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Abstract

Natural graphs with skewed distribution raise unique chal-
lenges to graph computation and partitioning. Existing
graph-parallel systems usually use a “one size fits all” de-
sign that uniformly processes all vertices, which either suf-
fer from notable load imbalance and high contention for
high-degree vertices (e.g., Pregel and GraphLab), or incur
high communication cost and memory consumption even
for low-degree vertices (e.g., PowerGraph and GraphX).

In this paper, we argue that skewed distribution in natu-
ral graphs also calls for differentiated processing on high-
degree and low-degree vertices. We then introduce Power-
Lyra, a new graph computation engine that embraces the
best of both worlds of existing graph-parallel systems, by
dynamically applying different computation and partitioning
strategies for different vertices. PowerLyra further provides
an efficient hybrid graph partitioning algorithm (hybrid-cut)
that combines edge-cut and vertex-cut with heuristics. Based
on PowerLyra, we design locality-conscious data layout op-
timization to improve cache locality of graph accesses dur-
ing communication. PowerLyra is implemented as a separate
computation engine of PowerGraph, and can seamlessly sup-
port various graph algorithms. A detailed evaluation on two
clusters using graph-analytics and MLDM (machine learn-
ing and data mining) applications show that PowerLyra out-
performs PowerGraph by up to 5.53X (from 1.24X) and
3.26X (from 1.49X) for real-world and synthetic graphs ac-
cordingly, and is much faster than other systems like GraphX
and Giraph, yet with much less memory consumption. A
porting of hybrid-cut to GraphX further confirms the effi-
ciency and generality of PowerLyra.
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1. Introduction

Graph-structured computation has become increasingly pop-
ular, which is evidenced by its emerging adoption in a
wide range of areas including social computation, web
search, natural language processing and recommendation
systems [9, 19, 38, 48, 58, 62]. The strong desire for
efficient and expressive programming models for graph-
structured computation has recently driven the development
of a number of graph-parallel systems such as Pregel [35],
GraphLab [33] and PowerGraph [18]. They usually follow
the “think as a vertex” philosophy [35] by coding graph
computation as vertex-centric programs to process vertices
in parallel and communicate across edges.

On the other hand, the distribution of graphs in the real
world tends to be diversified and continue evolving [31]. For
example, some existing datasets exhibit a skewed power-law
distribution [17] where a small number of vertices have a
significant number of neighboring vertices, while some other
existing datasets (e.g., SNAP [39]) exhibit a more balanced
distribution. The diverse properties inside and among graph
datasets raise new challenges to efficiently partition and pro-
cess such graphs [6, 18, 32].

Unfortunately, existing graph-parallel systems usually
adopt a “one size fits all” design where different vertices
are equally processed, leading to suboptimal performance
and scalability. For example, Pregel [35] and GraphLab [33]
centralize their design in making resources locally acces-
sible to hide latency by evenly distributing vertices to ma-
chines, which may result in imbalanced computation and
communication for vertices with high degrees (i.e., the num-
ber of neighboring vertices). In contrast, PowerGraph [18]
and GraphX [20] focus on evenly parallelizing the compu-
tation by partitioning edges among machines, which incurs
high communication cost among partitioned vertices even
with low degrees.

Further, prior graph partitioning algorithms may result in
some deficiencies for skewed and non-skewed (i.e. regular)
graphs. For example, edge-cut [26, 44, 49, 52], which di-
vides a graph by cutting cross-partition edges among sub-
graphs with the goal of evenly distributing vertices, usu-



Pregel-like [2, 3, 35, 43] GraphLab [33] PowerGraph [18] GraphX [20] PowerLyra

Graph Placement edge-cuts [44, 49, 52] edge-cuts vertex-cuts [12, 18, 24] vertex-cuts hybrid-cuts

Vertex Comp.
local local distributed distributed

L: local
Pattern H: distributed

Comm. Cost ≤ #edge-cuts ≤ 2×#mirrors ≤ 5×#mirrors ≤ 4×#mirrors
L: ≤ #mirrors

H: ≤ 4×#mirrors

Dynamic Comp. no yes yes yes yes

Load Balance no no yes yes yes

Table 1. A summary of various distributed graph-parallel systems. ‘L’ and ‘H’ represent low-degree and high-degree vertex

respectively.

ally results in replication of edges as well as imbalanced
messages with high contention. In contrast, vertex-cut [12,
18, 24], which partitions vertices among sub-graphs with
the goal of evenly distributing edges, incurs high commu-
nication overhead among partitioned vertices and excessive
memory consumption.

In this paper, we make a comprehensive analysis of ex-
isting graph-parallel systems over skewed graphs and argue
that the diverse properties of different graphs and skewed
vertex distribution demand differentiated computation and
partitioning on low-degree and high-degree vertices. Based
on our analysis, we introduce PowerLyra, a new graph-
parallel system that embraces the best of both worlds of
existing systems. The key idea of PowerLyra is to adaptively
processing different vertices according to their degrees.

PowerLyra follows the GAS (Gather, Apply and Scatter)
model [18] and can seamlessly support existing graph al-
gorithms under such a model. Internally, PowerLyra distin-
guishes the processing of low-degree and high-degree ver-
tices: it uses centralized computation for low-degree ver-
tices to avoid frequent communication and only distributes
the computation for high-degree vertices.

To efficiently partition a skewed graph, PowerLyra is
built with a balanced p-way hybrid-cut algorithm to partition
different types of vertices for a skewed graph. The hybrid-
cut algorithm evenly distributes low-degree vertices along
with their edges among machines (like edge-cut), and evenly
distributes edges of high-degree vertices among machines
(like vertex-cut). We further provide a greedy heuristic to
improve partitioning of low-degree vertices.

Finally, PowerLyra mitigates the poor locality and high
interference among threads during the communication phase
by a locality-conscious graph layout optimization based on
hybrid-cut. It trades a small growth of graph ingress time for
a notable speedup during graph computation.

We have implemented PowerLyra1 as a separate engine
of PowerGraph, which comprises about 2500 lines of C++
code. Our evaluation on two clusters using various graph-
analytics and MLDM applications shows that PowerLyra
outperforms PowerGraph by up to 5.53X (from 1.24X) and
3.26X (from 1.49X) for real-world and synthetic graphs ac-

1 The source code and a brief instruction of PowerLyra are available at
http://ipads.se.sjtu.edu.cn/projects/powerlyra.html

cordingly, and consumes much less memory, due to signif-
icantly reduced replication, less communication cost, and
better locality in computation and communication. A porting
of the hybrid-cut to GraphX further confirms the efficiency
and generality of PowerLyra.

This paper makes the following contributions:

• A comprehensive analysis that uncovers some perfor-
mance issues of existing graph-parallel systems (§2).

• The PowerLyra model that supports differentiated com-
putation on low-degree and high-degree vertices, as well
as adaptive communication with minimal messages while
not sacrificing generality (§3)

• A hybrid-cut algorithm with heuristics that provides more
efficient partitioning and computation (§4), as well as
locality-conscious data layout optimization (§5).

• A detailed evaluation that demonstrates the performance
benefit of PowerLyra (§6).

2. Background and Motivation

Many graph-parallel systems, including PowerLyra, abstract
computation as vertex-centric program P , which is executed
in parallel on each vertex v∈V in a sparse graph G= {V,E}.
The scope of computation and communication in each P(v)
is restricted to neighboring vertices n through edges where
(v,n) ∈ E.

This section briefly introduces skewed graphs and il-
lustrates why prior graph-parallel systems fall short using
Pregel, GraphLab, PowerGraph and GraphX, as they are
representatives of existing systems.

2.1 Skewed Graphs

Natural graphs, such as social networks (follower, citation,
and co-authorship), email and instant messaging graphs, or
web graphs (hubs and authorities), usually exhibit skewed
distribution, such as power-law degree distribution [17]. This
implies that a major fraction of vertices have relatively few
neighbors (i.e., low-degree vertex), while a small fraction
of vertices has a significant large number of neighbors (i.e.,
high-degree vertex). Given a positive power-law constant α ,
the probability that the vertex has degree d under power-law
distribution is

P(d) ∝ d−α

http://ipads.se.sjtu.edu.cn/projects/powerlyra.html


(v, M)
(m in M)

sum += m
v.rank = 0.15 + 0.85 * sum

( !converged(v) )
(n in outNbrs(v))

m = v.rank / #outNbrs(v)
send (n, m)
done()

(v, n):
n.rank/#outNbrs(v)

(a, b): a + b

(v, sum)
v.rank = 0.15 + 0.85 * sum

(v, n): 
( !converged(v) ) 
activate(n)

(a) Pregel/GraphLab (b) PowrGraph/PowerLyra

Figure 1. The sample code of PageRank on various systems.

The lower exponent α implies that a graph has higher den-
sity and more high-degree vertices. For example, the in and
out degree distribution of the Twitter follower graph is close
to 1.7 and 2.0 [18]. Though there are also other models [31,
41, 42, 55] for skewed graphs, we restrict the discussion to
power-law distribution due to space constraints. However,
PowerLyra is not bound to such a distribution and should
benefit other models with skewed distribution as well. (hav-
ing high-degree and low-degree vertices).

2.2 Existing Systems on Skewed Graphs

Though a skewed graph has different types of vertices, exist-
ing graph systems usually use a “one size fits all” design and
compute equally on all vertices, which may result in subop-
timal performance. Tab. 1 provides a comparative study of
typical graph-parallel systems.

Pregel and its open-source relatives [2, 3, 43] use the
BSP (Bulk Synchronous Parallel) model [53] with explicit
messages to fetch all resources for the vertex computation.
Fig. 1(a) illustrates an example implementation of PageR-
ank [9] in Pregel. The Compute function sums up the ranks
of neighboring vertices through the received messages M,
and sets it as the new rank of the current vertex. The new
rank will also be sent to its neighboring vertices by mes-
sages until a global convergence estimated by a distributed
aggregator is reached. As shown in Fig. 2, Pregel adopts ran-
dom (hash-based) edge-cut evenly assigning two vertices in
the sample graph to two machines, and provides interaction
between vertices by message passing along edges. Since the
communication is restricted to push-mode algorithms (e.g.,
vertex A cannot actively pull data from vertex B), Pregel
does not support dynamic computation [33].

GraphLab replicates vertices for all edges spanning ma-
chines and leverages an additional vertex activation message
to support dynamic computation. In Fig. 2, GraphLab also
uses edge-cut as Pregel, but creates replicas (i.e., mirrors)
and duplicates edges in both machines (e.g., for the edge
from vertex A to B, there are one edge and replica in both
machines). The communication between replicas of a ver-
tex is bidirectional, i.e., sending updates from a master to its
mirrors and activation from mirrors to the master. PageRank
implemented in GraphLab is similar to that of Pregel, except

B

Figure 2. A comparison of graph-parallel models.

that it uses replicas to exchange messages from neighboring
vertices.

PowerGraph abstracts computation into the GAS (Gather,
Apply and Scatter) model and uses vertex-cut to split a
vertex into multiple replicas in different machines to paral-
lelize the computation for a single vertex. Fig. 1(b) uses the
Gather and the Acc functions to accumulate the rank of
neighboring vertices along in-edges, the Apply function to
calculate and update a new rank to vertex and the Scatter
function to send messages and activate neighboring vertices
along out-edges. Five messages for each replica are used to
parallelize vertex computation to multiple machines in each
iteration (i.e., 2 for Gather, 1 for Apply and 2 for Scatter),
three of them are used to support dynamic computation. As
shown in Fig. 2, the edges of a single vertex are assigned to
multiple machines to evenly distribute workloads, and the
replicas of vertex are placed in machines with its edges.

GraphX [20] extends the general dataflow framework in
Spark [60], by recasting graph-specific operations into ana-
lytics pipelines formed by basic dataflow operators such as
Join, Map and Group-by. GraphX also adopts vertex replica-
tion, incremental view maintenance and vertex-cut partition-
ing to support dynamic computation and balance the work-
load for skewed graphs.

2.2.1 Issues with Graph Computation

To exploit locality during computation, both Pregel and
GraphLab use edge-cut to accumulate all resources (i.e.,
messages or replicas) of a vertex in a single machine. How-
ever, a skewed distribution of degrees among vertices im-
plies skewed workload, which leads to substantial imbal-
ance when being accumulated on a single machine. Even if
the number of high-degree vertices is much more than the
number of machines to balance workload [23], it still in-
curs heavy network traffic among machines to accumulate
all resources for high-degree vertices. Further, high-degree
vertices would be the center of contention when performing
scatter operations on all edges in a single machine. As shown
in Fig. 3, there is significant load imbalance for edge-cut in
Pregel and GraphLab, as well as high contention on vertex
1 (high-degree) when its neighboring vertices activate it in
parallel. This situation will be even worse with the increase
of machines and degrees of vertices.

PowerGraph and GraphX address the load imbalance
issue using vertex-cut and decomposition under the GAS
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Figure 3. A comparison of graph partitioning algorithms.

model, which split a vertex into multiple machines. How-
ever, this splitting also comes at a cost, including more com-
putation, communication and synchronization required to
gather values and scatter the new value from/to its replicas
(Fig. 2). However, as the major number of vertices are only
with small degrees in a skewed graph, splitting such vertices
is not worthwhile. Further, while the GAS model provides
a general abstraction, many algorithms only gather or scat-
ter in one direction (e.g., PageRank). Yet, both PowerGraph
and GraphX still require redundant communication and data
movement. The workload is always distributed to all replicas
even without such edges. Under the Random vertex-cut in
Fig. 3, the computation on vertex 4 still needs to follow the
GAS model, even though all in-edges are located together
with the master of vertex 4.

2.2.2 Issues with Graph Partitioning

Graph partitioning plays a vital role in reducing communica-
tion and ensuring load balance. Traditional balanced p-way
edge-cut [44, 49, 52], evenly assigns vertices of a graph to
p machines to minimize the number of edges spanning ma-
chines. Under edge-cut in Fig. 3, six vertices are randomly
(i.e., hash modulo #machine ) assigned to three machines.
Edge-cut creates replicated vertices (e.g., mirrors) and edges
to form a locally consistent graph state in each machine.
However, natural graphs with skewed distribution are diffi-
cult to partition using edge-cut [6, 30], since skewed vertices
will cause a burst of communication cost and work imbal-
ance. Vertex 1 in Fig. 3 contributes about half of replicas of
vertices and edges, and incurs load imbalance on machine 1,
which has close to half of edges.

The balanced p-way vertex-cut [18] evenly assigns edges

to p machines to minimize the number of vertices spanning
machines. Compared to edge-cut, vertex-cut avoids replica-
tion of edges and achieves load balance by allowing edges
of a single vertex to be split over multiple machines. How-
ever, randomly constructed vertex-cut leads to much higher
replication factor (λ ) (i.e., the average number of replicas

Algorithm

& Graph
Vertex-cut λ

Time (Sec)

Ingress Execution

PageRank
&

Twitter
follower

Random 16.0 263 823
Coordinated 5.5 391 298

Oblivious 12.8 289 660
Grid 8.3 123 373

Hybrid 5.6 138 155

ALS (d=20)
&

Netflix
movie rec.

Random 36.9 21 547
Coordinated 5.3 31 105

Oblivious 31.5 25 476
Grid 12.3 12 174

Hybrid 2.6 14 67

Table 2. A comparison of various vertex-cuts for 48 parti-

tions using PageRank (10 iterations) on the Twitter follower

graph and ALS (d=20, the magnitude of latent dimension.)

on the Netflix movie recommendation graph. λ means repli-

cation factor. Ingress means loading graph into memory and

building local graph structures.

for a vertex), since it incurs poor placement of low-degree
vertices. In Fig. 3, Random vertex-cut creates a mirror for
vertex 3 even if it has only two edges2.

To reduce replication factor, PowerGraph uses a greedy

heuristic [18] to accumulate adjacent edges on the same
machine. In practice, applying the greedy heuristic to all
edges (i.e., Coordinated) incurs a significant penalty during
graph partitioning [23], mainly caused by exchanging vertex
information among machines. Yet, using greedy heuristic
independently on each machine (i.e., Oblivious) will notably
increase the replication factor.

The constrained vertex-cut [24] (e.g., Grid) is proposed
to strike a balance between ingress and execution time. It
follows the classic 2D partitioning [11, 59] to restrict the
locations of edges within a small subset of machines to ap-
proximate an optimal partitioning. Since the set of machines
for each edge can be independently calculated on each ma-
chine by hashing, constrained vertex-cut can significantly re-
duce the ingress time3. However, the ideal upper bound of
replication factor is still too large for a good placement of
low-degree vertices (e.g., 2

√
N − 1 for Grid). Further, con-

strained vertex-cut necessitates the number of partitions (N)
close to be a square number to get a reasonably balanced
graph partitioning.

Some work (e.g., [23]) argues that intelligent graph place-
ment schemes may dominate and hurt the total execution
time, whereas such argument just partially4 works for greedy

heuristic partitioning and simple graph algorithms. First,

2 PowerGraph mandates the creation of a flying master of vertex (e.g., vertex
5 and 6) in its hash-based location to support simple external querying for
some algorithms even without edges. PowerLyra also follows this rule.
3 Coordinated greedy vertex-cut has been deprecated due to its excessive
graph ingress time and buggy, meanwhile both PowerGraph and GraphX
have adopted Grid-like vertex-cut as the preferential partitioning algorithm.
4 GraphLab has been highly optimized in the 2.2 release, especially for
ingress time with parallel loading.



Figure 4. The computation model on high-degree and low-

degree vertex for algorithms gathering along in-edges and

scattering along out-edges.

naive random partitioning does not necessarily imply effi-
ciency in ingress time due to a lengthy time to create an ex-
cessive number of mirrors. Second, with the increasing so-
phistication of graph algorithms (e.g., MLDM), the ingress
time will become relatively small to the overall computation.

Tab. 2 illustrates a comparison of various state-of-the-art
vertex-cuts of PowerGraph for 48 partitions. Random vertex-
cut performs worst in both ingress and computation time
due to the highest replication factor. Coordinated vertex-cut
achieves both small replication factor and execution time,
but at the cost of excessive ingress time. Oblivious vertex-cut
decreases ingress time (but still slower than Random) while
doubling replication factor and execution time. Grid vertex-
cut outperforms coordinated vertex-cuts in ingress time by
2.8X but decreasing runtime performance. Besides, the per-
cent of ingress time for PageRank on the Twitter follower
graph with 10 iterations5 of graph computation ranges from
24.2% to 56.8%, while for ALS on Netflix motive recom-
mendation graph only ranges from 3.6% to 22.8%. The ran-
dom Hybrid-cut of PowerLyra (see §4) provides optimal per-
formance by significantly decreasing execution time while
only slightly increasing ingress time (compared to Grid).

3. Graph Computation in PowerLyra

This section describes the graph computation model in Pow-
erLyra, which combines the best from prior systems by dif-
ferentiating the processing on low-degree and high-degree
vertices. Without loss of generality, the rest of this paper will
use in-degree of the vertex to introduce the design of Power-
Lyra’s hybrid computation model.

3.1 Abstraction and Engine

Like others, a vertex-program P in PowerLyra runs on a di-
rected graph G = {V,E} and computes in parallel on each
vertex v ∈ V . Users can associate arbitrary vertex data Dv

where v ∈V , and edge data Ds,t where (s, t) ∈ E. Computa-
tion on vertex v can gather and scatter data from/to neighbor-
ing vertex n where (v,n)∈E. During graph partitioning (§4),
PowerLyra replicates vertices to construct a local graph on
each machine, all of which are called replicas. Like Pow-
erGraph, PowerLyra also elects a replica randomly (using
vertex’s hash) as master and other replicas as mirrors. Pow-

5 Increasing iterations, like [23, 35], will further reduce the percent.

erLyra still strictly conforms to the GAS model, and hence
can seamlessly run all existing applications in PowerGraph.

PowerLyra employs a simple loop to express iterative
computation of graph algorithms. The graph engine sequen-
tially executes the Gather, Apply and Scatter phases in each
iteration, but processes vertices differently according to the
vertex degrees.

3.2 Differentiated Vertex Computation

Processing high-degree vertex: To exploit parallelism of
vertex computation, PowerLyra follows the GAS model in
PowerGraph to process high-degree vertices. In the Gather
phase, two messages are sent by the master vertex (here-
inafter master for short) to activate all mirrors to run the
gather function locally and accumulate results back to
the master. In the Apply phase, the master runs the apply
function and then sends the updated vertex data to all its
mirrors. Finally, all mirrors execute the scatter function
to activate their neighbors, and the master will similarly
receive notification from activated mirrors. Unlike Power-
Graph, PowerLyra groups the two messages from master
to mirrors in the Apply and Scatter phases (the left part of
Fig. 4), to reduce message exchanges.

Processing low-degree vertex: To preserve access lo-
cality of vertex computation, PowerLyra introduces a new
GraphLab-like computation model to process low-degree
vertices. However, PowerLyra does not provide bidirectional

(i.e., both in and out) access locality like GraphLab, which
necessitates edge replicas and doubles messages. We ob-
serve that most graph algorithms only gather or scatter in

only one direction. For example, PageRank only gathers data



Type Gather Scatter Example Algo.

Natural
in or none out or none PR, SSSP
out or none in or none DIA[25]

Other any any CC, ALS[5]

Table 3. A classification of various graph algorithms.

3.3 Generalization

PowerLyra applies a simplified model for low-degree ver-
tices to minimize communication overhead, but may limit
its expressiveness to some graph algorithms that may require
gathering or scattering data in both in and out directions.

PowerLyra introduces an adaptive way to handle differ-
ent graph algorithms. Note that PowerLyra only needs to
use such an approach for low-degree vertices, since com-
munication on high-degree vertices is already bidirectional.
PowerLyra classifies algorithms according to the directions
of edges accessed in gathering and scattering, which are re-
turned from the gather edges and scatter edges

interfaces of PowerGraph accordingly. Hence, it can be
checked at runtime without any changes to applications.

Tab. 3 summarizes the classification of graph algorithms.
PowerLyra naturally supports the Natural algorithms that
gather data along one direction (e.g., in/out edges)
or none and scatter data along another direction (e.g.,
out/in edges) or none, such as PageRank (PR), Single-

Source Shortest Paths (SSSP) and Approximate Diameter

(DIA) [25]. For such algorithms, PowerLyra needs up to one
message per mirror for low-degree vertices in each iteration.

For Other algorithms that gather and scatter data via any
edges, PowerLyra asks mirrors to do gathering or scattering
operations like those of high-degree vertices, but only on

demand. For example, Connected Components (CC) gathers
data via none edges and scatters data via all edges,
so that PowerLyra only requires one additional message
in the Scatter phase to notify the master by the activated
mirrors, and thus still avoids unnecessary communication in
the Gather phase.

4. Distributed Graph Partitioning

This section describes a new hybrid vertex-cut algorithm
that uses differentiated partitioning for low-degree and high-
degree vertices. Based this, a new heuristic, called Ginger,
is provided to further optimize partitioning for PowerLyra.

4.1 Balanced p-way Hybrid-Cut

Since vertex-cut evenly assigns edges to machines and only
replicates vertices to construct a local graph within each
machine, the memory and communication overhead highly
depend on the replication factor (λ ). Hence, existing vertex-
cuts mostly aim at reducing the overall λ of all vertices.
However, we observe that the key is instead reducing λ of
low-degree vertices, since high-degree vertices inevitably
need to be replicated on most of machines. Nevertheless,
many current heuristics for vertex-cuts have a bias towards
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Figure 5. The hybrid-cut on sample graph.

high-degree vertices, while paying little attention to low-
degree vertices.

We propose a balanced p-way hybrid-cut that focuses
on reducing λ of low-degree vertices. It uses differentiated
partitioning to low-degree and high-degree vertices. To avoid
replication of edges, each edge is exclusively assigned to its
target vertex (the destination of an edge)6. For low-degree
vertices, hybrid-cut adopts low-cut to evenly assign vertices
along with in-edges to machines by hashing their target

vertices. For high-degree vertices, hybrid-cut adopts high-

cut to distribute all in-edges by hashing their source vertices.
After that, hybrid-cut creates replicas and constructs local
graphs, as done in typical vertex-cuts.

As shown in Figure 5, all vertices along with their in-
edges are assigned as low-degree vertices except vertex 1,
whose in-edges are assigned as high-degree vertex. For ex-
ample, the edge (1,4) and (3,4) are placed in machine 1 with
the master of low-degree vertex 4, while the edge (2,1) and
(5,1) are placed in machine 2 with the mirror of high-degree
vertex 1. The partition constructed by hybrid-cut only yields
four mirrors and achieves good load balance.

Hybrid-cut addresses the major issues in edge-cut and
vertex-cut on skewed graphs. First, hybrid-cut can provide
much lower replication factor. For low-degree vertices, all
in-edges are grouped with their target vertices, and there is
no need to create mirrors for them. For high-degree vertices,
the upper bound of increased mirrors due to assigning a new
high-degree vertex along with in-edges is equal to the num-
ber of partitions (i.e., machines) rather than the degree of
vertex; this completely avoids new mirrors of low-degree
vertices. Second, hybrid-cut provides unidirectional access
locality for low-degree vertices, which can used by hybrid
computation model (§3) to reduce communication cost at
runtime. Third, hybrid-cut is very efficient in graph ingress,
since it is a hash-based partitioning for both low-degree
and high-degree vertices. Finally, the partition constructed
by hybrid-cut is naturally balanced on vertices and edges.
Randomized placement of low-degree vertices leads to bal-

6 The edge could also exclusively belong to its source vertex, which depends
on the direction of locality preferred by the graph algorithm.
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ance of vertices, which is almost equivalent to the balance of
edges for low-edge vertices. For high-degree vertices, all in-
edges are evenly assigned since they are hosted by the owner
machine of source vertices, which are also evenly assigned.

Constructing hybrid-cut: A general approach to con-
structing a hybrid-cut is adding an extra re-assignment phase
for high-degree vertices to the original streaming graph par-
titioning. The left part of Fig. 6 illustrates the execution flow
of graph ingress using hybrid-cut, and the right part shows
the sample graph in each stage. First, the worker on each ma-
chine loads the raw graph data from underlying distributed
file systems in parallel, and dispatches a vertex and its in-
edges according to the hash of a vertex. Each worker counts
the in-degree of vertices and compares it with a user-defined
threshold (θ ) to identify high-degree vertices. After that,
in-edges of high-degree vertex are re-assigned by hashing
source vertices. Finally, each worker creates mirrors to con-
struct a local graph as normal vertex-cut.

This approach is compatible with existing formats of raw
graph data, but incurs a few communication overhead due
to re-assigning in-edges of high-degree vertices. For some
graph file format (e.g., adjacent list), the worker can directly
identify high-degree vertices and distributes edges in loading
stage to avoid extra communication, since the in-degree and
a list of all source vertices are grouped in one line.

4.2 Heuristic Hybrid-Cut

To further reduce the replication factor of low-degree ver-
tices, we propose a new heuristic algorithm, namely Gin-
ger, inspired by Fennel [52], which is a greedy streaming
edge-cut framework. Ginger places the next low-degree ver-
tex along with in-edges on the machine that minimizes the
expected replication factor.

Formally, given that the set of partitions for assigned
low-degree vertices are P = (S1,S2, . . . ,Sp), a low-degree
vertex v is assigned to partition Si such that δg(v,Si) ≥
δg(v,S j), f or all j ∈ {1,2, . . . , p}. We define the score for-

Graph |V | |E| α #Edges

Twitter [28] 42M 1.47B 1.8 673,275,560
UK-2005 [8] 40M 936M 1.9 249,459,718
Wiki [22] 5.7M 130M 2.0 105,156,471
LJournal [16] 5.4M 79M 2.1 53,824,704
GoogleWeb [32] 0.9M 5.1M 2.2 38,993,568

Table 4. A collection of real-world graphs and randomly

constructed power-law graphs with varying α and fixed 10

million vertices. Smaller α produces denser graphs.

mula δg(v,Si) = |N(v)∩Si|−δc(|Si|V ), where N(v) denotes
the set of neighbors along in-edges of vertex v, and |Si|V de-
notes the number of vertices in Si. The former component
|N(v)∩ Si| corresponds to the degree of vertex v in the sub-
graph induced by Si. The balance formula δc(x) can be in-
terpreted as the marginal cost of adding vertex v to partition
Si, which is used to balance the size of partitions.

Considering the special requirements of hybrid-cut, we
differ from Fennel in several aspects to improve performance
and balance. First, Fennel is inefficient to partition skewed
graphs due to high-degree vertices. Hence, we just use this
heuristic to improve the placement of low-degree vertices.
Second, as Fennel is designed to minimize the fraction of
edges being cut, it estimates all adjacent edges to determine
the host machine. By contrast, Ginger only estimates edges
in one direction to decrease ingress time. Finally, Fennel
just focuses on the balance of vertices, by only using the
number of vertices |Si|V as parameter of the balance formula
(δc(x)). Hence, it usually causes a significant imbalance of
edges even for regular graphs. Hence, to improve balance of
edges, we add the normalized number of edges µ |Si|E into
the parameter of the balance formula, where µ is the ratio of
vertices to edges, and |Si|Ei is the number of edges in Si. The
composite balance parameter becomes (|Si|V +µ |Si|E)/2.

4.3 Graph Partitioning Comparison

We use a collection of real-world and synthetic power-law
graphs to compare various graph partitioning algorithms, as
shown in Tab. 4. Most real-world graphs were from the Lab-
oratory for Web Algorithmics [4] and Stanford Large Net-
work Dataset Collection [39]. Each synthetic graph has 10
million vertices and a power-law constant (α) ranging from
1.8 to 2.2. Smaller α produces denser graphs. They were
generated by tools in PowerGraph, which randomly sample
the in-degree of each vertex from a Zipf distribution [7] and
then add in-edges such that the out-degrees of each vertex
are nearly identical. In all cases, hybrid-cut retains balanced
load for both edges and vertices.

In Fig. 7, we compare the replication factor and graph
ingress time of hybrid-cut against various vertex-cuts for
the Power-law graphs with different constant (α). Random
hybrid-cut notably outperforms Grid vertex-cut with slightly
less ingress time, and the gap increases with the growing of
skewness of the graph, reaching up to 2.4X (α=1.8). Obliv-
ious vertex-cut has poor replication factor and ingress time
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Figure 8. The replication factor for the real-world graphs

on 48 machines and replication factor of the Twitter follower

graph with increasing machines.

for the Power-law graphs. Though Coordinated vertex-cut
provides comparable replication factor to Random hybrid-
cut (10% higher), it triples the ingress time. Ginger can
further reduce the replication factor by more than 20%
(Fig. 7(a)), but also increases ingress time like Coordinated
vertex-cut.

For real-world graphs (Fig. 8(a)), the improvement of
Random hybrid-cut against Grid is smaller and sometimes
slightly negative since the skewness of some graphs is mod-
erate and randomized placement is not suitable for highly
adjacent low-degree vertices. However, Ginger still performs
much better in such cases, up to 3.11X improvement over
Grid on UK. Fig. 8(b) compares the replication factor with
an increasing number of machines on the Twitter follower
graph. Random hybrid-cut provides comparable results to
Coordinated vertex-cut with just 35% ingress time, and out-
performs Grid and Oblivious vertex-cut by 1.74X and 2.67X
respectively.

5. Locality-conscious Graph Layout

Graph computation usually exhibits poor data access local-
ity [34], due to irregular traversal of neighboring vertices
along edges as well as frequent message exchanges between
masters and mirrors. The internal data structure of Power-
Lyra is organized to improve data access locality. Specif-
ically, PowerLyra splits different (meta)data for both mas-
ters and mirrors to separate arrays and sequentially assigns
a unified local ID in each machine to vertex for indexing,
which is mapped to global vertex ID. As shown in the bot-
tom of Fig. 9, in each phase, the worker thread sequentially

Figure 9. An example of execution along with comm.

traverses vertices and executes user-defined functions. The
messages across machines are batched and sent periodically.

After the synchronization in each phase, all messages re-
ceived from different machines will be updated to vertices
in parallel and the order of accessing vertices is only deter-
mined by the order in the sender. However, since the order
of messages is predefined by the traversal order, accesses to
vertices have poor locality due to mismatching of orders be-
tween sender and receiver. Worse even, messages from mul-
tiple machines are processed in parallel and interfere with
each other (shown in the upper part of Fig. 9). Though it
appears that both problems could be partially addressed at
runtime by sorting or dispatching messages on the fly [14],
our experience shows that this will cause notable overhead
instead of performance boost, due to non-trivial CPU cycles.

PowerLyra mitigates the above problems by extending
hybrid-cut in four steps, as shown in Fig. 10. The left part
shows the arrangement of masters and mirrors in each ma-
chine after each step, and the right part provides a thumbnail
with some hints about the ordering. Before the relocation,
all masters and mirrors of high-degree and low-degree ver-
tices are mixed and stored in random order. For example, the
order of update messages from masters in machine 0 (M0)
mismatches the order of their mirrors stored in machine 1
(M1).

First, hybrid-cut divides vertex space into 4 zones to
store (H)igh-degree masters (Z0), (L)ow-degree masters
(Z1), (h)igh-degree mirrors (Z2) and (l)ow-degree mir-
rors (Z3) respectively. This is friendly to the message batch-
ing, since the processing on vertices in the same zone is
similar. Further, it also helps to skip the unnecessary ver-
tex traversal and avoid interference between the sender and
the receiver. For example, in the Apply phase, only masters
(Z0 and Z1) participate in the computation and only mirrors
(Z2 and Z3) receive messages.

Second, the mirrors in Z2 and Z3 are further grouped
according to the location of their masters, which could re-
duce the working set and the interference when multiple re-
ceiver threads update mirrors in parallel. For example, in M1,
mirror 4 and 7 are grouped in l0 while mirror 9 and 3 are
grouped in l2. The processing on messages from the master
of low-degree vertices in M0 (L0) and M2 (L2) are restricted
to different groups (l0 and l2) on M1.

Third, hybrid-cut sorts the masters and mirrors within
a group according to the global vertex ID and sequentially
assigns its local ID. Because the order of messages follows
the order of local ID, sorting ensures masters and mirrors
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Figure 10. An example of data placement optimization.

have the same relative ordering of local IDs to exploit spatial
locality. For example, the low-degree master in M0 (L0) and
their mirrors in M1 (l0) are sorted in the same order (i.e., 4
followed by 7). The message from L0 in M0 and L2 in M2

would be sequentially applied to mirrors (l0 and l2) in M1
in parallel.

Finally, since messages from different machines are pro-
cessed simultaneously after synchronization, if the mirror
groups in each machine have the similar order, then it would
lead to high contention on masters. For example, messages
from mirrors in M1 and M2 (h0 and l0) will be simultane-
ously updated to the master in M0 (H0 and L0). Therefore,
hybrid-cut places mirror groups in a rolling order: the mirror
groups in machine n for p partitions start from (n+ 1) mod
p. For example, the mirror groups of high-degree vertex in
M1 start from h2 then h0, where n = 2 and p = 3.

Though we separately describe above four steps, they
are indeed implemented as one step of hybrid-cut after re-
assignment of high-degree vertices. All operations are exe-
cuted independently on each machine, and there is no ad-
ditional communication and synchronization. Hence, the in-
crease of graph ingress time due to the above optimization is
modest (less than 10% for the Power-law graphs and around
5% for real-world graphs), resulting in usually more than
10% speedup (21% for the Twitter follow graph), as shown
in Fig. 11. The speedup for Google Web graph is negligible,
as the number of vertices is very small. For graph computa-
tion that processes a graph multiple iterations and even mul-
tiple times in memory, we believe a small increase of graph
ingress time is worthwhile for an often larger speedup in ex-
ecution time.
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Figure 11. The effect of locality-conscious optimization.

6. Evaluation

We have implemented PowerLyra based on the latest GraphLab
2.2 (release in Mar. 2014) as a separate engine, which can
seamlessly run all existing graph algorithms in GraphLab
and respect the fault tolerance model. PowerLyra currently
supports both synchronous and asynchronous execution.
Due to the space restriction, we focus on the experiment of
synchronous mode, which is the default mode for most graph
tools and adopted as the sole execution mode of most graph
processing systems. To illustrate the efficiency and general-
ity of PowerLyra, we further port the Random hybrid-cut to
GraphX.

We evaluate PowerLyra with hybrid-cut (Random and
Ginger) against PowerGraph with vertex-cut (Grid, Obliv-
ious and Coordinated), and report the average results of five
runs for each experiment. Most experiments are performed
on a dedicated, VM-based 48-node EC2-like cluster. Each
node has 4 AMD Opteron cores and 12GB DRAM. All
nodes are connected via 1Gb Ethernet. To avoid exhaust-
ing memory for other systems, a 6-node in-house physical
cluster with total of 144 cores and 384GB DRAM is used
to evaluate the scalability in terms of data size (§6.3) and
the comparison with other systems (§6.9). We use the graphs
listed in Tab. 4 and set 100 as the default threshold of hybrid-
cut during our evaluation.

6.1 Graph Algorithms

We choose three different typical graph-analytics algorithms
representing three types of algorithms regarding the set of
edges in the Gather and Scatter phases:

PageRank (PR) computes the rank of each vertex based
on the ranks of its neighbors [9], which belongs to Natural

algorithms that gather data along in-edges and scatter data
along out-edges, for which PowerLyra should have signifi-
cant speedup. Unless specified, the execution time of PageR-
ank is the average of 10 iterations.

Approximate Diameter (DIA) estimates an approximation
of diameter for a graph by probabilistic counting, which is
the maximum length of shortest paths between each pair of
vertices [25]. DIA belongs to the inverse Natural type of
algorithms that gather data along out-edges and scatter none.
In such a case, PowerLyra is still expected to show notable
improvements.
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Figure 12. Overall performance comparison between Pow-

erLyra and PowerGraph on the real-world and power-law

graphs for PageRank using 48 machines.
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Figure 13. A comparison between PowerLyra and Power-

Graph for the Twitter follower graph with increasing ma-

chines and for the Power-law (α=2.2) graph on the 6-node

cluster with increasing data size.

Connected Components (CC) calculates a maximal set of
vertices that are reachable from each other by iterative la-
bel propagation. CC belongs to Other algorithms that gather
none and scatter data along all edges. It benefits less from
PowerLyra’s computation model, since the execution on
PowerLyra is similar to that on PowerGraph. Fortunately,
PowerLyra still outperforms PowerGraph due to hybrid-cut
and locality-conscious layout optimizations.

6.2 Performance

We compare the execution time of different systems and
partitioning algorithms as in the PowerGraph paper [18].
Fig. 12(a) shows the speedup of PowerLyra over Power-
Graph on real-world graphs. The largest speedup comes
from UK graph for the Ginger hybrid-cut due to relatively
high reduction of replication factor (from 8.62 to 2.77,
Fig. 8). In this case, PowerLyra using Ginger outperforms
PowerGraph with Grid, Oblivious and Coordinated vertex-
cut by 5.53X, 2.54X and 2.72X accordingly. For Twitter,
PowerLyra also outperforms PowerGraph by 2.60X, 4.49X
and 2.01X for Grid, Oblivious and Coordinated vertex-cut
accordingly. Even the replication factor of Wiki and LJoun-
ral using Random hybrid-cut is slightly higher than that of
Grid and Coordinated, PowerLyra still outperforms Power-
Graph using Grid by 1.40X and 1.73X for Wiki and 1.55X
and 1.81X for LJournal accordingly, due to better computing
efficiency of low-degree vertices.

As shown in Fig. 12(b), PowerLyra performs better for
the Power-law graphs using hybrid-cut, especially for high

power-law constants (i.e., α) due to higher percent of low-
degree vertices. In all cases, PowerLyra outperforms Power-
Graph with Grid vertex-cut by more than 2X, from 2.02X to
3.26X. Even compared with PowerGraph with Coordinated
vertex-cut, PowerLyra still provides a speedup ranging from
1.42X to 2.63X. Though not clearly shown in Fig. 12(b),
PowerLyra with Ginger outperforms Random hybrid-cut
from 7% to 17%. Such a relatively smaller speedup for the
Power-law graphs is because Random hybrid-cut already has
balanced partition with a small replication factor (Fig. 7).

6.3 Scalability

We study the scalability of PowerLyra in two aspects. First,
we evaluate the performance for a given graph (Twitter fol-
lower graph) with the increase of resources. Second, we fix
the resources using the 6-node cluster while increasing the
size of graph.

Fig. 13 shows that PowerLyra has similar scalability with
PowerGraph, and keeps the improvement with increasing
machines and data size. With the increase of machines from
8 to 48, the speedup of PowerLyra using Random hybrid-
cut over PowerGraph with Grid, Oblivious and Coordinated
vertex-cut ranges from 2.41X to 2.76X, 2.14X to 3.78X and
1.86X to 2.09X. For the increase of graph from 10 to 400
million vertices with fixed power-law constant 2.2, Pow-
erLyra with Random hybrid-cut stably outperforms Power-
Graph with Grid, Oblivious and Coordinated vertex-cut by
up to 2.89X, 2.83X and 1.94X respectively. Note that only
PowerLyra with Random hybrid-cut can handle the graph
with 400 million vertices due to the reduction of memory in
graph computation and partitioning.
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Figure 14. A comparison between PowerLyra and Power-

Graph for the Power-law graphs with different constants on

48 machines using Hybrid and Ginger vertex-cut.

6.4 Effectiveness of Graph Engine

Hybrid-cut can also be applied to original PowerGraph en-
gine, which we use to quantify the performance benefit from
the hybrid computation model, we run both PowerGraph and
PowerLyra engine using the same hybrid-cut on 48 machines
for the Power-law graphs. As shown in Fig. 14(a), Power-
Lyra outperforms PowerGraph by up to 1.40X and 1.41X
using Random and Ginger hybrid-cut respectively, due to the
elimination of more than 30% communication cost.
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Figure 15. One iteration communication data size for the

Power-law graphs with different constants on 48 machines

and for the Twitter follower graph with increasing machines.

6.5 Communication Cost

The improvement of PowerLyra is mainly from reducing
communication cost. In PowerLyra, only high-degree ver-
tices (a small fraction) require significant communication
cost, while low-degree vertices (a major fraction) only re-
quire one message exchange in each iteration. As shown in
Fig. 15, PowerLyra has much less communication cost com-
pared to PowerGraph. For the Power-law graphs, PowerLyra
can reduce data transmitted by up to 75% and 50% using
Random hybrid-cut, and up to 79% and 60% using Gin-
ger, compared to PowerGraph with Grid and Coordinated
vertex-cut respectively. PowerLyra also significantly reduces
the communication cost for the Twitter follower graph up to
69% and 52% using Random hybrid-cut, and up to 74% 59%
using Ginger, compared to PowerGraph with Grid and Co-
ordinated vertex-cut respectively.
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Figure 16. The impact of threshold in PowerLyra on repli-

cation factor and execution time for the Twitter follower

graph using PageRank.

6.6 Threshold

To study the impact of different thresholds, we run PageR-
ank on the Twitter follower graph with different thresh-
olds. As shown in Fig. 16, using high-cut (θ=0) or low-
cut (θ=+∞) for all vertices results in poor replication factor
due to the negative impact from skewed vertices in terms of
out-edge or in-edge. With increasing threshold, the replica-
tion factor rapidly decreases and then slowly increases. The
best runtime performance usually does not occur simultane-
ously with the lowest replication factor, since the increase of
threshold also decreases the number of high-degree vertices,
which benefits the overall performance. The ultimate metric
for the optimal threshold is beyond the scope of this paper.
Fortunately, the execution time is relatively stable for a large
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Figure 17. A comparison between PowerLyra and Power-

Graph on the Power-law graphs for Approximate Diameter

and Connected Components algorithms on 48 machines.

Algorithm

& Graph
Vertex-cut λ

Time (Sec)

Ingress Execution

PageRank
& RoadUS[1]
|V |=23.9M
|E|=58.3M

Coordinated 2.28 26.9 50.4
Oblivious 2.29 13.8 51.8

Grid 3.16 15.5 57.3
Hybrid 3.31 14.0 32.2

Ginger 2.77 28.8 31.3

Table 5. A comparison of various graph partitioning algo-

rithms on 48 machines using PageRank (10 iterations) for

the RoadUS graph.

range of thresholds. In Fig. 16, the difference of execution
time under threshold from 100 to 500 is lower than 1 sec.

6.7 Other Algorithms and Graphs

To study the performance of PowerLyra on different algo-
rithms, we evaluate DIA and CC on the Power-law graphs.
As shown in Fig. 17(a), PowerLyra outperforms Power-
Graph with Grid vertex-cut by up to 2.48X and 3.15X using
Random and Ginger hybrid-cut respectively for DIA. Even
compared with PowerGraph with Coordinated vertex-cut,
the speedup still reaches 1.33X and 1.74X for Random and
Ginger hybrid-cut. Note that the missing data for Power-
Graph with Oblivious is because of exhausted memory.

Since PowerLyra treats execution in the Scatter phase of
low-degree vertices the same as high-degree vertices, the im-
provement on CC is mainly from hybrid-cut, which reduces
the communication cost by decreasing replication factor. For
the Power-law graphs, PowerLyra can still outperform Pow-
erGraph with Grid vertex-cut by up to 1.88X and 2.07X us-
ing Random and Ginger hybrid-cut respectively (Fig. 17(b)).

We also investigate the performance of PowerLyra for
non-skewed graphs like road networks. Tab. 5 illustrates
a performance comparison between PowerLyra and Pow-
erGraph for PageRank with 10 iterations on RoadUS [1],
the road network of the United States. The average degree
of RoadUS is less than 2.5 (no high-degree vertex). Even
though Oblivious and Coordinated vertex-cut have lower
replication factor due to the greedy heuristic, PowerLyra
with hybrid-cut still notably outperforms PowerGraph with
vertex-cut by up to 1.78X, thanks to improved computation
locality of low-degree vertices.



Netflix Movie Recommendation [63] Replication Factor

|V | |E| Vertex Data Edge Data Grid Hybrid

0.5M 99M 8d + 13 16 12.3 2.6

ALS [63] d=5 d=20 d=50 d=100

PowerGraph 10 / 33 11 / 144 16 / 732 Failed
PowerLyra 13 / 23 13 / 51 14 / 177 15 / 614

SGD [50] d=5 d=20 d=50 d=100

PowerGraph 15 / 35 17 / 48 21 / 73 28 / 115
PowerLyra 16 / 26 19 / 33 19 / 43 20 / 59

Table 6. Performance (ingress / execution time in seconds)

comparison between PowerLyra and PowerGraph on Net-

flix movie recommendation dataset using collaborative fil-

tering algorithms. The vertex and edge data are measured

in bytes and the d is the size of the latent dimension.

6.8 MLDM Applications

We further evaluate PowerGraph and PowerLyra on ma-
chine learning and data mining applications. Two different
collaborative filtering algorithms, Alternating Least Squares
(ALS) [63] and Stochastic Gradient Descent (SGD) [50], are
used to predict the movie ratings for each user on Netflix
movie recommendation dataset [63], in which the users and
movies are presented as vertices, and the ratings are pre-
sented as edges. Both the memory consumption and com-
putational cost depend on the magnitude of latent dimension
(d), which also impacts the quality of approximation. The
higher d produces higher accuracy of prediction while in-
creasing both memory consumption and computational cost.
As shown in Tab. 6, with the increase of latent dimension
(d), the speedup of PowerLyra using Random hybrid-cut
over PowerGraph with Grid vertex-cut ranges from 1.45X to
4.13X and 1.33X to 1.96X for ALS and SGD accordingly.
Note that PowerGraph fails for ALS using d=100 due to ex-
hausted memory as well.
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the Twitter follower and Power-law (α=2.0) graphs using

PageRank. GraphX/H means GraphX with random hybrid-

cut. The labels upon histogram are ingress time.

6.9 Comparison with Other Systems

Readers might be interested in how the performance of Pow-
erLyra compares to other graph processing systems, even if
they adopts different designs such as graph-parallel abstrac-
tion [2, 3, 18, 23, 27, 35, 43], dataflow operators [20], sparse

Graph PL/6 PL/1 PO GA XS GC

|V | = 10M 14 45 6.3 9.8 9.0 115

|V | = 400M 186 – – – 710 1666

Table 7. Performance (in seconds) comparison with Poly-

mer (PO), Galois (GA), X-Stream (XS) and GraphChi (GC)

on PageRank (10 iterations) for both in-memory and out-of-

core graphs using one machine of our 6-node cluster. PL/N

means PowerLyra running on N machines.

matrix operations [10] or declarative programming [45]. We
evaluate PageRank on such systems to provide an end-to-end
performance comparison, as the implementation of PageR-
ank is almost identical and well-studied on different systems.
We deployed the latest Giraph 1.1, GPS, CombBLAS 1.4
and GraphX 1.17 on our 6-node cluster8.

Fig. 18 shows the execution time of PageRank with 10
iterations on each system for the Twitter follower graph and
the Power-law graph with 10 million vertices. The ingress
time is also labeled separately. PowerLyra outperforms other
systems by up to 9.01X (from 1.73X), due to less communi-
cation cost and improved locality from differentiated compu-
tation and partitioning. Though CombBLAS has closest run-
time performance (around 50% slower), its pre-processing
stage takes a very long time for data transformation due
to the limitation of the programming paradigm (sparse ma-
trix). We further port the Random hybrid-cut to GraphX (i.e.,
GraphX/H), leading to a 1.33X speedup even without heuris-
tic9 and differentiated computation engine. Compared to de-
fault 2D partitioning in GraphX, random hybrid-cut can re-
duce vertex replication by 35.3% and data transmitted by
25.7% for the Power-law graph.

We further change the comparison targets to systems
on single-machine platform. One machine of our 6-node
cluster (24 cores and 64GB DRAM) is used to run in-
memory (Polymer [61] and Galois [37]) and out-of-core
(X-Stream10 [40] and GraphChi [29]) systems for both in-
memory and out-of-core graphs using PageRank with 10
iterations. As shown in Tab. 7, PowerLyra performs compa-
rably to Polymer and Galois for the 10-million vertex graph,
while significantly outperforming X-Stream and GraphChi
for the 400-million vertex graph. Considering six times re-
sources used by PowerLyra, single-machine systems would
be more economical for in-memory graphs, while distributed
solutions are more efficient for out-of-core graphs that can-

7 The source code of LFGraph [23] is not available, and SociaLite [45] and
Mizan [27] have some bugs to run on our clusters, which cannot be fixed in
time by their authors.
8 Both Giraph and GraphX ran out of memory on our 48-node cluster for
the Twitter follower graph. Missed data for GraphX and GraphX/H on the
Twitter follower graph is because of exhausted memory.
9 We only implement Random hybrid-cut on GraphX for preserving its
graph partitioning interface.
10 X-Stream provides both in-memory and out-of-core engines We use the
latest release from authors, which can disable direct I/O and sufficiently
leverage page cache.
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not fit in the memory of a single machine. The current Pow-
erLyra focuses on the distributed platform, resulting the rel-
ative poor performance on a single machine (45s of PL/1).
We believe that PowerLyra can further improve the perfor-
mance for both in-memory and out-of-core graphs by adopt-
ing the novel techniques of single-machine systems, such as
NUMA-aware accesses strategy [61].

6.10 Memory Consumption

Besides performance improvement, PowerLyra also can mit-
igate the memory pressure due to significantly fewer vertex
replicas and messages. The overall effectiveness depends on
the ratio of vertices to edges and the size of vertex data.
As shown in the left part of Fig. 19, both the size and the
duration of memory consumption on PowerLyra is notably
fewer than that on PowerGraph for ALS (d=50) with Net-
flix movie recommendation graph, reducing near 85% peak
memory consumption (30GB vs. 189GB) and 75% elapsed
time (194s vs. 749s). We also use jstat, a memory tool in
JDK, to monitor the GC behavior of GraphX and GraphX/H.
Integrating hybrid-cut to GraphX also reduces about 17%
memory usage for RDD and causes fewer GC operations
even on only 6 nodes for PageRank with a Power-law graph
(α=2.0). We believe the measured reduction of memory
would be significantly larger if GraphX executes on a larger
cluster or memory-intensive algorithms.

7. Other Related Work

PowerLyra is inspired by and departs from prior graph-
parallel systems [18, 20, 33, 35], but differs from them in
adopting a novel differentiated graph computation and par-
titioning scheme for vertices with different degrees.

Other graph processing systems: Several prior sys-
tems [46] use a distributed in-memory key-value table ab-
straction to support graph processing. LFGraph [23] pro-
poses a publish-subscribe mechanism to reduce communi-
cation cost but restricts graph algorithms just to one direction
access. Mizan [27] leverages vertex migration for dynamic
load balancing. Imitator [54] reuses computational replica-
tion for fault tolerance in large-scale graph processing to

provide low-overhead normal execution and fast crash re-
covery. Giraph++ [51] provides several algorithm-specific
optimizations for graph traversal and aggregation applica-
tions relying on the graph-centric model with partitioning
information. PowerSwitch [57] embraces the best of both
synchronous and asynchronous execution modes by adap-
tively switching graph computation between them. GPS [43]
also features an optimization on skewed graphs by partition-
ing the adjacency lists of high-degree vertices across multi-
ple machines, while it overlooks the locality of low-degree
vertices and still uniformly processes all vertices. There are
also a few systems considering stream processing [15, 36]
or temporal graphs [21].

Besides vertex-centric model, various programming para-
digms are extended to handle graph processing. SociaLite [45]
stores the graph data in tables and abstracts graph algo-
rithms as declarative rules on the tables by Datalog. Comb-
BLAS [10] expresses the graph computation as operations
on sparse matrices and vectors, resulting in efficient com-
putation time but also lengthy pre-processing time for data
transformation. It also uses 2D partitioning to distribute the
matrix for load balance.

None of existing graph processing systems use differenti-
ated computation and partitioning. In addition, PowerLyra is
orthogonal to above techniques and can further improve the
performance of these systems on skewed graphs.

There are also several efforts aiming at leveraging mul-
ticore platforms for graph processing [29, 37, 40, 47, 61],
which focus on such as improving out-of-core accesses [29],
selecting appropriate execution modes [47], supporting so-
phisticated task scheduler [37], reducing random operations
on edges [40], and adopting NUMA-aware dat layout and
access strategy [61]. Such techniques should be useful to im-
prove the performance of PowerLyra on each machine in the
cluster.

Graph replication and partitioning: Generally, prior
online graph partitioning approaches can be categorized into
vertex-cut [18, 24] and edge-cut [44, 49, 52] according to
their partition mechanism. Several greedy heuristics [18]
and 2D mechanisms [11, 24, 59] are proposed to reduce
communication cost and partitioning time on skewed graphs.
Surfer [13] exploits the underlying heterogeneity of a public
cloud for graph partitioning to reduce communication cost.
However, most of them are degree-oblivious but focus on
using a general propose for all vertices or edges. Degree-
based hashing [56], to our knowledge, is the only other
partitioning algorithm for skewed graphs considering the
vertex degrees. However, it adopts a uniform partitioning
strategy yet and requires long ingress time due to counting
the degree of each vertex in advance. Based on the skewed
degree distribution of vertices, PowerLyra is built with a
hybrid graph partitioning as well as a new heuristic that
notably improves performance.



8. Conclusion

This paper argued that the “one size fits all” design in exist-
ing graph-parallel systems may result in suboptimal perfor-
mance and introduced PowerLyra, a new graph-parallel sys-
tems. PowerLyra used a hybrid and adaptive design that dif-
ferentiated the computation and partitioning on high-degree
and low-degree vertices. Based on PowerLyra, we also de-
sign locality-conscious data layout optimization to improve
locality during communication. Performance results showed
that PowerLyra improved over PowerGraph and other graph-
parallel systems substantially, yet fully preserved the com-
patibility with various graph algorithms.
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