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Abstract Virtualization has recently gained popularity largely due to its promise in increasing utilization, improving
availability and enhancing security. Very often, the role of computer systems needs to change as the business environment
changes. Initially, the system may only need to host one operating system and seek full execution speed. Later, it may
be required to add other functionalities such as allowing easy software/hardware maintenance, surviving system failures
and hosting multiple operating systems. Virtualization allows these functionalities to be supported easily and effectively.
However, virtualization techniques generally incur non-negligible performance penalty. Fortunately, many virtualization-
enabled features such as online software/hardware maintenance and fault tolerance do not require virtualization standby
all the time. Based on this observation, this paper proposes a technique, called Self-virtualization, which provides the
operating system with the capability to turn on and off virtualization on demand, without disturbing running applications.
This technique enables computer systems to reap most benefits from virtualization without sacrificing performance. This
paper presents the design and implementation of Mercury, a working prototype based on Linux and Xen virtual machine
monitor. The performance measurement shows that Mercury incurs very little overhead: about 0.2ms on 3GHz Xeon CPU
to complete a mode switch, and negligible performance degradation compared to Linux.
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1 Introduction

System virtualization[1] has been widely adopted
to assist resource management[2-6], enhance system
security[7-10], hardware/software maintenance[11-12],
HPC systems[13-15], energy saving[16-19], as well as
recent cloud computing[20-21]. Hardware vendors also
shipped new features to assist virtualization[22-24].

Despite numerous hardware and software efforts
in improving the performance of virtualization, vir-
tualization is still not cost-free. General virtualiza-
tion techniques usually incur non-negligible perfor-
mance overhead, which may be intolerable for some
performance critical applications such as high per-
formance computing[25]. For example, several previ-
ous measurements show that virtualization still incurs

high overhead and degraded quality of services (QoS)
for many applications, especially for multicore and
high-performance applications[26-28]. For example, a
performance measurement from Walker et al.[29] shows
that, Xen-based[30] Amazon EC2 platform[20] incurs
around 40%∼1 000% performance overhead for NASA
applications. A performance study against the recent
Xen-4.0.0 on multicore machines also shows that Xen
incurs up to 20X overhead for some multicore appli-
cations due to contentions inside the Xen VMM (vir-
tual machine monitor) and increased iTLB and cache
misses[28].

Further, with the scale of inter-connected com-
puters and the number of cores in a computer con-
tinuously increasing, hardware failure rates also in-
crease exponentially[31-32]. Online maintenance, system
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mobility and other system virtualization enabled fea-
tures are desirable. Further, the promising convenience
of system management brought by virtualization is
desirable[33]. However, the performance degradation
incurred by system virtualization is intolerable in the
territory where performance is critical, including HPC
clusters, scientific Grid and PlanetLab[34].

Meanwhile, many virtualization-enabled features for
dependability are only required occasionally. They in-
clude online hardware/software maintenance[11], check-
pointing and restarting of operating systems[35-36], live
updating operating system kernels[12], among others.
As an illustration, for online software maintenance,
the VMM is only required during the maintenance
process[11]. Placing a VMM beneath the operating sys-
tem all the time will incur unnecessary performance
degradation.

Being aware of the unnecessary overhead of virtual-
ization, Lowell et al. proposed Microvisor[11] for online
software maintenance without an always-on VMM in
a cluster environment. Facilitated by ALPHA archi-
tecture and redundant hardware, Microvisor supports
at most two virtual machines and no memory and I/O
virtualization. However, as a hardware-based VMM,
Microvisor is tightly bounded to ALPHA and does not
provide a general solution.

This paper proposes “self-virtualization”, or “on-
demand virtualization”, a general software-only frame-
work to avoid virtualization overhead during normal
operations. This technique aims at eliminating the
overhead induced by virtualization during normal exe-
cution, yet enjoys most of its benefits when needed.
It enables an operating system to virtualize itself, as
needed, through dynamically attaching a full-fledged
virtual machine monitor (VMM) underneath, and de-
taching it when no longer needed. The added VMM
can function as a normal full-fledge hypervisor that sup-
ports most general functions of a VMM. The virtuali-
zing process is reversible so that the operating system
can quickly switch its execution between on a VMM
and on bare hardware.

We have built a working prototype, named Mer-
cury, to provide self-virtualization capability to Linux
running on Xen[30], a popular open-source VMM. To
render our solution more general and portable, Mer-
cury is implemented by extending the virtual machine
interface[37-38], allowing Mercury to be independent of
operating system evolutions to a great extent. Accord-
ing to our performance measurements, switching Linux
between virtual mode (i.e., running on a VMM) and na-
tive mode (i.e. running on bare hardware) can be done
in about 0.2ms on 3GHz Xeon CPU without disturb-
ing the running applications. Performance benchmarks

show that Mercury in native mode incurs negligible per-
formance overhead compared to native (i.e., unmodi-
fied) Linux.

The rest of this paper is organized as follows. In
next section, we compare Mercury with existing sys-
tems. Section 3 gives an overview of system virtuali-
zation and describes the key difference in the behavior
of an operating system on a bare metal and a virtu-
alized platform, which motivate our overall design of
Mercury in Section 4. Section 5 describes the imple-
mentation issues, followed by a discussion on possible
usage scenarios of self-virtualization in Section 6. Then
we bring out the experimental results of Mercury in Sec-
tion 7. Finally, we conclude the paper with a discussion
of possible future work.

2 Related Work

While there are many systems and innovations for
system virtualization, our work mainly differs from the
previous efforts in two aspects. First, Mercury is one of
the first (if not the first) systems that allow an opera-
ting system to dynamically attach and detach a full-
fledged VMM underneath. Second, the approach advo-
cated by self-virtualization technique is purely software-
based and requires no dedicated hardware support, thus
yields good portability and compatibility.

The most relevant work is Microvisor[11] developed
at HP. Microvisor is a lightweight hardware-based
VMM. It supports de-virtualizing and re-virtualizing
the CPU state of the underlying Alpha 21264 micro-
processor, and uses redundant hardware to support I/O
partitioning with no support for memory virtualiza-
tion. At most two VMs could be supported. It is dedi-
cated to online software maintenance. This approach is
tightly bound to the Alpha architecture and thus lacks
both portability and scalability. Further, Microvisor
is too lightweight to support more general virtualiza-
tion techniques such as live migration[39], checkpoint
and restart[35] and the ability to host multiple operat-
ing systems. In contrast, Mercury allows dynamically
attaching and detaching a full-fledged VMM, hence, it
provides higher portability and scalability.

Contemporary virtualization systems are dominated
by two trends: full system virtualization and para-
virtualization. VMware[36] and Microsoft Hyper-V[40]

are well known full virtualization systems. Unlike full
system virtualization that provides a fully abstract vir-
tual machine interface, para-virtualization exposes a
part of hardware to hosted operating systems. Such
exposure compromises transparency of operating sys-
tems to reduce performance penalty of virtualization.
Denali[41] and Xen[30] are typical para-virtualization
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systems. KVM[42] is a recent Linux kernel module
based virtualization systems. It is a hosted VMM
that provides both para-virtualization and full system
virtualization support (require Intel VT[43] or AMD-
V[44]). Different from their design goals of optimizing a
VMM for workload consolidation, Mercury intends to
eliminate the virtualization overhead when a VMM is
not required.

Para-virtualization incurs additional maintenance
efforts with the evolving of virtual machine inter-
face (VMI). [38] is a para-virtualization interface pro-
posed by VMware, aiming at improving the portability
and maintainability of existing virtualization solutions.
Paravirt-ops[37] achieves OS portability by providing
separate operation sets for Linux running on bare hard-
ware and VMMs. However, their solutions do not al-
low dynamically attaching and detaching a VMM un-
derneath. Mercury is implemented in a similar way to
VMI and Paravirt-ops, with additional support to in-
flight attaching and detaching of a VMM underneath a
running operating system.

The popularity of virtualization has boosted the
commercial hardware enhancements that reduce the
complexity of virtualization and improves perfor-
mance. They include CPU virtualization such as In-
tel’s Vanderpool[43] and AMD’s Pacifica[44], memory
virtualization nested or extended page table (EPT[22]

or NPT[24]), and I/O virtualization[45]. However, using
hardware-assisted virtualization might also tightly bind
one virtual machine on a platform, limiting its mobility
across multiple platforms, with different virtualization
architectures and features.

Alternatives are proposed to address the overhead
of virtualization. Container-based operating system
virtualization[34] strives to present HPC clusters, the
Grid, hosting centers, and PlanetLab with both iso-
lation and efficiency. As indicated in the name, the
application level container does not support operating
system level virtualization features like VM migration.

3 Background on Virtualization

This section first describes the general architecture
of system virtualization, then identifies the key differ-
ences for an operating system running on a VMM and
a bare metal.

3.1 General Virtualization Architecture

As depicted in Fig.1, a VMM is a software layer
lying between operating systems and hardware①. It
manages the underlying hardware resources and ex-
poses the resources to the above operating systems in

the form of a virtual machine (VM)[1]. For the sake
of performance, a VMM only intercepts privileged in-
structions that change or access the hardware state,
leaving other instructions running without intervention.
To provide strong isolation among various VMs, the in-
terception of privileged instructions is mandatory and
cannot be bypassed. On commodity processors, the in-
terrupt lines and some process control states (e.g., page
table root) are usually privileged states, thus accesses
to them should be intervened by the VMM.

Fig.1. General structure of virtualization.

3.2 Differences Between a Native OS and a
Virtual OS

Conventional operating systems lie in the lowest
layer of the software stack, with direct control over
hardware like CPU, memory and I/O devices. In con-
trast, in a virtualized environment, the VMM manages
all hardware resources and exposes them to operating
systems thereon in the form of virtual machines. Hence,
some portions of operating system code behave diffe-
rently between a native OS and a virtualized OS. We
clarify the key differences to facilitate the implementa-
tion of mode switches of the operating systems. Here, a
mode switch refers to a transition of the operating sys-
tem execution between native mode and virtual mode,
which requires an adjustment of OS code and data to
suite the corresponding execution mode.

3.2.1 CPU Privilege Level

Modern computers usually provide some protec-
tion mechanisms to prevent arbitrary accesses to hard-
ware state. Most hardware state is accessible only
at the most privileged level via privileged instruc-
tions. General virtualization techniques usually involve
de-privileging operating systems[30,46]: making VMMs
executing at the most privileged level and leaving

①In this paper, we only focus on VMMs which directly execute on bare hardware.
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operating systems to execute at less privileged levels.
Hence, operating systems running in virtual mode

and native mode differ in their privilege levels and their
means to access the hardware resources. Therefore,
some portions of operating system code behave diffe-
rently in different execution modes. This is especially
true for virtualization sensitive code and data. Virtuali-
zation sensitive data stores the hardware control state
and operating systems control state that varies in dif-
ferent execution modes, such as CPU control state and
page tables. Virtualization sensitive code refers to the
code that manipulates such data structures, examples
include sensitive instructions and operations on sensi-
tive memory (e.g., page table updates). When running
on bare hardware, operating systems directly execute
the virtualization sensitive code; while operating sys-
tems execute on VMMs, they have to rely on the ser-
vices provided by the VMMs.

3.2.2 Address Space Layout

For a self-virtualization system, an operating system
in virtual mode differs from its native counterpart in
both virtual address space and physical address space.
Generally, OS kernel and a user process reside at the
same virtual address space. In a virtualized system, a
VMM coexists with the OS kernel and user processes.
As in a computer (such as x86) with hardware-managed
TLB, flushing TLB due to address space switches is
rather costly, modern virtualization techniques usually
place the VMM, OS kernel and a user process in a sin-
gle address space. For example, Xen VMM occupies
the top 64-MB virtual address in a single 4-GB virtual
address space. Therefore, for a virtualized OS, the ker-
nel address space layout is different from a native OS.
As a dynamic adjustment of the address space layout
is rather time consuming, Mercury instead unifies the
address space layout to achieve a smooth transfer be-
tween native mode and virtual mode, by reserving a
fixed portion of virtual address space for the VMM.

For physical address space, most commodity operat-
ing systems assume the continuity of the whole physi-
cal memory. However, in a virtualized environment,
as there are multiple operating systems, their physi-
cal memory is discontinuous. To ensure correct sys-
tem behavior, two physical address modes are avai-
lable in modern virtualization systems: shadow mode
and direct mode. In shadow mode, a VMM presents
the guest operating systems an illusion of contiguous
pseudo-physical memory and is responsible for translat-
ing pseudo-physical memory to physical memory. Thus,
a translation from pseudo-physical memory to phys-
ical memory is required during a self-virtualization.
In direct mode, a VMM provides direct accesses to

page tables for guest operating systems: page tables
in guest operating systems are directly installed in
memory management unit (MMU) but only read ac-
cesses are granted. As the page table entries in guest
operating systems are directly installed in hardware,
no translation is required during a mode switch, which
could largely reduce the complexity of implementing a
self-virtualization system. Currently, Mercury utilizes
the direct access mode to simplify the implementation.

3.2.3 Memory Management

In a virtualized environment, a VMM should track
the usage of all pages to ensure strict isolation among
virtual machines. Consequently, when transferring an
OS between native mode and virtual mode, Mercury
should ensure the consistency of VMM’s memory mana-
gement information. In addition, the access mode to
the MMU differs between a native OS and a virtualized
OS. A native OS can directly access all MMU, while a
virtualized OS should rely on the services of a VMM.
For example, updates to page tables could be directly
done in native mode, while in virtual mode, they need
to either invoke the interface provided by VMMs or rely
on a trap-emulation service in VMMs.

3.2.4 I/O Access Modes

A fully virtualized OS usually has no direct control
over I/O devices. A VMM is in charge of managing
the I/O devices and exposing them to operating sys-
tems either via implicit trap and emulation[46] or ex-
plicit services[30]. As I/O emulation tends to be time-
consuming, for the sake of performance, device drivers
in a para-virtualized OS are usually modified to ex-
plicitly invoke the interface provided by the VMM. For
example, Xen provides a splitted I/O model[30] in a
frontend/backend manner for device accesses in a vir-
tual machine.

4 Self-Virtualization: Approaches and the
Architecture

Being aware of the differences between a native OS
and a virtualized OS, we first identify several key as-
pects in self-virtualizing an operating system as well as
our solutions. Then, we present the architecture of our
system.

4.1 Pre-Caching of VMMs

The major challenge in the design and implementa-
tion of Mercury is to dynamically attach and detach
a VMM beneath a running operating system, without
disruption to the running applications. Mercury accom-
plishes this through a simple and common hardware
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mechanism: interrupt. The interrupt handler dedi-
cated to self-virtualization contains routines to attach
and detach a VMM on the fly. Execution mode switches
can be done through triggering the corresponding inter-
rupt line.

However, handling such interrupts should not be
time-consuming; otherwise, other interrupts might be
delayed or missed. Therefore, it is crucial that the in-
terrupt handlers be very efficient. To satisfy such a
requirement, it is unrealistic to boot a complete VMM
on the fly. Instead, this process is optimized by warm-
ing up the VMM during the machine boot, and adding
only a minimal amount of work to provide necessary
state for hardware when the VMM is attached. As a
VMM occupies only a reasonably small chunk of memo-
ry, we believe it is worthy for such space-time tradeoff
because it shortens the mode switch time from several
seconds to several sub-milliseconds.

The pre-cached VMM already contains most re-
quired data structures in memory. The only data struc-
tures required to be adjusted are those maintaining the
state of the virtual machines thereon, including the in-
time execution context, memory page type and count
information, and interrupt bindings. All these data
structures will be synchronized by Mercury during a
mode switch using state reloading functions described
in Subsection 5.1.3.

4.2 Transparent Self-Virtualization

As the virtualization sensitive code and data differ
between a native OS and a virtualized OS, a relocation
of such code and data is required during a mode switch.
Further, to ensure the safety of self-virtualization, it is
crucial to track whether it is safe to perform a mode
switch or not, so that the kernel will not enter an un-
defined state in which some portion of the code execute
in the native mode and others execute in the virtuali-
zed mode. Dynamic rewriting and para-virtualization
technologies are two possible methods.

Dynamic rewriting technique[47] replaces sensitive
instructions in operating system kernels at execution
time. It could result in good OS transparency. How-
ever, deciding whether it is safe to perform such rewrit-
ing is extremely difficult. Further, binary rewriting
all related code is rather time-consuming for a mode
switch.

In contrast, para-virtualization statically modifies
OS kernel to cooperate with VMM by replacing sen-
sitive instructions with function calls to VMM. This
approach will result in short switch time, and it is easy
to track whether it is safe to perform a mode switch
(e.g., by reference counting entrance/exit from virtua-
lization sensitive code). However, such an approach will

result in significant maintenance cost during the oper-
ating system evolution.

Mercury chooses the para-virtualization approach
but in a portable and OS-transparent way similar to
paravirt-ops[37] and VMI[38]. Specifically, Mercury
groups all virtualization sensitive code and data, and
defines a unified interface: a virtualization object com-
posed of a function table and a data table. Mercury
provides separate object implementation for operating
systems executing in virtual mode and native mode.
Relocation of virtualization sensitive code and data is
done by changing the object pointer maintained by the
operating system.

4.3 Maintaining Behavior Consistency

To completely shadow running applications from
these mode transitions, the operating system should
exhibit a consistent behavior regardless of its current
mode. Thus, there are three requirements in ensur-
ing behavior consistency. First, for virtualization sen-
sitive code, it is required to ensure that its execution is
conformed to current mode, e.g., code for native mode
should not execute in virtual mode. Second, for vir-
tualization sensitive data, their state in each execution
mode should be semantically equivalent, which requires
them to provide equivalent services to OS kernel and
applications. Third, for hardware control state, such
as control registers, page tables, description tables, it
should be reloaded accordingly during a mode switch.
Details on how Mercury ensures these requirements are
presented in Subsection 5.1.

4.4 Architecture of Mercury

Fig.2 depicts the architecture of Mercury. The key to
self-virtualization is a variety of virtualization objects

Fig.2. Overall architecture of Mercury.
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(VOes), which encapsulate virtualization sensitive code
and data. The VOes are neutral to operating system
upgrades but sensitive to VMM evolutions. The modu-
larity of VOes enhances the maintainability of Mercury
as it allows easy adaptation of Mercury to new VMMs
and architectures.

To support a fast switch of operating systems from
native mode to virtual mode, Mercury warms up a
VMM during system initialization and always keeps it
in memory. As generally a VMM is relatively small, the
pre-cached VMM actually creates very little memory
pressure. A VO instance in virtual mode relies on the
services from pre-cached VMM while a VO instance in
native mode directly manipulates the hardware. When
an operating system is relocated from native mode to
virtual mode, the pre-cached VMM is activated and
takes over the control of hardware. The VO-assistant
is composed of some help routines in the VMM. It pro-
vides services such as self-virtualization interrupt han-
dlers to assist the VO instances to maintain the state
during a mode transition.

5 Detailed Design and Implementation

We initially implemented Mercury based on Linux
2.6.10 running on Xen-2.0.5. Later, we port Mercury
to Xen-3.0.2. The hardware platform is x86 architec-
ture. We chose Xen as a base platform because of its
open-source nature and robustness. Although our cur-
rent implementation was specific to Linux on Xen for
x86, we believe the architecture and the design of Mer-
cury could be similarly implemented on other operating
systems, VMMs and processor architectures.

The following subsections discuss some specific de-
sign and implementation of Mercury. First, we present
in detail how to maintain a consistent state in a mode
switch. Then, we provide some specific design on dy-
namical virtualization of I/O devices. Finally, we de-
scribe the implementation of virtualization objects.

5.1 Maintaining Behavior Consistency

5.1.1 State Tracking of Virtualization Sensitive Code

Mercury tracks the execution of virtualization sensi-
tive code by reference counting the execution of a vir-
tualization object on its entry and exit.

Mercury applies a mode switch only when the refe-
rence counter reaches zero. One potential problem is
that mode switch requests may sometimes fail if some
counters are non-zero at that time. However, due to the
fact that almost all execution in the virtualization ob-
ject is short (because it is non-blocking) or synchronous,
this problem rarely happens. If such a condition does

occur, Mercury registers a timer to the OS kernel. The
timer checks if the reference counter reaches zero in
every time interval (e.g., every 10 ms). If so, the mode
switch will be safely committed.

5.1.2 State Transfer of Virtualization Sensitive Data
Structures

Mercury utilizes state transfer functions to effi-
ciently transfer the state of virtualization sensitive data
from one mode to the other during a mode switch, to
ensure that they provide equivalent services.

There are several key sets of state in OS kernel that
must be transferred during a mode switch: 1) page ta-
ble pages, which are read-only in the virtualized modes
while writable in the native mode; 2) the privileged level
of the kernel segment in each kernel thread, whose value
is 0 in native mode and 1 in virtualized modes; 3) the
interrupt handlers and interrupt bindings (e.g., APIC,
I/O APIC), which directly manipulate the hardware
in the native mode while rely on the service of VMMs
in the virtual modes. Mercury provides a set of state
transfer functions, which are responsible for transfer-
ring the state of the virtualization sensitive data struc-
tures during a mode switch.

Maintaining behavior consistency for VMM’s memo-
ry management poses additional challenges. To ensure
secure isolation among guest operating systems, Xen
provides a rather complex page management interface
and maintains the owner, type and count information
for each page frame. When a VMM is active, it has
to track the usage of all page frames to ensure cor-
rect usage of each page. In native mode, as the VMM
is inactive it will lose track on the usage information
of these pages. Thus, it is required to correctly refill
this information for the VMM to enforce correct sys-
tem behavior. Generally, there are two alternatives to
ensure the consistency of the underlying VMM. One
is to actively adapt the count information in a VMM
each time an OS modifies its page tables. The other is
to re-compute and synchronize the information during
a mode switch. The first approach incurs some perfor-
mance overhead in native mode, while it shortens some
time during a mode switch.

We have implemented both approaches for the
memory management of Xen. According to our perfor-
mance experiment, the first approach will incur about
2%∼3% performance overhead and saves only a small
amount of mode switch time. Hence, we preferably
choose the latter approach.

It should be noticed that some state cached in stack
is not easy to provide proper state transfer functions.
In practice, an interrupted thread will push their inter-
rupt context in the thread stack. The code and data
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segment selectors pushed in the thread stack contain
the privilege level information of the operating system.
If a mode switch occurs here, the resumed thread will
pop the saved segment selectors and trigger a general
protection fault. This problem is solved by adding a
code stub to check and fix the cached segment selectors.

5.1.3 State Reloading of Hardware Control State

The state of the underlying hardware usually differs
in different execution modes. Therefore, when switch-
ing from a virtual mode back to the native mode, the
control state should be reloaded into the hardware ac-
cordingly. General state includes the base pointer of
a page table, interrupt tables, descriptor tables (e.g.,
GDT, LDT), among others.

Since the critical state of the hardware is modified in
the state reloading process, the reloading process must
not be interrupted. Hence, Mercury adds two interrupt
handlers for mode switches between the native mode
and the virtual mode, and applies the reloading in the
interrupt context. The interrupt handlers will reload
the state, invoke the state transfer functions to transfer
the state of operating systems, and return to operating
systems.

However, the interrupt handlers are slightly different
from general interrupt service routines which return to
the previous privileged level after service completion.
In Mercury, VMMs and a native OS lie at the most priv-
ileged level (e.g., PL0), while a virtualized OS executes
at the next privileged level (e.g., PL1). Therefore, there
is a privileged-level switch right after a mode switch.
This is accomplished by modifying the privileged level
in the return stack of the interrupt.

5.2 Device Virtualization

In Xen VMM, only driver domain (usually domain0)
has direct accesses to the hardware devices, while other
production domains (domainU) access the hardware
through the interface provided by domain0 in a fron-
tend/backend fashion. The frontend drivers in do-
mainU serve the hardware access requests by forward-
ing the requests to the backend drivers in domain0 us-
ing shared-memory I/O rings. The backend drivers in-
voke services from the hardware to serve the requests
and forward the results back to the frontend drivers
in domainU. When the domainU is migrated, the fron-
tend drivers reconnect themselves to the new backend
drivers on the new host machine. Thus, the decoupling
of frontend/backend drivers provides the mobility to
the device drivers.

To host multiple VMs in the self-virtualized OS, the
OS serves as the driver domain and hosts the backend
drivers. For live migration of VMs, since current live

migration systems often rely on networked file system,
disk drivers are essentially migratable. For network
devices, since the packets loss during the migration
could be solved at the network protocol level, Mercury
currently does not decouple the network device drivers
before the migration. Instead, it creates the frontend
device drivers and connects them to the backend drivers
after the migration has been completed.

5.3 Virtualization Object

Each VO instance is composed of the correspond-
ing implementation of virtualization sensitive code and
data for an execution mode, as well as some additional
components to support self-virtualization of an oper-
ating system. Such components are responsible for
relocating the execution of operating systems in dif-
ferent execution modes and maintaining the behavior
consistency after a dynamic relocation of virtualiza-
tion instances. We have implemented a native VO and
a virtual VO for Linux and Xen VMM accordingly.
Each such VO is a structure with a set of function ta-
bles and corresponding data in essence. The data in
a VO includes some global sensitive data, such as a
set of control registers, descriptor tables (IDT, GDT
and LDT). The function tables are composed of func-
tions for virtualization sensitive code and those for self-
virtualization.

Functions for virtualization sensitive code are ab-
stractions of sensitive operations: sensitive CPU opera-
tions, which manipulate the privileged state of CPU,
such as privilege levels and interrupt flags; sensitive
memory operations, which modify page tables; sensi-
tive I/O operations, which access the device resources
through memory-mapped I/O or I/O port. A func-
tion in a native VO directly manipulates the hardware
while it invokes interfaces provided by the VMM (e.g.,
hypercalls in Xen VMM) in virtual mode. To maintain
state consistence, all of these functions are reference-
counted to track the execution of operating systems in
a VO. Note that non-performance-critical sensitive code
is not included in a VO and relies instead on trap-and-
emulation to commit the effect.

Functions for self-virtualization consist of state-
transfer functions to transfer the state of virtualiza-
tion sensitive data structures during a mode switch,
and state reloading functions to relocate the execution
mode of an operating system and activate/deactivate
the pre-cached VMM, as described in Subsections 5.1.2
and 5.1.3.

5.4 Supporting Multicore Machines

Self-virtualizing a multicore OS poses additional
challenges compared to a uni-processor OS. Multiple
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CPU cores should be coordinated to avoid state incon-
sistency where cores execute in different modes. Mer-
cury uses IPI (inter-processor interrupt) mechanism
and shared variables to control the mode switch of
each processor.

The processor (CP, control processor) that received
the mode switch request will notify other processors via
issuing IPIs. Upon receiving the IPI, each processor no-
tifies its readiness to other processors by increasing a
shared count and waits for a shared flag to ensure all
other processors are ready to do a mode switch. The
shared flag will be set by the CP when it finds the
shared count is equal to the total number of processors.
The completion of the mode switch is also coordinated
using a shared variable.

6 Usage Scenarios

Self-virtualization could mitigate the performance
overhead caused by virtualization while retain its full
benefit. In this section, we discuss its possible appli-
cations to increase system dependability, yet with lit-
tle performance degradation: online hardware mainte-
nance, live updating operating system kernel code and
data, and improving the availability of clusters. We be-
lieve these enhancements are rather important for cur-
rent clusters and some cloud computing systems.

6.1 Checkpointing and Restarting of
Operating Systems

Checkpointing and restarting of computing environ-
ments are widely deployed to increase system depend-
ability. By checkpointing the execution environment
periodically and restarting the execution from a spe-
cific checkpoint during a failure, they provide proactive
fault-tolerant features to many mission-critical systems.

While virtualization could provide checkpoint/
restart at operating system level[35-36], it also brings
some performance overhead. We argue that self-
virtualization could eliminate such overhead. To per-
form checkpointing, the pre-cached VMM is activated
and makes a snapshot of the whole system, then the
VMM is detached and remains inactive. If a software
failure occurs, the VMM could be automatically reac-
tivated to restore the failed system into a recent check-
point. For hardware failures, the snapshot could be
manually restored to another healthy machine.

6.2 Self-Healing of Operating Systems

Self-healing of a computing system has gained preva-
lence in system research recently[48-49]. Being aware
of the limitation of “healing-from-within” approach,
Bohra et al.[49] use a remote computer to repair the

software state over Myrinet network. However, as the
approach requires an additional remote machine for
monitoring and healing, it may be too expensive to be
deployed in commodity uses.

Here we propose using self-virtualization to provide
self-healing features to a computing system. As when
activated, a VMM is in full control of the operating sys-
tem thereon, the VMM is a good candidate to repair
the tainted state of operating systems. Sensors could
be added to monitor the anomaly of the operating sys-
tems. The sensors will trigger a self-virtualization of
the operating system to partial-virtual mode, and the
pre-cache VMM is activated to repair the tainted state.
This approach is rather cheap in that it requires no
additional hardware. Also, it incurs no performance
degradation as the VMM is only required during sys-
tem healing.

6.3 Online Hardware Maintenance

The market is heading toward 99.999% availabi-
lity for IT infrastructures. Scheduled and unscheduled
hardware maintenance could greatly disrupt the run-
ning system and significantly reduce the Mean Time to
Interrupt (MTTI), thus lowering the availability of the
IT infrastructure.

Self-virtualization supports online hardware main-
tenance with little or no performance penalty. In
the framework of self-virtualization, an operator could
switch the machine to be maintained to the full-virtual
mode dynamically. The execution environment of the
machine can then be live migrated to another machine
that has been virtualized and is in the partial-virtual
mode to accommodate multiple operating systems. Af-
ter the maintenance work is completed, the execution
environment is migrated back and the machine is re-
turned to the native mode for full speed. Such online
hardware maintenance could be accomplished transpa-
rently and seamlessly without the awareness of the run-
ning applications.

6.4 Live Updating Operating Systems

Many critical IT infrastructures require non-
disruptive operations. However, the operating systems
thereon are far from perfect that patches and upgrades
are frequently needed to close vulnerabilities, add new
features and enhance performance. To mitigate the loss
of availability, such operating systems need to provide
features such as live update[12,50] through which patches
and upgrades can be applied without having to stop and
reboot the operating system.

For example, one previous system called LUCOS[12]

provides live update capability to Linux running on
Xen. However, one drawback of LUCOS is that it
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requires a VMM permanently underneath the operating
system to update. Self-virtualization could effectively
solve this problem. When there is a need to perform
a live update, a VMM could be dynamically attached
and the operating systems could be turned into partial-
virtual mode. The attached VMM then applies the live
update and is detached when the live update is com-
pleted. As the VMM is completely inactive in native
mode, upgrades to the VMM are more straightforward
as if the upgrades are statically performed. Hence, self-
virtualization could greatly eliminate unnecessary per-
formance overhead incurred by virtualization in LU-
COS.

6.5 Improving the Availability of HPC
Clusters

As more high-performance computing (HPC) clus-
ters are used in mission-critical and long-running ap-
plications, high-availability and failure recovery capa-
bilities are becoming more important to HPC clusters.
Three main factors contribute to the loss of availabil-
ity on HPC clusters: software maintenance, hardware
maintenance and an unexpected system failure. As il-
lustrated in Subsections 6.3 and 6.4, software and hard-
ware maintenance can be solved by self-virtualization.
Here, we focus on how to survive system failures using
self-virtualization on HPC clusters.

For high performance computing, there are usua-
lly some hardware monitors to monitor the tempera-
ture, fan speed, voltage, and power supplies in the
system. These can be facilitated for hardware failure
prediction[51]. When hardware errors are reported by
the monitors, the operating system immediately virtua-
lizes itself to the full-virtual mode and migrates itself
to another healthy node, which in turn virtualizes itself
simultaneously to the partial-virtual mode to accom-
modate the migrated operating system. With this ap-
proach, the running programs are completely shielded
from the system failures, with no need to stop and
restart. Further, this approach incurs little or no per-
formance degradation during normal execution since
the operating system could execute in the native mode
when no error is detected.

7 Evaluation

In this section, we present the performance results
of Mercury. As our implementation is based on Xen
VMM, we test Mercury against Xen-Linux and na-
tive Linux running on bare hardware to assess over-
all performance of Mercury. We compare the per-
formance of Mercury-Linux (Linux running on Mer-
cury) in native mode and virtual mode (M-N and M-V

accordingly) against native Linux (N-L) and Xen-Linux
(both control domain, domain0 (X-0) and production
domain, domainU (X-U)). Since Mercury allows a self-
virtualized operating system to host unmodified Xen-
Linux (M-U), we present its performance results as well.
Further, the timer frequency is 100Hz for all systems.

As it is crucial that switch time among different
execution modes is minimal, we present the measured
switch time as well.

7.1 Experimental Setup

The experiments were conducted on a system
equipped with a DELL SC 1420 machine with two
3.0GHz Xeon processors, with 2GB SDRAM, one Rea-
ltek r8169 Gigabit Ethernet NIC in 100 M LAN, and
one single 73 G 10 k RPM SCSI disk, with 20GB allo-
cated to each Linux distribution. The version of Linux,
Xen-Linux and Mercury-Linux is 2.6.16, and the version
of Xen VMM is 3.0.2. The Linux Enterprise edition 4
was used throughout. It is installed on ext3 file sys-
tem. 900 000KB of memory is given to each variant of
Linux except the unprivileged domain (i.e., domainU).
DomainU is configured with 870 000 KB of memory as it
relies on Domain0 to complete device accesses. There-
fore, we decreased the memory reservation in domainU
to even this unfairness. The Linux running as the pro-
duction domain in both Xen and Mercury is configured
to use a 20 GB partition in the same disk with the ext3
file system as well. The disk was used in “raw mode”,
which is believed to have the best performance. We
tested two modes of processors: UP mode, by allocat-
ing a single processor for each system; SMP mode, by
allocating two processors for each system.

For application-level benchmarks, we present the
performance results for the Open Source Database
Benchmark suite (OSDB)[52], dbench[53], Linux build
time. OSDB evaluates the performance of PostgreSQL
database, with the test for information Retrieval (IR).
For the experimental setup, we used OSDB-x0.15-1 in
conjunction with PostgreSQL 7.3.6. Dbench is a strict
I/O bound benchmark, the version used is 3.03. Linux
build time measures the overall time to build a Linux
Kernel 2.6.16 with gcc-3.3.3. For micro-benchmarks, we
measured the lmbench benchmark of version 3.0-a5[54],
and reported the results for the OS-related parts for all
six systems. For network performance, we used Iperf[55]

to measure the bandwidth with TCP and UDP traffic,
the client and server for Iperf were connected through
a Giga-bit switch. All benchmarks were with their de-
fault configurations. In addition, we investigated the
time spent to apply each mode switch. All benchmarks
were tested five times and each result is an average of
them.
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7.2 MicroBenchmark

Table 1 and Table 2 show the OS-related results of
lmbench in uniprocessor mode and SMP mode. Our
measurements indicate that although a variety of op-
timizations have been integrated into Xen, there is
still some performance degradation compared to native
Linux, especially for memory and I/O intensive appli-
cations. For example, mmap in lmbench incurs 65%
and 55% performance loss in uniprocessor and SMP
mode and while for process creation the result is 80%
and 75%. It should be noted that due to the introduced
locks and possible contentions, most of the operations
in SMP mode are a bit expensive compared to those in
UP mode.

Table 1. Lmbench Latency Results in Uniprocessor
Mode (Time in µs)

Config. N-L M-N X-0 M-V X-U M-U

Fork Process 98 114 482 490 470 471
Exec Process 372 404 1 233 1 232 1 211 1 220
Sh Process 1 203 1 337 2 977 2 996 2 936 2 931
Ctx (2 p/0 k) 1.64 2.49 5.10 5.41 5.04 5.06
Ctx (16 p/16 k) 2.73 3.91 6.76 7.28 6.54 6.45
Ctx(16 p/64 k) 10.30 12.77 15.73 16.27 15.77 15.97
Mmap LT 3 724 3 995 10 579 11 800 10 867 11 067
Prot Fault 0.61 0.63 0.97 1.17 1.04 1.11
Page Fault 1.22 1.48 3.09 3.18 3.03 3.10

Table 2. Lmbench Latency Results in SMP
Mode (Time in µs)

Config. N-L M-N X-0 M-V X-U M-U

Fork Process 128 148 509 523 501 501
Exec Process 449 501 1 353 1 386 1 335 1 349
Sh Process 1 444 1 585 3 359 3 435 3 222 3 319
Ctx (2 p/0 k) 2.31 3.07 5.16 5.61 5.11 5.14
Ctx (16 p/16 k) 2.91 4.15 7.16 7.27 6.83 7.02
Ctx (16 p/64 k) 11.03 12.40 16.17 16.77 16.10 16.60
Mmap LT 5 449 5 731 12 200 13 000 12 433 12 533
Prot Fault 0.70 0.74 1.13 1.20 1.15 1.18
Page Fault 1.64 1.89 3.45 3.67 3.39 3.46

Despite a number pointer indirection introduced by
the virtualization objects when accessing virtualization-
sensitive code and data, Mercury still only incurs neg-
ligible overhead compared to its counterparts. This
confirms that the mechanisms of Mercury have little
performance impact and Mercury could significantly
eliminate the performance overhead associated with
virtualization.

7.3 Overall Performance

Fig.3 depicts the overall performance of Mercury
against native Linux and Xen-Linux in uniprocessor
mode. For application level benchmarks, domain0 (X-
0) shows 15% performance degradation for dbench,
while domainU (X-U) incurs 5% performance improve-
ment. Both domain0 and domainU incur about 9%

for Linux kernel build, and more than 20% for OSDB-
IR. One exception is for dbench, where domainU is
with slightly better performance than domain0 and
even Linux. This is probably because dbench is a
throughput-oriented application and the splitted device
mode could cache some data to avoid some expensive
disk operations, though at the cost of possible inconsis-
tency during crash[56]. For ping and Iperf benchmarks,
the performance losses reach more than 20% and 40%
for domain0, and 60% and 70% for domainU. As the
Xen architecture has evolved dramatically in Xen2 and
Xen3, the results are somewhat biased with the early
results of Xen[30]. However, our results mostly conform
to a recent measurement by Soltesz et al.[34].

By contrast, the performances of Mercury in its
three modes (M-N, M-V and M-U) are nearly the same
compared to native Linux, domain0 and domainU ac-
cordingly. The source of performance loss in Mercury
mainly lies in the changes to code and data layout
and function calls to virtualization objects. However,
as shown in the figure, such overhead is negligible.

Fig.4 depicts the overall performance of Mercury
against native Linux and Xen-Linux on SMP machines.
The evaluation on five application level benchmarks has
the similar results in uniprocessor mode. The overhead
in Mercury in the three modes is less than 2% compared
to native Linux, domain0 and domainU.

Fig.3. Relative performance of Mercury against Linux and Xen-

Linux in uniprocessor mode.

Fig.4. Relative performance of Mercury against Linux and Xen-

Linux in SMP mode.
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7.4 Mode Switch Time

We measured the time to apply a mode switch by
reading the hardware cycle counter register (using the
RDTSC instruction) at both the beginning and the end
of each mode switch. According to our tests, the time
spent in a mode switch is relatively small: the average
time is about 0.22 ms to do a switch from native mode
to virtual mode, and 0.06ms to a switch back.

It can be seen that the time spent to switch from na-
tive mode to virtual mode is much longer than the time
to switch back. This is expected, as mentioned in Sub-
section 5.1.2, Mercury has to recalculate the type and
count information for all page frames during a mode
switch, which accounts for the major time to commit a
switch. Nevertheless, the overall time is still relatively
small and we believe it is acceptable as we can gain
good performance during normal operations in native
mode.

8 Conclusions and Future Work

We have proposed a technique, called self-
virtualization, that enables an operating system to dy-
namically attach and detach a full-fledged VMM un-
derneath. This approach is completely software-based
and mostly OS-transparent. It effectively eliminates
unnecessary performance overhead of system virtual-
ization and thus combines performance and dependabil-
ity in applying system virtualization to HPC clusters.
Performance measurements show that such an imple-
mentation incurs negligible performance overhead and
allows fast switches among different execution modes.

Though Mercury has demonstrated the feasibility of
embracing both performance and dependability in spe-
cific usage scenarios, there is still ample optimization
and exploring space behind the implementation of Mer-
cury. In the followings, we discuss several limitations
and possible extensions to Mercury, which will be our
future work.

Supporting Hardware-Assisted Virtualization. Cur-
rently, Mercury exploits the virtual machine interface
(VMI) to make it easy to be adapted with the evolu-
tion of operating systems and VMMs. This still requires
changes to the operating systems, though in a modu-
lar manner. Recent hardware advances have made
hardware-assisted virtualization features commercially
available. Hence, in our future work, we plan to ex-
tend Mercury to support hardware-assisted virtualiza-
tion, by exploring existing hardware features, which
could make the design and implementation of Mercury
more clear and independent to OS evolutions. For ex-
ample, current CPU virtualization such as VT-x en-
ables the encapsulation of virtualization sensitive data

into a centralized structure (e.g., VMCS or VMCB).
This could make the mode switch between the native
mode and virtualized mode much easier to implement.
Further, the nested page table or extended page table
could ease the tracking of the states of each page, which
has been proved in our implementation as the most dif-
ficult port to debug.

Validating Mercury in Real Scenarios. Currently, we
only validated Mercury in a Lab environment, where
the resources are limited. This might not uncover
many implementation limitations. For example, with
the number of cores per-chip increasing continuously,
the performance scalability of Mercury will be of great
importance in supporting a relatively large-scale mul-
ticore machine. For example, a more loosely-coupled
synchronization protocol might be necessary when de-
taching/attaching a VMM, instead of current protocols
using IPI and shared variables. Further, we have not
considered the case where the operating systems might
have already been in an incorrect state during the mode
switch. An OS not in a correct state might make the
mode switch fail. Hence, a failure-resistant mode switch
will be necessary to improve the dependability of Mer-
cury itself.

References

[1] Goldberg R P. Survey of virtual machine research. IEEE
Computer, 1974, 7(6): 34-45.

[2] Krsul I, Ganguly A, Zhang J, Fortes J A B, Figueiredo R J.
VMPlants: Providing and managing virtual machine execu-
tion environments for grid computing. In Proc. ACM/IEEE
Conference on Supercomputing, Pittsburgh, USA, Nov. 6-12,
2004.

[3] Adabala S, Chadha V, Chawla P et al. From virtualized re-
sources to virtual computing grids: The In-VIGO system.
Future Generation Computer Systems, 2005, 21(6): 896-909.

[4] Song Y, Wang H, Li Y, Feng B, Sun Y. Multi-tiered on-
demand resource scheduling for vm-based data center. In
Proc. the 9th IEEE/ACM International Symposium on Clus-
ter Computing and the Grid, Shanghai, China, May 18-21,
2009, pp.148-155.

[5] Zhang X, Dwarkadas S, Shen K. Hardware execution throt-
tling for multi-core resource management. In Proc. the 2009
Conference on USENIX Annual Technical Conference, San
Diego, USA, June 14-19, 2009.

[6] Sundararaj A I, Dinda P A. Towards virtual networks for vir-
tual machine grid computing. In Proc. the 3rd Virtual Ma-
chine Research and Technology Symposium, San Jose, USA,
May 6-7, 2004, pp.177-190.

[7] Dunlap G W, King S T, Cinar S, Basrai M A, Chen P M.
ReVirt: Enabling intrusion analysis through virtual-machine
logging and replay. ACM SIGOPS Operating Systems Re-
view, 2002, 36: 211-224.

[8] Joshi A, King S T, Dunlap G W, Chen P M. Detecting past
and present intrusions through vulnerability-specific predi-
cates. ACM SIGOPS Operating Systems Review, 2005, 39(5):
91-104.

[9] Chen H, Chen J, Mao W, Yan F. Daonity-Grid security from
two levels of virtualization. Information Security Technical
Report, 2007, 12(3): 123-138.



Hai-Bo Chen et al.: Mercury: Combining Performance with Dependability Using Self-Virtualization 103

[10] Chen X, Garfinkel T, Lewis E C, Subrahmanyam P, Wald-
spurger C A, Boneh D, Dwoskin J, Ports D R K. Overshadow:
A virtualization-based approach to retrofitting protection in
commodity operating systems. In Proc. the 13th Int. Conf.
Architectural Support for Programming Languages and Oper-
ating Systems, Seattle, USA, March 1-5, 2008, pp.2-13.

[11] Lowell D E, Saito Y, Samberg E J. Devirtualizable virtual
machines enabling general, single-node, online maintenance.
In Proc. the 11th International Conference on Architectural
Support for Programming Languages and Operating Systems,
Boston, USA, October 9-13, 2004, pp.211-223.

[12] Chen H, Chen R, Zhang F, Zang B, Yew P C. Live updating
operating systems using virtualization. In Proc. the 2nd In-
ternational Conference on Virtual Execution Environments,
Ottawa, Canada, June 14-16, 2006, pp.35-44.

[13] Mergen M F, Uhlig V, Krieger O, Xenidis J. Virtualization
for high-performance computing. ACM SIGOPS Operating
Systems Review, 2006, 40(2): 8-11.

[14] Youseff L, Wolski R, Gorda B, Krintz C. Paravirtualization
for HPC Systems. Technical Report TR 2006-10, University
of California, Santa Barbara, August 2006.

[15] Bjerke H K F. HPC Virtualization with Xen on Itanium [Mas-
ter’s thesis]. Norwegian University of Science and Technology,
July 2005.

[16] Hu L, Jin H, Liao X, Xiong X, Liu H. Magnet: A novel
scheduling policy for power reduction in cluster with virtual
machines. In Proc. IEEE Int. Conf. Cluster Computing,
Sukuba, Japan. Sept. 29-Oct. 1, 2008, pp.13-22.

[17] Chen H, Jin H, Shao Z, Yu K, Tian K. ClientVisor: Leverage
COTS OS functionalities for power management in virtualized
desktop environment. In Proc. the 5th International Confer-
ence on Virtual Execution Environments, Washington, USA,
March 11-13, 2009, pp.131-140.

[18] Das T, Padala P, Padmanabhan V N, Ramjee R, Shin K G.
Litegreen: Saving energy in networked desktops using virtua-
lization. In Proc. USENIX Annual Technical Conference,
Boston, USA, June 23-25, 2010.

[19] Ge R, Feng X, Song S, Chang H C, Li D, Cameron K W. Pow-
erPack: Energy profiling and analysis of high-performance
systems and applications. IEEE Transactions on Parallel and
Distributed Systems, 2010, 21(5): 658-671.

[20] Amazon Elastic Compute Cloud (Amazon EC2). Amazon
Inc., http://aws.amazon.com/ec2/, 2008.

[21] Nurmi D, Wolski R, Grzegorczyk C, Obertelli G, Soman S,
Youseff L, Zagorodnov D. The eucalyptus open-source cloud-
computing system. In Proc. the 9th IEEE/ACM Inter-
national Symposium on Cluster Computing and the Grid,
Shanghai, China, May 18-21, 2009, pp.124-131.

[22] Neiger G, Santoni A, Leung F, Rodgers D, Uhlig R. Intel
virtualization technology: Hardware support for efficient pro-
cessor virtualization. IntelrTechnology Journal, 2006, 10(3):
167-177.

[23] Abramson D, Jackson J, Muthrasanallur S, Neiger G, Regnier
G, Sankaran R, Schoinas I, Uhlig R, Vembu B, Wiegert J. Intel
virtualization technology for directed I/O. IntelrTechnology
Journal, 2006, 10(3): 179-192.

[24] Bhargava R, Serebrin B, Spadini F, Manne S. Accelerating
two-dimensional page walks for virtualized systems. In Proc.
Int. Conf. Architectural Support for Programming Languages
and Operating Systems, Seattle, USA, March 1-5, 2008, pp.26-
35.

[25] Zhang X, Xiao L, Qu Y. Improving distributed workload per-
formance by sharing both CPU and memory resources. In
Proc. International Conference on Distributed Computing
Systems, Taipei, China, April 2000, pp.233-241.

[26] Theurer A, Rister K, Krieger O, Harper R, Dobbelstein S.
Virtual scalability: Charting the performance of Linux in a

virtual world. In Proc. Linux Symposium, Ottawa, Canada,
July 19-22, 2006, pp.393-402.

[27] Padala P, Zhu X, Wang Z, Singhal S, Shin K G et al. Per-
formance evaluation of virtualization technologies for server
consolidation. Technical Report HPL-2007-59, HP Labs, 2007.

[28] Xiang S, Haibo C, Zang B. Characterizing the Performance
and scalability of many-core applications on virtualized plat-
forms. Technical Report FDUPPITR-2010-002, Parallel Pro-
cessing Institute, Fudan University, November 2010.

[29] Edward W. Benchmarking Amazon EC2 for high-performance
scientific computing. Usenix Login, 2008, 33(5): 18-24.

[30] Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho
A, Neugebauer R, Pratt I, Warfield A. Xen and the art of
virtualization. In Proc. the 19th ACM International Sympo-
sium on Operating System Principles, Boston Landing, USA,
October 19-22, 2003, pp.164-177.

[31] Schroeder B, Pinheiro E, Weber W D. DRAM errors in the
wild: A large-scale field study. In Proc. the 11th Interna-
tional Joint Conference on Measurement and Modeling of
Computer Systems, Seattle, USA, June 2009, pp.193-204.

[32] Ford D, Labelle F, Popovici F I, Stokely M, Truong V A,
Barroso L, Grimes C, Quinlan S. Availability in globally dis-
tributed storage systems. In Proc. the 9th Usenix Conference
on Operating System Design and Implementation, Vancouver,
Canada, October 4-6, 2010, pp.1-7.

[33] Huang W, Abali B, Panda D K. A case for high performance
computing with virtual machines. In Proc. the 20th An-
nual International Conference on Supercomputing, Queens-
land, Australia, June 28-July 1, 2006, pp.125-134.
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