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Abstract

The increasing algorithm complexity and dataset sizes

necessitate the use of networked machines for many

graph-parallel algorithms, which also makes fault toler-

ance a must due to the increasing scale of machines. Un-

fortunately, existing large-scale graph-parallel systems

usually adopt a distributed checkpoint mechanism for

fault tolerance, which incurs not only notable perfor-

mance overhead but also lengthy recovery time.

This paper observes that the vertex replicas created

for distributed graph computation can be naturally ex-

tended for fast in-memory recovery of graph states. This

paper proposes Imitator, a new fault tolerance mech-

anism, which supports cheap maintenance of vertex

states by replicating them to their replicas during nor-

mal message exchanges, and provides fast in-memory

reconstruction of failed vertices from replicas in other

machines. Imitator has been implemented by extending

Hama, a popular open-source clone of Pregel. Evalua-

tion shows that Imitator incurs negligible performance

overhead (less than 5% for all cases) and can recover

from failures of more than one million of vertices with

less than 3.4 seconds.
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1 Introduction

Graph-parallel abstraction has been widely used to ex-

press many machine learning and data mining (MLDM)

algorithms, such as topic modeling, recommendation,

medical diagnosis and natural language processing [1],

[2], [3], [4]. With the algorithm complexity and dataset

sizes continuously increase, it is now a common practice

to run many MLDM algorithms on a cluster of ma-

chines. For example, Google has used hundreds to thou-

sands of machines to run some MLDM algorithms [5],

[6], [7].

Many graph algorithms can be programmed by fol-

lowing the “think as a vertex” philosophy [5], by coding

graph computation as a vertex-centric program that

processes vertices in parallel and communicates along

edges. Typically, many MLDM algorithms are essen-

tially iterative computation that iteratively refines input

data until a convergence condition is reached. Such iter-

ative and convergence-oriented computation has driven

the development of many graph-parallel systems, in-

cluding Pregel [5] and its open-source clones [8], [9],

Trinity [10], GraphLab [11] and PowerGraph [12].

Running graph-parallel algorithms on a cluster of

machines essentially faces a fundamental problem in

distributed systems: fault tolerance. With the increase

of problem sizes (and thus execution time) and ma-

chine scales, the failure probability of machines would

increase as well. Currently, most graph-parallel sys-

tems use a checkpoint-based approach. During com-

putation, the runtime system will periodically save

the runtime states into a checkpoint on some reliable

global storage, e.g., a distributed file system. When

some machines crash, the runtime system will reload

the previous computational states from the last check-

point and then restart the computation. Example ap-

proaches include synchronous checkpoint (e.g., Pregel

and PowerGraph) and asynchronous checkpoint using

the Chandy-Lamport algorithm [13] (e.g., Distributed

GraphLab [11]). However, as the processes of check-

point and recovery require saving and reloading from

slow persistent storage, such approaches incur notable

performance overhead during normal execution as well

as lengthy recovery time from a failure. Consequently,

though most existing systems have been designed with

fault tolerance support, they are disabled during produc-

tion run by default.

This paper observes that many distributed graph par-

allel systems require creating replicas of vertices to pro-

vide local access semantics such that graph computation

can be programmed as accessing local memory [14],

[11], [12]. Such replicas can be easily extended to

ensure that there are always at least K+1 replicas
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(including master) for a vertex across machines, in order

to tolerate K machine failures.

Based on this observation, Imitator proposes a new

approach that leverages existing vertex replication to

tolerate machine failures, by extending existing graph-

parallel systems in three ways. First, Imitator extends

existing graph loading phase with fault tolerance sup-

port, by explicitly creating replicas for vertices without

replication. Second, Imitator maintains the freshness of

replicas by synchronizing the full states of a master

vertex to its replicas through extending normal mes-

sages. Third, Imitator extends the graph-computation

engine with fast detection of machine failures through

monitoring vertex states and seamlessly recovers the

crashed tasks from replicas in multiple machines in a

parallel way, inspired by the RAMCloud approach [15].

Imitator uses a randomized approach to locating

replicas for fault tolerance in a distributed and scal-

able fashion. To balance load, a master vertex selects

several candidates at random and then chooses among

them using more detailed information, which provides

near-optimal results with small cost. Imitator currently

supports two failure recovery approaches. The first ap-

proach, which is called Rebirth based recovery, recovers

graph states on a new backup machine when a hot-

standby machine for fault tolerance is available. The

second one, the Migration based recovery, distributes

graph states of the failed machines to multiple surviving

machines.

We have implemented Imitator by extending

Hama [9], a popular open-source clone of Pregel [5].

To demonstrate the effectiveness and efficiency of

Imitator, we have conducted a set of experiments using

four popular MLDM algorithms on a 50-node EC-2

like cluster (200 CPU cores in total). Experiments

show that Imitator can recover from one machine

failure in around 2 seconds. Performance evaluation

shows that Imitator incurs an average of 1.2% (ranging

from -0.6% to 3.7%) performance overhead for all

algorithms and datasets. The memory overhead from

additional replicas is also modest.

This paper makes the following contributions:

• A comprehensive analysis of current checkpoint-

based fault tolerance mechanisms for graph-

parallel computation model (Section 2).

• A new replication-based fault tolerance approach

for graph computation (Section 3, Section 4 and

Section 5).

• A detailed evaluation that demonstrates the effec-

tiveness and efficiency of Imitator (Section 6).

2 Background and Motivation

This section first briefly introduces checkpoint-based

fault tolerance in typical graph-parallel systems. Then,
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Fig. 1: The sample of checkpoint-based fault tolerance.

we examine performance issues during both normal

computation and recovery.

2.1 Graph-parallel Execution

Many existing graph-parallel systems usually provide

a shared memory abstraction1 to a graph program. To

achieve this, replicated vertices (vertex 1, 2, 3 and 6 in

Fig. 1) are created in machines where there are edges

connecting to the original master vertex. To enable such

an abstraction, a master vertex synchronizes its states

to its replicas either synchronously or asynchronously

through messages.

The scheduling of computation on vertices can be

synchronous (SYNC) or asynchronous (ASYNC). Fig. 1

illustrates the execution flow of synchronous mode on

a sample graph, which is divided into two nodes (i.e.,

machines). Vertices are evenly assigned to two nodes

with ingoing edges, and replicas are created for edges

spanning nodes. In the synchronous mode, all vertices

are iteratively executed in a fixed order within each it-

eration. A global barrier between consecutive iterations

ensures that all vertex updates in current iteration are

simultaneously visible in next iteration for all nodes

through batched messages. The computation on vertex

in the asynchronous mode is scheduled on the fly, and

uses the new states of neighboring vertices immediately

without a global barrier.

Some graph-parallel systems such as Trinity [10],

PowerGraph [12], GRACE [16] and Giraph++ [17], pro-

vide both execution modes, but usually use synchronous

computation as the default mode. Hence, this paper only

considers synchronous mode. How to extend Imitator to

asynchronous execution will be our future work.

2.2 Checkpoint-based Fault Tolerance

Existing graph-parallel systems implement fault toler-

ance through distributed checkpointing for both syn-

chronous and asynchronous modes. After loading a

graph, each node stores an immutable graph topology of

1. Note that this is a restricted form of shared memory such that a
vertex can only access its neighbors using shared memory abstraction.
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its own graph partition to a metadata snapshot on the

persistent storage. Such information includes adjacent

edges and the location of replicas. During execution,

each node periodically logs updated data of its own

partition to incremental snapshots on the persistent stor-

age, such as new values and states of vertices and edges.

For synchronous mode, all nodes will simultaneously do

logging for all vertices in the global barrier to generate

a consistent snapshot. While for asynchronous mode, all

nodes initiate logging at fixed intervals, and perform a

consistent asynchronous snapshot based on the Chandy-

Lamport algorithm [13]. The checkpoint frequency can

be selected based on the mean time to failure model [18]

to balance the checkpoint cost against the expected

recovery cost. Upon detecting any node failures, the

graph states will be recovered from the last completed

checkpoint. During recovery, all the nodes first reload

the graph topology from the metadata snapshot in

parallel and then update states of vertices and edges

through data snapshots. Fig. 1 illustrates an example of

checkpoint-based fault tolerance for synchronous mode.

2.3 Issues of Checkpoint-based Approach

Though many graph-parallel systems provide

checkpoint-based fault tolerance support, it is disabled

by default due to notable overhead during normal

computation and lengthy recovery time. To estimate

checkpoint and recovery cost, we evaluate the overhead

of checkpoint (Imitator-CKPT) based on Apache

Hama [9] 2, an open-source clone of Pregel. Note that

Imitator-CKPT is several times faster than Hama’s

default checkpoint mechanism (up to 6.5X for Wiki

dataset [19]), as it further improves Hama through

vertex replication to incrementally launch checkpoint

and avoids storing messages in snapshot. Further,

Imitator-CKPT only records the necessary states

according to the behavior of graph algorithms. For

example, Imitator-CKPT skips edge data for PageRank.

Hence, Imitator-CKPT can be viewed as an optimal

case of prior checkpoint-based approaches.

In the rest of this section, we will use Imitator-

CKPT to illustrate the issues with checkpoint-based

fault tolerance on a 50-node EC-2 like cluster3.

2.3.1 Checkpointing

Checkpointing requires time-consuming I/O operations

to create snapshots of updated data on a globally visible

persistent storage (we use HDFS [20] here). Fig. 2(a)

illustrates the performance cost of one checkpoint for

different algorithms and datasets. The average execution

2. We extended and refined Hama’s checkpoint and recovery mech-
anism as it currently does not support completed recovery and without
optimizations.

3. Detailed experimental setup can be found in section 6.1

time of one iteration without checkpointing is also pro-

vided as a reference. The relative performance overhead

of checkpointing for LJournal and Wiki is relatively

small, since HDFS is more friendly to writing large

data. Even for the best case (i.e., Wiki), creating one

checkpoint still incurs more than 55% overhead.

Fig. 2(b) illustrates an overall performance com-

parison between turning on and off checkpointing

on Imitator-CKPT for PageRank with the LJournal

dataset [21] by 20 iterations. We configure Imitator-

CKPT using HDFS to store snapshots and using dif-

ferent intervals from 1 to 4 iterations. Checkpointing

snapshots to HDFS is not the only cause of overhead.

The imbalance of global barrier also contributes a

notable fraction of performance overhead, since check-

point operation must execute in the global barrier. In

addition, though decreasing the frequency of intervals

can reduce overhead, it may result in snapshots much

earlier than the latest iteration completed before the

failure, and increase the recovery time due to replaying

a large amount of missing computation. The overall per-

formance overhead for intervals 1, 2, and 4 iteration(s)

reaches 89%, 51% and 26% accordingly. Hence, such

a significant overhead becomes the main reason to the

limited usage of checkpoint-based fault tolerance for

graph-parallel models in practice.

2.3.2 Recovery

Though most fault tolerance mechanisms focus on min-

imizing overhead in logging, the time for recovery is

also an important metric of fault tolerance. The poor

performance and scalability in recovery is another issue

of checkpoint-based fault tolerance. In checkpoint-based

recovery, a new node for recovery needs to reload states

of the crashed node in last snapshot from the persistent

storage or even through network. The time for recovery

are mainly limited by the I/O performance of the new-

bie node. Even worse, optimizations in checkpointing,

such as incremental snapshot and lower frequency of

intervals, may further increase the recovery time.

Fig. 2(c) illustrates a comparison between the average

execution time of one iteration and recovery on Imitator-

CKPT for PageRank with the LJournal dataset [21]. The

recovery consists of three steps, including (reload)ing

(meta)data, (reconstruct)ing in-memory graph states,

and (replay)ing the missing computation. The reloading

from snapshots on persistent storage incurs the major

overhead, since it only utilizes the I/O resources in

single node.

In addition, a standby node for recovery may not

always be available, especially in a resource-scarce in-

house cluster. It is also impractical to wait for rebooting

of the crashed node. This constrains the usage scenario

of such an approach. Further, as it only enables to
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migrate the workload on crashed node to a single sur-

viving node, it may result in significant load imbalance

and performance degradation of normal execution after

recovery.

3 Replication-based Fault Tolerance

This section first identifies challenges and opportunities

in providing efficient fault tolerance, and then describes

the design of Imitator.

3.1 Challenges and Opportunities

Low Overhead in Normal Execution: Compared

to data-parallel computing models, the dependencies

between vertices in graph-parallel models demand a

fine-grained fault tolerance mechanism. Low over-

head re-execution [22] and coarse-grained transforma-

tion [23] can hardly satisfy such requirement. In con-

trast, checkpoint-based fault tolerance in existing graph-

parallel systems sacrifices the performance of normal

execution for fine-grained logging.

Fortunately, existing replicas for vertex computation

in a distributed graph-parallel system open an opportu-

nity for efficient fine-grained fault tolerance. Inspired

from fault tolerance in distributed file system (e.g.,

GFS [24]), the replicas originally used for local access

in vertex computation can be reused to backup data of

vertices and edges, while the synchronization messages

between a master vertex and its replicas can be reused

to maintain the freshness of replicas.

To leverage vertex replicas for fault tolerance, it is

necessary that each vertex has at least one replica;

otherwise extra replicas for these vertices have to be

created, which incurs additional overhead for commu-

nication during normal execution. Fig. 3(a) shows the

percentage of vertices without replicas on a 50-node

cluster for a set of graphs [21] using the default hash-

based (random) partitioning. Only GWeb and LJournal

contain more than 10% of such vertices, while others

only contain less than 1% vertices. The primary source

of vertices without replicas is selfish vertices, which

have no outgoing edges (e.g., vertex 7 in Fig. 1). For

most graph algorithms, the value of a selfish vertex has

no consumer and only depends on ingoing neighbors.

Consequently, there is no need to create extra replica

for selfish vertices. In addition, the performance cost

in communication depends on the number of replicas,

which is several times the number of vertices. Fig. 3(b)

illustrates the percentage of extra replicas required for

fault tolerance regardless of selfish vertices, which is

less than 0.15% for all dataset.

Fast Recovery from Failure: For checkpoint-based

fault tolerance, recovery from a snapshot on the persis-

tent storage cannot harness all resources in the cluster.

The I/O performance of a single node becomes the

bottleneck of recovery, which does not scale with the

increase of nodes. Further, a checkpoint-based fault

tolerance mechanism also depends on standby nodes to

take over the workload on crashed nodes.

Fortunately, the replicas of a vertex scattered across

the entire cluster provide a new opportunity to recover

a node failure in parallel, which is inspired from the

fast recovery in DRAM-based storage system (e.g.,

RAMCloud [15]). Actually, the time for recovery may

be less with more nodes if the replicas selected to

recovery can be evenly assigned to all nodes.

In addition, an even distribution of replicas for ver-

tices on crashed node further provides the possibility to

support migrating the workload on crashed nodes to all

surviving nodes without using additional standby nodes

for recovery. This may also reserve the load balance of

execution after recovery.

3.2 Overall Design of Imitator

Based on the above observation, we propose Imitator,

a replication-based fault tolerance scheme for graph-
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Algorithm 1: Imitator Execution Model

Input: Date Graph G = (V, E, D)
Input: Initial active vertex set V

1 if is newbie() then // newbie node

2 newbie enter leave barrier()
3 iter = newbie rebirth recovery()

4 while iter < max iter do
5 compute()
6 send msgs()

7 state = enter barrier()
8 if state.is f ail() then // node failure

9 rollback()
10 if is rebirth() then rebirth recovery(state)
11 else migration recovery(state)
12 continue

13 else // normal execution

14 commit state()
15 iter ++

16 state = leave barrier()
17 if state.is f ail() then // node failure

18 if is rebirth() then rebirth recovery(state)
19 else migration recovery(state)

parallel systems. Unlike prior systems, Imitator employs

replicas of a vertex to provide fault tolerance rather than

periodically checkpointing graph states. The replicas of

a vertex inherently provide a remote consistent backup,

which are synchronized during each global barrier.

When a node crashes, its workload (vertices and edges)

will be reconstructed on a standby node or evenly

migrated to all surviving nodes.

Note that Imitator assumes a fail-stop model where a

machine crash won’t cause wild or malicious changes

to other machines. How to extend Imitator to support

more complicated faults like byzantine faults [25], [26]

will be our future work.

Execution Flow: Imitator extends existing syn-

chronous computation with detection of potential node

failures and seamless recovery. As shown in Algo-

rithm 1, each iteration consists of three steps. First, all

vertices are updated using the messages from neighbor-

ing vertices in the computation phase (line 5). Secondly,

an update of vertex states is synchronized from a

master vertex to its replicas in the communication phase

through message passing (line 6). Note that all messages

have been received before entering the global barrier.

Finally, all new vertex states are consistently committed

within a global barrier (line 14 and 15).

Imitator employs a highly available and persistent

distributed coordination service (e.g., Zookeeper [27])

to provide barrier-based synchronization and distributed

shared states among workers. Node failures will be

sample 
graph master mirror

FT
replica

COMP
replica

node1 node2 node3

sync

Fig. 4: A sample of replicas in Imitator.

detected before (line 7) and after (line 16) the global

barrier. Before recovery, each worker must enforce the

consistency of its local graph states. If a failure occurs

before the global barrier, each surviving node should

roll back its states (line 9) and execution flows (line

12) to the beginning of the current iteration, since

messages from crashed nodes may be lost. Imitator

provides two alternative recovery mechanisms: Rebirth

and Migration. For Rebirth, a standby node will join

the global synchronization (line 2), and reconstruct the

graph states of the crashed nodes from all surviving

nodes (line 3, 10 and 18). For Migration mode, the

vertices on crashed nodes will be reconstructed from

all surviving nodes (line 11 and 19).

4 Managing Replicas

Many graph-parallel systems construct a local graph

on each node by replicating vertices to avoid remote

accesses during vertex computation. As shown in the

middle of Fig. 4, vertices are evenly assigned to three

machines with their ingoing edges, and replicas are cre-

ated to provide local vertex accesses. These replicas will

be synchronized with their master vertices to maintain

consistency. Imitator reuses these replicas as consistent

backups of vertices for recovery from failures. However,

replication-based fault tolerance requires that every ver-

tex has at least a replica with exactly the same states

with the master vertex, while currently replicas are only

with partial states. Further, not all vertices have replicas.

This section describes extensions for fault-tolerance

oriented replication, creating full state replicas and an

optimization for selfish vertices. Here, we only focus

on creating at least one replica to tolerate one machine

failure; creating more replicas can be done similarly.

4.1 Fault Tolerant (FT) Replica

Original replication for local accesses may cause some

vertices to have no replicas. For example, the internal

vertex (e.g., vertex 6 in Fig. 4) has no replica as all its

edges are stored at the same node. A failure of node 3

may cause an irrecoverable state for vertex 6.
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For such an internal vertex, Imitator creates an ad-

ditional fault tolerant (FT) replica on another machine

when loading the graph. There is no constraint on the

location of these replicas, which provides an opportunity

to balance the workload among nodes to hide the

performance overhead. Before assignment, the number

of replicas and internal vertices are exchanged among

nodes. Each node proportionally assigns FT replicas to

the rest nodes. For example, vertex 6 has no computa-

tion replicas and its additional FT replica is assigned to

node 1, which has fewer replicas, as shown in Fig. 4.

4.2 Full-state Replica (Mirror)

The replica to provide local access does not have full

states to recover the master vertex, such as the location

of replicas. Some algorithms (e.g. SSSP) also need to

associate data to edges, such as the weight of edge.

However, it is not efficient to upgrade all replicas to be

homogeneous with their masters, which will cause ex-

cessive memory and communication overhead. Imitator

selects one replica to be the homogeneous replica with

the master vertex, namely mirror. All data of ingoing

edges will be synchronized from master to mirror.

Most additional states in mirrors are static, such as

the location of replicas and the weight of ingoing edges,

which are replicated during graph loading. The rest

states are dynamic, such as whether a vertex is active

or inactive in next iteration, and should be transferred

with synchronization message from master to mirror in

each iteration.

As mirrors are responsible to recover their masters

on a crashed node, the distribution of mirrors may

affect the scalability of recovery. Since the locations of

mirrors are restricted by the locations of all candidate

replicas, each machine adopts a greedy algorithm to

evenly assign mirrors on other machines independently:

each machine maintains a counter of existing mirrors,

and the master always assigns mirrors to replicas whose

hosting machine has least mirrors so far.

Note that the FT replica is always the mirror of

vertex. As shown in the bottom part of Fig. 4, the

mirrors of vertex 1 and 4 on node 1 are assigned to

node 2 and 3 accordingly, and the mirror of vertex 7

has to be assigned to node 2.

4.3 Optimizing Selfish Vertices

The main overhead of Imitator during normal execution

is from the synchronization of additional FT replicas.

According to our analysis, many vertices requiring FT

replicas have no neighboring vertices consuming their

vertex data (selfish vertices). For example, vertex 7

has no outgoing edges in Fig. 4. Further, for some

algorithms (e.g., PageRank), the new vertex data is

computed only according to its neighboring vertices.

node1 node2 node3

master

mirror

replica

crashed nodesurviving nodes

Fig. 5: A sample of Rebirth recovery approach in Imitator.

For such vertices, namely selfish vertices, Imitator

only creates an FT replica for recovery, and never

synchronizes them with masters in normal execution.

During recovery, the static states of selfish vertices can

be obtained from its FT replicas, and dynamic states

can be re-computed using neighboring vertices.

5 Recovery

The main issue of recovery is knowing which vertices,

either master vertices or other replicas, are assigned

to the crashed node. A simple approach is adding a

layer to store the location of each vertex. This, however,

may become a new bottleneck during the recovery.

Fortunately, when a master vertex creates its replicas,

it knows its replicas’ locations. Thus, by storing its

replicas’ locations, a master vertex knows if its replicas

are assigned to the crashed node. As its mirrors are

responsible for recovery when a master vertex crashes,

a master needs to replicate this information to its mirrors

as well.

During recovery, each surviving node will check

in parallel whether master vertices or replica vertices

related to the failed nodes have been lost and reconstruct

the states accordingly. As each remaining node has

the complete information of its related graph states,

such checking and reconstruction can be done in a

decentralized way and in parallel.

Imitator provides two strategies for recovery: Rebirth

based recovery, which recovers graph states in crashed

nodes to standby ones; Migration based recovery, which

scatters vertices on the crashed nodes to surviving ones.

5.1 Rebirth Based Recovery

During recovery, the location information of vertices

will be used by master vertices or mirrors to check

whether there are some vertices to recover. Rebirth

based recovery comprises three steps: Reloading, where

the surviving nodes send the recovery messages to the

standby nodes to help it recover states; Reconstruc-

tion, which reconstructs the states (mainly the graph

topology) necessary for computation; and Replay, which

redoes some operations to get the latest states of some

vertices.

5.1.1 Reloading

Through checking the location of its replicas, a master

vertex will know whether there are any of its replicas

located in the crashed nodes. If so, the master vertex
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will generate messages to recover such replicas. If a

master vertex is on the crashed nodes, its mirror will be

responsible to recover this crashed master. Based on this

rule, each surviving node can just use the information

from its local vertices to decide whether it needs to

participate in the recovery process.

For the sample graph in Fig. 5, node 3 crashed during

computation. After a new standby node (i.e., machine)

awakes node 1 and node 2 from the barrier operation,

these two nodes will check whether they have some

vertices to recover. Node 1 will check its master vertices

(master vertex 1, 4, and 7), and find that there are some

replicas (replica 1 and mirror 4) on the crashed node.

Hence, it needs to generate two recovery messages to

recover replica 1 and mirror 4 on the new node. Node

1 will also check its mirrors to find whether there is

any mirror whose master was lost. It then finds that

the master of vertex 6 was lost, and thus generates a

message to recover master vertex 6. Node 2 will act the

same as node 1.

The surviving nodes also need to send some global

states to the newbie, such as the number of iterations

so far. All the recovery messages are sent in a batched

way when its number has exceeded a threshold.

5.1.2 Reconstruction

For the new machine, there are three types of states

to reconstruct: the graph topology, runtime states of

vertices, and global states (e.g., number of iterations

so far). The last two types of states can be retrieved

directly from recovery messages. The graph topology is

a complex data structure, which is non-trivial to recover.

A simple way to recover the graph topology is using

the raw edge information (the “point to” relationship

between vertices) and redoing operations of building

topology in the graph loading phase. In this way, after

receiving all the recovery messages, the new machine

will create vertices based on the messages (which

contain the vertex types, the edges and the detailed

states of a vertex). After creating all vertices, the new

machines will use the raw edge information on each

vertex to build the graph topology. One issue with this

approach is that building graph topology can only start

after creating all vertices. Further, due to the complex

“point to” relationship between vertices, it is not easy

to parallelize the topology building process.

To expose more parallelism, Imitator instead uses en-

hanced edge information for recovery. Since all vertices

are stored in an array in each machine, the topology of

a graph is represented by the array index. This means

that if there is an edge from vertex A to vertex B,

vertex B will have a field to store the index of vertex

A in the array. Hence, if Imitator can ensure a vertex

is placed at the same position of the vertex array in the

new machine, reconstruction of graph topology can be

done in parallel on all the surviving nodes.

To ensure this, Imitator also replicates the master’s

position to its mirror with other states in the graph

loading phase. When a mirror recovers its master, it will

create the master vertex and its edges, and then encode

the vertex and the master position into the recovery

message. On receiving the message, the new machine

just needs to retrieve the vertex from the message and

put it at the given position. Recovering replicas can be

done in the same way.

Since every crashed vertex only needs one vertex to

do the recovery, there is only one recovery message for

one position. Thus, there is no contention on the array

(which is thus lock-free) and can be done immediately

when receiving the message. Hence, it is completely

decentralized and can be done in parallel. Note that

there is no explicit reconstruction phase for this ap-

proach because the reconstruction can be done during

the reloading phase when receiving recovery messages.

5.1.3 Replay

Imitator can recover most states of a vertex directly

from the recovery message, except the activation state,

which cannot be timely synchronized between masters

and mirrors. The reason is that a master vertex may

be activated by some neighboring vertices that are not

located on the same node. When a master replicates

its states to its mirrors, the master may still not be

activated by its remote neighbors. Hence, the activation

state can only be recovered by replaying the activation

operations. However, the neighboring vertex of a master

vertex might also locate at the crashed node. As a result,

a master vertex needs to replicate its activation infor-

mation (which vertices it should activate) to its mirrors.

A vertex (either master or mirror) doing recovery will

attach the corresponding activation information to the

recovery message. The new node will re-execute the

activation operations according to these messages on

all the vertices.

5.2 Migration Approach

When there are no standby nodes for recovery, Mi-

gration based recovery will scatter graph computation

from the crashed nodes to surviving ones. Fortunately,

the mirrors, which are isomorphic with their masters,

provide a convenient way to migrate a master vertex

from one node to another. Other data to be used by the

new master in future computation can be retrieved from

its neighboring vertices.

The Migration approach also consists of three steps:

Reloading, Reconstruction, and Replay, of which the

processes are only slightly different from the Rebirth

approach. In the followings, we will use the example in
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Fig. 6: A sample of Migration recovery approach in Imitator.

Fig. 6 as a running example to illustrate how Migration

based recovery works. Here, we only describe recov-

ering graph states to continue execution for simplicity.

Creating additional replicas to retain the original fault

tolerance level can be done similarly by creating an

additional mirror when tolerating recurrent failures.

5.2.1 Reloading

The main differences between Rebirth and Migration for

reloading is that mirror vertices will be “promoted” to

masters and take over the computation tasks for future

execution.

On detecting a failure, all surviving nodes will get

the information about the crashed ones from the master

node of a cluster. Surviving nodes will scan through

all of their mirrors to find whose masters were on the

crashed nodes. In Fig. 6, they are mirror 6 on node 1 and

mirror 3 on node 2. These mirrors will be “promoted”

as new masters.

After “promotion”, all surviving nodes will broadcast

the information of the “promoted” mirrors. The broad-

cast information will be used by other nodes as a hint to

send the necessary data to the new masters. Such data

includes:

• New replicas: Since the new master will be on

a different node, new replicas of its neighbors on

different nodes whose out-edge points to it are

necessary to make the states of those neighbors

accessible during computation. Replica 6 on node

2 in Fig. 6 illustrates this case.

• Edges from old replicas to the new master: If

there is already a replica on the machine where the

new master resides, a new replica is not necessary.

Instead, the new edges will be sent to that node

and will then be added to existing replicas. Edge

from mirror 2 to master 6 on node 1 in Fig. 6 is

one example of such case.

• Edges between masters: With the new masters,

there may be some new edges between the masters,

either between two new masters or between a new

master and an old one. Edge from master 5 to

master 3 on node 2 in Fig. 6 shows the case.

All surviving nodes will scan its masters, including

both old masters and the newly “promoted” ones, check

if some data should be reconstructed, and prepare the

necessary information for the reconstruction phase.

5.2.2 Reconstruction

During reconstruction, all surviving nodes will assemble

new graph states from the recovery messages sent in

the reloading phase. After the reconstruction phase, the

topology of the graph and most of the states of the

vertices (both masters and replicas), are migrated to the

surviving nodes.

5.2.3 Replay

The Migration approach also needs to fix the activation

states for new masters. However, the Rebirth approach

needs to fix such states for all recovered masters, while

the Migration approach only needs to fix the states

of newly promoted masters, which are only a small

portion of all master vertices on one machine. Hence,

we choose to treat these new masters specially instead

of redoing the activation operation on all the vertices.

Imitator checks whether a new master is activated by

some of its neighbors or not. If so, Imitator will correct

the activation states of the new master. When finishing

the Replay phase, the surviving nodes can now resume

the normal execution.

5.3 Additional Failure Models

5.3.1 Multiple Machine Failures

To tolerate multiple nodes failure at the same time,

Imitator just needs to ensure that the number of mirrors

for each vertex in Imitator is equal or larger than the

expected number of machines to fail. When a single

machine failure happens, if all mirrors participate the

recovery, it is a waste of network bandwidth. Hence,

during graph loading, each mirror is assigned with an

ID; only the surviving mirrors with the lowest ID will

do the recovery work. Since a mirror has the location

information of other mirrors and the new coming node’s

logic ID of this job, mirrors need not communicate with

each other to elect a mirror to do recovery.

5.3.2 Other Types of Failures

When a failure happens during the system is loading

graph, since the computation has not started, we just

restart the job. If a failure happens during recovery, such

a failure is almost the same as the failure happening

during the normal execution. Hence, we just restart the

recovery procedure.

There is a single master for a cluster, and it is only

in charge of job dispatching and failure handling. It

has nothing to do with the job execution. Since the

possibility of master failure is very small, and there are

a lot of prior work to address the single master failure,

we do not try to address the master failure in this paper.
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TABLE 1: A collection of input graphs, and the execution time
on Hama and Imitator without fault tolerance on 50 nodes.

Algorithm Graph |V | |E| Hama w/o FT

PageRank
GWeb 0.87M 5.11M 17.0 12.2

LJournal 4.85M 70.0M 280.5 86.7
Wiki 5.72M 130.1M 482.6 120.7

ALS SYN-GL 0.11M 2.7M 42.5 13.7

CD DBLP 0.32M 1.05M 17.2 14.8

SSSP RoadCA 1.97M 5.53M 295.3 341.4

6 Evaluation

We have implemented Imitator based on Hama [9],

an open source clone of Pregel implemented in Java,

but extended Hama by vertex replication instead of

pure message passing as the communication mecha-

nism. The support of fault tolerance requires no source

code changes to graph algorithms. To measure the effi-

ciency of Imitator, we use four typical graph algorithms

(PageRank, Alternating Least Squares (ALS), Commu-

nity Detection (CD) and Single Source Shortest Path

(SSSP)) to compare the performance and scalability of

different systems and configuration. We also provide a

case study to illustrate the effectiveness of Imitator by il-

lustrating the execution of different recovery approaches

under injected node failures.

6.1 Experimental Setup

All experiments are performed on a 50-node EC2-like

cluster. Each node has four AMD Opteron cores, 10GB

of RAM, and connected via a 1 GigE network. We use

HDFS on the same cluster as the distributed storage

layer to store input files and checkpoints.

Table 1 lists a collection of large graphs for our

experiments. Most of them are from Stanford Large

Network Dataset Collection [21]. The Wiki dataset is

from [19]. The dataset for the ALS algorithm is synthet-

ically generated by tools that used in the Gonzalez et

al. [12]. The SSSP algorithm requires the input graph to

be weighted. Since the RoadCA graph is not originally

weighted, we synthetically assign a weight value to

each edge, where the weight is generated based on

a log-normal distribution (µ = 0.4,σ = 1.2) from the

Facebook user interaction graph [28].

6.2 Hama vs. Imitator’s Baseline

As the baseline of Imitator is extended from Hama, we

first compare the baseline performance of Imitator with

that of Hama. As shown in Table 1, Imitator actually

has better performance compared to Hama in all the

applications except SSSP. For the three applications,

Imitator always outperforms Hama and the speedup can

reach up to 4X in the largest dataset Wiki.

Hama adopts the pure message passing to vertex

communication, in which the message is simpler than

the synchronization message between the master vertex

and replica vertex in Imitator. However, supporting
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Fig. 7: A comparison of runtime overhead between replication
(REP) and checkpoint (CKPT) based fault tolerance over
Imitator w/o fault tolerance (BASE).

dynamic computation [11] is hard for a message passing

system, but is quite natural for a replica-based one. With

the support of dynamic computation, the total number

of messages to send and vertex computations in Imitator

is notably less than that in Hama for PageRank, ALS,

and CD, which mainly contributes to the speedup.

For SSSP, a vertex only needs to activate its neighbors

when its distance to the source vertex changes, so

there is little chance for dynamic computation. As the

message in Hama is simpler, Imitator is a little bit

slower than the original Hama in SSSP.

Unless specified, we will use Imitator without fault

tolerance as the baseline and Imitator-CKPT as the

checkpoint-based fault tolerance system for comparison.

6.3 Runtime Overhead

Fig. 7 shows the runtime overhead due to applying

different fault tolerance mechanisms on the baseline

system. The overhead of Imitator is less than 3.7%

for all algorithms with all datasets, while the over-

head of the checkpoint-based fault tolerance system is

very large, varying from 65% for PageRank on Wiki

to 449% for CD on DBLP. Even using in-memory

HDFS, checkpoint-based approach still incurs perfor-

mance overhead from 33% to 163% partly due to the

cross machine triple replication in HDFS. In addition,

writing to memory also causes significant pressure on

memory capacity and bandwidth to the runtime, occupy-

ing up to 42.1GB extra memory for SSSP on RoadCA.

The time of checkpointing once is from 1.08 to 3.17

seconds for different size of graphs, since the write

operations to HDFS can be batched and are insensitive

to the data size. The overhead of each iteration in

Imitator is lower than 0.05 seconds, except 0.22 seconds

for Wiki, which is still several tens of times faster than

checkpointing.

6.4 Overhead Breakdown

Fig. 8(a) shows the extra replicas among all the replicas

used for fault tolerance. The rates of extra replicas

are all very small without selfish vertices, even the

largest rate is only 0.12%. Fig. 8(b) shows the redundant

messages among the total messages during the normal

execution. Since the rate of extra replicas is very small,
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TABLE 2: The recovery time (seconds) of different approaches
(Checkpoint, Rebirth and Migration).

Algorithm Graph CKPT Rebirth Migration

PageRank
GWeb 8.17 2.08 1.20

LJournal 41.00 8.85 2.32
Wiki 55.67 14.12 3.40

ALS SYN-GL 6.86 1.00 1.28

CD DBLP 3.88 0.67 1.09

SSSP RoadCA 12.06 2.27 1.57

the additional messages rate is very small, with only

2.92% for the worst case. When enabling the optimiza-

tion for selfish vertices, the messages overhead is lower

than 0.1%.

6.5 Efficiency of Recovery

Replication-based fault tolerance provides a good op-

portunity to fully utilize the entire resources of the clus-

ter for recovery. As shown in Table 2, the replication-

based recovery outperforms checkpoint-based recov-

ery by up to 6.86X (from 3.93X) and 17.67X (from

3.55X) for Rebirth and Migration approaches accord-

ingly. Overall, Imitator can recover 0.95 million and

1.43 million vertices (including replicas) from one failed

node in just 2.32 and 3.4 seconds for LJournal and Wiki

dataset accordingly.

For large graphs (e.g., LJournal and Wiki), the per-

formance of Migration is relatively better than that of

Rebirth, since it avoids data movement (e.g., vertex

and edge values) in the reloading phase and distributes

replaying operations to all surviving nodes rather than

on the single new node. On the other hand, for small

graphs (e.g., SYN-GL and DBLP), the performance

of Rebirth is relative better than that of Migration,

since there are multiple rounds of message exchanges in

Migration. This causes slowdown to recovery, ranging

from 28% to 63%, compared with Rebirth.

6.6 Scalability of Recovery

We evaluate the recovery scalability of Imitator for

PageRank with the Wiki dataset using different numbers

of nodes that participate in recovery. As shown in

Fig. 9, both recovery modes scale with the increase of

recovery machines, since all machines can participate

the workload in the reloading phase. Because the local

graph has been constructed in the reloading phase, there
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is no explicit reconstruction phase for the Rebirth mode.

Further, the replay operations are only executed in new

node for the Rebirth mode, while are distributed to all

surviving nodes for the Migration mode.

6.7 Impact of Graph Partitioning

To analyze the impact of graph partitioning algorithms,

we implement Fennel [29] on Imitator, which is a

heuristic graph partitioning algorithm. As shown in

Fig. 10(a), compared to the default Hash-based parti-

tioning, Fennel significantly decreases the replication

factor for all datasets, reaching 1.61, 3.84 and 5.09 for

GWeb, LJournal and Wiki respectively.

Fig. 10(b) illustrates the overhead of Imitator under

Fennel partitioning. Due to lower replication factor,

Imitator requires more additional replicas for fault tol-

erance, which also result in the increase of message

overhead. However, the runtime overhead is still small,

ranging from 1.8% to 4.7%.

6.8 Handling Multiple Failures

When Imitator is configured to tolerate multiple node

failures, there will be more extra replicas to add. The

overhead tends to be larger. Fig. 11 shows the overall

overhead when Imitator is configured to tolerate 1, 2 and

3 node failure(s). As shown in Fig. 11(a), the overhead

of Imitator is less than 10% even when it is configured

to tolerate 3 nodes failures simultaneously.

Fig. 11(b) shows the recovery time of the largest

dataset, Wiki, when different numbers of nodes crashed.

In Rebirth mode, since the surviving nodes need more

messages to exchange when the crashed nodes increase,

the time to send and receive recovery messages in-

creases. However, the time to rebuild graph states and

replay some pending operations is almost the same as

that of a single node failure. Since Migration strategy

harnesses the cluster resource for recovery, the time of
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TABLE 3: Memory and GC behavior of Imitator with different
fault tolerance setting for PageRank on Wiki

Config
Max

Cap(GB)
Max

Usage(GB)
Young/Full GC

Number Time (Sec))

w/o FT 3.85 2.76 40/15 13.7/13.4

FT/1 5.05 3.70 50/29 19.9/21.7

FT/2 6.24 4.51 55/29 23.6/26.1

FT/3 6.99 4.91 58/30 25.7/29.7

every operation in Migration is relatively small.

6.9 Memory Consumption

As Imitator needs to add extra replicas to tolerate faults,

we also measure the memory overhead. We use jstat, a

memory tool in JDK, to monitor the memory behavior

of the baseline system and Imitator. Table 3 illustrates

the result of one node of the baseline system and Imita-

tor on our largest dataset Wiki. If Imitator is configured

to tolerate one node failure during computation, the

memory overhead is modest, the memory usages of the

baseline system and Imitator is comparable.

6.10 Case Study

Fig. 12 presents a case study for running PageRank

using LJournal dataset with none or one machine failure

during the execution of 20 iterations. Different recovery

strategies are applied to illustrate their performance.

The symbols, BASE, REP, and CKPT/4, denote the

execution of the baseline, replication and checkpoint-

based fault tolerance systems without failure accord-

ingly, where others illustrate the cases with a failure

between the 6th and 7th iterations. Note that the interval

of checkpointing is 4 iterations.

The scheme of failure detection is the same for all

strategies, of which the time span is about 7 seconds.

For the recovery speed, the Migration strategy, of which

recovery time is about 2.6 seconds, is the fastest due to

the fact that it harnesses all resources and minimizes

data movements. The Rebirth strategy has a time span

of 8.8 seconds. This still outperforms the 45 seconds

recovery time of CKPT/4, which does the incremental

checkpoint with an interval of four iterations, due to

fully exploiting network resources and without access-

ing distributed file system.

After the recovery has finished, REP with Rebirth
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can still execute at full speed, since the execution envi-

ronment before and after the failure is the same in this

approach. On the other hand, the REP with Migration

is slower since the available computing resource has

decreased, but only slightly. For the CKPT/4, it still has

to replay 2 lost iterations after a long time recovery.

7 Related Work

Checkpoint-based fault tolerance is widely used in

graph-parallel computation systems. Pregel [5] and its

open-source clones [8], [9] adopt synchronous check-

point to save the graph state to the persistent storage, in-

cluding vertex and edge values, and incoming messages.

GraphLab [11] designs an asynchronous alternative

based on the Chandy-Lamport [13] snapshot to achieve

fault tolerance. Trinity [10] and PowerGraph [12] pro-

vide both synchronous and asynchronous checkpointing

for different modes.

Piccolo [30] is a data-centric distributed computation

system, which provides user-assisted checkpoint mech-

anism to reduce runtime overhead. However, user needs

to save additional information for recovery. MapRe-

duce [22] and other data-parallel models [31] adopt

simple re-execution to recover tasks on crashed ma-

chines, since they suppose all tasks are deterministic and

independent. Graph-parallel models do not satisfy such

assumptions. Spark [23] and Discretized Streams [32]

propose a fault tolerant abstraction, namely Resilient

Distributed Datasets (RDD), for coarse-grained opera-

tions on datasets, which only logs the transformation

used to build a dataset (lineages) rather than the actual

data. It is hard to apply RDD to graph-parallel models,

since the computation on vertex is a fine-grained update.

Replication is widely used in large-scale distributed

file systems [24], [20] and streaming systems [33],

[34] to provide high availability and fault tolerance.

In these systems, all replicas are full-time for fault

tolerance, which may introduce high performance cost.

RAMCloud [15] is a DRAM-based storage system, it

achieves a fast recovery from crashes by scattering its

backup data across the entire cluster and harnessing all

resources of cluster to recover the crashed nodes. Dis-

tributed storage only provides simple abstraction (e.g., a

key-value) and does not consider data dependency and
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computation on data.

SPAR [14] is a graph-structured middleware to store

social data for key-value stores. It also briefly men-

tions of storing more ghost vertices for fault tolerance.

However, it does not consider the interaction among

vertices, and only provides background synchronization

and eventual consistency between master and replicas,

which does not fit for graph-parallel systems.

8 Conclusion

This paper presented a replication-based approach

called Imitator to provide low-overhead fault tolerance

and fast crash recovery. The key idea of Imitator is

leveraging and extending existing replication mecha-

nism with additional mirrors and complete states as the

master vertices, such that vertices in a failed machine

can be reconstructed using states from its mirrors. Eval-

uation showed that Imitator incurs very small normal

execution overhead, and provides fast crash recovery

from failures.
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