
TwinVisor: Hardware-isolated Confidential Virtual
Machines for ARM

Dingji Li
†§‡

, Zeyu Mi
†‡
, Yubin Xia

†‡
, Binyu Zang

†‡
, Haibo Chen

†‡
, Haibing Guan

⋄

†
Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

§
MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University

‡
Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China
⋄

Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University

Abstract

Confidential VM, which offers an isolated execution en-
vironment for cloud tenants with limited trust in the cloud
provider, has recently been deployed in major clouds such
as AWS and Azure. However, while ARM has become in-
creasingly popular in cloud data centers, existing confiden-
tial VM designs mainly leverage specialized x86 hardware
extensions (e.g., AMD SEV and Intel TDX) to isolate VMs
upon a shared hypervisor.
This paper proposes TwinVisor, the first system that en-

ables the hardware-enforced isolation of confidential VMs
on ARM platforms. TwinVisor takes advantage of the ma-
ture ARM TrustZone to run two isolated hypervisors, one in
the secure world (called S-visor in this paper) and the other
in the normal world (calledN-visor), to support normal VMs
and confidential VMs respectively. Instead of building a new
S-visor from scratch, our design decouples protection from
resource management, and reuses most functionalities of a
full-fledged N-visor to minimize the size of S-visor. We have
built two prototypes of TwinVisor: one on an official ARM
simulator with S-EL2 enabled to validate functional correct-
ness and the other on an ARM development board to eval-
uate performance. The S-visor comprises 5.8K LoCs while
the N-visor introduces 906 LoC changes to KVM. Accord-
ing to our evaluation, TwinVisor can run unmodified VM
images as confidential VMs while incurring less than 5%
performance overhead for various real-world workloads on
SMP VMs.

CCS Concepts: • Security and privacy→ Virtualization

and security.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for compo-

nents of this work owned by others than ACM must be honored. Abstract-

ing with credit is permitted. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific permission and/or

a fee. Request permissions from permissions@acm.org.

SOSP ’21, October 26–29, 2021, Virtual Event, Germany

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8709-5/21/10. . . $15.00

https://doi.org/10.1145/3477132.3483554

1 Introduction

Confidential computing, which leverages hardware to
provide attestable isolated execution environments, is get-
ting prevalent on cloud platforms [78]. Sensitive data is iso-
lated in such environments, making it invisible to all (in-
cluding the cloud provider) but the authorized data process-
ing code. There are different levels of confidential comput-
ing, including application-level, container level, and virtual
machine (VM) level [40, 45, 80, 82]. Among these differ-
ent types, hardware-based VM-level confidential computing
has recently gained traction due to its compatibility with ex-
isting IaaS (Infrastructure as a Service) clouds, minimal in-
trusiveness to tenants’ workloads, and clear security bound-
ary easy to be implemented and enforced.
Major cloud vendors, such as Google Cloud [17], Mi-

crosoft Azure [31] and IBM Cloud [29], are now offering
confidential VMs as a service to end users based on AMD’s
Secure Encrypted Virtualization (SEV) [1, 2]. In addition, In-
tel will include Trust Domain Extensions (TDX) [24, 25] in
its future CPUs and IBM published Protected Execution Fa-
cility (PEF) [54] in the latest POWER9 chips to support con-
fidential VMs.
With the rise of cloud computing, the ARM platform

has become popular in data centers [12, 22] due to its rich
ecosystem and excellent price-performance ratio [52, 55, 56,
73]. As a result, it is natural for security-sensitive ARM
users to concern about when and how ARM servers will
support confidential VMs. ARM recently announced a new
ARMv9 extension called Confidential Compute Architec-
ture (CCA) [7] to enable confidential VMs. However, its
hardware will not be available for another year or two ac-
cording to ARM’s roadmap [4]. Further, it is still unclear
how to design and implement systems atop CCA.
On the other hand, ARM has a mature hardware exten-

sion named TrustZone [74] (since 2003), which is capable
of partitioning a server into two isolated worlds (a normal

world and a secure world). Therefore, TrustZone has been
widely used on mobile platforms to provide Trusted Exe-
cution Environment (TEE). Furthermore, TrustZone has re-
cently (since ARMv8.4) introduced hardware virtualization
with the secure EL2 extension (called S-EL2 in our paper) to

https://doi.org/10.1145/3477132.3483554

efficiently running VMs in the secure world. This leads to
one core question: is it possible to support confidential

VMs on ARM servers by retrofi�ing mature hardware

features like TrustZone with new so�ware designs?

One straightforward direction is to deploy critical VMs in
the secure world with a dedicated hypervisor.We argue that
it is inadequate to rebuild or port a full-fledged hypervisor in
the secure world. This argument is based on the evolution of
commercial hypervisors and TrustZone TEE-Kernels: both
were born with a small Trusted Computing Base (TCB) and
high-security guarantee but eventually evolved into soft-
ware entities with numerous security vulnerabilities and
large attack surfaces [37, 43, 61, 69, 71, 84].
In this paper, we propose TwinVisor, the first system

that enables hardware-isolated confidential VMs for ARM
servers. A key observation is that mature and extensively
tested hypervisors, such as KVM/ARM [26, 46, 47] and Xen-
ARM [38, 41], already exist in the normal world. Therefore,
TwinVisor disentangles the management of confidential
VMs from the protection mechanisms. Specifically, Twin-
Visor reuses the existing hypervisor in the normal world
(called N-visor in this paper) to manage hardware resources
and serve both secure VMs (S-VM) and normal VMs (N-VM).
In terms of protection, TwinVisor creates a tiny hypervisor
in the secure world (called S-visor) to focus on protecting
S-VMs. One major benefit of TwinVisor is that the S-visor’s
TCB keeps small and reliable despite the contiguous evo-
lution of the N-visor’s functionalities. While enjoying the
convenience brought by the N-visor, every S-VM is isolated
from the entire normal world as well as other S-VMs in the
secure world.
Nevertheless, existing TrustZone hardware was origi-

nally designed to run two hypervisors with independent

privilege models, static resource partitions, and infre-

quent inter-world communications, posing three major
challenges for TwinVisor. First, TrustZone’s secure world is
no more privileged than the normal world, making it impos-
sible for the S-visor to transparently intercept the execution
of the N-visor like the trap-and-emulate method [75]. Sec-
ond, traditional TrustZone applications have fixed resource
requirements, so that TrustZone adopts a static policy of re-
source partition. For example, TrustZone only allows des-
ignating a limited number of physical memory regions as
secure memory. However, the static resource partition re-
sults in insufficient resources or low resource utilization for
S-VMs, whose use of hardware resources is highly dynamic.
Third, the conventional TrustZone usage model is based on
the assumption that world switches are not frequent, so that
a large switch overhead has little impact on overall perfor-
mance [53]. But TwinVisor’s design requires close collabo-
ration between two hypervisors in both worlds, leading to
frequent world switches that cause much runtime overhead
for S-VMs.

We address the above challenges through three key de-

signs
1
. To tackle the first challenge, we propose horizontal

trap (H-Trap, § 4.1), a trap-and-emulate like mechanism that
enables the S-visor to check the N-visor’s operations with
minor modifications. For the second challenge, we design
split contiguous memory allocator (split CMA, § 4.2), with
which the normal and secure worlds collaborate to resize
secure memory regions dynamically. Lastly, we use a fast
switch facility (§ 4.3) that avoids redundant operations to
boost world switches.
We have implemented two prototypes of TwinVisor for

functional validation and performance evaluation on two
ARM platforms (an official simulator and a hardware SoC).
The code size of the S-visor is about 5.8K LoCs, and we also
slightly modify the Linux kernel v4.14 (906 LoCs). The per-
formance evaluation results on microbenchmarks and vari-
ous real-world applications show that TwinVisor incurs less
than 5% performance overhead for SMP S-VMs. Both proto-
types demonstrate that the N-visor canmanage hardware re-
sources and schedule all N-VMs and S-VMswhile the S-visor
protects unmodified S-VMs transparently. Besides software
designs, we also discuss possible hardware improvements
for future ARM architectures to support confidential VMs
better (§ 8). A prototype of TwinVisor is open-sourced at
https://github.com/TwinVisor.

Contributions. The contributions of the paper are:

• We design and implement TwinVisor, the first hyper-
visor architecture that supports confidential VMs on
ARM with a small TCB.

• We introduce a set of software designs to securely and
efficiently protect S-VMs based on current ARM fea-
tures and propose advice to improve future hardware
features.

• We evaluate not only the functional correctness of
TwinVisor on an official emulator but also its runtime
performance by using functionally similar hardware.

• We provide a reference design for future systems with
similar architectures (e.g., ARM CCA), which may as-
sist them in addressing similar challenges.

2 Background

This section first compares state-of-the-art solutions for
confidential computing, and then introduces background
knowledge about ARM TrustZone, S-EL2 extension and
ARM CCA.

2.1 Existing Solutions for Confidential Computing

As shown in Table 1, various solutions have been released
to guard cloud tenants [1, 13, 14, 17, 23, 25].

1
CCA’s software design may have similar challenges faced by TwinVisor

since both CCA and TrustZone require a dual-hypervisor system architec-

ture. CCA can address these challenges with TwinVisor’s techniques.

https://github.com/TwinVisor

Basic Info. Security Metrics

Name Arch Domain Type Domain Num Software Shim Reg Prot Secure Mem Mem Size Mem Granu

Intel SGX x86 Process Unlimited ✗ ✓ Static 128/256MB Page
Intel Scalable SGX x86 Process Unlimited ✗ ✓ Static 1TB Page
AMD SEV x86 VM 16/256 ✗ ✗ Dynamic All Page
AMD SEV-ES/SNP x86 VM Limited ✗ ✓ Dynamic All Page
Intel TDX x86 VM Limited ✗ ✓ Dynamic All Page
Power9 PEF Power VM Unlimited ✓ ✓ Static All Region
Komodo ARM Process Unlimited ✓ ✓ Dynamic All Region
ARM S-EL2 ARM VM Unlimited ✓ ✗ Dynamic All Region
ARM CCA ARM VM Unlimited ✓ ✓ Dynamic All Page
TwinVisor ARM VM Unlimited ✓ ✓ Dynamic All Page

Table 1. A comparison of different solutions for confidential computing. In the "Secure Mem" column, "Static" means the physical range

of the secure memory can only be reserved statically at boot time, while "Dynamic" means the solution can adjust the range of the secure

memory dynamically at runtime.

Intel SGX [23, 40, 59, 72] and Komodo [49] focus on pro-
viding enclaves for user-mode applications. Intel SGX de-
fends against both malicious software and hardware attacks
by utilizing hardware memory encryption and integrity
enforcement, but its secure memory size is restricted to
128/256MB. A scalable version of SGX [21, 35] was released
recently, increasing the secure memory size to 1TB, but it
weakens the integrity protection at hardware level. Komodo
relies on the isolation of ARM TrustZone, which supports
unlimited secure memory size but has no hardware guar-
antee of encryption and integrity, succumbing to physical
attacks.
Different from the process-level enclave, AMD SEV-

SNP [1, 2, 33], Intel TDX [25], Power PEF [54], and ARM
CCA aim at enabling confidential VMs with specialized
hardware extensions. SEV-SNP, TDX and CCA benefit from
hardware memory encryption and integrity protection. To
enforce strong confidentiality, SEV-SNP and TDX assign a
unique encryption key to each different VM, resulting in the
limited number of available VM instances [24]. By contrast,
CCA only uses global encryption keys to support an unlim-
ited number of VMs. SEV deploys a security co-processor
with its dedicated memory in the CPU to take care of VMs,
whereas TDX employs a microcode-implemented hardware
shim called TDX module to monitor the interactions be-
tween the VM and the untrusted hypervisor and enforce se-
curity policies. In comparison, PEF and CCA choose a soft-
ware shim, which has better flexibility and is easier to be
updated and verified [49].

2.2 ARM TrustZone

As shown in Figure 1, ARMTrustZone divides a processor
state into normal world and secure world, each of which has
multiple exception levels (ELs): EL0 for applications, EL1 for
kernels, EL2 (if exists) for hypervisors. The normal-world
software, including the hypervisor, is untrusted and cannot
access the secure-world resources, while the secure-world
software may access all resources. The normal-world hyper-
visor requests a TA’s service by invoking SecureMonitor Call

(SMC), a special hardware instruction, to trap into the secure

monitor in EL3, which further forwards the control flow to
TEE-Kernel in S-EL1. Returning from the TEE-Kernel to the
hypervisor is a reverse procedure. The world switch is usu-
ally infrequent, so it is unlikely to affect the runtime perfor-
mance [53].

HypervisorN-EL2

N-EL0

Normal World

Secure WorldNormal World

N-EL1 Kernel

N-VM

Apps

Kernel

N-VM

Apps

TEE OS

TEE-Kernel

TA TA TA

Hypervisor S-EL2

S-EL0

S-EL1Kernel

S-VM

Apps

Kernel

S-VM

Apps

 Firmware

Secure World w/o S-EL2 Secure World w/ S-EL2

SMCSMCSMC
EL3

Interconnect TZPCTZASC DeviceDRAM

 Missing

Figure 1. The architectures of ARM TrustZone with and without

the S-EL2 extension. The middle secure world is the traditional

secureworld that misses the secure EL2 level while the right secure

world owns the S-EL2 level since ARMv8.4. Please note that the

middle and the right secure world cannot co-exist.

All physical memory pages in ARM TrustZone can be

categorized into secure memory and non-secure memory
2
.

The two types of memory are isolated from each other by
ARMTrustZoneAddress Space Controller (TZASC). TZASC
throws a page fault exception for each memory access if the
security states of the current CPU and the physical pagemis-
match. The latest implementation of TZASC (TZC-400) [8]
supports configuring the security attributes for up to eight

different memory regions. For each memory region, the ad-
dress range is defined by a base address register and a top
address register, while its accessibility to the two worlds is
described by a region attribute register. Only privileged and
trusted software (e.g., secure monitor, TEE-Kernel) can con-
figure these registers.

2
We use the terms “non-secure memory” and “normal memory” inter-

changeably in this paper.

In TrustZone, a peripheral device belongs to either secure
world or normal world. The normal world cannot access a
secure-world device. TrustZone also divides interrupts into
twoworlds. A secure interrupt has to be handled by the TEE-
Kernel. The designation of interrupts can be configured by
modifying Generic Interrupt Controller (GIC) registers.

2.3 Secure EL2 (S-EL2) Extension

Since ARMv8.4, the S-EL2 enables the hardware virtual-
ization feature in secure world, as shown on the right in
Figure 1. S-EL2 mirrors almost all aspects of N-EL2 in the
secure world to support a hypervisor. For example, the reg-
ister VSTTBR_EL2 stores the base address of a secure stage-
2 page table (S2PT) in S-EL2, while its counterpart in N-EL2
is VTTBR_EL2. When an S-VM accesses a secure Interme-
diate Physical Address (IPA), this address will be translated
through the secure S2PT pointed by VSTTBR_EL2.

2.4 ARM CCA

CCA is a planned security extension for ARMv9 that in-
troduces Realm [5], which is another isolated worldwith vir-
tualization support. Granule Protection Table (GPT) [6] is in-
troduced as a new third-stage page table to determine the ac-
cessibility of each physical page. A processor in Realm and
secure states cannot touch thememory of the other, but both
states have access to non-secure memory. Besides, CCA en-
crypts the memory of Realm and the secure world with sep-
arate keys and enforces integrity protection by hardware.
However, hardware support alone is insufficient, which fur-
ther requires hypervisor-level software for VM manage-
ment. Such a dual-hypervisor system may encounter the
same challenges faced by this paper. Given that CCA’s un-
availability will last for some time and the cancellation of
its predecessor Bowmore [86], existing ARM cloud tenants
require a feasible confidential VM solution before CCA is
fully ready.

3 Overview

3.1 Design Goals and Architecture

TwinVisor targets to open the secure world to the normal
software without bloating the TCB. It provides cloud ten-
ants multiple hardware-isolated confidential VMs (we also
call them secure VMs or S-VMs in our paper), which run
unmodified operating systems.
The concrete goals of TwinVisor are listed as follows:

• G1: Security: S-VMs are protected from illegal ac-
cesses by untrusted software. The TCB of TwinVisor
should keep small so that it can be verified easily.

• G2: Efficiency: The performance of workloads run-
ning in S-VMs is comparable to that of VMs in a sys-
tem without TwinVisor. It should also be easy to scale
to multiple virtual CPUs (vCPUs) and S-VMs with
small overhead.

• G3: Minimal Modification: TwinVisor introduces
minor modifications to existing software.

Figure 2 is an overview of TwinVisor’s architecture, in
which two hypervisors run in two worlds. The N-visor in
N-EL2 manages hardware resources for both S-VMs and N-
VMs to consolidate VMs, while the S-visor in S-EL2 guards

S-VMs
3
. The N-visor in N-EL2manages hardware resources

and provides services for S-VMs while the S-visor in S-
EL2 guards them. When creating an S-VM, the N-visor allo-
cates hardware resources including CPU time slices, physi-
cal memory, and I/O devices. When the N-visor decides to
run an S-VM, it hands over the control flow to the S-visor,
which installs environment and executes code of the target
S-VM.

N-VM N-VM S-VM

Scheduler

(e.g., CFS)

N-visor
Mem Mgmt.

(e.g., buddy)

I/O Drivers

(e.g., net)

H-trap

§ 4.1

Split CMA

§ 4.2

Shadow I/O

§ 5.1

S-visor

Fast Switch § 4.3 Firmware

N-EL2

N-EL0&1 S-EL0&1

S-EL2

S-VM

Secure WorldNormal World

EL3

Manage Protect

S-VMN-VM

TrustedUntrusted

Figure 2. The overall architecture of TwinVisor. Green blocks are

the TCB of TwinVisor.

For CPU time slices, a scheduler in the N-visor schedules
all S-VMs and N-VMs, whereas the S-visor neither includes
a scheduler nor reserves physical cores for S-VMs to keep its
TCB small. If a time slice expires and a periodic timer inter-
rupt fires when an S-VM is running, the S-VM traps into the
S-visor, which then returns to the N-visor to invoke sched-
uling. For physical memory, the N-visor dynamically allo-
cates normalmemory for an S-VM. Thesememory pages are
transformed into secure memory and then mapped into the
S-VM’s IPA space by the S-visor. For I/O devices, the N-visor
manages physical devices (such as storage and network de-
vices) and provides para-virtualization (PV) I/O devices for
S-VMs, whose I/O data is transparently copied between the

two worlds by the S-visor
4
. S-VMs should protect their own

I/O data through encryption and integrity checking.
An S-VM is protected against any illegal accesses by un-

trusted software, which includes anything except the secure
monitor in EL3 and the S-visor in S-EL2. Illegal accesses
are malicious read and write operations targeting an S-VM’s
CPU registers, memory pages, and corresponding hypervi-
sor data structures (e.g., S2PT). First, the S-visor carefully

3
An S-VM is not a virtual TrustZone of anN-VM [53], so it can only provide

services for VMs via the network.
4
For the secure devices directly connected to the secure world, TwinVisor

can support them by running a TEE-Kernel in an S-VM like the traditional

I/O model of TrustZone, which is outside the scope of this work.

hides all CPU registers’ values from the N-visor to prevent
data leakage and arbitrary writes. Second, an S-VM’s mem-
ory pages are of secure memory, and thus inaccessible to
the N-visor. An illegal physical memory access will trigger
a page fault waking up the secure monitor and finally no-
tifying the S-visor. Moreover, an S-VM cannot touch other
S-VMs’ memory due to the IPA isolation enforced by differ-
ent S2PTs. Third, the N-visor cannot access sensitive data
structures like S2PTs of S-VMs, which also reside in the se-
cure memory.

3.2 Threat Model and Assumptions

The TCB of TwinVisor includes the thin S-visor and the
trusted firmware that cannot be changed arbitrarily since
it requires the vendor’s signature during secure boot. Twin-
Visor assumes that the firmware and the S-visor are loaded
securely by the secure boot of TrustZone, and the imple-
mentation of ARM TrustZone and TZASC conforms to their
specifications.
Attackers’ capabilities: An attacker can control an N-VM
to compromise the N-visor via exploiting its software vul-
nerabilities. Therefore, all these software running in the nor-
mal world is untrusted, including the N-visor and all N-VMs.
A breached N-visor may try to read and tamper CPU regis-
ters, memory contents, I/O data of an S-VM and the S-visor.
Rogue devices can issue malicious DMA to access S-VM’s
memory, which can be defeated by configuring SMMU page
tables. TwinVisor assumes that the software in S-VMs will
not voluntarily reveal their sensitive data and protects their
I/O data by using encrypted message channels like SSL [28]
and full disk encryption [30]. Though an S-VM is possibly
controlled by a malicious tenant and sends its own secret
out, TwinVisor enforces isolation to ensure that a malicious
S-VM cannot access any secret data of other S-VMs and the
S-visor.
Out of scope: An attacker does not have physical access
to the machine so she cannot mount physical attacks via
offline DRAM analysis (e.g., cold-boot attacks [83]) and in-
tercepting communications between CPU and memory. We
argue that because software attacks happen far more fre-
quently than hardware attacks in today’s clouds, it is reason-
able to focus on defending against software attacks [13]. Be-
sides, TwinVisor can benefit from such hardware supports
when new hardware is available. For example, ARM CCA
plans to enable memory encryption for the secure mem-
ory of TrustZone [6]. Protecting an S-VM against Denial-of-
Service (DoS) is not a security objective of TwinVisor. Side-
channel attacks including cache-based side-channel attacks
are also out of scope. Their defense methods are orthogo-
nal to the design of TwinVisor. For example, existing mech-
anisms [57, 68, 79] can be applied to TwinVisor to protect
S-VMs from cache side-channel attacks, and speculation bar-
rier instructions [3] can be used to mitigate speculative ex-
ecution attacks.

Attestation: TwinVisor also assumes that there exists a
hardware-backed root of trust to support remote attesta-
tion. Before sending sensitive data to S-VMs, cloud ten-
ants ask their applications in S-VMs to attest the firmware,

the S-visor and kernel images
5
through the chain of trust.

Measurements of the firmware and the S-visor should be
verified by the hardware vendors that deploy them. Sim-
ilar attestation approaches have already been widely sup-
ported [36, 49, 76], which can be applied to TwinVisor.

4 Detailed Design

4.1 Logical Deprivileging Model

An ideal hardware capability of S-EL2 is that it resides
at a higher privilege than N-EL2 so that the S-visor can trap
sensitive instructions invoked by the N-visor, like the nested
virtualization model [42, 65, 69, 84]. This capability allows
the S-visor to transparently monitor the N-visor’s behaviors
without modifying it, which satisfies G3. But the reality is
that N-EL2 and S-EL2 are essentially two independent priv-
ilege levels, and the N-visor can directly control hardware
behaviors without triggering any traps, whichmakes it hard
for the S-visor to know when the N-visor needs to run an
S-VM and what updates are made by it. For instance, when
the N-visor executes an ERET instruction to enter one S-VM,
the very first instruction executed by the vCPU will trigger
a synchronous external exception to crash the system.
A possible solution is using the PV model [41] to mod-

ify the N-visor to proactively use APIs implemented by the
S-visor, which includes replacing all sensitive instructions
in the N-visor with SMC instructions and designing special
data structures in shared memory pages to synchronize in-
formation (e.g., page table updates and I/O data) with the
S-visor. But this method not only causes numerous world
switches, but also leads to excessive modifications to the N-
visor, which violates G2 and G3.

To address this issue, we propose a technique called hor-
izontal trap (H-Trap), which slightly modifies the N-visor
to logically deprivilege the N-visor. A key observation is
that any hypervisor or VM configurations cannot affect the
S-VM’s execution until the S-visor starts to run this VM, log-
ically making the N-visor less privileged than the S-visor.
Therefore, all checks on these configurations can be batched
until the S-visor enters the S-VM, significantly reducing
world switches. Moreover, the H-Trap does not provide any
shared PV data structures for the two hypervisors to com-
municate with. Instead, it reuses the existing hardware in-
terface including CPU registers and S2PTs in the normal
world to avoid excessively modifying the N-visor. The S-
visor checks CPU registers and memory mappings in place
and blocks illegal states before entering the S-VM.

5
Since major cloud providers allow users to import custom kernel im-

ages [11, 18, 32], cloud tenants can upload and verify their own trusted

kernel images.

TwinVisor provides a call gate that includes an SMC in-
struction to help the N-visor to proactively enter the S-visor.
ERET is the only sensitive instruction that we replace in the
N-visor. Today’s commercial hypervisors are usually well-
structured, and it is highly likely that the N-visor uses ERET
to resume VMs in only a few locations. For example, we
found there are only two such locations in KVM. Moreover,
the replacement of ERETs with call gates is only for func-
tional considerations (to allow the N-visor to run S-VMs).
A malicious N-visor may try to run an S-VM in the normal
world using an arbitrary ERET. Since the S-VM is located
in the secure memory, the execution after this ERET will be
intercepted by TZASC and finally reported to the S-visor.
Therefore, even though there exist remaining ERETs that
are not replaced with call gates, they will not pose any se-
curity threats to TwinVisor.

VM and SystemRegisters.When handling an H-Trap, the
S-visor checks what updates the N-visor makes to VM and
system registers. Therefore, any register values cannot af-
fect an S-VM’s execution until the S-visor checks them and
resumes this S-VM. The H-Trapmechanism combines differ-
ent trapping strategies for various types of registers. First,
all VM registers are shared between the two worlds, includ-
ing system (in EL1) and general-purpose ones. To prevent
the N-visor from reading or writing register values, the S-
visor saves all VM register values into its secure memory
and randomizes general-purpose register values before redi-
recting a VM exit to the N-visor. However, sometimes the N-
visor does need to access an S-VM’s register values (e.g., for
emulating devices). To this end, the S-visor selectively ex-
poses necessary register values to the N-visor. Specifically,
each time a register of the S-VM is chosen for passing pa-
rameters to the N-visor. The index of the register to be ex-
posed can be decoded from ESR_EL2 by the S-visor, while
other registers do not need to be exposed to the N-visor. Sec-
ond, for the normal hypervisor registers like VTCR_EL2 and
HCR_EL2 that control the virtualization behaviors of an S-
VM, TwinVisor still allows them to be used freely by the N-
visor. The S-visor validates these registers before resuming
an S-VM.

Shadow S2PT. TwinVisor guarantees that the N-visor can-
not directly read or write the secure S2PTs of any S-VMs.
Similar to previous work [42, 65], the S-visor uses secure
memory to build a shadow S2PT, the base address of which
is stored in VSTTBR_EL2 register, for each S-VM. To reuse
the N-visor to handle stage-2 page faults normally, the N-
visor is still able to modify the normal S2PT of each S-VM.
But a normal S2PT does not affect an S-VM’s memory trans-
lation, it only conveys what mapping updates the N-visor
wishes to perform. The S-visor checks and synchronizes
mapping updates to the shadow S2PT, which is the actual

S2PT that controls the S-VM’s memory translation. Specif-
ically, when a stage-2 page fault occurs, the S-visor inter-
cepts it, records the fault address (IPA), and forwards it to
the N-visor. The N-visor then calls its page fault handler to
directly modify the normal S2PT, which is checked by the
S-visor before resuming the S-VM’s execution. The S-visor
maintains a page mapping table (PMT) for each S-VM to
record which physical memory pages this S-VM owns. The
PMT can be used to prevent the N-visor from maliciously
mapping one physical page to multiple S-VMs, and to guar-
antee no memory leakage will occur.

4.2 Cooperative Management of Memory Resources

The traditional TrustZone use cases assume that all hard-
ware resources are statically partitioned to the twoworlds at
boot time. So the TrustZone hardware (TZASC) is unable to
support dynamically changing the security states of phys-
ical memory at page granularity. It can only manage the
memory security by using at most eight memory regions.
This is incompatible with the scenario in which an S-VM’s
memory may be dispersed. Therefore, if S-VMs’ memory
pages are not consecutive, the S-visor will quickly run out
of memory regions.
The second problem is that the N-visor is unaware of the

dynamic adjustment of memory security. If the S-visor dy-
namically changes some memory pages for an S-VM from
non-secure to secure at runtime, the physical memory al-
locator unaware of this attribute change may still allocate
them to other kernel components, which will encounter a
hardware fault due to the access to these pages. One naive
solution is to statically divide the entire physical memory
space into two parts (secure and non-secure) and notify the
two hypervisors of the address ranges free to use. Although
this solution avoids the hardware fault, the static partition
prevents dynamic physical memory adjustment and affects
overall memory utilization. When the S-visor exhausts its
own memory, it is unable to serve new S-VMs. On the other
hand, even if the N-visor is hunger for memory, overall
memory utilization remains low if the S-visor does not fully
utilize its secure memory regions.

Split Contiguous Memory Allocator (Split CMA). For-
tunately, we observe that today’s OS kernels are usually
equipped with a special type of physical memory allocators
that can allocate consecutive physical pages at a large scale.
Theywere designed to support I/O devices working on large
consecutive physical memory regions (e.g., hardware video
decoders). Linux CMA (Contiguous Memory Allocator) [16]
is a typical example, which reserves large regions of con-
secutive physical memory early at boot time. The reserved
memory is then returned to the buddy allocator to serve nor-
mal memory allocation requests. If CMA memory cannot
satisfy an allocation request, it makes room by migrating
pages that have been allocated by the buddy allocator to
other locations.

Therefore, we propose a split contiguous memory allo-
cator (split CMA) that reuses the existing CMA to address
the above two problems. The first problem can be resolved
by the consecutiveness of CMA-managedmemory. The split
CMA tries to keep secure memory physically consecutive
so that TZASC regions are sufficient to cover every secure
memory page. For the second problem, the split CMA is di-
vided into two modules (a normal end and a secure end)
in two worlds, each of which cooperates with the other to
dynamically switch the memory security attribute. If the S-
visor and S-VMs do not occupy the reserved memory, the
split CMA normal end gives them to the buddy allocator for
normal memory allocation. When the S-visor asks for more
memory, the normal end will recycle or migrate memory
from the buddy allocator and allocate them to the secure
end. The secure end will, in turn, compact and return mem-
ory to the normal end when the N-visor is hungry for mem-
ory. Therefore, this dynamic memory adjustment improves
overall memory utilization.

Free NS-mem Used NS-mem Free S-mem S-VM 0 S-VM 1 S-VM 2

N-visor borrows memory

?

1

2

3

4

Boot S-VM 0

S-VM +mem

Migrate

Alloc mem

No S-VM is running

1

2

3

4

Boot S-VM 0

Boot S-VM 1

Exit S-VM 0

Boot S-VM 0 & 2

S-VM 0 & 1 is running

1

2

3

4

Exit S-VM 1

Set to NS

Boot S-VM 2

Exit S-VM 0

S-VM 2 is running

? 0 ? 1 ? 2

0

1

2

3

4

N-visor +mem

NS-mem scarce

Compaction

NS-mem avail

(a) (b)

(c) (d)

2 1

Figure 3. Four examples of the secure memory allocation in the

split CMA. For simplicity, we just show eight secure memory

chunks in the pool.

Memory Organization. The split CMA designs a hierar-
chical structure of memory organization. At the top level,
the split CMA arranges all available memory in a memory
pool. Though only one memory page is needed by an S-VM
in each stage-2 page fault, it is unwise to allocate memory
from the pool at page granularity, because the lock con-
tention of the pool can lead to severe performance degra-
dation in the multi-VM scenario. Therefore, the split CMA
increases the allocation granularity to memory chunks. At
the middle level, a memory pool is divided into fixed-size
memory chunks, each of which consists of multiple pages
and belongs to one S-VM exclusively. The address of every
memory chunk is aligned to the chunk size. For example, the
chunk size in our implementation is 8MB and its address is
aligned to 8MB. At the bottom level, a memory chunk is uti-
lized as a cache of memory pages and maintains a bitmap to

record which pages are free. An S-VM obtains memory from
its local cache of pages and requests a new one if the old one
is used up. The split CMA marks a memory cache as inac-
tive if exhausted, active otherwise.When booting Linux, the
split CMA normal end reserves a contiguous range of phys-
ical memory for the memory pool.
According to our experience using TZASC, though it sup-

ports up to eight memory regions, only four regions are
available to use for S-VMs since the other four have been oc-
cupied by the S-visor (e.g., the S-visor will reserve a region
for its own secure memory). The split CMA utilizes the rest
4 regions and implements 4 memory pools so that an allo-
cation request failing in one pool (such as temporarily busy
pages) can be redirected to other pools.

Handling a Stage-2 Page Fault. When handling a stage-
2 page fault, the N-visor calls its own page fault handler
that has been slightly modified to use the split CMA normal
end for page allocation. If there is no active memory cache
for this specific S-VM, the normal end assigns a new cache
with the lowest physical address in the pool to the S-VM.
The N-visor then gets a page from the cache and maps it
into this S-VM’s IPA space by configuring the normal S2PT
whose base address is stored in VTTBR_EL2 register. At
this moment, the allocated physical page still belongs to the
normal memory. Once the N-visor invokes the call gate to
pass the control flow to the secure world, the secure end
walks the normal S2PT using the recorded IPA and gets the
mapped HPA value. After validating the S-VM’s PMT table,
the S-visor synchronizes this mapping to the correspond-
ing shadow S2PT (the really used one) before the S-visor
resumes this S-VM.
This page table walk can be boosted by just checking the

page table pages that translate the fault IPA. So there are
at most four pages needed to be read. The secure end finds
the memory chunk the mapped HPA belongs to by masking
out the lower bits and validates whether the chunk’s owner
VM is this S-VM. The secure end then dynamically changes
the whole memory chunk to the secure memory. Any fu-
ture allocation requests served by this chunk will not need
to change thememory security. Afterwards, the N-visor can-
not access the mapped memory page anymore since an ac-
cess will be detected by TZASC, which generates a synchro-
nous external exception to wake up the trusted firmware
and notify the S-visor.
Figure 3(a) is a typical example of memory allocation.

Two chunks have already been allocated to the buddy allo-
cator in the N-visor initially. Suppose the N-visor needs to
boot S-VM 0 that needs 3 memory chunks, the three mem-
ory chunks at the head of the pool are enough to boot this
VM. But when S-VM 0 needs more memory at runtime, the
normal end has to migrate the first normal memory chunk
away and then allocates this chunk to this VM.

When an S-VM shuts down, the N-visor notifies the S-
visor to release this S-VM’s memory, during which the se-
cure end clears all related pages. But the S-visor keeps these
memory chunks as secure for other S-VMs and lazily returns
them to the N-visor if needed. An S-VM shutdown is de-
picted in Figure 3(b). When S-VM 0 is closed in step-2, the
secure end zeros itsmemory contents and keeps the released
memory as secure, allowing subsequent S-VMs to reuse this
memory without changing its security.

Memory Compaction. If the normal end uses up the re-
served memory, it will borrow secure memory from the se-
cure end. However, while the secure endmay have sufficient
free memory chunks at times, these secure memory chunks
may be nonconsecutive and thus unable to be returned to
the normal world. As shown in Figure 3(c), two S-VMs use
a memory pool chunk by chunk. If S-VM 0 exits, the secure
end is only able to return thememory chunk at the end of se-
cure memory range. Even worse, all released memory after
closing S-VM 0 in step-4 cannot be returned to the normal
world despite that they are not used by any S-VMs. To ad-
dress this issue, the split CMA supports compacting the non-
consecutive secure memory chunks in the pool and returns
the compacted memory to the normal world. Figure 3(d) is
an example of chunk migration, the secure end will try to
compact the memory chunks of S-VM 2 by migrating them
to the head of the pool and then replenish the non-secure
memory for the N-visor.
The pages being migrated could have been mapped to an

S-VM. The secure end reconfigures its shadow S2PT tomark
these pages as non-present and thenmoves these pages’ con-
tents to new locations. If an S-VM accesses the migrated
pages while the migration is in progress, the S-VM will en-
counter a stage-2 page fault and get trapped into the S-visor,
which pauses the S-VM and resumes it when the migration
is complete. This migration will have no effect on S-VMs
that do not run or access the migrated pages.

4.3 Efficient World Switch

Each time the N-visor enters or exits an S-VM, a context
switch between the twoworlds happens, which is a frequent
operation. The world switches between the two hypervisors
have to involve the trusted firmware in EL3 to change the

NS bit in SCR_EL3 register
6
. This long path increases the la-

tency of VM exit handling, which has already been deemed
highly related to the overhead of virtualization [70, 85].
We find that a world switch contains redundant operations
like repeatedly saving and restoring the register values of a
vCPU when entering and exiting EL3 and S-EL2, which in-
curs large overhead as shown in our evaluation (§ 7.2). To
mitigate the performance issue, we design a fast switch fa-
cility that reduces the latency of world switch by 37.4% (see

6
SCR_EL3 is only accessible in EL3 andwill trigger an exception if accessed

in lower exception levels.

§ 7.2). While previous work [66, 77, 81] used a combination
of side core polling and shared memory to avoid context
switches, this method wastes CPU resources. Furthermore,
it is difficult to determine the appropriate number of cores
dedicated to polling.

Shared Pages for General-purpose Registers. We use a
shared page on each physical core to transfer vCPU general-
purpose register values between two hypervisors. Before in-
voking the SMC instruction, the N-visor stores all vCPU reg-
ister values into a shared page. The trusted firmwarewill not
save or restore any register values into and from stacks. It
just changes the NS bit and installs necessary states of the
S-visor. The S-visor directly reads values from the shared
page and writes these values into corresponding registers.
However, using shared pages to transfer states easily leads
to a TOCTTOU attack. Specifically, after the S-visor checks
the register values in the shared page, a malicious N-visor
can concurrently modify the shared page in another physi-
cal core. One straightforward solution is to disable access to
the shared page after switching to the secure world, which
effectively prevents the N-visor from modifying this page.
But this solution requires frequent modifications to TZASC
regions to change the security attribute of the shared page,
which further increases the latency of fast switch. And the
limited number of TZASC regions discourages us to spare
a separate region for this page. TwinVisor defends against
this attack in a check-after-load way [50] by reading register
values before checking them.

Register Inheritance for System Registers. TwinVisor
leverages register inheritance to further avoid redundant op-
erations that save and restore EL1 and some EL2 registers.
First, since both hypervisors work in EL2 and they do not
need to use any EL1 system registers, all these registers set
up by the N-visor for a guest vCPU will not be touched by
the firmware and directly inherited by the S-visor, which
checks these registers in place. Second, the two hypervisors
have two different sets of hypervisor control registers in EL2
(e.g., VTTBR_EL2 and VSTTBR_EL2), which means these
registers can also be directly passed between two worlds
without being touched by the firmware.

5 Implementation

5.1 I/O Virtualization

The S-visor fully reuses the I/O mechanism and device
drivers of the N-visor. In the current stage, TwinVisor takes
the PV model to enable I/O supports for S-VMs. Before the
S-VM is ready for PV I/O, we need to safely load the kernel
into the memory of the S-VM in case of malicious kernel
code modifications. To keep the TCB small and minimize
modifications, we reuse the kernel loading logic of the N-
visor and store an S-VM’s kernel image without encryption
in the normal world (separated from the encrypted disk im-
age in which sensitive data is saved). After an S-VM starts

to boot, the kernel image is loaded into the memory within
a fixed GPA range. Before the S-visor synchronizes a map-
ping into the shadow S2PT, it will check the integrity of the
page if the GPA falls into the range of the kernel image.

Shadow PV I/O. TwinVisor uses shadow I/O rings and
shadow DMA buffers to be transparent to S-VMs and reuse
existing PV I/O code without modification. In the current
implementation of Linux, both I/O rings and DMA buffers
are allocated from the secure memory of S-VMs, which is
inaccessible to the N-visor. Therefore, the S-visor duplicates
I/O rings and DMA buffers in the normal memory for the N-
visor, and synchronizes I/O requests and DMAdata between
two worlds for shadowing. Take the shadow I/O ring for ex-
ample, when a frontend driver in an S-VM issues an I/O re-
quest, the S-visor copies the request from the S-VM (secure)
to the I/O ring (non-secure). Conversely, if the backend dri-
ver in the N-visor raises an I/O completion interrupt, the S-
visor synchronizes the I/O ring (non-secure) to the shadow
one (secure) and redirects the interrupt to the S-VM.
However, the shadow I/O ring will bring non-negligible

overhead for applications, especially network-intensive
ones that involve large numbers of small network packets.
Frequent network packets require low-latency I/O ring syn-
chronization to achieve good performance. In the vanilla
case, the frontend and the backend drivers use shared mem-
ory for the I/O ring so that they know the I/O handling
progress of each other in real time, reducing the frequency
of interrupts. But in TwinVisor, the shadow I/O ring is not
shared memory between the two drivers and the synchro-
nization brings a large time window during which the two
drivers are unaware of the I/O progress. So they have to
send more interrupt notifications to synchronize shadow
I/O ring, leading to a larger runtime overhead. We optimize
this by leveraging routine VM exits caused by WFx instruc-
tions and physical IRQs to piggyback the updates of the TX
shadow I/O ring. These VM exits trap into the S-visor, which
then synchronizes the shadow I/O ring in time. The piggy-
back technique greatly improves network-intensive applica-
tions. For example, the normalized overhead of Memcached
in a 4-vCPU S-VM drops from 22.46% to 3.38%.

5.2 Prototypes for Evaluations

At the time of writing, there is still no commercially avail-
able hardware supporting ARMv8.4-A (Secure-EL2).

Functional Evaluation. We validate the design of the
TwinVisor by implementing a prototype on ARM FVP
(Fixed Virtualization Platform) [9] with full-featured S-EL2
enabled, which is an official full-system ARM simulator and
has been used by previous work [48] for testing functional
correctness. This prototype helps confirm that TwinVisor
will function well on future commercial hardware.

Performance Evaluation. To evaluate the performance of
TwinVisor, we use a development board with a Hisilicon

Kirin 990 [20]) SoC, which supports N-EL2 and Virtualiza-
tion Host Extension (VHE) [27], working similarly to the
hardwarewith S-EL2 enabled. The devicemanufacturer also
provides the source code of the firmware in EL3 and their
internal Linux. We move the S-visor from the secure world
to the normal world, which means both the N-visor and the
S-visor now run in N-EL2. All S-VMs thus run in N-EL1 and
N-EL0. To manage S-VMs, the N-visor still gets trapped into
the firmware in EL3, which then forwards the control flow
to the S-visor in N-EL2. Since the S-visor is unable to con-
trol TZASC registers in N-EL2, we emulate all the TZASC-
related operations by delaying for different time periods,
whose lengths are equal to those of the same operations we
have measured in the secure world on this device.

Lines of Code

S-visor 5.8K
ATF 1.9K (w/o S-EL2) / 163 (w/ S-EL2)
Linux 906
QEMU 70

Table 2. The code size of the prototype system of TwinVisor.

5.3 Implementation Complexity

We run cloc [15] tool to measure the code size of TwinVi-
sor. The code size of the S-visor is around 5.8K LoCs (4.7K
lines of C and 1.1K lines of assembly), which is much smaller
than existing TEE kernels (e.g., Linaro TEE with 110K LoC).
The small code size makes formal verification feasible, just
as SeKVM (3.8K LOC) [63], CertiKOS (9K LOC) [51], and
seL4 (10K LOC) [58], which would be our future work. We
use KVM in Linux kernel v4.14 to be the N-visor: 90 LoCs
of existing files are modified and 816 LoCs of new files are
added to implement the fast switch (130 LoCs) and the split
CMA (686 LoCs). For the trusted firmware, we have to add
much code (1.9K LoCs) in the ATF v1.5 on the Kirin 990
to support the S-visor in N-EL2 for performance measure-
ment. Most of the added code is for the fast switch between
the N-visor and the S-visor in the N-EL2. If the hardware
supports S-EL2, we just need to add 163 LoCs (94 lines of
C, 69 lines of assembly) to support the S-EL2 bootstrap and
the fast switch. Finally, we add less than 70 LoCs to QEMU
v4.2.0 to support the shadow PV I/O.

6 Security Analysis and Evaluation

6.1 Security Analysis

This section enumerates six properties of TwinVisor and
shows how these properties protect S-VMs.

Property 1: The firmware and the S-visor are trusted

during the system’s lifetime. Device vendors provide the
secure boot of TrustZone to guarantee the integrity of the
firmware and the S-visor during bootstrapping. When the
system is booted, remote attackers can come from the nor-
mal world or S-VMs. Attackers from the normal world can-
not access the firmware and the S-visor since they are iso-
lated by TrustZone and secure memory. As for malicious

S-VMs in the S-EL1, the S-visor residing in the more privi-
leged S-EL2 leverages a separate address space to defend it-
self. Besides, the S-visor prevents attackers frommaliciously
changing hardware behaviors by the horizontal trap (§ 4.1).

Property 2: The integrity of S-VMs’ kernel images is

enforced by the S-visor.An S-VM’s kernel image is loaded
into the memory by the untrusted N-visor when the S-VM
starts to boot. Based on Property 1, before a kernel page
takes effect, the trusted S-visor first turns the page into se-
cure memory and then checks its integrity. Therefore, a ma-
licious N-visor cannot touch the kernel image after loading
it into the memory, and the S-visor can ensure only the ver-
ified kernel takes effect.

Property 3: Each S-VM’s CPU register states are pro-

tected by the S-visor. Based on Property 1, the trusted S-
visor protects S-VMs’ CPU register states in two ways. First,
it saves registers before entering the N-visor and compares
the saved values with new ones after returning back. As a
result, the N-visor is unable to hijack the control flow of S-
VMs by tampering registers such as link registers (LR, ELR)
and page table base registers (TTBR). Second, it hides the
general-purpose registers by randomizing them. Thus, the
N-visor cannot obtain sensitive data through S-VMs’ regis-
ters.

Property 4: Each S-VM’s memory is isolated from

other S-VMs and the normal world. Based on Property 1,
isolations between S-VMs are enforced by the shadow S2PTs
maintained by the trusted S-visor. The normal world has no
access to S-VMs’ memory and shadow S2PTs in the secure
memory. A compromised N-visor may try to leak S-VMs’
data by mapping their pages to a malicious S-VM. However,
the S-visor keeps track of the ownership of physical pages.
Before synchronizingmappings to shadow S2PTs (§ 4.1), the
S-visor verifies the page ownership and ensures that no two
S-VMs share a page. Besides, the S-visor can leverage ARM
SMMU [10, 67] to defeat DMA attacks.

Property 5: Each S-VM’s I/O data is protected by the

S-visor. TwinVisor assumes that S-VMs utilize end-to-end
encryption and integrity checking to protect their I/O data.
If any plaintext I/O data and encryption keys stay in the
S-VM’s CPU registers or memory pages, they cannot be
leaked to the N-visor due to Property 3 and 4. The shadow
I/O mechanism (§ 5.1) further ensures that any data copied
to the normal memory has already been encrypted and
thus cannot reveal any sensitive information. The integrity
checking performed by S-VMs ensures that malicious code
or data pages constructed by attackers will not be used.

Property 6: All data and the control flow of each S-

VM are protected by the S-visor. Based on Property 1, the
firmware and the S-visor cannot be compromised by remote
attackers. Combined with Properties 3 and 4, attackers are

unable to access S-VMs’ CPU register states ormemory even
if they compromise the N-visor or collude with a malicious
S-VM. Along with Property 5, all data and the control flow
of S-VMs are protected from remote attackers.

6.2 Security Evaluation against CVEs

To verify the security of TwinVisor in real-world scenar-
ios, we analyze KVMCVEs relevant to our threat model and
apply them to TwinVisor’s architecture. Table 3 lists repre-
sentative CVEs with security threats in the last five years.
The CVEs listed primarily aim to gain complete control of,
execute arbitrary code in, and disclose sensitive information
from the N-visor in order to compromise the data of VMs.
Initially, remote attackers can either connect to the system
throughVMs, or login into the N-visor as unprivileged users.
By leveraging vulnerabilities (e.g., buffer overflow, use-after-
free), attackers are able to breach the normal execution of
the N-visor and access the data of S-VMs.

Type CVEs

Privilege Escalation
CVE-2019-6974, CVE-2019-14821,
CVE-2018-10901

Remote Code Execution CVE-2020-3993, CVE-2018-18021

Information Disclosure
CVE-2021-22543, CVE-2020-36313,
CVE-2019-7222, CVE-2017-17741

Table 3. Representative KVM CVEs in recent five years.

However, as TwinVisor inherently distrusts the N-visor,
none of the above attacks can threaten S-VMs. We also sim-
ulate three attacks assuming that the N-visor has been con-
trolled by remote attackers. First, the N-visor mapped a se-
cure memory page of the S-visor in its own page table and
tried to read the content of this page. An exception triggered
by TZASC was taken to the trusted firmware and reported
to the S-visor. Then, the N-visor tried to corrupt the PC reg-
ister value of an S-VM. The S-visor detected the abnormal
value by comparing it with the previously stored one. Next,
the N-visor mapped a secure memory page belonging to an
S-VM in the non-secure S2PT of another S-VM, attempting
to synchronize this page into the latter’s secure S2PT. As
expected, the S-visor detected and rejected this attempt.

7 Performance Evaluation

7.1 Experimental Setup

We run experiments on a Kirin 990 development board
with 2 Cortex-A76 big cores (2.86 GHz), 2 Cortex-A76 mid-
dle cores (2.36 GHz) and 4 Cortex-A55 small cores (1.95
GHz). All these cores are ARMv8.2. To prevent the perfor-
mance instability caused by the asymmetric multi-core ar-
chitecture, we only enable 4 Cortex-A55 cores in our eval-
uation. The development board has 8GB RAM and 256GB
ROM. For network related benchmarks, we build a local area
network (LAN) between the device and an x86-64 PC by
USB tethering through a USB Type-C connection. The PC is
equipped with a 6-core Intel i7-8700 CPU and 32GB RAM.
The servers of these benchmarks are placed in on-device
VMs and the clients are in a Ubuntu-18.04 VM on PC.

The firmware in EL3 is Trusted Firmware-A (TF-A) v1.5.
The N-visor is a Linux kernel 4.14 that is slightly modified to
support the Kirin 990. It uses QEMU v4.2.0 to manage all N-
VMs and S-VMs, each of which runs Linux kernel 4.15 and
contains an 8GB disk image file.

Operation Vanilla TwinVisor Overhead

Hypercall 3,258 5,644 73.24%
Stage2 #PF 13,249 18,383 38.75%
Virtual IPI 8,254 13,102 58.74%

Table 4. A comparison of various architectural operations be-

tween TwinVisor and Vanilla. (Unit: cycles)

7.2 Microbenchmarks

First, we runmicrobenchmarks to quantify the slowdown
of several frequently-used hypervisor primitives, including
the round trip of hypercall, stage-2 page fault handling and
virtual IPI sending.We leverage PMCCNTR_EL0 tomeasure
CPU cycles. Table 4 shows the average costs of these oper-
ations in TwinVisor and vanilla QEMU/KVM (hereinafter
called Vanilla). Note that Vanilla runs VMs in the normal
world without bothering EL3.

 0

 2000

 4000

 6000

 8000

 10000

Vanilla

w/ FS
w/o FS

C
y
c
le

s

(a)

other ops
sys-regs
gp-regs
security check
smc/eret

 0

 5000

 10000

 15000

 20000

Vanilla

w/o shadow

w/ shadow

C
y
c
le

s

(b)

KVM handling
other ops
sync S2PT mapping

Figure 4.Breakdown comparisons between TwinVisor andVanilla

on hypercall and stage-2 page fault handling microbenchmarks. In

(a), "w/ FS" and "w/o FS" on X-axis mean the fast switch is en-

abled and disabled, "smc/eret" represents SMC/ERET instructions,

"gp-regs" and "sys-regs"mean state saving/restoring operations for

general-purpose registers and EL1/EL2 registers, and "sec-check"

stands for security check. In (b), "w/o shadow" and "w/ shadow" on

X-axis mean shadow S2PT is disabled and enabled, "sync" stands

for synchronization of shadow S2PT.

In the hypercall microbenchmark, an S-VM issues a null
hypercall that directly returns without doing anything. The
experiment is repeated 1 million times in a uniprocessor S-
VM pinned to one physical core and we use the average
cycle count. TwinVisor introduces about 73% performance
overhead compared with Vanilla. We further break down
the time costs of null hypercallswith andwithout fast switch.
As shown in Figure 4(a), the hypercalls with and without
fast switch costs 5,644 and 9,018 cycles respectively. The
fast switch accelerates the world switch because of two ma-
jor factors: the shared page technique eliminates operations
that redundantly save and restore general-purpose regis-
ters of the S-VM (1,089 cycles) and the register inheritance
avoids the operations of saving and restoring EL1/EL2 reg-
isters (1,998 cycles). Saving and restoring general-purpose
registers cost a lot if fast switch is disabled because there are

4 memory copies on the roundtrip path of a hypercall. Each
copy involves 31 registers and costs more than 62 load/store
operations (e.g., registers spilled to the stack). Therefore, 4
redundant memory copies and some unnecessary savings
and restorings waste more than 300 load/store operations
which cost 1,089 cycles in total.

For stage-2 page fault handling, we repeat reading four
bytes from an unmapped page in an S-VM for 1million times
and calculate their average cycles. A read operationwill trig-
ger a stage-2 page fault that is handled by the N-visor. We
measure the time duration before reading this page and after
getting the content. The overhead is about 39% that mainly
comes from the synchronization of shadow S2PT (2,043 cy-
cles) and other operations in the trusted firmware and the
S-visor (2,358 cycles). We also measure the cost of han-
dling stage-2 page faults with shadow S2PT disabled, which
means that the original S2PT prepared by the N-visor is di-
rectly used for the S-VM for performance comparison. Fig-
ure 4(b) shows that TwinVisor without shadow S2PT saves
2,043 cycles because it no longer needs to validate and syn-
chronize the modifications to shadow S2PT.
For virtual IPI sending, we measure the cycles of sending

an IPI from a vCPU that will invoke an empty function on
the other vCPU and wait until the function returns. The av-
erage overhead is about 59%.

Name Description
Memcached Memcached v1.6.7 running the memaslap benchmark v1.0

with a default 128 concurrency on the remote client to test
transactions per second.

Apache Apache Web server v2.4.34 using the ApacheBench v2.3 with
80 concurrency on the remote client to test the number of
handled requests per second serving the index page.

Hackbench Hackbench using Unix domain sockets and default 10 process
groups running in 100 loops, measuring the time cost.

Untar Untar extracting the 5.8.13 Linux kernel tarball using the stan-
dard tar utility, measuring the time cost.

Curl Curl v7.72.0 downloading a 10MB image from the Apache
Web server to the remote client, measuring the time cost.

MySQL MySQL v5.7.32 running sysbench v0.4.12 with 2 threads con-
currently on the remote client to measure the time cost by
an oltp test, the size of table is 1,000,000 and the test mode is
complex mode.

FileIO Fileio test in sysbench v0.4.12 with threads equal to the num-
ber of vCPUs concurrently and 1GB file size in random read-
/write mode.

Kbuild Compilation of the Linux 5.8.13 kernel using allnoconfig for
aarch64 with gcc v7.3.0.

Table 5. Descriptions of application benchmarks

7.3 Real-world Applications Performance

We further run real-world applications to evaluate the
performance of TwinVisor (with shadow S2PT and fast
switch enabled) compared with Vanilla. Table 5 shows the
applications we use and they cover CPU-intensive, memory-
intensive and I/O-intensive situations. TLS/SSL connection
is enabled in Curl and MySQL benchmarks, and we find
that whether to enable TLS/SSL has little effect on their per-
formance. Though ApacheBench also supports TLS/SSL, we
still disable it because the throughput of Apache dropsmore
than 92% (e.g., TPS drops from 1109 to 86 in a UP N-VM) if

using TLS/SSL, which cannot reflect the real performance
of the application. We measure the performance of S-VMs
with 1, 4, 8 vCPUs and 512MB memory. The 8-vCPU stands
for the CPU oversubscription scenario.

-2%

0

2%

4%

6%

(a) (b) (c)

-2%

-1%

0

1%

2%

3%

M
em

cached

Apache

M
ySQ

L

C
url

FileIO

U
ntar

H
ackbench

Kbuild

(d)

M
em

cached

Apache

M
ySQ

L

C
url

FileIO

U
ntar

H
ackbench

Kbuild

(e)

M
em

cached

Apache

M
ySQ

L

C
url

FileIO

U
ntar

H
ackbench

Kbuild

(f)

Figure 5. Normalized performance of an S-VM and an N-VM in

TwinVisor. (a), (b) and (c) show a UP S-VM, a 4-vCPU S-VM and

an 8-vCPU S-VM while (d), (e) and (f) show a UP, a 4-vCPU and

an 8-vCPU N-VM. The Y-axis is the normalized overhead of an

application comparedwith that running in a Vanilla VM. Note: The

Y-axis ranges of (a), (b), (c) and (d), (e), (f) are different. Absolute

values of [UP, 4-vCPU, 8-vCPU] S-VMs are as follow: Memcached

in TPS [4897.2, 17044.2, 16853.6], Apache in RPS [1109.8, 2949.7,

2605.6], MySQL in number of events [4165.6, 5222.4, 5095.6], Curl

in seconds [0.345, 0.350, 0.342], FileIO in MB/s [29.2, 52.4, 48.6],

Untar in seconds [280.574, 279.555, 282.587], Hackbench in seconds

[1.694, 0.754, 1.709], Kbuild in seconds [619.725, 162.978, 194.839].

As shown in Figure 5, the performance gap between Twin-
Visor and Vanilla is less than 5% in all benchmarks. This
is because world switches and shadow operations occupy
merely a small proportion of applications’ effective execu-
tion time. Non-WFx exits, whose time cost directly affects
applications’ performance, only make up a small part of to-
tal time. As TwinVisor’s overheadmainly comes fromworld
switches during non-WFx exits, the overhead in application
benchmarks is lower than themicrobenchmark. Besides, the
increased time cost of non-WFx exits leads to fewer WFx
exits, which trades idle time for execution time in the S-
VM and has just a little impact on application’s overall per-
formance. We first take Memcached as an example. The
Memcached in the UP S-VM whose average TPS is 4,897
incurs 1.0% overhead compared with Vanilla. There are to-
tally 133K VM exits during the test in TwinVisor while the
counterpart in Vanilla has 162K VM exits. The difference
between the number of VM exits mainly comes from WFx
VM exits which happen when the vCPU is idle. According
to the previous microbenchmarks, TwinVisor spends more
time on world switching and thus has less idle time. AsWFx
VM exits take up over 70% CPU usage, the time cost by S-
visor interceptions including shadow I/O operations occu-
pies less than 2% CPU usage. The storage-intensive FileIO
is another example, which is susceptible to extra memory

copies due to shadow I/O operations. The FileIO in the UP
S-VM averagely achieves 29.24 MB/s bandwidth and incurs
a miniscule overhead of 1.33%. This is because the shadow
I/O ring operations just occupy 0.21% CPU usage and the
shadow DMA buffers operations merely occupy 2.81% CPU
usage. If we disable the shadow I/O operations, the overhead
of the FileIO benchmark drops to 0.
According to our analysis, the worst case can be an ap-

plication that repeatedly invokes hypercalls to the hypervi-
sor and then returns immediately at a high frequency. The
overhead of this case should be at the same level as the mi-
crobenchmark because the time cost of non-WFx VM exits
becomes its bottleneck. But it is unlikely to find such an ap-
plication in the real world.
Performance Impact on N-VMs: To check whether Twin-
Visor will affect the performance of N-VMs, we repeat above
application benchmarks in N-VMs with 1, 4, 8 vCPUs and
512MBmemory. Figure 5(d), Figure 5(e) and Figure 5(f) show
that the N-VM in TwinVisor achieves less than 1.5% over-
head compared with Vanilla. The slowdown is caused by the
code added to the N-visor, which includes vCPU identifica-
tions (belongs to S-VM or N-VM) and integrating split CMA
into the N-visor.

7.4 Scalability

Scaling vCPU number: To show TwinVisor performs well
enough with the growth of vCPU number, we evaluate
Memcached in the S-VM with 1, 2, 4, 8 vCPUs and 512MB
memory. The result is shown in Figure 6(a). In comparison
to Vanilla, the overhead of TwinVisor is less than 5% nomat-
ter how many vCPUs are given. As mentioned in § 7.3, VM
exits caused by WFx for I/O operations in Memcached dom-
inate the CPU usage. In the multi-vCPU cases, we find that
WFx VM exits always occupymore than 70% CPU usage and
the interceptions of all VM exits occupy less than 4%.
Scaling Memory: To show TwinVisor is scalable with the
growth of the size of memory, we run Memcached bench-
mark in a 4-vCPU S-VM with 128MB, 256MB, 512MB and
1024MB memory and assign half of the S-VM’s memory
to the Memcached application. The result is shown in Fig-
ure 6(b). In comparison to Vanilla, the overhead of Twin-
Visor keeps below 5%, because the memory accesses of an
S-VM in TwinVisor have no difference from an N-VM in
Vanilla after mappings are established in S2PTs. Thus, Twin-
Visor introduces no overhead as the size of memory grows.
Scaling S-VM number: We first run Memcached, Apache,
FileIO and Kbuild in 4 UP S-VMs and run them concurrently
to show TwinVisor is scalable when multiple S-VMs run a
mixedworkload. To avoid interference, all S-VMs are pinned
to different cores (2 S-VMs pinned to 1 core in the case of 8 S-
VMs) and have 256MB memory. Figure 6(c) shows that the
maximum overhead of all benchmarks in the mixed work-
load is less than 6%. We also run the same benchmark in dif-
ferent numbers of UP S-VMs to show TwinVisor is scalable

when the number of S-VMs grows. As shown in Figure 6(d),
Figure 6(e) and Figure 6(f), the average performance of I/O-
intensive and CPU-intensive workloads achieves less than
4% overhead compared with Vanilla. The low overhead can
be explained by the fact that VM exits account for merely a
small percentage out of the total time cost. Take Kbuild as
an example, there are 1.5M VM exits throughout the com-
piling according to our measurement, occupying only 2.86%
CPU usage. Moreover, TwinVisor introduces no resource
contention since each S-VM has its own data structures.

-2%

0

2%

4%

6%

8%

1-vC
PU

2-vC
PU

4-vC
PU

8-vC
PU

(a)

128M
B

256M
B

512M
B

1024M
B

(b)

M
em

cached

Apache

FileIO

Kbuild

(c)

-2%

0

2%

4%

6%

1-VM

2-VM

4-VM

8-VM

(d)

1-VM

2-VM

4-VM

8-VM

(e)

1-VM

2-VM

4-VM

8-VM

(f)

Figure 6. Comparisons of scalability between TwinVisor and

Vanilla. (a) and (b) show Memcached with the increasing number

(size) of vCPUs and memory in an S-VM. (c) shows Memcached,

Apache, FileIO and Kbuild in 4 UP S-VMs respectively. (d), (e) and

(f) show average performance of the FileIO, Hackbench and Kbuild

with the increasing number of S-VMs. The X-axis is the number

(size) of vCPUs/memory/S-VMs, and the Y-axis is the normalized

overhead compared with Vanilla. Note: The Y-axis ranges of (a),

(b), (c) and (d), (e), (f) are different. Absolute values are as follow:

(a) Memcached in TPS [4897.2, 12783.8, 17044.2, 16853.6], (b) Mem-

cached in TPS [16944.4, 17059.0, 17044.2, 17319.2], (c) mixed per-

formance [3927.4 TPS, 960.4 RPS, 26.5 MB/s, 692.13 s], (d) FileIO

in MB/s [29.2, 24.8, 16.6, 14.4], (e) Hackbench in seconds [1.694,

2.304, 3.120, 4.478], (f) Kbuild in seconds [619.752, 642.819, 766.98,

1851.796].

7.5 Overhead of Split CMA

We also evaluate the overhead of allocation and compaci-
ton operations of split CMA. For allocation operations, we
first measure the time of allocating a 4KB page with an ac-
tive memory cache and the average cost is 722 cycles. For
a 4KB page without an active cache, the split CMA has to
get a new cache before allocation. When the memory pres-
sure of the N-visor is low, getting a memory chunk unlikely
needs to migrate pages. But producing an 8MB cache (i.e.,
2048 pages) still averagely costs 874K cycles. The high cost
is because an allocation from CMA requires multiple steps,
such as locking pages to be allocated and updating memory
pages in the bitmap. However, an S-VM needs a new 8MB
allocation only when it uses up the previous 2048 pages, so
that the frequency of cache allocations is very low. When

memory pressure is high, the split CMAmust migrate pages
away to make room.We leverage stress-ng [34] tool to stress
the memory on the N-visor and then measure the latency of
8MB chunk allocation. The average cost is 25M cycles (i.e.,
13K cycles per page). The same operation under high mem-
ory pressure costs 6K cycles per page in Vanilla.

 4500

 4600

 4700

 4800

 4900

 5000

0 1 2 4 8 16 32 64

T
h
ro

u
g
h
p
u
t
(T

P
S

)

(a)

 2200

 2250

 2300

 2350

 2400

0 1 2 4 8 16 32 64
(b)

Figure 7. The impact of the number of migrated caches on Mem-

cached using Memaslap benchmark. (a) shows the throughput of

a UP S-VM with 512MB memory, while (b) shows the average

throughput of 8 UP S-VMs with 256MBmemory. The X-axis stands

for different numbers of migrated caches in one compaction test.

Note: the Y-axis starts from 4500 in (a) and 2200 in (b).

Compaction of an 8MB cache costs 24M cycles on average,
includingmigrating pages of an S-VM and returning the free
memory chunk to the N-visor. Moreover, we leverage Mem-
cached to evaluate the performance impact of memory com-
pactions. We first set up an S-VM with 1 vCPU and 512MB
memory, allocating 450MB to the Memcached application
and leaving the rest for kernel and other system services
to make them runnable. We reserve nonconsecutive 512MB
memory in the secure-world memory pool, which will be
compacted to a consecutive region and then returned to
the N-visor. We add a helper function in the N-visor to ask
for a specific number of caches and trigger compactions in
the secure world. The compactions are triggered at random
times during the experiment. Figure 7(a) shows the perfor-
mance as the number of compacted memory caches grows
exponentially from 1 (8MB) to 64 (512MB). The throughput
of Memcached drops by 6.84% in the worst case when all
512MB caches are migrated. To further test multiple S-VMs
scenarios, we repeat the test with 8 UP S-VMs with 256MB
memory. As shown in Figure 7(b), the average throughput
of an S-VM only drops by 1.30% in the worst case. The over-
head decreases because the overhead of compaction is amor-
tized by multiple S-VMs.

8 Hardware Advice for Future ARM

Selective Transparent Instruction Trapping. To sup-
port the S-visor to monitor the N-visor in a transparent way,
we propose to add a hypervisor register to future ARM hard-
ware that is accessible only from S-EL2 and EL3. This regis-
ter controls selective traps of sensitive instructions. Each bit
in the register configures whether an instruction executed
in N-EL2 should trigger a synchronized exception to S-EL2.
For example, setting the bit controlling ERET to “1” means
that if an ERET is executed in N-EL2, an exception is taken

to S-EL2. The proposed hardware extension places S-EL2 at
a higher privilege level than N-EL2, facilitating the S-visor
to supervise the N-visor’s behaviors transparently. CCA can
also benefit from this extension to transparently monitor
the normal world’s behaviors from Realm, which can avoid
intrusively modifying the N-visor.

Fine-grained Secure Memory Configuration. The com-
plex design of Split CMA can be optimized by making fine-
grained changes to the security attribute of memory pages.
Though CCA introduces GPT to control memory accessibil-
ity at page granularity, the third-stage translation adds mul-
tiple page table walks for a memory access if the TLBmisses.
Given the current TLB reach has been low in data cen-
ters [39], GPT may bring non-trivial memory access over-
head. Therefore, we propose to slightly extend the TZASC
with a bitmap to indicate page security to reduce the over-
head of multiple GPT accesses. Each bit in the bitmap repre-
sents one physical memory page. For example, a “0” means
that the page can be accessed by both worlds while an “1”
allows the page to be accessed by the secure world exclu-
sively. For each memory access, TZASC refers to the bitmap
according to the page’s HPA and decides whether this access
is legal by the bit value. Unlike GPT that must be controlled
in EL3, the bitmap can be configured by the S-visor in S-
EL2 to reduce the EL3-involved overhead. The memory con-
sumption of the bitmap is small: a bitmap of 256GB physical
memory consumes only 8MB (0.003% of total). Besides, read-
ing the bitmap results in an additional memory access that
increases the memory access latency. Buffering the bitmap
entries in CPU caches can boost the bitmap lookup.

Direct World Switch. We also propose that the hardware
supports direct world switches between N-EL2 and S-EL2.
According to our microbenchmark, the overhead of Twin-
Visor mainly comes from the costly world switches through
EL3. If the hardware supports directly switching between N-
EL2 and S-EL2, the overhead will be reduced a lot due to the
elimination of processing in EL3. This extension can further
reduce the overhead of fast switch. A trap/return-like mech-
anism is needed for the software to directly switch between
two worlds, which benefits the transparent instruction trap-
ping as well since any exception triggered in N-EL2 can be
taken to S-EL2 without bothering EL3. A new S-EL2 vec-
tor base address register is also necessary, which holds the
handler base address for exceptions taken to S-EL2. With
this extension, CCA can accelerate world switches between
Realm and the normal world as well.

9 Related Work

In addition to the confidential computing solutions intro-
duced in § 2.1, this section describes other priorwork related
to TwinVisor.

ARM Virtualization. The hardware virtualization for
ARM has been enabled since ARMv8.0 and KVM/ARM in-
troduced the split-mode virtualization, which runs a lowvi-
sor in EL2 to help manage hypervisor-related registers
and forward control flows between VMs and the highvisor.
HypSec [62] utilizes the split-mode architecture to defend
VM privacy against malicious hypervisors. But its VMs still
fail to benefit from the security features provided by Trust-
Zone. TwinVisor leverages the hardware isolation of Trust-
Zone to guard S-VMs from the entire normal world.

Systems based on ARM TrustZone. Before S-EL2, some
systems utilize software techniques to support multiple vir-
tual TEE-Kernel instances in the secure world simultane-
ously [44, 53, 60, 64]. TEEv [64] utilizes the same privilege

isolation to run the TEE instances and TEE-visor in the same
privilege level while enforcing isolation among them inside
TrustZone. Though TEEv theoretically supports running
full-fledged Linux, it has to add more functionalities and in-
evitably increase the complexity of the TEE-visor. vTZ [53]
creates a virtual TrustZone instance for each normal world
VM. Similar to TwinVisor, it also decouples security from
management by reusing Xen hypervisor. But vTZ does not
leverage secure memory to protect virtual TrustZone in-
stances and assumes that TAs in the virtual TrustZone are
invoked by normal applications infrequently. Hence, the de-
sign of vTZ would incur non-trivial overhead for a normal
VM due to the numerous costly world switches.

With S-EL2, Hafnium [19] runs an independent hypervi-
sor in the secure world to virtualize multiple simple TEE
OSes. It requires modifications of existing Trusted Appli-
cations (TAs) and Client Applications (CAs) to communi-
cate through new SMC interfaces. By contrast, TwinVisor
focuses on supporting unmodified complex OSes such as
Linux for universal applications.

10 Conclusion

TwinVisor is the first hardware-isolated system that uti-
lizes ARM S-EL2 to provide confidential VMs for ARM plat-
forms. It decouples security protection from resource man-
agement and reuses a full-fledged N-visor to minimize the
size of S-visor. Performance evaluation showed that TwinVi-
sor incurs less than 5% overhead for all applications on SMP
VMs.

Acknowledgments

We sincerely thank our shepherd Raluca Ada Popa and
anonymous reviewers for their insightful suggestions. Be-
sides, we thank HiSilicon for providing a testbed for our
evaluation. This work was supported in part by the Na-
tional Key Research & Development Program of China
(No. 2020YFB2104100), and the National Natural Science
Foundation of China (No. 62002218, 61972244, U19A2060,
61925206). Zeyu Mi (yzmizeyu@sjtu.edu.cn) is the corre-
sponding author.

References
[1] Amd secure encrypted virtualization (sev). https://developer.amd.

com/sev/. Referenced September 2021.

[2] Amd sev-snp: Strengthening vm isolation with itegrity pro-

tection and more. https://www.amd.com/system/files/TechDocs/

SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.

pdf. Referenced September 2021.

[3] Arm architecture reference manual armv8, for armv8-a ar-

chitecture profile. https://developer.arm.com/architectures/

architecture-security-features/threats-andcountermeasures#specbar.

Referenced September 2021.

[4] Arm cca future enablement plans. https://static.linaro.org/connect/

armcca/presentations/CCATechEvent-210623-MC.pdf. Referenced

September 2021.

[5] Arm cca hardware architecture. https://developer.arm.com/

documentation/ddi0615/latest/. Referenced September 2021.

[6] Arm cca hardware architecture. https://static.linaro.org/connect/

armcca/presentations/CCATechEvent-210623-CGT-2.pdf. Refer-

enced September 2021.

[7] Arm confidential compute architecture. https://

www.arm.com/why-arm/architecture/security-features/

arm-confidential-compute-architecture. Referenced September

2021.

[8] Arm corelink tzc-400 trustzone address space controller technical ref-

erence manual. https://developer.arm.com/documentation/ddi0504/

c/. Referenced September 2021.

[9] Arm fixed virtual platforms. https://developer.arm.com/

tools-and-software/simulation-models/fixed-virtual-platforms.

Referenced September 2021.

[10] Arm system memory management unit architecture specifica-

tion, smmu architecture version 3. https://developer.arm.com/

documentation/ihi0070/latest. Referenced September 2021.

[11] Aws custom image. https://docs.aws.amazon.com/vm-import/latest/

userguide/vmie_prereqs.html. Referenced September 2021.

[12] Aws graviton processor. https://aws.amazon.com/ec2/graviton/. Ref-

erenced September 2021.

[13] Aws nitro enclaves. https://aws.amazon.com/ec2/nitro/

nitro-enclaves/. Referenced September 2021.

[14] Azure confidential computing. https://azure.microsoft.com/en-us/

solutions/confidential-compute/. Referenced September 2021.

[15] cloc: Count lines of code. https://github.com/AlDanial/cloc. Refer-

enced September 2021.

[16] A deep dive into cma. https://lwn.net/Articles/486301/. Referenced

September 2021.

[17] Google cloud confidential virtual machines. https://www.wired.com/

story/google-cloud-confidential-virtual-machines/. Referenced Sep-

tember 2021.

[18] Google custom image. https://cloud.google.com/compute/

confidential-vm/docs/how-to-byoi. Referenced September 2021.

[19] Hafnium architecture. https://review.trustedfirmware.org/plugins/

gitiles/hafnium/hafnium/+/HEAD/docs/Architecture.md. Referenced

September 2021.

[20] Hisilicon kirin 990 5g. https://www.hisilicon.com/en/products/Kirin/

Kirin-flagship-chips/Kirin-990. Referenced September 2021.

[21] How 3rd generation intel® xeon® scalable processor platforms sup-

port 1 tb epcs. https://www.intel.com/content/www/us/en/support/

articles/000059614/software/intel-security-products.html. Refer-

enced September 2021.

[22] Huawei cloud elastic cloud server. https://www.huaweicloud.com/

en-us/product/ecs.html. Referenced September 2021.

[23] Intel software guard extensions programming reference, 2014. https://

software.intel.com/content/dam/develop/public/us/en/documents/

intel-sgx-developer-guide.pdf. Referenced September 2021.
[24] Intel® trust domain cpu architectural extensions. https://

software.intel.com/content/dam/develop/external/us/en/documents/

intel-tdx-cpu-architectural-specification.pdf. Referenced September

2021.

[25] Intel® trust domain extensions (intel® tdx). https://

software.intel.com/content/www/us/en/develop/articles/

intel-trust-domain-extensions.html. Referenced September 2021.

[26] Kvm: Kernel-based virtual machine. https://www.linux-kvm.org/.

Referenced September 2021.

[27] Learn the architecture: Aarch64 virtualization. https://developer.arm.

com/documentation/102142/0100/Virtualization-Host-Extensions.

Referenced September 2021.

[28] Let’s encrypt stats. https://letsencrypt.org/stats/. Referenced Septem-

ber 2021.

[29] Leveraging amd sev in the ibm hybrid cloud. https://www.ibm.com/

blogs/research/2020/11/amd-sev-ibm-hybrid-cloud/. Referenced Sep-

tember 2021.

[30] Marketsandmarkets: Encryption software market, global forecast

to 2025. https://www.marketsandmarkets.com/Market-Reports/

encryption-software-market-227254588.html. Referenced September

2021.

[31] Microsoft becomes the first major cloud provider to offer

confidential virtual machines. https://mspoweruser.com/

microsoft-cloud-provider-confidential-virtual-machines/. Refer-

enced September 2021.

[32] Oracle custom image. https://docs.oracle.com/en-us/iaas/Content/

Compute/Tasks/importingcustomimagelinux.htm. Referenced Sep-

tember 2021.

[33] Protecting vm register state with sev-es. https://www.amd.com/

system/files/TechDocs/Protecting%20VM%20Register%20State

%20with%20SEV-ES.pdf. Referenced September 2021.

[34] stress-ng: stress testing a computer system in various selectable ways.

https://github.com/ColinIanKing/stress-ng. Referenced September

2021.

[35] Supporting intel® sgx on multi-socket platforms. https://www.intel.

com/content/dam/www/public/us/en/documents/white-papers/

supporting-intel-sgx-on-mulit-socket-platforms.pdf. Referenced

September 2021.

[36] Tpm main specification version 1.2, level 2 revision 116, 1 march

2011, trusted computing group. https://trustedcomputinggroup.org/

wp-content/uploads/TPM-Main-Part-3-Commands_v1.2_rev116_

01032011.pdf. Referenced September 2021.

[37] Trust issues: Exploiting trustzone tees. https://googleprojectzero.

blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html.

Referenced September 2021.

[38] Xen arm with virtualization extensions. https://wiki.xenproject.org/

wiki/Xen_ARM_with_Virtualization_Extensions. Referenced Sep-

tember 2021.

[39] Achermann, R., Panwar, A., Bhattacharjee, A., Roscoe, T., and

Gandhi, J. Mitosis: Transparently self-replicating page-tables for

large-memory machines. In Proceedings of the Twenty-Fifth Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems (New York, NY, USA, 2020), ASPLOS ’20, As-

sociation for Computing Machinery, p. 283–300.

[40] Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A.,

Priebe, C., Lind, J., Muthukumaran, D., O’Keeffe, D., Stillwell,

M. L., Goltzsche, D., Eyers, D., Kapitza, R., Pietzuch, P., and Fet-

zer, C. Scone: Secure linux containers with intel sgx. In Proceedings

of the 12th USENIX Conference on Operating Systems Design and Im-

plementation (Berkeley, CA, USA, 2016).

[41] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A.,

Neugebauer, R., Pratt, I., and Warfield, A. Xen and the art of

virtualization. SIGOPS Oper. Syst. Rev. 37, 5 (Oct. 2003), 164–177.

[42] Ben-Yehuda, M., Day, M. D., Dubitzky, Z., Factor, M., Har’El, N.,

Gordon, A., Liguori, A., Wasserman, O., and Yassour, B.-A. The

turtles project: Design and implementation of nested virtualization.

https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://developer.arm.com/architectures/architecture-security-features/threats-andcountermeasures#specbar
https://developer.arm.com/architectures/architecture-security-features/threats-andcountermeasures#specbar
https://static.linaro.org/connect/armcca/presentations/CCATechEvent-210623-MC.pdf
https://static.linaro.org/connect/armcca/presentations/CCATechEvent-210623-MC.pdf
https://developer.arm.com/documentation/ddi0615/latest/
https://developer.arm.com/documentation/ddi0615/latest/
https://static.linaro.org/connect/armcca/presentations/CCATechEvent-210623-CGT-2.pdf
https://static.linaro.org/connect/armcca/presentations/CCATechEvent-210623-CGT-2.pdf
https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture
https://developer.arm.com/documentation/ddi0504/c/
https://developer.arm.com/documentation/ddi0504/c/
https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms
https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms
https://developer.arm.com/documentation/ihi0070/latest
https://developer.arm.com/documentation/ihi0070/latest
https://docs.aws.amazon.com/vm-import/latest/userguide/vmie_prereqs.html
https://docs.aws.amazon.com/vm-import/latest/userguide/vmie_prereqs.html
https://aws.amazon.com/ec2/graviton/
https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://github.com/AlDanial/cloc
https://lwn.net/Articles/486301/
https://www.wired.com/story/google-cloud-confidential-virtual-machines/
https://www.wired.com/story/google-cloud-confidential-virtual-machines/
https://cloud.google.com/compute/confidential-vm/docs/how-to-byoi
https://cloud.google.com/compute/confidential-vm/docs/how-to-byoi
https://review.trustedfirmware.org/plugins/gitiles/hafnium/hafnium/+/HEAD/docs/Architecture.md
https://review.trustedfirmware.org/plugins/gitiles/hafnium/hafnium/+/HEAD/docs/Architecture.md
https://www.hisilicon.com/en/products/Kirin/Kirin-flagship-chips/Kirin-990
https://www.hisilicon.com/en/products/Kirin/Kirin-flagship-chips/Kirin-990
https://www.intel.com/content/www/us/en/support/articles/000059614/software/intel-security-products.html
https://www.intel.com/content/www/us/en/support/articles/000059614/software/intel-security-products.html
https://www.huaweicloud.com/en-us/product/ecs.html
https://www.huaweicloud.com/en-us/product/ecs.html
https://software.intel.com/content/dam/develop/public/us/en/documents/intel-sgx-developer-guide.pdf
https://software.intel.com/content/dam/develop/public/us/en/documents/intel-sgx-developer-guide.pdf
https://software.intel.com/content/dam/develop/public/us/en/documents/intel-sgx-developer-guide.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-cpu-architectural-specification.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-cpu-architectural-specification.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-cpu-architectural-specification.pdf
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://www.linux-kvm.org/
https://developer.arm.com/documentation/102142/0100/Virtualization-Host-Extensions
https://developer.arm.com/documentation/102142/0100/Virtualization-Host-Extensions
https://letsencrypt.org/stats/
https://www.ibm.com/blogs/research/2020/11/amd-sev-ibm-hybrid-cloud/
https://www.ibm.com/blogs/research/2020/11/amd-sev-ibm-hybrid-cloud/
https://www.marketsandmarkets.com/Market-Reports/encryption-software-market-227254588.html
https://www.marketsandmarkets.com/Market-Reports/encryption-software-market-227254588.html
https://mspoweruser.com/microsoft-cloud-provider-confidential-virtual-machines/
https://mspoweruser.com/microsoft-cloud-provider-confidential-virtual-machines/
https://docs.oracle.com/en-us/iaas/Content/Compute/Tasks/importingcustomimagelinux.htm
https://docs.oracle.com/en-us/iaas/Content/Compute/Tasks/importingcustomimagelinux.htm
https://www.amd.com/system/files/TechDocs/Protecting%20VM%20Register%20State%20with%20SEV-ES.pdf
https://www.amd.com/system/files/TechDocs/Protecting%20VM%20Register%20State%20with%20SEV-ES.pdf
https://www.amd.com/system/files/TechDocs/Protecting%20VM%20Register%20State%20with%20SEV-ES.pdf
https://github.com/ColinIanKing/stress-ng
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-3-Commands_v1.2_rev116_01032011.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-3-Commands_v1.2_rev116_01032011.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-3-Commands_v1.2_rev116_01032011.pdf
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions
https://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions

In Proceedings of the 9th USENIX Conference on Operating Systems De-

sign and Implementation (USA, 2010), OSDI’10, USENIX Association,

p. 423–436.

[43] Cerdeira, D., Santos, N., Fonseca, P., and Pinto, S. Sok: Under-

standing the prevailing security vulnerabilities in trustzone-assisted

tee systems. 2020 IEEE Symposium on Security and Privacy (SP) (2020),

1416–1432.

[44] Cicero, G., Biondi, A., Buttazzo, G. C., and Patel, A. Reconciling

security with virtualization: A dual-hypervisor design for ARM trust-

zone. In IEEE International Conference on Industrial Technology, ICIT

2018, Lyon, France, February 20-22, 2018 (2018), IEEE, pp. 1628–1633.

[45] Costan, V., and Devadas, S. Intel sgx explained. Cryptology ePrint

Archive, Report 2016/086 (2016).

[46] Dall, C., Li, S.-W., and Nieh, J. Optimizing the design and implemen-

tation of the linux ARM hypervisor. In 2017 USENIX Annual Technical

Conference (USENIX ATC 17) (Santa Clara, CA, July 2017), USENIX

Association, pp. 221–233.

[47] Dall, C., and Nieh, J. Kvm/arm: The design and implementation of

the linux arm hypervisor. SIGARCH Comput. Archit. News 42, 1 (Feb.

2014), 333–348.

[48] farkhani, R. M., Ahmadi, M., and Lu, L. Ptauth: Temporal memory

safety via robust points-to authentication. In 30th USENIX Security

Symposium (USENIX Security 21) (Aug. 2021), USENIX Association.

[49] Ferraiuolo, A., Baumann, A., Hawblitzel, C., and Parno, B. Ko-

modo: Using verification to disentangle secure-enclave hardware

from software. In Proceedings of the 26th Symposium on Operating

Systems Principles (New York, NY, USA, 2017), SOSP ’17, Association

for Computing Machinery, p. 287–305.

[50] Ge, X., Talele, N., Payer, M., and Jaeger, T. Fine-grained control-

flow integrity for kernel software. In 2016 IEEE European Symposium

on Security and Privacy (EuroS&P) (2016), IEEE, pp. 179–194.

[51] Gu, R., Shao, Z., Chen, H., Wu, X. N., Kim, J., Sjöberg, V., and

Costanzo, D. Certikos: An extensible architecture for building certi-

fied concurrent OS kernels. In 12th USENIX Symposium on Operating

Systems Design and Implementation, OSDI 2016, Savannah, GA, USA,

November 2-4, 2016 (2016), K. Keeton and T. Roscoe, Eds., USENIX As-

sociation, pp. 653–669.

[52] Göddeke, D., Komatitsch, D., Geveler, M., Ribbrock, D., Rajovic,

N., Puzovic, N., and Ramirez, A. Energy efficiency vs. performance

of the numerical solution of pdes: An application study on a low-

power arm-based cluster. Journal of Computational Physics 237 (2013),

132–150.

[53] Hua, Z., Gu, J., Xia, Y., Chen, H., Zang, B., and Guan, H. vtz: Virtu-

alizing ARM trustzone. In 26th USENIX Security Symposium (USENIX

Security 17) (Vancouver, BC, Aug. 2017), USENIXAssociation, pp. 541–

556.

[54] Hunt, G. D. H., Pai, R., Le, M. V., Jamjoom, H., Bhattiprolu, S.,

Boivie, R., Dufour, L., Frey, B., Kapur, M., Goldman, K. A., Grimm,

R., Janakirman, J., Ludden, J. M., Mackerras, P., May, C., Palmer,

E. R., Rao, B. B., Roy, L., Starke, W. A., Stuecheli, J., Valdez, E., and

Voigt, W. Confidential computing for openpower. In EuroSys ’21: Six-

teenth European Conference on Computer Systems, Online Event, United

Kingdom, April 26-28, 2021 (2021), A. Barbalace, P. Bhatotia, L. Alvisi,

and C. Cadar, Eds., ACM, pp. 294–310.

[55] Jackson, A., Turner, A., Weiland, M., Johnson, N., Perks, O., and

Parsons, M. Evaluating the arm ecosystem for high performance

computing. In Proceedings of the Platform for Advanced Scientific Com-

puting Conference (New York, NY, USA, 2019), PASC ’19, Association

for Computing Machinery.

[56] Jarus, M., Varrette, S., Oleksiak, A., and Bouvry, P. Perfor-

mance evaluation and energy efficiency of high-density hpc platforms

based on intel, amd and arm processors. In Energy Efficiency in

Large Scale Distributed Systems (Berlin, Heidelberg, 2013), J.-M. Pier-

son, G. Da Costa, and L. Dittmann, Eds., Springer Berlin Heidelberg,

pp. 182–200.

[57] Kim, T., Peinado, M., and Mainar-Ruiz, G. STEALTHMEM: System-

level protection against cache-based side channel attacks in the cloud.

In 21st USENIX Security Symposium (USENIX Security 12) (Bellevue,

WA, Aug. 2012), USENIX Association, pp. 189–204.

[58] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Der-

rin, P., Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M.,

Sewell, T., Tuch, H., and Winwood, S. sel4: formal verification of

an OS kernel. In Proceedings of the 22nd ACM Symposium on Operat-

ing Systems Principles 2009, SOSP 2009, Big Sky, Montana, USA, Octo-

ber 11-14, 2009 (2009), J. N. Matthews and T. E. Anderson, Eds., ACM,

pp. 207–220.

[59] Kuvaiskii, D., Oleksenko, O., Arnautov, S., Trach, B., Bhatotia, P.,

Felber, P., and Fetzer, C. Sgxbounds: Memory safety for shielded

execution. In Proceedings of the Twelfth European Conference on Com-

puter Systems (New York, NY, USA, 2017), EuroSys ’17, Association

for Computing Machinery, p. 205–221.

[60] Kwon, D., Seo, J., Cho, Y., Lee, B., and Paek, Y. Pros: Light-weight

privatized se cure oses in ARM trustzone. IEEE Trans. Mob. Comput.

19, 6 (2020), 1434–1447.

[61] Li, M., Zhang, Y., Lin, Z., and Solihin, Y. Exploiting unprotected i/o

operations in amd’s secure encrypted virtualization. In Proceedings

of the 28th USENIX Conference on Security Symposium (USA, 2019),

SEC’19, USENIX Association, p. 1257–1272.

[62] Li, S.-W., Koh, J. S., and Nieh, J. Protecting cloud virtual ma-

chines from hypervisor and host operating system exploits. In 28th

USENIX Security Symposium (USENIX Security 19) (Santa Clara, CA,

Aug. 2019).

[63] Li, S.-W., Li, X., Gu, R., Nieh, J., and Hui, J. Z. Formally verified

memory protection for a commodity multiprocessor hypervisor. In

30th USENIX Security Symposium (USENIX Security 21) (Aug. 2021),

USENIX Association, pp. 3953–3970.

[64] Li, W., Xia, Y., Lu, L., Chen, H., and Zang, B. Teev: Virtualizing

trusted execution environments on mobile platforms. In Proceedings

of the 15th ACM SIGPLAN/SIGOPS International Conference on Virtual

Execution Environments (New York, NY, USA, 2019), VEE 2019, Asso-

ciation for Computing Machinery, p. 2–16.

[65] Lim, J. T., Dall, C., Li, S.-W., Nieh, J., and Zyngier, M. Neve: Nested

virtualization extensions for arm. In Proceedings of the 26th Sympo-

sium onOperating Systems Principles (NewYork, NY, USA, 2017), SOSP

’17, Association for Computing Machinery, p. 201–217.

[66] Liu, J., and Abali, B. Virtualization polling engine (VPE): using ded-

icated CPU cores to accelerate I/O virtualization. In Proceedings of

the 23rd international conference on Supercomputing, 2009, Yorktown

Heights, NY, USA, June 8-12, 2009 (2009), M. Gschwind, A. Nicolau,

V. Salapura, and J. E. Moreira, Eds., ACM, pp. 225–234.

[67] Markuze, A., Smolyar, I., Morrison, A., and Tsafrir, D. Damn:

Overhead-free iommuprotection for networking. In Proceedings of the

Twenty-Third International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS 2018, Williams-

burg, VA, USA, March 24-28, 2018 (2018), X. Shen, J. Tuck, R. Bianchini,

and V. Sarkar, Eds., ACM, pp. 301–315.

[68] Mi, Z., Chen, H., Zhang, Y., Peng, S., Wang, X., and Reiter, M. K.

Cpu elasticity to mitigate cross-vm runtime monitoring. IEEE Trans-

actions on Dependable and Secure Computing 17, 5 (2020), 1094–1108.

[69] Mi, Z., Li, D., Chen, H., Zang, B., and Haibing, G. (mostly) exit-

less VM protection from untrusted hypervisor through disaggregated

nested virtualization. In 29th USENIX Security Symposium (USENIX

Security 20) (Boston, MA, Aug. 2020), USENIX Association.

[70] Mi, Z., Li, D., Yang, Z., Wang, X., and Chen, H. Skybridge: Fast and

secure inter-process communication for microkernels. In Proceedings

of the Fourteenth EuroSys Conference 2019 (New York, NY, USA, 2019),

EuroSys ’19, Association for Computing Machinery.

[71] Narayanan, V., Balasubramanian, A., Jacobsen, C., Spall, S.,

Bauer, S., �igley, M., Hussain, A., Younis, A., Shen, J., Bhat-

tacharyya, M., and Burtsev, A. Lxds: Towards isolation of kernel

subsystems. In 2019 USENIX Annual Technical Conference (USENIX

ATC 19) (Renton, WA, July 2019), USENIX Association, pp. 269–284.

[72] Orenbach, M., Lifshits, P., Minkin, M., and Silberstein, M. Eleos:

Exitless os services for sgx enclaves. In Proceedings of the Twelfth

European Conference on Computer Systems (New York, NY, USA, 2017).

[73] Ou, Z., Pang, B., Deng, Y., Nurminen, J. K., Ylä-Jääski, A., and Hui,

P. Energy- and cost-efficiency analysis of arm-based clusters. In 2012

12th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (ccgrid 2012) (2012), pp. 115–123.

[74] Pinto, S., and Santos, N. Demystifying arm trustzone: A compre-

hensive survey. ACM Comput. Surv. 51, 6 (Jan. 2019).

[75] Popek, G. J., and Goldberg, R. P. Formal requirements for virtualiz-

able third generation architectures. Commun. ACM 17, 7 (July 1974),

412–421.

[76] Raj, H., Saroiu, S., Wolman, A., Aigner, R., Cox, J., England, P.,

Fenner, C., Kinshumann, K., Loeser, J., Mattoon, D., Nystrom,

M., Robinson, D., Spiger, R., Thom, S., and Wooten, D. Ftpm: A

software-only implementation of a tpm chip. In Proceedings of the

25th USENIX Conference on Security Symposium (USA, 2016), SEC’16,

USENIX Association, p. 841–856.

[77] Raj, H., and Schwan, K. High performance and scalable I/O virtu-

alization via self-virtualized devices. In Proceedings of the 16th In-

ternational Symposium on High-Performance Distributed Computing

(HPDC-16 2007), 25-29 June 2007, Monterey, California, USA (2007),

C. Kesselman, J. J. Dongarra, and D. W. Walker, Eds., ACM, pp. 179–

188.

[78] Rashid, F. Y. The rise of confidential computing: Big tech companies

are adopting a new security model to protect data while it’s in use.

IEEE Spectrum 57, 6 (June 2020), 8–9.

[79] Shi, J., Song, X., Chen, H., and Zang, B. Limiting cache-based side-

channel in multi-tenant cloud using dynamic page coloring. In 2011

IEEE/IFIP 41st International Conference on Dependable Systems andNet-

works Workshops (DSN-W) (2011), pp. 194–199.

[80] Shinde, S., Tien, D. L., Tople, S., and Saxena, P. Panoply: Low-tcb

linux applications with SGX enclaves. In 24th Annual Network and

Distributed System Security Symposium, NDSS 2017, San Diego, Cali-

fornia, USA, February 26 - March 1, 2017 (2017), The Internet Society.

[81] Spear, M. F., Shriraman, A., Hossain, H., Dwarkadas, S., and

Scott, M. L. Alert-on-update: a communication aid for shared mem-

ory multiprocessors. In Proceedings of the 12th ACM SIGPLAN Sympo-

sium on Principles and Practice of Parallel Programming, PPOPP 2007,

San Jose, California, USA, March 14-17, 2007 (2007), K. A. Yelick and

J. M. Mellor-Crummey, Eds., ACM, pp. 132–133.

[82] Xia, Y., Liu, Y., and Chen, H. Architecture support for guest-

transparent VM protection from untrusted hypervisor and physical

attacks. In 19th IEEE International Symposium on High Performance

Computer Architecture, HPCA 2013, Shenzhen, China, February 23-27,

2013 (2013), IEEE Computer Society, pp. 246–257.

[83] Yitbarek, S. F., Aga, M. T., Das, R., and Austin, T. Cold boot attacks

are still hot: Security analysis of memory scramblers in modern pro-

cessors. In 2017 IEEE International Symposium on High Performance

Computer Architecture (HPCA) (2017), pp. 313–324.

[84] Zhang, F., Chen, J., Chen, H., and Zang, B. Cloudvisor: Retrofitting

protection of virtual machines in multi-tenant cloud with nested vir-

tualization. In Proceedings of the Twenty-Third ACM Symposium on

Operating Systems Principles (New York, NY, USA, 2011).

[85] Zhang, X., Zheng, X., Wang, Z., Yang, H., Shen, Y., and Long,

X. High-density multi-tenant bare-metal cloud. In Proceedings

of the Twenty-Fifth International Conference on Architectural Sup-

port for Programming Languages and Operating Systems (New York,

NY, USA, 2020), ASPLOS ’20, Association for Computing Machinery,
p. 483–495.

[86] Zhao, L., Shuang, H., Xu, S., Huang, W., Cui, R., Bettadpur, P., and

Lie, D. Sok: Hardware security support for trustworthy execution.

CoRR abs/1910.04957 (2019).

	Abstract
	1 Introduction
	2 Background
	2.1 Existing Solutions for Confidential Computing
	2.2 ARM TrustZone
	2.3 Secure EL2 (S-EL2) Extension
	2.4 ARM CCA

	3 Overview
	3.1 Design Goals and Architecture
	3.2 Threat Model and Assumptions

	4 Detailed Design
	4.1 Logical Deprivileging Model
	4.2 Cooperative Management of Memory Resources
	4.3 Efficient World Switch

	5 Implementation
	5.1 I/O Virtualization
	5.2 Prototypes for Evaluations
	5.3 Implementation Complexity

	6 Security Analysis and Evaluation
	6.1 Security Analysis
	6.2 Security Evaluation against CVEs

	7 Performance Evaluation
	7.1 Experimental Setup
	7.2 Microbenchmarks
	7.3 Real-world Applications Performance
	7.4 Scalability
	7.5 Overhead of Split CMA

	8 Hardware Advice for Future ARM
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

