
Thwarting Memory Disclosure with Efficient
Hypervisor-enforced Intra-domain Isolation

Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, Yubin Xia
Shanghai Key Laboratory of Scalable Computing and Systems &

Institute of Parallel and Distributed Systems
Shanghai Jiao Tong University, Shanghai, China

{ytliu.cc, zhoutianyu007, kalzium, haibochen, xiayubin}@sjtu.edu.cn

ABSTRACT

Exploiting memory disclosure vulnerabilities like the Heart-
Bleed bug may cause arbitrary reading of a victim’s mem-
ory, leading to leakage of critical secrets such as crypto keys,
personal identity and financial information. While isolating
code that manipulates critical secrets into an isolated exe-
cution environment is a promising countermeasure, existing
approaches are either too coarse-grained to prevent intra-
domain attacks, or require excessive intervention from low-
level software (e.g., hypervisor or OS), or both. Further, few
of them are applicable to large-scale software with millions
of lines of code.
This paper describes a new approach, namely SeCage,

which retrofits commodity hardware virtualization exten-
sions to support efficient isolation of sensitive code manip-
ulating critical secrets from the remaining code. SeCage is
designed to work under a strong adversary model where a
victim application or even the OS may be controlled by the
adversary, while supporting large-scale software with small
deployment cost. SeCage combines static and dynamic anal-
ysis to decompose monolithic software into several compart-
ments, each of which may contain different secrets and their
corresponding code. Following the idea of separating con-
trol and data plane, SeCage retrofits the VMFUNC mecha-
nism and nested paging in Intel processors to transparently
provide different memory views for different compartments,
while allowing low-cost and transparent invocation across
domains without hypervisor intervention.
We have implemented SeCage in KVM on a commodity

Intel machine. To demonstrate the effectiveness of SeCage,
we deploy it to the Nginx and OpenSSH server with the
OpenSSL library as well as CryptoLoop with small efforts.
Security evaluation shows that SeCage can prevent the dis-
closure of private keys from HeartBleed attacks and memory
scanning from rootkits. The evaluation shows that SeCage
only incurs small performance and space overhead.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

CCS’15, October 12–16, 2015, Denver, Colorado, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3832-5/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2810103.2813690 .

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—Ac-
cess control, information flow controls

General Terms

Security

Keywords

Privacy protection, memory disclosure, virtualization

1. INTRODUCTION
Problem. Cloud servers are increasingly being deployed

with services that touch critical secrets such as cryptographic
keys, personal identity and financial information. Yet, such
secrets are being continually disclosed due to memory disclo-
sure attacks. For example, HeartBleed (CVE-2014-0160) [3,
23], as one of the most notorious vulnerabilities, can be lever-
aged by attackers to persistently read up to 64KB memory
data. This leads to the leakage of the most confidential se-
crets such as private keys or session keys of all connections.

Actually, memory disclosure vulnerabilities are routinely
discovered and pose severe threats to the privacy of secrets.
Table 1 shows that there are 388 such vulnerabilities from
the CVE database according to the triggering mechanisms
for both applications and kernels, which can be exploited by
local (L column) or remote (R column) attacks. Worse even,
leakage of secrets can be directly done if an attacker gained
control over a privileged application or even the OS kernel
through other vulnerabilities such as privilege escalation.

Facing such a strong adversary model, it is notoriously
hard to prevent attackers from controlling victim applica-
tions or even the OS kernel from reading such memory-
resident secrets. This is further being exaggerated due to
the fact that large-scale software usually has a large code
base and thus large attack surfaces. While there have been
a number of approaches aiming at protecting an application
from various attacks, they still fall short in several aspects.
For example, hypervisor-based protection schemes [16, 17,
18, 53, 19] only provide protection at an application level
and thus vulnerabilities still exist inside a victim applica-
tion; approaches targeting at Pieces of Application Logic
(PAL) [34] require the PAL being self-contained and thus
allowing no interaction with other parts of an application.
This makes it hard to be adopted for some real and large

software like OpenSSL1. Further, due to the close-coupling
of security and functionality, prior approaches usually re-
quire frequent intervention from a privileged system (e.g.,
hypervisor), forcing users to make a tradeoff between secu-
rity and performance.

Table 1: Sensitive memory disclosure vulnerabilities
from CVE (2000-2015)

Error type
Application Kernel

Summary
L R L R

Uninitialized memory 1 34 104 8 147
Out-of-bound read 4 37 20 4 65
Others 3 28 16 7 54
Use-after-free vuln 14 7 6 4 31
Permission uncheck 4 14 10 0 28
Bad error handling 1 12 8 0 21
Plaintext in memory 10 2 0 0 12
Bad null terminator 0 3 6 0 9
Invalid pointer 1 0 6 0 7
Off-by-one vuln 1 5 0 0 6
String format vuln 0 4 0 0 4
Leak to readable file 3 0 1 0 4
Total 42 146 177 23 388

Our solution. In this paper, we leverage the idea of priv-
ilege separation by hybrid analysis to (mostly) automatically
decompose a monolithic software system into a set of com-
partments, with each secret compartment containing a set of
secrets and its corresponding code and a main compartment
handling the rest of the application logic. This ensures that
only the functions inside a secret compartment can access
the secrets. As static analysis is usually imprecise and may
introduce large code base in the secret compartment, SeCage
further combines dynamic analysis to extract the most com-
monly used functions. To handle possible coverage issues,
SeCage resorts to runtime exception handling to detect if an
access is legal or not based on the static analysis result and
runtime information.
SeCage leverages hardware virtualization techniques to

enforce strong isolation among secret compartments and the
main compartment, even under a strong adversary model
such that an application or even the OS is controlled by an
attacker. Specifically, SeCage assigns each compartment a
completely isolated address space and leverages hardware-
assisted nested paging to enforce strong isolation. To pro-
vide secure and efficient communication among components,
SeCage follows the idea of separating control plane from data
plane by using the VMFUNC feature from Intel’s hardware-
assisted virtualization support. In particular, SeCage first
designates the security policy on which secret compartment
is invokable by another compartment to the CPU, and allows
such an invocation from being done without the hypervisor
intervention. This significantly reduces the overhead caused
by frequent trapping into the hypervisor.
Evaluation on real-world applications. We have im-

plemented a prototype of SeCage in KVM using Intel’s hard-
ware virtualization support; we use CIL [1], an analysis
framework of C programming language, to (mostly) auto-
matically decompose a software system into a set of com-

1For example, the authors of TrustVisor [34] explicitly ac-
knowledged that “We faced the greatest porting challenge
with Apache + OpenSSL ...This proved to be difficult due to
OpenSSL’s extensive use of function pointers and adaptabil-
ity to different cryptographic providers and instead resort to
PolarSSL” in section 6.4.

partments. We further use a dynamic analysis engine to re-
fine the results. To demonstrate the effectiveness of SeCage,
we apply SeCage to Nginx and OpenSSH server with the
OpenSSL library, as well as the Linux kernel’s disk encryp-
tion module CryptoLoop to demonstrate its effectiveness.
We use HeartBleed, kernel memory disclosure and rootkit
defenses as examples to illustrate how SeCage protects user-
defined secrets. Our evaluation shows that SeCage only in-
troduces negligible performance overhead, since the portion
of secrets related code is small and there are very few hy-
pervisor interventions at runtime.

Contributions. In summary, this paper makes the fol-
lowing contributions:

• A new scheme to protect secrets from extensive attack
surfaces by compartmentalizing critical code and data
from normal ones.

• A separation of control plane (policy) and data plane
(invocation) for cross-compartment communication by
leveraging commodity hardware features (VMFUNC).

• A working prototype implemented on KVM and its
application to large-scale software such as Nginx and
OpenSSH with the OpenSSL library and the Cryp-
toLoop module in Linux kernel, as well as security and
performance evaluations that confirm the effectiveness
and efficiency of SeCage.

The rest of the paper is organized as follows: the next
section first illustrates the architecture overview of SeCage
and the threat model. Section 3 and section 4 illustrate the
design and detailed implementation of the runtime isolation
and application decomposition parts of SeCage, followed by
the usage scenarios in section 5. Then the security evalu-
ation of SeCage and its incurred performance overhead are
evaluated in section 6 and section 7 accordingly. Finally,
we review and compare SeCage with state-of-the-art in sec-
tion 8, discuss the limitation of SeCage in section 9 and
conclude the paper in section 10.

2. OVERVIEW
The primary goal of SeCage is to offer the strong assurance

of confidentiality for user-specific secrets (e.g., private keys),
even facing a vulnerable application or a malicious OS. The
secondary goal of SeCage is to make the approach of SeCage
practical and thus can be deployed for large software systems
with small overhead.

2.1 Approach Overview
Hybrid analysis to extract secret closure. As secrets

may be copied and propagated through its lifecycle, it is far
from enough to simply secure the storage of secrets. Instead,
SeCage must provide a thorough mechanism to prevent se-
crets and their provenance from being disclosed during the
whole application execution, while not affecting the normal
usage of the secrets. Hence, SeCage needs to find a closure
of all functions that may manipulate the secrets.

One intuitive approach is using static analysis to discover
the closure of code. However, the static analysis still has
precision issues for large-scale software written in C/C++
due to issues such as pointer aliasing. This may easily lead
to a significantly larger closure than necessary, which may
enlarge the code base of the secret compartment and add

Secret

Compartment

Main

Compartment

 Hardware
CPU MemoryDevices

Hypervisor
InitializationMemory Isolation

Operating System

App

App

App Decomposition

CODE

S Func

DATA

DATA

Secret

1

2

3

Control Flow in Initialization

Execution Flow during RuntimeData Access during Runtime

Trampoline

Figure 1: Architecture overview of SeCage

a large number of unnecessary context switches. Another
approach would be rewriting the code related to secrets and
decoupling the operations of secrets into a standalone ser-
vice [13, 34], or even to a trusted third-party node. However,
this may involve high manual effort and can be prohibitively
difficult for large-scale software such as OpenSSL [34].
SeCage instead combines static and dynamic analysis to

extract the closures of functions related to secrets. It first
uses static analysis to discover potential functions related
to secrets. To reduce the size of secret closure, it then re-
lies on dynamic analysis using a set of training input to
derive a compact and precise set of functions related to se-
crets. To handle coverage issue that a function may be legal
to touch the secrets but is excluded in the secret compart-
ment, SeCage adaptively includes this function to the secret
compartment according to the static analysis result and ex-
ecution context during runtime exception handling.
Hypervisor-enforced protection. Facing the strong

adversary model of a malicious OS, SeCage leverages a trusted
hypervisor to protect the privacy of secrets. Specifically,
SeCage runs the closure of a particular secret into a separate
compartment and leverages hardware virtualization support
to provide strong isolation among different compartments.
Separating control and data plane. As each compart-

ment still needs to communicate with each other, it seems
inevitable that the hypervisor will need to frequently inter-
venes such communications. This, however, will cause fre-
quent VMExits and thus high overhead. To mitigate such
overhead, SeCage leverages the idea of separating control
and data plane to minimize hypervisor intervention. Specif-
ically, SeCage only requires the hypervisor to define policies
on whether a call between two compartments are legal (con-
trol plane), while letting the communications between two
compartments go as long as they conform to the predefined
policies (data plane). In the entry gate of each compartment,
it may do further check of the caller to see if the commu-
nication should be allowed or not. SeCage achieves such
a scheme by leveraging the commodity hardware features
called VM functions (section 3.1).
Architecture overview. An overview of SeCage’s ar-

chitecture is shown in Figure 1. The protected application
is divided into one main compartment and a set of secret
compartments. Each secret compartment comprises a set

of secrets and the corresponding sensitive functions manip-
ulating them. We do not assume that the compartment is
self-contained, the functions inside are able to interact with
the main compartment of the application. However, SeCage
guarantees that the secret in one compartment cannot be ac-
cessed by other compartments of the same application and
the underlying software.

Once the compartments are generated (step 1©), during
the application initialization phase (step 2©), the hypervi-
sor is responsible to setup one isolated memory for each
compartment, and to guarantee that the secrets can only
be accessed by the functions in the corresponding compart-
ment. During runtime, secret compartments are confined to
interact with the main compartment through a trampoline
mechanism (step 3©) without trapping to the hypervisor.
Only when a function outside of a secret compartment, e.g.,
the main compartment, tries to access the secrets, the hy-
pervisor will be notified to handle such a violation.

2.2 Threat Model and Assumptions
SeCage aims at protecting critical secrets from both vul-

nerable applications and malicious operating systems (which
may also collude).

For vulnerable applications, we consider an adversary with
the ability to block, inject, or modify network traffic, so that
she can conduct all of the well-known attacks in order to il-
legally access any data located in memory space of the vul-
nerable application. Specifically, the adversary can exploit
buffer over-read attack as in HeartBleed bug [3], or try to use
sophisticated control flow hijacking attacks [40, 11, 12], to
invalidate access-control policy or bypass permission check,
and read sensitive secrets located in the same address space.

The underlying system software (e.g., OS) is untrusted
that they can behave in arbitrarily malicious ways to sub-
vert application into disclosing its secrets. We share this
kind of attacker model with other related systems [18, 17,
28]. Additionally, SeCage also considers the Iago attack [15],
where the malicious OS can cause application to harm itself
by manipulating return value of system services (e.g., system
call), as well as rollback attack [51, 41, 52], where the priv-
ileged software can rollback the applications’ critical states
by forcing memory snapshot rollback.

SeCage assumes that the protected secrets should only
be used within an application, the functions inside the se-
cret compartment won’t voluntarily send them out. This is
usually true for commodity software like OpenSSL as the
software itself is designed to keep such secrets. Even if not,
this can be detected during the static and dynamic phase
of SeCage when generating secret compartments. Further,
SeCage makes no attempt to prevent against DoS attack
which is not aimed at disclosing data. It does not try to
protect against side-channel attacks [38, 55], as well as the
implicit flow[39] attack which consists in leakage of informa-
tion through the program control flow, since they are typ-
ically hard to deploy and have very limited bandwidth to
leak secrets in our case. Finally, SeCage does not consider
the availability of application in the face of a hostile OS.

3. RUNTIME ISOLATION ENFORCEMENT
In this section, we will introduce how to enforce SeCage

protection during application runtime, including memory
protection, mechanisms of runtime execution flow and other
aspects.

3.1 Memory Protection
In SeCage, compartment isolation is guaranteed by two-

dimensional paging2 mechanism. In general, a guest VM can
only see the mapping of guest virtual address (GVA) to guest
physical address (GPA), while the hypervisor maintains one
lower-level extended page table (EPT) for each guest, the
EPT maps GPA to the host physical address (HPA).

EPT-N EPT-S

Data

Section

Code

Section

Secret

Mapping

Sensitive

Functions

Mapping

Data

Memory

Mapping

Code

Memory

Mapping

Trampoline

Figure 2: EPT layout of SeCage-enabled application
and one of its secret compartments

In the initialization phase of SeCage, besides the original
EPT called EPT-N for the entire guest VM, the hypervisor
initializes another EPT, called EPT-S , for each protected se-
cret compartment. As shown in Figure 2, SeCage classifies
the memory into two parts: data and code. For the data
section, EPT-S maps all data including the secrets, while
EPT-N has data other than the secrets. For the code sec-
tion, the trampoline code is mapped into these two EPTs as
read-only. Besides, EPT-S only contains the sensitive func-
tions code in the secret compartment, while EPT-N maps
code other than the sensitive functions.
Through the above EPT configuration, SeCage ensures

that secrets will never exist in EPT-N , only code in sensi-
tive functions can access the corresponding secrets. These
code pages are verified in the setup phase, and the EPT en-
tries are set as executable and read-only. Meanwhile, the
data pages in EPT-S are set to non-executable so that they
cannot be used to inject code by attackers. Therefore, both a
vulnerable application and the malicious OS have no means
to access the secrets. It should be noted that if we only
put secrets in the secret compartment, there may be exces-
sive context switches since the sensitive functions may access
other data memory besides secrets. For simplicity, since the
code pieces of sensitive functions are very small and consid-
ered to be trusted in our threat model, SeCage maps the
whole data sections into the secret compartment.
EPTP switching. SeCage leverages the Intel hardware

virtualization extension called VMFUNC, which provides
VM Functions for non-root guest VMs to directly invoke
without VMExit. EPTP switching is one of these VM func-
tions, which allows software (in both kernel and user mode)
in guest VM to directly load a new EPT pointer (EPTP),
thereby establishing a different EPT paging-structure hier-
archy. The EPTP can only be selected from a list of poten-
tial EPTP values configured in advance by the hypervisor,
which acts as the control plane defining the rules that a

2called EPT in Intel, and NPT in AMD; we use EPT in
this paper.

guest VM should comply with. During runtime, the hyper-
visor will not disturb the execution flow within a guest VM.

Enable VM functions

VM-execution control (bit 13)

EPTP switching (bit 0)

EPTP_LIST_ADDR

0: Alternate-EPTP

1: Alternate-EPTP

511: Alternate-EPTP

Secondary processor-based
VM-execution controls

VMFunction Control

Selected VMCS FieldsMemory

Set

Set

Configure

EPTP Switching invocation: VMFUNC opcode (EAX=0, ECX=EPTP_index)

Figure 3: Description of EPTP switching VMFUNC

Figure 3 shows an example configuration that a hypervisor
needs to set in order to use EPTP switching VM function:
besides some function-enable bits, the hypervisor needs to
set bit 0 (EPTP switching bit) in the VM Function Con-
trol VMCS field, and store the configured EPT pointers
to the memory pointed by the EPTP LIST ADDR VMCS
field. During runtime, the non-root software invokes the
VMFUNC instruction with EAX setting to 0 to trigger the
EPTP switching VM function and ECX to select an entry
from the EPTP list. Currently, EPTP switching supports at
most 512 EPTP entries, which means SeCage can support
up to 512 compartments for each guest VM.

3.2 Securing Execution Flow
SeCage divides the logic into sensitive functions, tram-

poline and other code (including application code and sys-
tem software code). Only sensitive functions in the secret
compartment can access secrets, and the trampoline code is
used to switch between the secret and the main compart-
ment. During runtime, functions in the main compartment
may invoke sensitive functions, while sensitive functions may
also call functions outside of the secret compartment.

Figure 4 shows possible execution flow during runtime.
For clarity, we classify trampoline code into trampoline and
springboard , according to the calling direction. trampoline
invocation is illustrated in the top half of Figure 4: when
code in the main compartment invokes a function in a secret
compartment, instead of directly calling the sensitive func-
tion, it calls into the corresponding trampoline code, which
at first executes the VMFUNC instruction to load memory
of the secret compartment, then the stack pointer is mod-
ified to point to the secure stack page. If the number of
parameters is larger than six, which is the maximum num-
ber of parameters passing supported using register, the rest
of parameters should be copied to the secure stack. When
everything is ready, it calls the real sensitive function. Once
this function returns, the trampoline code wipes out the con-
tent of secure stack, restores the ESP to the previous stack
frame location, reversely executes the VMFUNC instruction
and returns the result back to the caller.

During the execution of sensitive functions, it may call
functions in the main compartment, e.g., library calls, sys-
tem calls, and other non-sensitive functions in the applica-
tion. SeCage classifies these calls into two categories: the
calls without secrets involved, and the calls which may ac-
cess the secrets. SeCage instruments the first category of
calls with springboard code, as shown in the bottom half of
Figure 4, which just reverses the operations as trampoline
code. For the second kind of calls, if the callee function
does not exist in sensitive functions like some library calls
(e.g., memcpy, strlen, etc.), SeCage creates its own version

DataCode

VMFUNC
(EAX=0 ECX=1)

VMFUNC
(EAX=0 ECX=0)

Trampoline:
Non-Secure -> Secure -> Non-Secure

Code CodeData DataEPT-SEPT-N EPT-N

DataCode

VMFUNC
(EAX=0 ECX=0)

VMFUNC
(EAX=0 ECX=1)

Code CodeData DataEPT-NEPT-S EPT-S

Springboard:
Secure -> Non-Secure -> Secure

Trampoline

func_in_trampoline() {
switch_to_ept_s;

install_secure_stack;
ret = secure_func();
clear_secure_stack;
install_normal_stack;

switch_to_ept_n;
return ret;

}

EPT-N

EPT-N

EPT-S

Springboard

func_out_springboard() {
switch_to_ept_n;

install_normal_stack;
ret = nonsecure_func();
install_secure_stack;

switch_to_ept_s;
return ret;

}

EPT-S

EPT-S

EPT-N

Figure 4: Execution flow through trampoline and springboard mechanisms

of these functions during creating a compartment. There is
another situation that the reference to the secrets may be
passed to the main compartment. However, since the callee
function is not able to dereference the reference (otherwise,
it should be added to the secret compartment), the secrets
will not be leaked out.

3.3 Miscellaneous
Storage. In the initialization phase, secrets may be read

from a standalone configuration file, executable binary, or
DB schema. Such storages can always be accessed by sys-
tem software, that there is no effective way to protect them.
SeCage solves this problem through another approach by
ensuring no secret in these storages. The secrets in the stor-
age are replaced with some dummy data, during application
launching, the dummy data will be restored to the real se-
crets. In the runtime, SeCage ensures no I/O write may
happen in the sensitive functions so that secrets will not be
leaked to the storages.
Interrupt handling. During execution in a secret com-

partment, there is no operating system support within the
EPT-S context, thus no interrupt is allowed to be injected
to the guest VM. When a non-root guest VM traps to the
hypervisor due to an interrupt, the corresponding handler
in SeCage checks whether it is in the context of EPT-S , and
what kind of interrupt it is. If the interrupt happens dur-
ing sensitive functions execution, it simply drops some kinds
of interrupts (e.g., timer interrupt), and delays others (e.g,
NMI, IPI) until EPT-N context.
Multi-threading. SeCage supports multi-threading pro-

grams. If there is only one VCPU running all the threads,
since we drop timer interrupts to the EPT-S VCPU, the
EPT-S context will not be preempted by other threads un-
til it returning back to the EPT-N environment. If there
are more than one VCPUs, since every VCPU has its own
EPT, if one VCPU is in EPT-S context, other VCPUs can
still run in EPT-N context and they are not allowed to read
secrets in EPT-S .

3.4 Lifecycle Protection of secret Compartment
Figure 5 shows the lifecycle protection of a secret compart-

ment. SeCage adds three hypercalls 3 as shown in Table 2.

Pre-LOAD App-LOAD Secage_INIT Secage_RESTORE

No Secret

Time

RUNTIME

Creation Deployment Execution Termination

Guest VM in EPT-N Guest VM in EPT-S

SECAGE_INIT SECRET_LOAD SECAGE_RESTORE

No Secret

secure_malloc

Figure 5: Life-cycle protection of secrets

Table 2: Descriptions of SeCage related hypercalls
Hypercall Description

SECAGE INIT Called in EPT-N , triggers initializing.
SECRET LOAD Called in EPT-S , triggers secret loading.

SECAGE RESTORE Called in EPT-N , triggers restoration

Creation. Before an application is loaded into guest VM,
SeCage utilizes the application decomposition framework to
analyze the application and decompose it into a main com-
partment and several secret compartments. According to
how the secrets are loaded, the secrets are replaced with
dummy data in persistent storages like configuration file,
executable binary or database. For example, if the secrets
are loaded from the files (e.g., OpenSSL) or database during
runtime, the secrets in the storage are replaced. Otherwise,
the application is compiled after replacing the secrets in the
source code with dummy data. Meanwhile, the developer is
required to provide the mapping of secrets and the dummy

3Hypercall (or vmcall) is similar to syscall but is used to
request the hypervisor’s services

data (e.g., <key, length> → secret binding), to the hyper-
visor through predefined secure offline channels. By this
means, the hypervisor can load the real secrets into secure
memory in the deployment phase.
Deployment. The process of application deployment in-

cludes following steps:

1. When launching an application, the instrumented code
issues the SECAGE INIT hypercall, which passes the
start virtual addresses and the number of pages of sen-
sitive functions and trampoline code as parameters.
The hypervisor first checks the integrity of sensitive
functions and trampoline code, and setups the EPT-
N and EPT-S as described in section 3.1. It should
be noted that EPT-S maps several reserved pages that
are invisible from EPT-N , which will be used as secure
heap and stack later.

2. The hypervisor invokesVMENTER to restore untrusted
application execution. When the untrusted code in-
vokes memory allocation function for secrets dummy
counterpart, it is redirected to the secure malloc in
sensitive functions to allocate pages from the secure
heap.

3. After the dummy secrets being copied to the secure
heap in sensitive functions, the SECRET LOAD hy-
percall is issued. The hypervisor then scans the secure
heap memory, and replaces the dummy secrets with
the real ones, according to the dummy to secrets map-
ping provided by the user.

Through the above protocol of application deployment,
SeCage ensures that before SECRET LOAD, there is no se-
cret existing in the memory, thus even the execution en-
vironment is untrusted, no secret will be exposed. After
SECRET LOAD, secrets can only be accessed in the secret
compartment, and thus code in the main compartment can
never disclose it. Although the untrusted code may violate
the protocol, by either skipping the invoking of hypercall, or
not obeying rules of secure malloc, the hypervisor can de-
tect such a violation and the secrets will not be loaded into
memory in such cases.
Runtime. At runtime, code in the main and the secret

compartments execute concurrently. The SeCage mecha-
nisms ensure that: (1) the secrets and their copies only exist
in EPT-S mapping, (2) the secrets and their copies can only
be used during sensitive functions execution. If the code in
the main compartment attempts to access the secrets mem-
ory, a VMExit happens due to EPT violation. Hypervisor
is then notified to checks the access pattern. If the access
request is originated from the main compartment code to
the secrets, and the corresponding function is not included
in the extracted functions from static analysis, an attack
attempt may happen. In this case, the hypervisor should
stop the application execution and inform the user of the
abnormal access request. If this access request is complied
with the predefined policies according to the result of static
analysis and the execution context, the hypervisor will then
include the corresponding function to the sensitive functions
closure in the secret compartment.
Termination. When the application is terminated, se-

crets should also be wiped out. If the application exits nor-
mally, it issues the SECAGE RESTORE hypercall, so that

hypervisor helps to remove the EPT-S of secret compart-
ment. Even if the application exits abnormally or the ap-
plication or OS refuses to inform the hypervisor, the secrets
still only exist in EPT-S and thus will not be disclosed.

4. APPLICATION DECOMPOSITION

DataCode

Secret Sensitive Functions

DataCode

MarkApplication Application

DataCode

Application

Data Code

(a) (e)

(b)

Dynamic

Analyse

Automatic

Decompose

Main
Compartment

Secret
Compartment

Potential Sensitive Functions

DataCode

Application

Static

Analyse

Function

Extraction

(c)

RUNTIME

Deploy

Runtime Check

(d)

(f)

Static Extracted
 Potential Sensitive Functions

Figure 6: The general process of application analysis
and decomposition

Figure 6 shows the process of the application analysis and
decomposition. Given an application and the user-defined
secrets, we need to analyze the data flow of the secrets, as
well as the sensitive functions that are possible to access the
secret data. While the static analysis can give a comprehen-
sive analysis on all possible execution paths of the program,
it has precision issues and may lead to larger TCB and over-
head. We observe that in most cases, the execution flow of
secrets manipulation is relatively fixed.

Based on this observation, We use a hybrid approach to
extracting the secret closure. Specifically, we adopt the dy-
namic approach to achieving a flexible information flow con-
trol (IFC) analysis to get the most common but possibly
incomplete secret closure (step (a)), and we also rely on the
comprehensive results of static analysis to avoid these corner
cases during runtime (step (b)(c)(d)). On the other hand, it
provides a series of mechanisms to automatically decompose
application during compilation time. Then, SeCage decou-
ples these secrets and sensitive functions into an isolated
secret compartment, which can be protected separately by
the hypervisor (step (e)(f)).

4.1 Hybrid Secret Closure Extraction
Static taint analysis. We leverage CIL to carry out

static taint analysis on the intermediate representation of
the application. We denote the set of secret data as {s}, and
the set of references to the secrets is donated as {sref}. Our
target is to find all possible instructions, which is denoted
as sink, that dereference variable x ∈ {sref}. We define the
taint rules as follows:

n → m, y := x, x ∈ {sref}

{sref} := y :: {sref}
(1)

n → m, f(y1, ... yi, ... yn), yi ∈ {sref}

{sref} := argi :: {sref}
(2)

n → m, y := f(y1, ...yi, ...yn), retf ∈ {sref}

{sref} := y :: {sref}
(3)

n → m, y := sink(x), x ∈ {sref}

{s} := y :: {s}, {sref} := yref :: {sref}
(4)

When a program transmits from n to m, the data flow
is tracked. Rule (1) says that the propagation of references
to secrets should be tracked. Rule (2) and rule (3) define
the rules of function calls, which mean that the propagation
of references to secrets through function parameters and re-
turn values should also be tracked. Finally, rule (4) indi-
cates that, upon any dereference of references to secrets, the
secret and its reference need to be tracked, and the sink in-
struction should be also recorded. According to polyvariant
analysis [7], the functions are analyzed multiple times. In
our approach, the {s} and {sref} keep changing during the
iterations and we stop the analysis when the program comes
to a fixed point, where the secret and its reference set does
not change anymore. Through this taint analysis, we can
finally get a large number of potential sensitive functions.

Kernel

User

DB_Exception_Handler
{
 mprotect(paddr, NONE)
}

1

3

2

4

Sink Instructions
...
addr(i)
...

SeCage_Module
{
switch ioctl
 case BP: set_breakpoint(DR0, addr(i+1))
}

Segfault_Handler
{
 log(addr(i))
 ioctl(fd, BP, addr(i+1))
 mprotect(paddr, RW)
}

Application.text

<main>
 mprotect(paddr, NONE)
 ...
<func.1>

<func.2>
 ...
 addr(i): access paddr

 addr(i+1):
 ...

Sensitive Functions
...
func.2
...

itive Func

Figure 7: Combining mprotect and debug exception

to dynamically extract sink instructions

Dynamic closure extraction. To get the compact se-
cret closure, we adopt a simple but precise dynamic anal-
ysis by an innovative combination of mprotect and debug
exception techniques. Figure 7 shows the process of dy-
namic sensitive functions extraction. At the very begin-
ning, the application is instrumented to use secure malloc
to allocate memory for secret data. Then we use mpro-
tect system call to protect the secure memory (paddr), and
register a user mode handler to handle the corresponding
segmentation fault upon violation. Anytime a sink instruc-
tion accesses the protected memory, it traps into the segfault
handler (1©). This handler records the fault address of the
sink instruction (2©), and issues one IOCTL system call to
the kernel module (3©), which set up the breakpoint to the
next instruction in debug register 0 (DR0). After that, the
handler revokes the mprotect to the paddr to make forward
progress. Then, the sink instruction can successfully ac-
cess the memory after the segfault handler returns; but the
program traps to the predefined debug exception handler
immediately in the next instruction (4©), and in that case,
the exception handler can setup the mprotect to the paddr
again. We run the application several times with different
workloads. For example, for Nginx server case, we can send
different kinds of requests, until the set of sink instructions
is fixed. Then we can get most of the sink instructions, as
well as their corresponding sensitive functions.
For the OpenSSL case, we totally get 242 sensitive func-

tions from static analysis and 20 from dynamic analysis. In
our experiment, we select the dynamically extracted ones as

the sensitive functions set {fs}, and we do not find any EPT
violation during the runtime. Nevertheless, we still decom-
pose the potential sensitive functions which are not included
in the dynamically extracted set to several separate mem-
ory sections, so that if any corner case happens, hypervisor
can dynamically add them to the secret compartment in the
runtime according to the predefined policies. When the hy-
pervisor is required to add a potential sensitive function to
the secret compartment, SeCage will collect as much infor-
mation as possible to distinguish between legal and illegal
accesses. For example, it uses the trapped instruction to
check whether this is the sink instruction found in the static
analysis; it is also required to check whether this potential
sensitive function is modified, and whether the call-trace is
forged, etc. If there is any predefined policy violated, SeCage
aborts the execution and sends the abnormal information to
the user to make decision.

4.2 Automatic Application Decomposition
Since the sensitive functions in {fs} are not self-contained,

SeCage uses the trampoline mechanism to enable communi-
cations between {fs} and the functions in the main com-
partment, which is defined as {fn}. For each function call
f, we notate fcaller and fcallee as its caller and callee func-
tions. If and only if one of the fcaller and fcallee belongs
to {fs}, it is required to define a corresponding trampoline
function t(f), which is used to replace f in the next phase.
The formal definition is as follows:

Ps(func) = true ⇐⇒ func ∈ {fs}

∀f,∃t(f) =











fin Ps(fcallee) ∧ ¬Ps(fcaller)

fout Ps(fcaller) ∧ ¬Ps(fcallee)

f else

If there is any function call from {fn} to {fs}, we define
a trampoline function fin. Similarly, a springboard function
fout is defined for each function call from {fs} to {fn}. We
notate {ft} as the union of fin and fout sets.

Then we decompose an application to secret and main
compartments for SeCage protection. There are totally three
steps involved. First, 3 hypercalls are added to the applica-
tion accordingly (Section 3.4). Second, an automated script
is used to generate a file with definition and declaration of
trampoline functions {ft}, and modify the definition of sen-
sitive functions sfunc in {fs} and trampoline functions tfunc
in {ft} with GCC section attribute:

a t t r i b u t e ((s e c t i o n (. se))) s func ;
a t t r i b u t e ((s e c t i o n (. t r))) t func ;

Normally, the GCC compiler organizes the code into the
.text section. The additional section attributes specify that
sfunc and tfunc live in two particular .se and .tr sections’
memory region which are isolated from memory of {fn}.
Thus, SeCage can protect them in the page granularity.
Finally, during the compilation phase, the CIL parses the
whole application, and replaces the {fs} involved function
calls with their respective trampoline function calls in {ft}.

SeCage also needs to modify the linker, to link the newly
created .se and .tr sections to the predefined memory lo-
cation, so that the SECAGE INIT hypercall can pass the
appropriate memory addresses as the secret compartment
memory for the hypervisor to protect.

5. USAGE SCENARIOS
We have implemented the compartment isolation part of

SeCage based on KVM. The hypervisor is mainly responsi-
ble for compartment memory initialization, EPT violation
and interrupt handling. In total, SeCage adds 1,019 lines
of C code to the KVM, and the application decomposition
framework consists of 167 lines of C code, 391 Bash code
and 1,293 OCaml code to the CIL framework [1].
In this section, we present our case studies by applying

SeCage to three representative examples: protecting keys of
Nginx server with OpenSSL support from infamous Heart-
Bleed attack, protecting keys of OpenSSH server from a
malicious OS, and protecting CryptoLoop from kernel-level
memory disclosure.

5.1 Protecting Nginx from HeartBleed
The HeartBleed attack allows attackers to persistently

over-read 64KB memory data, which can lead to leakage
of private keys [4]. We use one of the PoCs [6] to reproduce
RSA private keys disclosure attack targeted on the Nginx
server with a vulnerable OpenSSL version 1.0.1f.
In our case, OpenSSL uses RSA as its cryptographic scheme.

In short, two large prime numbers (p and q) are chosen as
secrets in RSA, while their production N (N = p × q) is
referred to as the public key. When a client connects to the
server, the server uses p and q as private keys to encrypt
data (e.g., certificate), so that the client can use the corre-
sponding public key N to decrypt them. To steal the private
keys, an attacker can search the memory data returned in
HeartBleed messages for prime numbers. Since the N and
the length of the prime numbers (in bits) are known, it is
pretty simple to find p or q by iteratively searching the ex-
act (e.g., 1024) number of bits and checking if they can be
divided by N as a prime. Once the attacker gets either of p
or q, the other is just the result of dividing N by the known
prime. In addition, there is a private key exponent called d
which is another prime number we need to protect.
To defend against HeartBleed attack using SeCage, we

first mark the secrets to protect. In the OpenSSL case, the
exact prime numbers are stored in the memory pointed by
d field in BIGNUM structure p, q and d. During the ap-
plication decomposition phase, we get all of sensitive and
trampoline functions as illustrated in section 4. The se-
cure malloc function is added to replace OPENSSL malloc
in some cases. OpenSSL uses BIGNUM memory pools to
manage BIGNUM allocation, SeCage adds another secure
pool which is used to allocate BIGNUM when it is protected
one. The CILLY engine then delivers the modified interme-
diate code to GCC, which compiles it to the final executable
binary. Besides, the private keys stored in the configuration
file should be replaced by the same length of dummy data.
After that, the hypervisor pushes the generated binary and
configuration file to the guest VM, and starts the Nginx.

5.2 Protecting OpenSSH from Rootkit
In this scenario, we assume that the kernel is untrusted,

e.g., there is a malicious rootkit4 acting as part of operat-
ing system to arbitrarily access system memory, so that the
secret is exposed to the light of day. We simulate this sce-
nario by manually installing a rootkit that simply scans the
system’s memory and tries to find out secret in applications.

4Rootkits are mostly written as loadable kernel module that
can do whatever kernel can do.

We run the OpenSSH server in this untrusted environ-
ment. During the authentication of OpenSSH server, the
client uses the host key and server key as server’s public keys
to encrypt the session key, and the private keys are used by
OpenSSH server for session key decryption. The server is
also required to send the acknowledge encrypted using the
session key to the client for authentication. Thus the pri-
vate keys are of vital importance such that the disclosure
of them can lead to the leakage of all network traffic, and
the attacker can pretend as server to deceive clients. Sim-
ilar to the Nginx server protection, we leverage the appli-
cation decomposition framework to analyze and decompose
OpenSSH, since OpenSSH uses OpenSSL with RSA crypto-
graphic schema as well, the process is quite similar with the
previous example.

5.3 Protecting CryptoLoop from Kernel
Memory Disclosure

As shown in Table 1, about half of the vulnerabilities are
kernel-level memory disclosure. Different from application-
level memory disclosure, one successful exploit of these vul-
nerabilities can put the whole kernel memory data at risk of
being disclosed. In this scenario, we choose to enhance the
Linux kernel’s disk encryption module, CryptoLoop, which
is used to create and manipulate encrypted file systems by
making use of loop devices. CryptoLoop relies on the Crypto
API in kernel, which provides multiple transformation algo-
rithms. In our case, it uses the CBC-AES cipher algorithm
to do the cryptographic operations.

In this case, we define the AES cryptographic keys as se-
crets. The sensitive functions extraction framework is a little
different, but the overall principle is the same: we allocate
a new page for the AES keys, and set the corresponding
page table entry as non-present. After that, we combine the
page fault with the debug exception to track and record the
secrets related functions. Different from the cases of Ng-
inx and OpenSSH, the AES keys are originated from user-
provided password with hash transformation, thus the user
has to provide a dummy password, and calculate the real
hash value offline, so that SeCage can replace the dummy
AES keys with the real ones.

6. SECURITY EVALUATION

6.1 Empirical Evaluation
Secrets exposure elimination. We evaluate to what

extent can SeCage achieve the goal of exposing secrets to ad-
versaries. To achieve this, we write a tool to scan the whole
VM memory and find targeted secrets in it when running
Nginx and OpenSSH server. Figure 8 shows the heap mem-
ory 5 of related processes, for the software without SeCage
protection ((a) and (b)), there are several targeted secrets
found in the heap. In contrast, for the SeCage protected
ones ((c) and (d)), we cannot find any fragment of the se-
crets. For the CryptoLoop case, we run the fio benchmark
to constantly do I/O operations in the encrypted file system,
and traverse the kernel page tables to dump the valid kernel
memory pages in a kernel module. With SeCage protection,
we find no AES keys within the dumped kernel memory.
While without SeCage protection, we can find 6 AES keys.

5we also dumped the stack memory, and found no secret at
all

(a) Normal Nginx (b) Normal OpenSSH

(c) SeCage Nginx (d) SeCage OpenSSH

Figure 8: Heap memory layout for Nginx and
OpenSSH server processes. (Green blocks are mem-
ory in use, black areas are unused and the red bars
are targeted secrets found in the memory.)

Security protection for Nginx+OpenSSL. Before ap-
plying SeCage to Nginx server, we conduct HeartBleed at-
tacks on it, it is relatively simple to retrieve the RSA pri-
vate keys, we get private keys after sending 69 HeartBleed
requests. After decomposing the OpenSSL and deploying it
to SeCage framework, we mount the attack again. At this
time, no fragment of private keys is leaked no matter how
many HeartBleed requests are sent by the attacker.
Security protection for OpenSSH+OpenSSL. From

figure 8 (b), we can see that 3 fragments of private keys ex-
ist in the OpenSSH process’s dumped memory, which are
exactly what the kernel rootkit can read and expose. While
leveraging the SeCage, no one exists in the malicious rootkit’s
view, which means no secret will be leaked.
Security protection for CryptoLoop. AES crypto-

graphic keys are stored in kernel memory space, any Out-
of-bound read kernel memory disclosure vulnerabilities (e.g.,
CVE-2013-5666) and rootkit can read arbitrary memory from
kernel space, leading to kernel secrets disclosure. With the
Crypto API being enhanced by SeCage, no cryptographic
key is stored in the normal kernel memory, thus no secrets
can be leaked during CryptoLoop execution.

6.2 Security Analysis
Reduced attack surfaces. The attack surfaces of SeCage

are quite related to the code size of the sensitive functions.
The larger code base the secret compartment contains, the
more vulnerabilities may be exploited by the attackers. Af-
ter applying the proposed dynamic analysis, we get only
1350 LoCs for OpenSSL case, and 430 LoCs for CryptoLoop
case. What is more, SeCage adds some restrictions for the
sensitive functions, e.g., there should be no printf-like func-
tions thus no format attack can be conducted, etc. There-
fore, it is reasonable to assume no vulnerabilities in the code
of secret compartment.
Iago attack and ROP attack. Iago attack [15] presents

a complete attack example that the malicious kernel can
cause s server in OpenSSL to disclose its secret key by ma-
nipulating the return values of brk and mmap2 system calls,
and conduct a return-oriented programming (ROP) attack
to write the contents of the secret key to stderr. With the
protection by SeCage, if there is any system call invocation
in the secret compartment, the return value from the spring-
board will be checked to avoid the invalid one.

Meanwhile, trampoline code is marked as read-only thus
not injectable thanks to the protection from EPT. On the
other hand, there is only very small code base in sensi-
tive functions for an attacker to exploit ROP attack. The
SeCage’s mechanism ensures that the trampoline can only
enter EPT-S through designated function entries. This means
gadgets can only be at the function granularity and thus
attackers may not have sufficient gadgets, which further re-
duces the probability of ROP attacks. What is more, as
the execution in the secret compartment will use the secure
stack, an adversary has no chance to fake a stack on behalf
of the secret compartment. This further nullifies the chance
of performing an ROP attack. If an ROP attack succeeds in
the main compartment, the payload still cannot access the
secrets because of the compartment isolation.

Rollback attack. An attacker may collude with a ma-
licious OS to rollback the password states using tricks like
memory snapshot rollback, and launch a brute-force attack
to guess the login password. SeCage is resistant to such an
attack, due to the fact that the secret states are maintained
by the hypervisor rather than the OS, it can refuse to roll-
back secrets to old states by well-designed protocols.

Coppersmith’s attack. According to [4], when process-
ing requests in Nginx, some fragments of private keys may
exist in memory. This makes it vulnerable to Coppersmith’s
Attack [2], a complex mathematical approach that is used
to split N into p and q with the knowledge of just part of
a prime number. SeCage is designed to prevent such at-
tacks since fragments of secrets can only be copied to secure
heap and stack, and no fragment copies can be leaked to the
memory of the main compartment.

Guest page mapping attack. A malicious guest OS
can conduct attacks by changing the guest page mapping
of the secure heap and the stack pages after SeCage initial-
ization. Hence, during invoking trampoline and copying se-
crets, secrets may be leaked to unprotected memory space.
SeCage prevents such attacks by tracking the page tables
modification of these protected data pages. According to
section 7, only 3 pages are required to protect, and at most
12 PTEs need to be tracked.

VMFUNC faking attack. Another attack the mali-
cious OS can conduct is to fake the EPT-S entry point by
invoking self-prepared VMFUNC instructions. However, in
EPT-S , the executable memory is predefined and fixed, the
memory pages which contain the faked VMFUNC instruc-
tions are non-executable when switching to the EPT-S con-
text, thus the execution will be trapped into the hypervisor.
A more sophisticated attack is to carefully construct a guest
memory mapping that maps GVA to GPA, so that the GVA
of the memory page is the prior one page before the sensi-
tive functions pages, and put the VMFUNC instruction into
the last bytes of this page. Hence, when this VMFUNC is
invoked, the next program counter locates in the sensitive
functions, which is executable. This complicated attack can
bypass the restriction that the calls to the secret compart-
ment can only be done with several fixed entry gates in the
trampoline. Nevertheless, it just adds a few more harmless
entry gates (the first byte of the sensitive functions pages).
To further eliminate such attack surfaces, we can adapt the
approach used by [48] to putting a single byte INT3 instruc-
tion at the beginning of each page of sensitive functions, to
prevent this carefully constructed VMFUNC faking attack.

 0

 2000

 4000

 6000

 8000

 10000

1000-5

500-5
1000-20

500-20

1000-50

500-50

 0
 2
 4
 6
 8
 10

T
h
ro

u
g
h
p
u
t
(r

e
q
 #

/s
e
c
)

O
v
e
rh

e
a
d
 (

%
)

[KeepAlive Req #]-[File Size (KB)]

original-throughput
secage-throughput

overhead

(a) Throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1000-5

500-5
1000-20

500-20

1000-50

500-50

 0

 1

 2

 3

 4

L
a
te

n
c
y
 (

m
s
/r

e
q
)

O
v
e
rh

e
a
d
 (

%
)

[KeepAlive Req #]-[File Size (KB)]

original-latency
secage-latency

overhead

(b) Latency

Figure 9: Nginx performance degradation

7. PERFORMANCE EVALUATION
To evaluate the efficiency of SeCage, we measure the per-

formance slowdown for applications under protection by SeCage
and collect some statistics regarding the performance and
resource consumption to conduct a detailed analysis.
All experiments are done on a machine with 4 Intel Xeon

cores (8 hardware threads using hyper-threading) running
at 3.4 GHz and with 32 GB memory. The host kernel for
KVM is Linux 3.13.7 and the guest kernel is Linux 3.16.1.
Each guest VM is configured with 2 virtual cores and 4 GB
memory.

7.1 Application Benchmarks
Nginx throughput and latency. Figure 9 shows the

performance degradation of Nginx server with SeCage pro-
tection. We use the ab benchmark to simulate 20 concurrent
clients constantly sending N KeepAlive 6 requests, each re-
quest asks the server to transfer X bytes file. To decide what
are the common values N and X should be, we scan through
the Facebook pages, and find that within one session, there
are normally hundreds to thousands of requests, each one
ranges from 1 to 100 KB. Since the private keys are only
used during connection establishment, the overhead can be
largely amortized as the number of KeepAlive requests and
the size of file grow. When N is 1000 and X is 50K, SeCage
only adds about 0.002 ms latency for each request in aver-
age, and the throughput overhead is only about 1.8%. We
also run the SeCage in a problematic configuration where all
requests require new TLS establishment with 0.5KB small
file, to test the performance slowdown in the worst case.
The result shows that the overhead is about 40%. While in
real-world scenarios, most HTTP-connections are persistent
and keep-alive headers are used [5].
OpenSSH latency. To evaluate the slowdown of OpenSSH

operation, we run a script to constantly use SSH to login the
server and execute common Linux commands such as ls and
netstat, and utilize time command to show the latency. We
find that on average, SeCage introduces about 6 ms (%3
overhead) for each request.
CryptoLoop I/O bandwidth. We evaluate disk I/O

throughput when using CryptoLoop encrypted file system.
We leverage fio benchmark with sequential read/write con-
figurations to show the overhead introduced by SeCage. We
find that the average slowdown of I/O operations is about
4% when using SeCage protection.

6KeepAlive header asks the server to not shut down the
connection after each request is done.

7.2 Performance Analysis
EPTP switching times and cost. The overhead in-

troduced by SeCage is mainly from context switches be-
tween EPT-N and EPT-S . We instrument the application
to log the times of trampoline invocation for different oper-
ations; each trampline invocation introduces 2 vmfunc calls
(section 3.2). Table 3 shows the statistics after the Nginx
server processed 1000 requests, OpenSSH handled one login
request, and CryptoLoop operated 10M I/O writes. N→S
means the number of trampoline calls from the main to the
secret compartment, and S→N means that from the secret
to the main compartment. We can see that there are limited
numbers of context switches compared to the long execution
path. We then do a study of how much time each vmfunc
call takes, and compare it with normal function call, syscall
and vmcall (hypercall). As shown in Table 4, the cost of a
vmfunc is similar with a syscall, while a vmcall takes much
longer time. Thus, SeCage provides the hypervisor-level pro-
tection at the cost of system calls.

Table 3: Statistics of trampoline invocation times
Nginx/1000 req OpenSSH/login CryptoLoop/10M
N→S S→N N→S S→N N→S S→N
64693 8550 20480 40960 98230 11658

Table 4: Overhead for call, syscall, vmcall and vm-
func

call syscall vmcall vmfunc

3.37 ns 64.54 ns 544.4 ns 63.22 ns

Memory consumption. Since SeCage needs to setup
a shadow EPT-S for each protected secret compartment,
we calculate how much additional memory is needed. It
depends on how many sensitive functions and trampoline
code are extracted, and how much secure heap and stack is
reserved. The results are shown in Table 5, in the OpenSSL
case, we extracted about 20 sensitive functions, and declare
the corresponding 41 trampoline functions. For the secret
memory, we only reserve 1 page for the secure heap and 2
pages for stack. Thus the total amount of shadow memory
is only 40KB. For the CryptoLoop case, since it is much
simpler than OpenSSL, it only takes about 7 pages (28KB).

Table 5: Statistics regarding memory consumption
{fs} {ft} sec-heap sec-stack total

Nginx 20 (5) 41 (2) 1 2 10 pages
OpenSSH 21 (5) 41 (2) 1 2 10 pages

CryptoLoop 12 (3) 14 (1) 1 2 7 pages

8. RELATED WORK
Application-level secret protection. There are many

systems aiming at protecting secret data (e.g., cryptographic
keys) from application-level memory disclosure attacks by
leveraging library or OS kernel support [36, 8, 22, 37, 26].
For example, DieHarder [36] presents a security-oriented
memory allocator to defend heap-based memory attacks. Se-
cureHeap [8] is a patch for OpenSSL from Akamai Technol-
ogy, which allocates specific area to store private keys to pre-
vent private keys from disclosing. CRYPTON [22] designs

a data abstraction and browser primitive to isolate sensitive
data within the same origin. However, they all rely on the
trustworthiness of the entire library of OS kernel, and thus
still suffer from larger attack surfaces compared to SeCage.
Other approaches try to keep cryptographic keys solely

inside CPU [37, 26]. For example, Safekeeping [37] uses x86
SSE XMM registers to ensure no cryptographic key appear
in its entirety in the RAM, while allowing efficient cryp-
tographic computations. Similarly, Copker [26] implements
asymmetric cryptosystems entirely within the CPU, without
leaking the plaintext of private keys to memory. However,
code running in cache needs to be specially crafted and it
needs to rely on the trustworthiness of OS kernel for security.
Hypervisor-based application protection. Systems

like CHAOS [17, 16], OverShadow [18] and others [19, 28, 53]
leverage virtualization-based approaches to providing iso-
lated execution environment to protect an application from a
compromised OS. Specifically, they leverage hypervisor pro-
vided memory isolation, and intercept transition between a
protected application and the OS to enforce isolation. Ink-
Tag [28] makes a step further to use paraverification to ease
verifying of OS to defend again Iago attacks [15]. Com-
pared to these systems, SeCage aims to provide fine-grained
intra-domain protection instead of whole application protec-
tion. Further, the separation of control and data planes sig-
nificantly reduces hypervisor intervention and thus reduces
performance overhead.
Some other virtualization-based systems [29, 25, 45, 42]

run protected applications in a trusted component with re-
stricted functionalities (e.g., an application-specific OS), and
use hypervisor to enforce the interactions between trusted
and untrusted components. Compared with SeCage, such
approaches have larger TCB since they need to trust all
secure components like the OS. Further, they all need to
retrofit the whole OS and thus require significant porting
effort to run real, large software atop.
There are various systems aiming at providing isolated en-

vironment for the whole virtual machine [54, 50, 44], though
they are efficient in guest VM protection, they cannot defend
against intra-domain attacks.
Protecting pieces of application logic. Flicker [35]

leverages TPM and takes a bottom-up approach to provide a
hardware-support isolation of security-sensitive code. With
the help of TPM, securely running Pieces of Application
Logic (PAL) can rely only on a few hundred lines of code
as its TCB. However, since Flicker heavily uses the hard-
ware support for a dynamic root of trust for measurement
(DRTM), it introduces very high overhead. TrustVisor [34]
proposes a special-purpose hypervisor to isolate the execu-
tion of the PAL. Compared with Flicker, it introduces the
software-based TPM called micro-TPM (uTPM) for each
PAL, to realize a more efficient PAL protection. Flicker
and TrustVisor show a kind of effectively isolated code ex-
ecution with extremely small TCB, they both assume that
the protected code is self-contained with predefined inputs
and outputs, and heavily depend on programmers to spec-
ify sensitive functions, as well as (un)marshal parameters
between trusted and untrusted mode, which kind of de-
sign makes them very difficult to adapt to existing sys-
tems. MiniBox [31] focus on providing a two-way sandbox
for both PAL and OS: besides protecting PAL from mali-
cious OS as TrustVisor does, it also prevents untrusted ap-
plications compromising the underlying OS. Since MiniBox

uses TrustVisor to do the first part, they share the same
problems.

Hardware-assisted protection. There is also much
work on designing new hardware features to isolate critical
code and data [33, 43, 24, 14, 20, 10, 47, 49]. For example,
XOMOS [33] is built upon XOM [32] to support tamper-
resistant software. The concept of compartment is borrowed
from XOMOS, but is used to run a closure of code operat-
ing specific secret data. Further, SeCage leverages existing
hardware virtualization features to enforce strong protec-
tion. Haven [10] introduces the notion of shielded execution,
which utilizes Intel’s recent SGX security proposal to pro-
tect the code and data of the unmodified application from
divulging and tampering from privileged code and physi-
cal attack, but only targets whole application protection in-
stead of intra-application protection. SeCage illustrates how
to decompose large-scale software and adapt it to different
hardware-assisted isolation environment.

Mimosa [27] uses hardware transactional memory (HTM)
to protect private keys from memory disclosure attacks. It
leverages the strong atomicity guarantee provided by HTM
to prevent malicious concurrent access to the memory of sen-
sitive data. Though Mimosa shares almost the same threat
model with SeCage, it has some limitations, e.g., in order
to prevent attackers from accessing debug registers (which
is used to store the AES master key of the private keys), it
needs to patch the ptrace system call, disable loadable kernel
modules (LKMs) and kmem, and remove JTAG ports. Com-
pared with SeCage, Mimosa can only adapt much simplified
PolarSSL instead of OpenSSL to the HTM protection.

CODOMs [47] enforces instruction-pointer capabilities to
provide a code-centric memory domain protection. CHERI [49]
implements a capability coprocessor and tagged memory to
enable capability-based addressing for intra-program protec-
tion. Both designs promise very small TCB (e.g., micropro-
cessor and up to limited software component like trusted ker-
nel), and can provide strong isolation enforced by hardware.
However, since they all need newly specific designed hard-
ware which are currently not available, they are all imple-
mented on emulators. Further, they usually require rewrit-
ing of the whole software stack, which lead to non-trivial
engineering work and make them not ready for deployment.

Privilege separation. PrivTrans [13] is a privilege sep-
aration tool that can automatically decouple a program into
monitor and slave parts provided a few programmer anno-
tations. Compared with the mechanism of SeCage, Priv-
Trans approach partitions code in instruction-level, which
introduces a large number of expensive calls between the
two parts. Meanwhile, it trusts the whole operating system,
whose threat model is quite different with SeCage. Virtual
Ghost [21] is the first one to combines compilation technique
and OS code runtime check to provide critical application
with some secure services, and protect it from compromised
OS without higher privilege level than the kernel. However,
it needs to retrofit OS and runs it in a secure virtual archi-
tecture (SVA), which requires non-trivial efforts to deploy it
in current infrastructures.

VMFUNC utilization. SeCage is not the first system
to use the Intel’s VMFUNC hardware feature. Following
the philosophy of separating authentication from authoriza-
tion, CrossOver [30] extends Intel’s VMFUNC mechanism to
provide a flexible cross-world call scheme that allows calls
not only across VMs, but across different privilege levels

and address spaces. We believe such a mechanism can be
applied to SeCage to provide more flexible protection. An
effort from the open-source community [9] takes advantages
of VMFUNC, and proposes an efficient NFV on Xen. As
far as we know, SeCage is the first system making uses of
VMFUNC to protect pieces of application logic and prevent
from both user and kernel level memory disclosure attacks.

9. DISCUSSION AND LIMITATION
Deployment effort. The deployment of SeCage is not

fully automated, the minor manual effort is required. For
OpenSSL and CryptoLoop, we respectively add 25 and 15
LoCs. They are mainly attributed to the dynamic analysis,
secret memory allocation and hypercall used for initializa-
tion. Comparing it with other work, TrustVisor [34], Mi-
mosa [27] and many others did not support OpenSSL so they
resort to the much more simplified PolarSSL. PrivTrans [13]
only adds 2 annotations, however it puts all cryptographic
operations in the monitor, while SeCage only allows very
limited code in the secret compartment.
SeCage TCB. For one secret compartment, the TCB

contains hardware, hypervisor and the sensitive functions.
Currently, our implementation uses KVM as the trusted
hypervisor, which arguably has a large TCB. However, as
SeCage only involves minor functionalities in hypervisor, it
should be easy to port SeCage to a security-enhanced hy-
pervisor such as TrustVisor [34] or XMHF [46] to further
reduce TCB, which will be our future work.
The scope of secrets. SeCage is supposed to protect

critical secrets like private keys, whose related sensitive func-
tions are limited to a small piece of code. Since the small
code base of a secret compartment is one of the most impor-
tant assurance to secrets’ security, SeCage is not designed
for protecting data whose closure involves large fraction of
the code. Fortunately, the three cases we studied, which
should be representative of large-scale software, fit very well
with our scope.
Static library vs. dynamic library. Currently, SeCage

compiles OpenSSL as a static library, and slightly modifies
the linker to link the sensitive and trampoline functions to
specific memory locations. We can also adopt dynamic li-
braries, by modifying system’s loader. We do not assume the
loader as trusted; even if it behaves maliciously by refusing
to load sensitive functions or loading them to wrong mem-
ory locations, the secrets will still not be disclosed. This is
because the hypervisor can reject to load the secrets during
the integrity checking phase (Section 3.4).

10. CONCLUSION AND FUTURE WORK
We presented SeCage, a novel approach that leverages vir-

tualization to protect user-defined secrets from application
vulnerabilities and malicious OS. SeCage prevents sensitive
information disclosure by completely shadowing the secret
compartment from the main compartment, and utilizes In-
tel hardware extension to enormously reduce hypervisor in-
tervention during application runtime. Meanwhile, SeCage
provides a practical application analysis and decomposition
framework to (mostly) automatically deploy applications.
SeCage was shown to be useful by protecting real and large-
scale software from HeartBleed attack, kernel memory dis-
closure and rootkit memory scanning effectively, and incur-
ring negligible performance overhead to applications.

We plan to extend our work in several directions. First,
we plan to deploy more applications with SeCage to prevent
sensitive memory disclosure based on the CVEs. Second,
we plan to adopt binary rewriting techniques to avoid the
requirement of source code rewriting. Third, we plan to im-
plement SeCage in other virtualization platform, e.g., Xen.

11. ACKNOWLEDGEMENT
We thank the anonymous reviewers for their insightful

comments. This work is supported in part by a research
grant from Huawei Technologies, Inc., National Natural Sci-
ence Foundation (61303011), a foundation for the Author
of National Excellent Doctoral Dissertation of PR China
(No. TS0220103006), Program for New Century Excellent
Talents in University of Ministry of Education of China
(ZXZY037003), the Shanghai Science and Technology De-
velopment Fund for high-tech achievement translation (No.
14511100902), Zhangjiang Hi-Tech program (No. 201501-
YP-B108-012), and the Singapore NRF (CREATE E2S2).

12. REFERENCES

[1] CIL. http://kerneis.github.io/cil/.

[2] Coppersmith’s attack.
http://en.wikipedia.org/wiki/Coppersmith’s Attack.

[3] The heartbleed bug. http://heartbleed.com/.

[4] How heartbleed leaked private keys.
http://blog.cloudflare.com/searching-for-the-prime-
suspect-how-heartbleed-leaked-private-keys/.

[5] Http persistent connection wiki.
https://en.wikipedia.org/wiki/HTTP persistent connection.

[6] Poc of private key leakage using heartbleed.
https://github.com/einaros/heartbleed-tools.

[7] Polyvariance.
http://en.wikipedia.org/wiki/Polyvariance.

[8] Secure heap patch for heartbleed.
http://www.mail-archive.com/openssl-
users@openssl.org/msg73503.html.

[9] Xen as high-performance nfv platform.
http://events.linuxfoundation.org/sites/events/files/
slides/XenAsHighPerformanceNFVPlatform.pdf.

[10] A. Baumann, M. Peinado, and G. Hunt. Shielding
applications from an untrusted cloud with haven. In
OSDI, 2014.

[11] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and
D. Boneh. Hacking blind. In S&P, 2014.

[12] E. Bosman and H. Bos. Framing signals: A return to
portable shellcode. In S&P, 2014.

[13] D. Brumley and D. Song. Privtrans: Automatically
partitioning programs for privilege separation. In
Usenix Security, 2004.

[14] D. Champagne and R. B. Lee. Scalable architectural
support for trusted software. In HPCA, 2010.

[15] S. Checkoway and H. Shacham. Iago attacks: why the
system call api is a bad untrusted rpc interface. In
ASPLOS, 2013.

[16] H. Chen, J. Chen, W. Mao, and F. Yan. Daonity–grid
security from two levels of virtualization. Information
Security Technical Report, 12(3):123–138, 2007.

[17] H. Chen, F. Zhang, C. Chen, Z. Yang, R. Chen,
B. Zang, and W. Mao. Tamper-resistant execution in

an untrusted operating system using a virtual machine
monitor. Technical Report, FDUPPITR-2007-0801.

[18] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam,
C. A. Waldspurger, D. Boneh, J. Dwoskin, and D. R.
Ports. Overshadow: a virtualization-based approach to
retrofitting protection in commodity operating
systems. In ASPLOS, 2008.

[19] Y. Cheng, X. Ding, and R. Deng. Appshield:
Protecting applications against untrusted operating
system. Technical Report, SMU-SIS-13, 2013.

[20] S. Chhabra, B. Rogers, Y. Solihin, and M. Prvulovic.
Secureme: a hardware-software approach to full
system security. In ICS, 2011.

[21] J. Criswell, N. Dautenhahn, and V. Adve. Virtual
ghost: protecting applications from hostile operating
systems. In ASPLOS, 2014.

[22] X. Dong, Z. Chen, H. Siadati, S. Tople, P. Saxena,
and Z. Liang. Protecting sensitive web content from
client-side vulnerabilities with cryptons. In CCS, 2013.

[23] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman,
M. Bailey, F. Li, N. Weaver, J. Amann, J. Beekman,
et al. The matter of heartbleed. In IMC, 2014.

[24] J. S. Dwoskin and R. B. Lee. Hardware-rooted trust
for secure key management and transient trust. In
CCS, 2007.

[25] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: A virtual machine-based platform
for trusted computing. In SOSP, 2003.

[26] L. Guan, J. Lin, B. Luo, and J. Jing. Copker:
Computing with private keys without ram. In NDSS,
2014.

[27] L. Guan, J. Lin, B. Luo, J. Jing, and J. Wang.
Protecting private keys against memory disclosure
attacks using hardware transactional memory. In S&P,
2015.

[28] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and
E. Witchel. Inktag: secure applications on an
untrusted operating system. 2013.

[29] P. C. Kwan and G. Durfee. Practical uses of virtual
machines for protection of sensitive user data. In
ISPEC. 2007.

[30] W. Li, Y. Xia, H. Chen, B. Zang, and H. Guan.
Reducing world switches in virtualized environment
with flexible cross-world calls. In ISCA, 2015.

[31] Y. Li, J. McCune, J. Newsome, A. Perrig, B. Baker,
and W. Drewry. Minibox: A two-way sandbox for x86
native code. In ATC, 2014.

[32] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln,
D. Boneh, J. Mitchell, and M. Horowitz. Architectural
support for copy and tamper resistant software. 2000.

[33] D. Lie, C. A. Thekkath, and M. Horowitz.
Implementing an untrusted operating system on
trusted hardware. In SOSP, 2003.

[34] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta,
V. Gligor, and A. Perrig. Trustvisor: Efficient tcb
reduction and attestation. In S&P, 2010.

[35] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter,
and H. Isozaki. Flicker: An execution infrastructure
for tcb minimization. In EuroSys, 2008.

[36] G. Novark and E. D. Berger. Dieharder: securing the
heap. In CCS, 2010.

[37] T. P. Parker and S. Xu. A method for safekeeping
cryptographic keys from memory disclosure attacks. In
Trusted Systems. 2010.

[38] J. Shi, X. Song, H. Chen, and B. Zang. Limiting
cache-based side-channel in multi-tenant cloud using
dynamic page coloring. In DDSN-W, 2011.

[39] G. Smith, C. E. Irvine, D. Volpano, et al. A sound
type system for secure flow analysis. Journal of
Computer Security, 1996.

[40] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko,
C. Liebchen, and A.-R. Sadeghi. Just-in-time code
reuse: On the effectiveness of fine-grained address
space layout randomization. In S&P, 2013.

[41] R. Strackx, B. Jacobs, and F. Piessens. Ice: a passive,
high-speed, state-continuity scheme. In ACSAC, 2014.

[42] R. Strackx and F. Piessens. Fides: Selectively
hardening software application components against
kernel-level or process-level malware. In CCS, 2012.

[43] G. E. Suh, D. Clarke, B. Gassend, M. Van Dijk, and
S. Devadas. Aegis: architecture for tamper-evident
and tamper-resistant processing. In ICS, 2003.

[44] J. Szefer and R. B. Lee. Architectural support for
hypervisor-secure virtualization. In ASPLOS, 2012.

[45] R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces:
Making trust between applications and operating
systems configurable. In OSDI, 2006.

[46] A. Vasudevan, S. Chaki, L. Jia, J. McCune,
J. Newsome, and A. Datta. Design, implementation
and verification of an extensible and modular
hypervisor framework. In S&P, 2013.

[47] L. Vilanova, M. Ben-Yehuda, N. Navarro, Y. Etsion,
and M. Valero. Codoms: protecting software with
code-centric memory domains. In ISCA, 2014.

[48] Z. Wang, C. Wu, M. Grace, and X. Jiang. Isolating
commodity hosted hypervisors with hyperlock. In
CCS, 2012.

[49] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore,
J. Anderson, et al. The cheri capability model:
Revisiting risc in an age of risk. In ISCA, 2014.

[50] Y. Xia, Y. Liu, and H. Chen. Architecture support for
guest-transparent vm protection from untrusted
hypervisor and physical attacks. In HPCA, 2013.

[51] Y. Xia, Y. Liu, H. Chen, and B. Zang. Defending
against vm rollback attack. In DCDV, 2012.

[52] Y. Xia, Y. Liu, H. Guan, Y. Chen, T. Chen, B. Zang,
and H. Chen. Secure outsourcing of virtual appliance.
IEEE Transactions on Cloud Computing, 2015.

[53] J. Yang and K. G. Shin. Using hypervisor to provide
data secrecy for user applications on a per-page basis.
In VEE, 2008.

[54] F. Zhang, J. Chen, H. Chen, and B. Zang. Cloudvisor:
retrofitting protection of virtual machines in
multi-tenant cloud with nested virtualization. In
SOSP, 2011.

[55] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart.
Cross-vm side channels and their use to extract
private keys. In CCS, 2012.

