphs.

The performance of Ligra is with a similar pace as Polymer,
due to the same execution modes (i.e., push and pull) and similar
optimizations like automatic mode switching. However, Polymer
outperforms Ligra in most cases due to its NUMA-aware designs.
The edge-centric system such X-Stream has extremely poor perfor-
mance for traversal algorithms, especially for high-diameter graphs
like road networks, due to excessive accesses to edges and inef-
ficient data structure for the runtime states. All edges (e.g., S8M
for roadUS) must be identified whether to participant computation
by accessing their state of source vertex in each iteration, even
there are just several active vertices. Further, the extremely slow
convergence (e.g. 6237 iterations for BFS with roadUS) of high-
diameter graphs amplify the problem®. For high-diameter graphs
like roadUS, the asynchronous scheduling and special implementa-
tions in Galois are able to exploit more parallelism for the graph
traversal algorithms, such as CC and SSSP. Unfortunately, they do
not work well with other graphs, due to their relative higher average
degrees and lower diameter.

6 Vertex-centric systems (e.g., Ligra, Polymer and Galois) can avoid such
overhead by adaptively using queue-based data structure to maintain active
vertices. For example, the average overhead in each iteration for BFS with
roadUS are 0.032ms, 0.043ms and 92ms for Polymer, Ligra and X-Stream
respectively (Galois uses asynchronous scheduling).

&
o

Ligra &
Galois <~
Polymer -&-

-&- Ligra
=% X-Stream
-~ Galois
-~ Polymer

IS
IS

w
w

- n
O

Exec-Time (Sec)
Normalized Speedup

o
o

-

2 3 4 5 6
Number of Sockets
(b) Normalized Speedup (Intel)

3 4 5 6
Number of Sockets
(a) Execution Time (Intel)

Figure 9. The execution time and normalized speedup for BFS with the
increasing number of sockets (using full cores) on the Intel machines.

6.3 Scalability

Since all of existing systems have scaled well in terms of number
of cores and Polymer mainly improves the performance and scal-
ability on NUMA machines, we concentrate on the study of the
scalability in terms of number of sockets using PageRank and BFS
algorithms for the twitter graph on two NUMA machines.

On our 80-core Intel NUMA machine, as shown in Figure 7,
the scalability of Polymer for PageRank is much better than all of
existing systems. The scalability ratio even exceeds the number of
sockets (i.e., 12.1 vs. 8). As the number of sockets increases, the
size of total caches increases and the size of partitions for each
socket decreases, which lead to less cache misses and thus a super-
linear speedup.

Even if the performance of Polymer is just close or even worse
on single NUMA-node compared with other systems, with the
increasing number of sockets, Polymer can enjoys much larger
speedup and outperforms Ligra, X-Stream and Galois by 2.84X,
5.45X and 2.19X. This conforms the effectiveness of NUMA-
aware implementation and associated optimizations.

Figure 8 illustrates the performance and scalability results for
PageRank on our 64-core AMD machine. Polymer exhibits a simi-
lar trend with the increase of sockets from 1 to 8, however, the scal-
ability ratio on the AMD machine is 6.01X, which is lower than
that on the Intel machine with the same 8 sockets, probably due to
relative small last level cache (i.e. 16 MB vs. 24 MB) and differ-
ent interconnect. Two sockets within multi-chip model share more
bandwidth, restricting the scalability.

As shown in Figure 9, the scalability for BFS is relatively poor
in all of systems, due to fewer active vertices in each iteration. How-
ever, Polymer still exhibits much better scalability and outperforms
other existing systems using 8 sockets. Note that missing the execu-
tion time for X-Stream is due to out of range (from 69.4s to 28.7s).

Table 4. A comparison of the remote access rate, the number of remote
accesses and the LLC miss rate due to remote accesses.

| Polymer Ligra X-Stream Galois

Access Rate/R 37.5% 83.3% 47 .4Y%, 83.6%
Num. Accesses/R 3,090M 6,116M 5,016M 7,887M
LLC Miss Rate/R 3.947, 9.47% 8.67% 13.17%

(a) PageRank

| Polymer Ligra X-Stream Galois

Access Rate/R 28.6% 37.5% 33.3% 47.4%,
Num. Accesses/R 340M 591M 374M 709M
LLC Miss Rate/R 1.70% 2.27% 1.72% 7.10%

(b) BES
6.4 Reduced Remote and Random Accesses

To understand the source of the improvement in Polymer, we eval-
uate various systems using PageRank and BFS algorithms with the
twitter graph, to compare the remote access rate, the total number
of remote accesses and the LL.C miss rate due to remote access. For

Table 5. The peak memory usage (in GB) on Polymer and existing
systems over various graphs for PageRank using 80 threads. The memory
usage for agents is shown in brackets.

Graph | Polymer(agent) Ligra X-Stream Galois
twitter 39.2(2.95) 37.0 39.9 25.1
rMat24 13.1(1.68) 10.2 17.4 10.2
rMat27 71.1(4.37) 66.6 75.4 64.0

powerlaw 7.0(1.13) 5.8 10.1 5.3

roadUS 11.2(1.52) 8.1 17.0 7.3

PageRank, as shown in Table 4(a), Polymer has much fewer remote
accesses in both the rate and the number due to co-locating graph
data and computation. Further, the remote accesses in Polymer is
sequential, reducing up to 70% (from 55%) LLC miss rate due to
remote accesses. For BFS, which leaves limited room for improve-
ment due to fewer memory accesses, the results in Table 4(b) still
confirms the better performance of Polymer.

6.5 Memory Consumption

Polymer introduces lightweight replication of vertices across
NUMA-nodes to factor computation and reduce remote memory
accesses, but increasing the memory consumption. In Table 5, we
investigate the memory consumption of Polymer and existing sys-
tems over various graphs. Since the number of replicas increases
with the increasing number of sockets, we evaluate the peak mem-
ory consumption for PageRank algorithm using all of the eight
NUMA-nodes. Since only Galois uses its own optimized memory
allocator and carefully reuses memory between iterations, it is no
surprise that it obtains the best results. X-Stream consumes the
most memory due to additional buffers in the shuffle phase. The
memory consumption of Polymer and Ligra is close, both of which
use the default memory allocator. The increase of memory con-
sumption is lower than 30%, except the roadUS graph (38.3%) due
to much lower ration of edges to vertices (2.43X). The major extra
usage (around 80%) of Polymer is from the lightweight replication.

__ 100000

$ 10000} o i1 Barier Algo. || w/o w/
el 2% Nbamion PR 131 121
o 1000 n SpMV 1.32 1.29
£ 100 BP 562 5.18
8 1o} | BFS 68 116
& e cc 317 575

o3 4 5 6 7 8 sssp || 436 341

Number of Sockets

(a) Synchronization Time (b) Execution Time

Figure 10. (a) The synchronization time with the increasing number of
sockets using various barriers. (b) A comparison of execution time w/ and
w/o NUMA-aware barrier using various algorithms on the roadUS graph.

6.6 Hierarchical and Efficient Barrier

To demonstrate the benefit of hierarchical and user-level synchro-
nization, we compare our NUMA-aware barrier (N-Barrier) with
default pthread_barrier (P-Barrier). To breakdown the improve-
ment, we further implement a hierarchical_barrier (H-Barrier) us-
ing pthread_barrier with hierarchical mechanism.

Figure 10(a) presents absolute performance of three barriers
with the increasing number of sockets. We bind 10 threads on
each sockets, one thread per core. The hierarchical mechanism
in H-Barrier can obviously improve the scalability by decreasing
cache coherence broadcasts between NUMA-nodes. H-Barrier out-
performs P-Barrier by almost one order of magnitude on eight sock-
ets (6182us vs. 612us). However, the performance of H-Barrier
still suffers from frequently trapping into the kernel. Based on
H-Barrier, the N-Barrier further replace the pthread_barrier with
atomic memory access, and achieves additional two order of mag-
nitude improvement (612us vs. 8us).

Table 6. A comparison of execution time w/ and w/o (a) adaptive data
structure and (b) balanced partitioning using various algorithms.

Algo. || w/o w/ Algo. || w/o w/
PR 132 121 PR 10.30 5.28
SpMV 1.30 129 SpMV 13.05 7.55
BP 569 5.18 BP 49.20 38.00
BFS 827 1.16 BFS 3.30 0.90
cc 868 575 cC 8.85 4.60
SSSP 1720 341 SSsP 5.32 2.26

(a) Adaptive data structure (b) Balanced Partitioning

We further compare the performance of various algorithms on
Polymer with and without the optimization for the roadUS graph.
As shown in Figure 10(b), NUMA-aware barrier can only provide
a limited improvement on PageRank, SpMV and BP by up to 8%
(7%, 2% and 8%). While for three traversal algorithms, NUMA-
aware barrier can improve the performance by 58.6X, 5.51X and
1.28X, due to high proportional synchronization overhead.

6.7 Adaptive Data Structure

To study the benefit of adaptive data structure, Table 6(a) compares
the performance of various algorithms on Polymer with and with-
out the optimization for roadUS graph. As the major improvement
is from reducing the performance cost to check runtime states when
there are few active vertices. For sparse matrix multiplication algo-
rithms (PR, SpMV and BP), the active number of vertices is quite
stable. The switching of data structure occurs much later or even no
switch at all, thereby the improvement is limited, up to 9%. In con-
trast, the traversal algorithms, including BFS, CC and SSSP, can
significantly benefit from more efficient data structure.

° 1.5 12
5}
g 1.0 g
2 @ gt
a 05 ®
3 E 6}

n -m - =
N 0 I [} & 47
g g
g 05 w/ opt mmm | w2k w/ opt =%
Z w/o opt mmm 0 w/o opt ——

qob- v . "
01 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Number of Sockets

(b) Normalized Speedup

Number of Sockets
(a) Execution Time

Figure 11. (a) The normalized difference of edges in each partition for
the twitter graph. (b) The execution time w/ and w/o balance partitioning
on each socket for PageRank with the twitter graph.

6.8 Balanced Partitioning

We first compare the performance of Polymer with and without bal-
ance partitioning using the twitter graph. The out-degree power-law
constant (@) of the twitter graph is close to 2.0. Table 6(a) shows
that the speedup ranges from 1.29X to 3.67X. To reveal the bene-
fit of balanced partitioning, we first estimate the number of edges
in each partition for the twitter graph. As shown in Figure 11(a),
the default partitioning will evenly assign vertices among NUMA-
nodes and incur the imbalance of edges, while the balance partition-
ing can prominently narrow the fluctuation into a range from -0.5%
to 0.8%. We further collect the pure execution time of the threads
on each socket using the PageRank algorithm. Due to synchronous
scheduling, the overall execution time is decided by the slowest
worker thread. With default partitioning, the imbalance of edges
causes the difference of execution time, which will be amplified by
the congestion on some interconnects and memory controllers. In
Figure 11(b), the black and red dotted lines indicate the whole exe-
cution time with and without balanced partitioning. The execution
time on each socket without optimization ranges from 4.16 to 9.32
seconds. In contrast, the range for balanced execution is from 4.72
to 4.86 seconds.

192

7. Other Related Work

Polymer directly departs from prior graph analytics systems such as
Ligra [43], X-Stream [42] and Galois [39], but differs with them by
adopting NUMA- and graph-aware data layout and access strategy.

Other single-machine graph-analytics systems: There are
several efforts aiming at leveraging multicore platforms for graph
processing [28, 41, 48]. For example, GraphChi [28] targets at
disk-based graph computation by using parallel sliding windows
to preserve access locality for graph data. Medusa [48] provides
users with a simple interface to write graph-parallel code on GPUs.
Such techniques should be useful when extending Polymer for disk-
based processing, CPU-GPU co-processing and streaming process-
ing. However, none of them focus on leveraging NUMA character-
istics. Polymer borrows some designs from prior systems, and our
techniques may be helpful to boost performance of such systems
on NUMA machines.

Distributed graph-analytics systems: The popularity of graph
analytics is also embodied in distributed graph analytics sys-
tems, such as Pregel [35], GraphLab [22, 32], Cyclops [13] and
GraphX [23]. Mizan [26] leverages vertex migration for dynamic
load balancing. PowerSwitch [46] proposes a hybrid execution
mode that adaptively switches a graph-parallel program between
synchronous and asynchronous execution modes for optimal per-
formance. Imitator [45] reuses computational replication for fault
tolerance in large-scale graph processing to provide low-overhead
normal execution and fast crash recovery. There are also a few sys-
tems considering streaming processing [15, 38] or graph proper-
ties [12, 14, 24]. Many techniques aimed at NUMA systems in
Polymer are borrowed from these distributed systems.

Other NUMA-aware computation systems: Liu et. al. [30]
recently developed a tool to analyze and quantify the bottlenecks
of multithreaded program on NUMA platforms. David et. al. [18]
presented an exhaustive study of synchronization on various mul-
ticore and NUMA systems. MemProf [29] is a memory profiler
aimed at NUMA systems for optimizing multithread programs Car-
refour [17] is a memory placement algorithm for data-intensive
applications, which aims at eliminating the congestion on mem-
ory controllers and interconnects. N-MASS [34] is a scheduling
algorithm that simultaneously considers data locality and cache
contention for NUMA systems. Gaud et. al. [21] discovered that
large pages may hurt performance on NUMA systems and pro-
posed a memory placement to recover the performance. Lock co-
horting [19] can transform general spin-lock algorithms into scal-
able NUMA-aware versions. Calciu et. al. [8] further extended the
lock cohorting technique to tailor reader-writer locks in a NUMA-
friendly fashion. Ostrich [11] improved the performance of MapRe-
duce on NUMA machines with tiling. Polymer is inspired by prior
work on NUMA platforms, such as reducing remote memory ac-
cesses, but is specially designed to leverage graph-specific charac-
teristics to boost performance.

8. Conclusion

This paper described Polymer, a NUMA-aware graph analytics sys-
tem, which is motivated by a detailed study of NUMA characteris-
tics. The key of Polymer’s performance is using graph-aware graph
data allocation, data layout and access strategy that reduces remote
memory accesses as much as possible and turns inevitable remote
accesses from random to sequential ones. This significantly boosted
the performance of Polymer on NUMA platforms.

Acknowledgments

We thank the anonymous reviewers for their insightful comments.
This work is supported in part by the Doctoral Fund of Ministry of
Education of China (No. 20130073120040), the Program for New

Century Excellent Talents in University, Ministry of Education of
China (No. ZXZY037003), a foundation for the Author of National
Excellent Doctoral Dissertation of PR China (No. TS0220103006),
the National Natural Science Foundation of China (No. 61303011
and 61402284), the Open Project Program of the State Key Labora-
tory of Mathematical Engineering and Advanced Computing (No.
2014A05), the Shanghai Science and Technology Development
Fund for high-tech achievement translation (No. 14511100902), a
research grant from Intel and the Singapore NRF (CREATE E2S2).

References
[1] The 9th dimacs implementation challenge -
http://www.dis.uniromal.it/challenge9/.
[2] Graph 500. http://www.graph500.org.
[3] numactl. http://oss.sgi.com/projects/libnuma/.

[4] L. A. Adamic and B. A. Huberman.
Glottometrics, 3(1):143-150, 2002.

[5] A. Baumann, P. Barham, P-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schiipbach, and A. Singhania. The multikernel: a new
os architecture for scalable multicore systems. In SOSP, 2009.

shortest paths.

Zipf’s law and the internet.

[6] S. Beamer, K. Asanovi¢, and D. Patterson. Direction-optimizing
breadth-first search. Scientific Programming, 21(3):137-148, 2013.

[7] S. Brin and L. Page. The anatomy of a large-scale hypertextual web
search engine. In WWW, pages 107-117, 1998.

[8] I. Calciu, D. Dice, Y. Lev, V. Luchangco, V. J. Marathe, and N. Shavit.
Numa-aware reader-writer locks. In PPoPP, 2013.

[9] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A recursive model
for graph mining. In SDM, volume 4, pages 442-446. SIAM, 2004.

[10] R. Chen and H. Chen. Tiled-mapreduce: Efficient and flexible mapre-
duce processing on multicore with tiling. ACM TACO, 10, 2013.

[11] R. Chen, H. Chen, and B. Zang. Tiled-mapreduce: optimizing resource
usages of data-parallel applications on multicore with tiling. In PACT,
2010.

[12] R. Chen, J. Shi, Y. Chen, H. Guan, and H. Chen. Powerlyra: Differenti-
ated graph computation and partitioning on skewed graphs. Technical
Report 2013-11-001, IPADS, SJTU, 2013.

[13] R. Chen, X. Ding, P. Wang, H. Chen, B. Zang, and H. Guan. Compu-
tation and communication efficient graph processing with distributed
immutable view. In HPDC, 2014.

[14] R. Chen, J. Shi, B. Zang, and H. Guan. Bipartite-oriented distributed
graph partitioning for big learning. In APSys, 2014.

[15] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu, F. Yang,
L. Zhou, F. Zhao, and E. Chen. Kineograph: taking the pulse of a
fast-changing and connected world. In EuroSys, pages 85-98, 2012.

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, et al. Introduc-
tion to algorithms, volume 2. MIT press Cambridge, 2001.

[17] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers,
V. Quema, and M. Roth. Traffic management: a holistic approach to
memory placement on numa systems. In ASPLOS, 2013.

[18] T. David, R. Guerraoui, and V. Trigonakis. Everything you always
wanted to know about synchronization but were afraid to ask. In SOSP,
2013.

[19] D. Dice, V. J. Marathe, and N. Shavit. Lock cohorting: a general
technique for designing numa locks. In PPoPP, pages 247-256, 2012.

[20] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relation-
ships of the internet topology. In SIGCOMM, pages 251-262, 1999.

[21] F. Gaud, B. Lepers, J. Decouchant, J. Funston, A. Fedorova, V. Quema,
and I. Grenoble. Large pages may be harmful on numa systems. In
USENIX ATC, 2014.

[22] J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. PowerGraph:
Distributed graph-parallel computation on natural graphs. In OSDI,
2012.

[23] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica. Graphx: Graph processing in a distributed dataflow
framework. In OSDI, 2014.

193

[24] W. Han, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou, V. Prabhakaran,
W. Chen, and E. Chen. Chronos: a graph engine for temporal graph
analysis. In EuroSys, 2014.

[25] U. Kang, D. Horng, et al. Inference of beliefs on billion-scale graphs.
In SIGKDD-LDMTA, 2010.

[26] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and
P. Kalnis. Mizan: a system for dynamic load balancing in large-scale
graph processing. In EuroSys, pages 169-182, 2013.

[27] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social
network or a news media? In WWW, pages 591-600, 2010.

[28] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi: Large-scale graph
computation on just a PC. In OSDI, 2012.

[29] R. Lachaize, B. Lepers, V. Quéma, et al. Memprof: A memory profiler
for numa multicore systems. In USENIX ATC, 2012.

[30] X. Liu and J. Mellor-Crummey. A tool to analyze the performance of
multithreaded programs on numa architectures. In PPoPP, 2014.

[31] Y. Liu, B. Wu, H. Wang, and P. Ma. Bpgm: A big graph mining tool.
Tsinghua Science and Technology, 19(1):33-38, 2014.

[32] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein. Distributed GraphLab: a framework for machine learning
and data mining in the cloud. VLDB Endowment, 5(8):716-727, 2012.

[33] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry. Challenges
in parallel graph processing. Parallel Processing Letters, 17(1):5-20,
2007.

[34] Z. Majo and T. R. Gross. Memory management in numa multicore
systems: trapped between cache contention and interconnect overhead.
In ISMM, 2011.

[35] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph
processing. In SIGMOD, 2010.

[36] J. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchro-
nization on shared-memory multiprocessors. ACM TOCS, 9(1):21-65,
1991.

[37] U. Meyer and P. Sanders. §-stepping: a parallelizable shortest path
algorithm. Journal of Algorithms, 49(1):114-152, 2003.

[38] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi. Naiad: a timely dataflow system. In SOSP, pages 439—455.
ACM, 2013.

[39] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infrastructure
for graph analytics. In SOSP, 2013.

[40] B. Panda, J. Herbach, S. Basu, and R. Bayardo. PLANET: massively
parallel learning of tree ensembles with MapReduce. In VLDB, 20009.

[41] V. Prabhakaran, M. Wu, X. Weng, F. McSherry, L. Zhou, and M. Hari-
dasan. Managing large graphs on multi-cores with graph awareness.
In Usenix ATC, 2012.

[42] A. Roy, 1. Mihailovic, and W. Zwaenepoel. X-stream: Edge-centric
graph processing using streaming partitions. In SOSP, 2013.

[43] J. Shun and G. E. Blelloch. Ligra: a lightweight graph processing
framework for shared memory. In PPoPP, 2013.

[44] A. Smola and S. Narayanamurthy. An architecture for parallel topic
models. In VLDB, 2010.

[45] P. Wang, K. Zhang, R. Chen, H. Chen, and H. Guan. Replication-based
fault-tolerance for large-scale graph processing. In DSN, 2014.

[46] C. Xie, R. Chen, H. Guan, B. Zang, and H. Chen. Sync or async: Time
to fuse for distributed graph-parallel computation. In PPoPP, 2015.

[47] X. Zhao, A. Chang, A. D. Sarma, H. Zheng, and B. Y. Zhao. On the
embeddability of random walk distances. In VLDB, 2013.

[48] J. Zhong and B. He. Medusa: Simplified Graph Processing on GPUs.
TPDS, 2013.

[49] X. Zhu and Z. Ghahramani. Learning from labeled and unlabeled

data with label propagation. Technical report, Technical Report CMU-
CALD-02-107, Carnegie Mellon University, 2002.

