
Using Restricted Transactional Memory

to Build a Scalable In-Memory Database

Zhaoguo Wang†, Hao Qian‡, Jinyang Li§, Haibo Chen‡

† School of Computer Science, Fudan University

‡ Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

§ Department of Computer Science, New York University

Abstract

The recent availability of Intel Haswell processors marks the

transition of hardware transactional memory from research

toys to mainstream reality. DBX is an in-memory database

that uses Intel’s restricted transactional memory (RTM) to

achieve high performance and good scalability across multi-

core machines. The main limitation (and also key to practi-

cality) of RTM is its constrained working set size: an RTM

region that reads or writes too much data will always be

aborted. The design of DBX addresses this challenge in sev-

eral ways. First, DBX builds a database transaction layer on

top of an underlying shared-memory store. The two layers

use separate RTM regions to synchronize shared memory

access. Second, DBX uses optimistic concurrency control

to separate transaction execution from its commit. Only the

commit stage uses RTM for synchronization. As a result, the

working set of the RTMs used scales with the meta-data of

reads and writes in a database transaction as opposed to the

amount of data read/written. Our evaluation using TPC-C

workload mix shows that DBX achieves 506,817 transac-

tions per second on a 4-core machine.

1. Introduction

Writing high performance, correctly synchronized software

is a challenge. To date, programmers had several unpleasant

approaches to choose from. Coarse-grained locks provide a

straightforward programming model (mutual exclusion) but

can lead to poor performance under load due to contention.

To reduce contention, programmers commonly resort to a

combination of fine-grained locks and atomic operations.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

EuroSys 2014, April 13 - 16 2014, Amsterdam, Netherlands.
Copyright c© 2014 ACM 978-1-4503-2704-6/14/04. . . $15.00.
http://dx.doi.org/10.1145/2592798.2592815

However, the correctness of the resulting code is complex

to reason about and relies on the processor’s (increasingly

complex) memory model.

Recently, Intel has shipped its 4th-generation Haswell

processor with support for Hardware Transactional Mem-

ory [16]. This opens up a third possibility to scaling multi-

core software. Instead of relying on fine-grained locking

and atomic operations, one can synchronize using hardware

transactions, which offer a programming model that is ar-

guably even more straightforward than mutual exclusion.

The promise is that the resulting implementation is much

simpler and easier-to-understand while still retaining the

performance benefits of fine-grained locking.

Does hardware transactional memory actually deliver its

promise in practice? To answer this question, this paper im-

plements a multicore in-memory database for online trans-

action processing (OLTP) workloads. We use an in-memory

database as a case study for two reasons. First, high perfor-

mance in-memory database is an important application, as

indicated by much recent research and commercial activi-

ties on in-memory databases [17, 39, 42]. Second, an OLTP

database is a sophisticated piece of software, consisting of

concurrent data structures as well as complex transaction

commit logic that require careful synchronization.

Our system, called DBX, implements a transactional key-

value store using Intel’s Restricted Transactional Memory

(RTM). Using RTM, DBX has achieved similar performance

and scalability with state-of-the-art in-memory database us-

ing fine-grained locking [41], yet is easier to implement

and reason about the correctness. However, while hardware

transactional memory theoretically enables effortless coarse-

grained synchronization, in practice, the limitations of RTM

force us to craft transaction regions carefully. The major

technical challenges that shape the design of DBX are 1)

ensure that an RTM region’s working set does not overflow

the allowed hardware limit and 2) avoid spurious aborts due

to false sharing of cache lines and system events.

DBX consists of two modular parts: a key-value store

with either ordered or unordered access and a transactional

layer for grouping together multiple key-value accesses with

serializability property. The key-value subsystem provides

a B+-tree (for ordered tables) or hash table (for unordered

tables) implementation. The data structure is shared among

many threads and DBX protects each operation such as get

and put using a single RTM region. The transaction layer ex-

ecutes each transaction in a separate thread using the three-

phase optimistic concurrency control (OCC) algorithm [21].

In the read phase, the transaction reads from the underlying

key-value store and buffers its writes. In the validation phase,

the transaction is aborted if the records it has previously read

have been modified by concurrent transactions. In the write

phase, a committed transaction applies its writes to the key-

value store. DBX uses a single RTM region to protect the

last two phases to synchronize among concurrently execut-

ing threads, making it easier to reason about correctness.

DBX is also built with a new read-only transaction pro-

tocol that requires no validation phase but still allowing a

transaction to read the most recent database snapshot. The

key idea is letting read-only transactions advance database

snapshot counter, while read-write transactions create most

recent snapshot of records for inflight readers only on de-

mand.

We have implemented a prototype and evaluated it us-

ing the TPC-C mix benchmark on a 4-core (8-hyperthread) 1

Haswell machine. Our evaluations show that DBX performs

similarly to a highly-tuned in-memory database based on

fine-grained locking [41] and has slightly better scalability.

In particular, under 8 threads, DBX achieves 506,817 trans-

actions per second.

Due to hardware limits, our evaluation is restricted to a

small number of threads (i.e., 8), and thus our conclusion on

scalability is still speculative. Future hardware enhancement

like more RTM cores and larger working set size may af-

fect our current conclusion. Nevertheless, DBX shows that

RTM is a powerful hardware primitive that can drastically

simplify the design and implementation of high performance

multicore software.

2. RTM Performance in Practice

This section gives an overview of RTM and discusses how

its characteristics and limitations can impact the design of an

in-memory database.

2.1 RTM Background

With Intel’s RTM, programmers use xbegin and xend to mark

a code region to be executed transactionally. One can also

use xabort to explicitly abort in the middle of a transaction’s

execution. If a transaction commits successfully, all mem-

ory writes will appear to have happened atomically. RTM

provides strong atomicity [2]: if a transaction conflicts with

concurrent memory operations done by other transactional

1 This is currently the maximum number of cores/threads for a machine with

RTM.

or non-transactional code, the processor will abort the trans-

action by discarding all its writes and roll back the system

state to the beginning of the execution. To avoid confusion

with database transactions, we use the term RTM transaction

or RTM region to refer to the hardware transaction.

RTM limitations: As a practical hardware transaction

mechanism, RTM comes with several limitations. First, the

read/write set of an RTM transaction must be limited in size.

This is because the underlying hardware uses the CPU cache

to track reads/writes. If an RTM transaction reads/writes

more memory than the hardware limits, it will be aborted due

to overflow of internal processor buffers (like write buffer).

Second, the hardware tracks reads and writes at the granular-

ity of a cache line. Consequently, an RTM transaction may

be unnecessarily aborted due to false sharing of a cache line

and cache set conflict misses. Third, some instructions and

system events such as page faults may abort an RTM trans-

action as well.

Fallback handler: As a best-effort mechanism, an RTM

transaction does not have guaranteed progress even in the

absence of conflicts. As a result, programmers must write

a fallback routine which executes after an RTM transac-

tion aborts for a threshold number of times. To preserve

code simplicity, a fallback routine usually acquires a coarse-

grained lock. Thus, it is important that RTMs do not abort

too frequently; otherwise, the performance will degenerate

to that of a coarse lock-based implementation.

To incorporate the fallback routine, an RTM transaction

first checks if the fallback lock has already been acquired

upon entering its RTM region. If so, the RTM transaction is

aborted explicitly (using xabort); otherwise, it proceeds as

usual with the lock in its readset. Consequently, the trans-

action will only commit if there is no concurrent execution

of the fallback routine that has acquired the lock. A fallback

handler also needs to provide mutual exclusion among mul-

tiple threads such that only one thread can successfully exe-

cute inside the handler.

2.2 RTM Performance Quirks

We present micro-benchmark results to examine RTM’s per-

formance in practice. Our experiments ran on a 4-core (8-

hyperthread) Intel Haswell machine.

RTM can perform more reads than writes. What is

the working set size limit in practice? To find the answer,

we ran a micro-benchmark where all threads read or write

varying amounts of memory sequentially in an RTM region.

All threads touch different cache-aligned memory regions so

that their RTM regions have no conflicts. Figure 1 (a) shows

the RTM abort rate as a function of working set size when

running 4 threads each pinned to a physical core. The abort

rate is measured by dividing the number of aborted transac-

tions by the total number of transactions (both aborted and

committed). The occasional aborts due to system events or

internal buffer overflow cause the abort rate to increase lin-

early with the the execution time of an RTM transaction, as

0.01%

0.1%

1%

10%

100%

1 4 16 64 256 1024 4096

A
b

o
rt

 R
a

te

Working Set Size (KBytes)

Read
Write

(a) Abort Rate With Working Set

(No HT)

0.01%

0.1%

1%

10%

100%

1 4 16 64 256 1024 4096

A
b

o
rt

 R
a

te

Working Set Size (KBytes)

Read
Write

(b) Abort Rate With Working Set

(With HT)

1

8

16

24

32

1 4 16 64 256 1024 4096

M
a

x
im

u
m

 W
ri
te

s
 (

K
B

)

Maximum Reads (KB)

Read Before Write

Write Before Read

(c) Feasible Write Set and Read

Set Combination

0.01%

0.1%

1%

10%

100%

1µs 16µs 256µs 4096µs

A
b

o
rt

 R
a

te

Transaction Execution Time

Abort Rate

(d) Abort Rate With Execution

Time

Figure 1: RTM Features Study

reflected by the working set size. As the working set size

passes a certain limit, abort rates shoot up drastically. Inter-

estingly, the size limits differ for reads and writes: an RTM

transaction can read at most 4MB with an abort rate of 47%,

but can only write at most 31KB memory with an abort rate

of 90%. This is consistent with our understanding that RTM

tracks writes using L1 cache (32KB on our CPU) and uses

an implementation-specific structure to track reads.

Hyperthreading reduces maximum working set size.

Figure 1 (b) corresponds to the same experiments as Figure 1

(a) but with 8 threads, each running on a hyperthreaded core.

The maximal read set is about 2MB with an abort rate of

58% and the maximal write set is about 22KB with an abort

rate of 99%. This is because two hyperthreaded cores share

critical processor resources such as caches and even compete

with each other for the resources.

RTM prefers reads before writes: The order of reads

and writes done in an RTM region affects the working set

size. Figure 1 (c) shows the feasible write set and read set

combination in two types of workloads: read-before-write

performs reads before any writes, and write-before-read per-

forms writes before any reads. The points on the line mark

the maximum reads and writes for an RTM transaction.

The region at the bottom left of each line marks all feasi-

ble read/write sizes for each workload. As we can see, per-

forming reads before writes results in a larger feasibility re-

gion: 3MB memory read with 28KB memory write. This is

because when performing writes before reads, a later read

might evict some write set entry from the L1 cache, result-

ing in an RTM abort. Such a scenario does not happen when

evicting a read set entry from the cache.

RTM should execute promptly: Besides working set

size limits, an RTM transaction can also be aborted due to

system events such as a timer interrupt. Consequently, the

duration of an RTM execution also impacts its abort rate.

We ran experiments in which each RTM transaction spins

inside a while loop for a number of CPU cycles. Figure 1 (d)

shows that the abort rate increases with the execution time

due to increased likelihood of the timer firing during RTM

execution. The timer duration of our test machine is 4 ms,

which is the maximum time an RTM can execute without

being aborted with certainty.

3. DBX Overview

The setup. DBX is an in-memory transactional storage en-

gine. DBX is designed for OLTP applications with frequent

database updates. On a machine with n cores, DBX employs

n worker threads each of which runs on a separate physi-

cal or hyperthreaded core. Each thread executes and com-

mits a single database transaction at a time, synchronizing

with other threads using RTM regions. Committed transac-

tions are asynchronously logged to local disks/SSDs in the

background, as done in other systems like VoltDB [19, 42],

Silo [41] and MassTree [28].

Our Approach. The biggest challenge in using RTM is

to constrain the size of an RTM’s working set to not overflow

the hardware limits. Therefore, we cannot use the naive ap-

proach of enclosing each database transaction within a single

RTM region (i.e., having a single critical section for the life-

time of a transaction, including both execution and commit).

Doing so makes the RTM’s working set size impractically

large: it not only contains all the data read and written in a

database transaction but also the additional memory accesses

required to traverse the in-memory data structure such as a

B-tree.

To limit RTM working set size, we build DBX out of

two independent components: a shared in-memory store and

a transaction layer. The shared in-memory store exposes

a key/value abstraction with either ordered access (using

a B+-tree) or unordered access (using a hash table). The

transaction layer builds on top of the key-value store and

implements typed tables with named records that can be

accessed from within a transaction. For fast access of data

records, this layer keeps the memory references of records

in the read and write set. By decoupling the two layers,

each layer can use smaller RTM regions within itself to

ensure correct synchronization among threads. Furthermore,

the RTM regions used by one layer never conflict with those

used in the other.

To further reduce the RTM region size used in the trans-

action layer, we separate the execution of a transaction from

its commit, using a variant of optimistic concurrency con-

Transaction:
tx.begin()
v = tx.get(k)
v++
tx.put(k,v)

succ = tx.end()
if(!succ) retry

key/value ops

Figure 2: The architecture of DBX

trol (OCC). With OCC, we can employ separate, smaller

RTM regions to handle the execution and commit phase of a

database transaction separately. Different RTM regions used

in different phases collectively guarantee the overall serial-

izability of concurrent database transactions.

4. Shared Memory Store

The in-memory key-value store of DBX is a shared data

structure among all worker threads. To optimize for different

access patterns [1, 25, 27], DBX provides both an ordered

store and an unordered store. We first explain how these

data structures are implemented using RTM regions and

then discuss some custom features for supporting the upper

transactional layer more efficiently.

Ordered store. An ordered key/value store supports or-

dinary lookups as well as iterator-based range scans. We im-

plement such a store using a B+-tree. Programming a high

performance concurrent B+-tree has been notoriously diffi-

cult [23]. Under RTM, such a task is almost as straightfor-

ward as writing a single-threaded tree: we simply enclose

each B+-tree operation with a coarse-grained RTM region.

We have also evaluated a skiplist-based implementation and

found that B+-tree achieves much higher performance due

to better cache behavior.

Several efforts in reducing RTM aborts are important

for the overall performance. First, to avoid false conflict

due to different accesses to the same cache line, we make

each tree node cache-line aligned. Specifically, our current

implementation supports 8-byte fixed length keys and uses

a node size of 256 bytes to pack 16 key-value pairs in each

interior node, achieving a fan-out of 15. Another important

detail is to ensure that the 8-byte pointer to the root of

the tree occupies an exclusive cache line (64-byte). Second,

we adjust the threshold for initiating lock-based fallbacks.

In particular, we use a smaller threshold (i.e., retrying the

RTM region for fewer times) if the height of the tree is big,

indicating more wasted CPU cycles for each aborted RTM.

Third, like other systems [28], we do not rebalance the B+-

tree upon deletion, which may result in a larger RTM region.

There has been both theoretical and empirical work showing

deletion without rebalancing works well in practice [34].

Unordered store. A hash table is better than a B-tree

for performing random lookups. To implement a concurrent

hash table, we simply use an RTM region to protect the

entirety of each lookup, insert or delete operation. Collisions

in hash lookups are resolved using simple chaining. We use

a global lock to perform hash table resizing, which occurs

rarely. The RTM regions of normal hash table operations

always read the status of the global lock and abort if the lock

is held. To avoid false conflicts, we make each hash table

entry cache aligned.

Custom features for the transaction layer. The key-

value stores operate independently of the transaction layer,

however, two aspects of their designs are influenced by the

need to support the transaction layer efficiently.

First, apart from the basic key/value interface such as

get(k), insert(k,v) and delete(k), DBX supports a

new operation called get-with-insert(k,v). This opera-

tion inserts/updates the key k with the new value and returns

the old value if k already exists. The get-with-insert

operation is essential in helping the transaction layer detect

conflicts between a read for non-existing records and a con-

current put with the same key.

Second, since the transaction layer looks up pointers in-

stead of the actual content of the table record in the tree or

hash table (see Figure 2), the “value” stored in the key-value

store is small (8-bytes). Thus, when we make the hash ta-

ble entry cache-line aligned (64-bytes), the memory utiliza-

tion is low. To alleviate this problem, we provide a modified

put interface which DBX’s transaction layer uses to instruct

the hash table to allocate a memory chunk large enough to

store a table record. The hash table allocates the chunk in

the same cache line as the key’s hash entry if it fits. By con-

trast, when using a B-tree based store, the transaction layer

performs record allocation and simply passes pointers to the

key-value store. This is because each leaf node of B-tree is

already big enough to occupy multiple cache lines.

5. Transaction Layer

The transaction layer of DBX runs atop the shared in-

memory store to implement serializable transactions. The

key challenge is to restrict the working sets of RTM regions

to below the hardware limit while still maintaining code sim-

plicity. DBX uses a variant of optimistic concurrency con-

trol protocol (OCC) [21]. The advantage of OCC is that it

cleanly separates the execution of a transaction from its com-

mit. Since the underlying shared memory key-value store

correctly synchronizes concurrent accesses, only the commit

phase requires synchronization among concurrent threads,

resulting in a relatively small RTM working set containing

only the metadata of all the read and write accesses done by

a transaction.

Below, we explain the transaction layer by discussing the

metadata layout, the commit protocol, and other key compo-

nents like range query, read-only transactions, garbage col-

lections and durability.

5.1 Metadata Layout

The transaction layer implements typed database tables and

stores the pointers to table records in the underlying key-

value store. To facilitate OCC, DBX stores the following

metadata with each record.

• Sequence Number tracks the number of updates on the

record. It is used to detect read-write conflict during

commit.

• Local Snapshot Number identifies which snapshot this

record belongs to. It is used to support read-only trans-

actions (§5.4).

• Previous Version Pointer points to the old versions of the

record in the past snapshots. This allows DBX to find

records from old snapshots quickly when serving read-

only transactions.

• Record Data Pointer points to the actual data of the

record. We use a separate memory chunk to store the

actual data to reduce the working set of RTM. This comes

at the cost of an additional memory fetch during record

read.

5.2 Basic Transaction Execution and Commit

We describe the design for an update transaction that only

reads or writes existing records. How DBX handles inser-

tion/deletion and read-only transactions will be discussed in

later sections (§5.3 and §5.4).

Under OCC, a transaction proceeds through three phases:

read, validate and write. The read phase can be viewed as the

execution phase of a transaction while the latter two phases

constitute the commit of the transaction.

Transaction execution. In the read phase of OCC, DBX

executes the user’s transaction code which makes a series of

read and write accesses. To read a record, DBX performs a

get in the underlying key-value store and obtains the pointer

to the record metadata. DBX stores the pointer as well as the

sequence number of the record in the transaction’s read-set.

To modify a record, DBX similarly performs a get to obtain

the pointer to the record and stores the pointer as well as the

actual written value in the transaction’s write-set. In other

words, writes are simply buffered and not visible to other

threads during a transaction’s execution. When performing

a read, DBX checks in the transaction’s write-set first so

that a transaction always sees the value that it has previously

written.

With one exception, the read phase requires no additional

synchronization among worker threads beyond what is al-

ready provided by the shared key-value store. The one place

where synchronization is needed is to guarantee the consis-

Algorithm 1: Commit()

input: TxContext pointer tx

1 //CommitLock is grabbed for RTM fallback

RTMBegin(CommitLock);

2 //validate phase

3 for 〈 p, seqno〉 ∈ tx→readSet do

4 //p is the saved pointer to the record meta-data

5 if p→seqno 6= seqno then

6 abort transaction;

7 end

8 end

9 for 〈 p, key, pValue〉 ∈ tx→writeSet do

10 //p is the saved pointer to the record meta-data

11 if p→status = REMOVED then

12 abort transaction;

13 end

14 end

15 //write phase

16 for 〈 p, key, pValue 〉 ∈ tx→writeSet do

17 //line 18–22 is for supporting read-only tx

18 if p→lsn 6= globalSnapshot then

19 ov := new Version(p→data pointer,

p→lsn);

20 p→oldVersions := ov;

21 p→lsn := globalSnapshot;

22 end

23 //pValue points to the new record value

p→data pointer := pValue;

24 p→seqno++;

25 end

26 RTMEnd(CommitLock);

Algorithm 2: Read()

input: TxContext pointer tx, key

1 if key ∈ tx→writeSet then

2 return corresponding value;

3 end

4 //look up pointer to the record to be read

5 p := kvStore→get(key);

6 //CommitLock is grabbed for RTM fallback

RTMBegin(CommitLock);

7 seqno := p→seqno;

8 value := *(p→ data pointer);

9 RTMEnd(CommitLock);

10 add 〈p,seqno〉 to tx→readSet;

11 return value

tency of sequence number and the actual record data read.

DBX uses an RTM region to group together the memory

reads of the record’s sequence number and its correspond-

ing data, as shown in algorithm 2. Without the protection

of an RTM, the sequence number in the read-set might not

correspond to the actual record data read.

Transaction commit. Committing a transaction proceeds

through two OCC phases (algorithm 1). In the validation

phase, DBX first iterates through the read-set and checks if

any record has been modified since last read by comparing

the current sequence number with the sequence number re-

membered in the read-set. Second, DBX iterates through the

write-set to check if any record has been removed by check-

ing its deletion flag (i.e., REMOVED). If the validation fails,

DBX aborts the transaction.

A successfully validated transaction proceeds to the write

phase to make its writes visible globally. Since the write-

set of a transaction keeps track of the pointer to the record’s

metadata, DBX updates the record’s metadata by swapping

pointers and incrementing the record’s sequence number by

one. DBX remembers the reference of old record data in the

transaction’s write-set for garbage collection later (§5.5).

To ensure correctness, DBX protects the entire commit

process (i.e. both validation and write phases) within a single

RTM region. The resulting code, as shown in algorithm 1, is

easy to read (For now, we ignore lines 18-22 which are used

to support read-only transactions).

Discussion. The size of the RTM region in the commit

phase scales with the meta-data of a transaction’s reads and

writes. The asymmetric read/write limits of RTM hardware

are beneficial since a database transaction tends to do much

more reads and writes. Further, RTM’s preference for “reads

before writes” also matches the memory access pattern of

the commit.

As RTMs do not guarantee progress, DBX must imple-

ment a fallback routine. Furthermore, for those transactions

performing too many reads or writes to exceed the hard-

ware limit, they rely on the fallback routine to proceed.

In algorithm 1, RTMBegin(CommitLock) and RTMEnd(..)

are utility functions wrapping the RTM region with a fall-

back routine that acquires the global CommitLock if the

RTM region aborts a threshold number of times. As part of

RTMBegin, the RTM always checks CommitLock and blocks

if the lock is being held.

Very large read-write transactions are relatively rare; we

have not encountered any that exceeds the RTM working

set limit in the TPC-C benchmark. On the other hand, large

read-only transactions can be common. Therefore, DBX pro-

vides separate support for read-only transactions that do not

require RTM-based commits (§5.4).

Correctness Proof. We give an informal argument on

why our RTM-based commit phase ensures conflict serial-

izability.

T1(op1) T2(opk) Tn(opi) T1(op2)...

Figure 3: Unserializable Dependency Graph

If the execution result is not serializable, the dependency

graph of the transaction will form a cycle. Then, there is at

least one transaction T1: one of its operations op2 depends

one its another operation op1 (Figure 3). According to the

type of operation, there are the following cases.

1. op1 and op2 are both write operations. It happens when

some concurrent transactions observe op1’s result, but miss

op2’s result. It is impossible, because the write phase is

protected by RTM. This guarantees that all local updates of

a transaction are committed atomically.

2. op1 and op2 are both read operations. It happens when

some concurrent transactions update the tuples read by op1,

then op2 observes the concurrent update. It is impossible

because if a concurrent update happened between two read

operations, the conflict will be detected in the validation

phase at the end of execution by checking the sequence

number of the record.

3. op1 writes a record, but op2 reads a record. It happens

when some concurrent transactions observe op1’s result be-

fore op2’s execution. It is impossible because a transaction’s

update can be observed by others only after the transaction

commits which is after all the read operations’ execution.

4. op1 reads a record, but op2 writes a record. It happens

before op2 writes some records, some concurrent transac-

tions have already updated the records read by op1. In this

case, T1 can not commit successfully, because RTM is used

to protect the transaction’s validation and commit to provide

the atomicity . If there is a concurrent update between read

and write operations, a transaction can detect the conflict in

the validation phase.

5.3 General Database Operations

The previous section described DBX transactions that only

read or write existing records. This section discusses how

other types of operations are supported within a transaction.

Read a non-existent record. A transaction that has read

a non-existent key conflicts with other concurrent transac-

tions that inserts a record with the same key. To detect this

conflict, DBX uses the key-value store’s get-with-insert

interface to insert the pointer to a newly allocated empty

record with a sequence number of zero if the key does not

exist and tracks the read in the transaction’s read-set. If an-

other transaction inserts the same key, the conflict will be

detected during the validation phase.

Insert. To insert a new record, DBX uses

get-with-insert to insert the pointer to a new record if

the key does not exist. The actual record value to be inserted

is buffered in the write-set. Doing so allows DBX to detect

conflicts among transactions that attempt to read the same

key.

Delete. Deletion of a record is treated in the same way as

a normal write. In the write phase of the commit protocol,

DBX simply marks the status of the record as having been

deleted. We cannot immediately unlink the record from the

memory store since it holds the reference of old versions

which may be needed by read only transactions. DBX relies

on a separate garbage collection phase to unlink and reclaim

deleted records.

Range query. DBX provides range queries with an iter-

ator interface if the underlying key-value store is ordered.

Range query faces the phantom problem [12] as concurrent

insertions to the range being scanned might violate serial-

izability. Commodity databases usually use next-key lock-

ing [30] to prevent insertion in the queried range. Since next-

key locking is at odds with our OCC-based commit protocol,

we use a mechanism introduced by Silo [41], which also uses

OCC-based commit.

In order to detect insertions in the scanned range, the un-

derlying B+-tree keeps track of modifications on each leaf

node using a version number. Any structural modification

like a key insertion, node split or key deletion, will increase

the version number. During the range scan, the B+-tree ex-

poses a set of pointers that point to the version number field

in each leaf node visited. The version numbers as well as

their corresponding pointers are copied to a transaction’s

read-set. During the validation phase, we abort a transac-

tion if any leaf node has been changed as indicated by the

mismatch between the version number remembered in the

read-set and the current version number.

5.4 Read-only Transactions

It is important to have a custom design for read-only transac-

tions. Huge transactions, ones that can exceed RTM’s hard-

ware limit, tend to be read-only in practice. DBX’ design

allows these read-only transactions to read the most-recent

snapshot of data while only using fixed-size RTM regions.

DBX uses a global snapshot number S to indicate the cur-

rent snapshot. S is updated only by read-only transactions.

Each read-only transaction atomically reads S into local vari-

able rs and increases S by one (e.g., using atomic xadd in

x86). Later, this read-only transaction will only read records

whose snapshot numbers are not larger than rs.

To support snapshot reads, DBX adds extra logic to the

write phase of the commit protocol (see Figure 1 lines 18-

22). Specifically, the read-write transaction checks if the

local snapshot number (i.e., lsn) of the modified record is

equal to S (i.e., globalSnapshot). If not, some concurrent

read-only transactions may need to read the current version

of this record. Thus, the read-write transaction creates a

new version to accommodate the write. The current snapshot

number is stored in the new version of the record. Because

the checking and version creation are done within the RTM

for commit, all the writes of the same transaction will have

same snapshot number.

DBX’s read-only transactions satisfy two important prop-

erties: 1) Unlike the previous design [41], DBX’s read-only

transactions read the most-recent snapshot. Since read-only

transactions are responsible for updating the global snapshot

number, they are guaranteed to see the most recent snapshot.

2) New snapshots are created only when needed. When a

read-only transaction is not in progress, read-write transac-

tions will not trigger the creation of a new version.

5.5 Garbage Collection

Whenever a record is removed from the memory store or

an old version is no longer needed, it is put on a per-

core garbage list. To safely reclaim memory for objects in

the list, we implement a quiescent-state based reclamation

scheme [15]. When a thread T finishes a transaction, it en-

ters into a quiescent state where T holds no references to

shared objects. DBX uses a vector timestamp to track the

number of transactions executed by each worker thread. We

define a grace period as the interval of time during which all

threads have finished at least one transaction. This ensures

that no inflight transaction holds references to removed or

staled records. DBX always waits for a grace period before

reclaiming memory and a thread can determine whether a

grace period has passed by examining the vector timestamp.

Reclaiming old data. There are two kinds of old data:

one is old records and the other is old versions created for

read-only transactions. For the former case, as DBX removes

the reference of the record from the memory store, no thread

will hold its reference after every thread finishes at least one

transaction. For the latter case, when entering a grace period,

all read-only transactions run on the snapshot smaller than

or equal to the global snapshot number will eventually finish

and drop references to the old versions. Hence, after a grace

period, it is safe to reclaim both kinds of old data.

Unlinking old records. When a record is marked as

deleted, DBX cannot remove it from memory store imme-

diately since it holds the reference to old versions. However,

when entering a grace period, all old versions created be-

fore the deletion can be reclaimed. Thus, when a record is

marked as deleted, DBX waits a grace period, before remov-

ing it from the memory store. After a record is removed from

the memory store, DBX marks the status of the record as re-

moved. If another transaction concurrently attempts to write

to a removed record, it will be aborted during the validation

phase. This record will be put into garbage collection list for

reclamation.

Figure 4 illustrates an example. When a transaction tries

to delete record K3, it marks the record as logically deleted

and creates an old copy of this record (old V3) for concurrent

read-only transactions. After a grace period, old V3 is no

longer needed by the read-only transactions and DBX can

reclaim its memory. Meanwhile, the deleted record (K3) is

unlinked from the memory store and is marked as removed.

After another grace period, DBX can safely reclaim the

memory of K3.

TX.delete(k3)

Operations:

1. Unlink old record (K3)

 & mark it as removed (RM)

2. Reclaim old values (V3)

Operations:

1. Reclaim old record (K3)Operations:

1. Mark old record (K3) as

deleted (Del)

2. Insert old value (V3) into

old value list

G
r
a
c
e

P
e
r
i
o
d

I

Unlinked Reclaimed

G
r
a
c
e

P
e
r
i
o
d

I
I

K3 RM

V3

K3 RMK3 Del

V3

K3

v3v3 Old Val

Figure 4: Steps in deleting a record from DBX:1). logically delete the record; 2). unlink the record from DBX; 3). reclaim the memory of the

record.

5.6 Durability

To ensure correct recovery from a crash, DBX logs all update

transactions to the local disk, similar to that of [41].

When a worker thread commits a transaction, it records

all transaction’s update information, including the key, value

and sequence number in its local buffer. When the buffer is

full or a new snapshot is created, the local buffer and the

snapshot number of the records in the buffer will be sent

to a logger thread. The logger thread periodically flushes

the updates from worker threads into durable storage and

calculates the latest persistent snapshot s. All transactions

committed earlier than s can be returned to client. Hence,

the frequency of log flushing and snapshot updating affect

client-perceived latency.

During recovery, DBX calculates the latest snapshot by

scanning the log file. Then, it sorts the update entries be-

longed to the same record using sequence number and re-

applies the latest update of the record.

6. Implementation

We have built DBX from scratch, which comprises of about

2800 C++ SLOCs. DBX supports transactions as a set of

pre-defined stored procedures [19, 42]. A stored procedure

consists of a sequence of get and put operations and runs

as a single transaction. Currently DBX does not provide a

SQL interface; the stored procedures are hard-coded with

the put and get interfaces provided by DBX. DBX currently

supports a one-shot request model, under which all parame-

ters are ready for a single transaction and hence transactions

can avoid stalls due to interaction with users. This imple-

mentation choice allows us to saturate the raw hardware per-

formance much easier.

The rest of this section will discuss two specific optimiza-

tions that further boost the performance of DBX.

6.1 Fallback handler

When a transaction aborts, the CPU will restart the execu-

tion from a fallback handler specified by the xbegin instruc-

tion. Since RTM never guarantees a transaction will succeed,

DBX needs to combine RTM with a global lock in the fall-

back handler (i.e., transactional lock elision [32]) to ensure

forward progress. A simple scheme is when a transaction

restarts, the thread tries to acquire a fallback lock instead

of retrying the RTM region. However, frequently acquiring

the fallback lock is costly and may notably degrade perfor-

mance.

DBX uses different retrying thresholds according to abort

reasons. When an RTM aborts, its abort reason is stored

in the eax register, which includes: shared memory access

(conflict abort), internal buffer overflow (capacity abort)

and system event (system event abort). The threshold for

system event abort is 2, according to the maximal abort rate

(i.e., 50%) for systems events only (Figure 1 (d) in §2).

This means that if a transaction continually aborts twice due

to systems events, either its execution time is larger than

the timer interrupt interval or there may be unrecoverable

system events (e.g., page fault) during execution. Hence, it

will continually fail with retrying, and thus the transaction

should acquire the fallback lock. The threshold for capacity

abort is set to 10, as the maximal abort rate is 90% (Figure 1

(a) in §2) when writing 31 KB memory. This means if a

transaction continually aborts more than 10 times due to

capacity aborts, it is likely caused by cache line eviction due

to working set overflow. Thus, the transaction should acquire

the lock instead of retrying. The threshold of conflict abort is

set to 100, as the RTM transaction may likely succeed upon

retry.

6.2 Buffer Node

Updating a record is common in OLTP workload. For an up-

date operation, DBX first gets the value from the system,

modifies the value and then puts the value into the system.

Intuitively, it will search the record by traversing the memory

store twice (for both get and put). To avoid this, DBX main-

tains a one-node buffer for each transaction in a database

table. For each get or put operation, the node buffer will

be checked first by comparing the key. Upon miss, the sys-

tem will try to get the node by traversing the memory store

and store the pointer of the node in the node buffer. Accord-

ing to our evaluation, the buffer has nearly 50% hit rate for

TPCC-neworder benchmark and 6% performance improve-

ment when using B++ tree as the memory store.

7. Evaluation

This section presents our evaluation of DBX, with the goal

of answering the following questions:

• Can DBX provide good performance and scalability on a

real RTM machine for typical OLTP workloads?

• Can DBX and its memory store perform comparably with

other highly-tuned fine-grained locking counterparts?

• How does each design decision affect the performance of

DBX?

7.1 Experimental Setup

All experiments were conducted on an Intel Haswell i7-4770

processor clocked at 3.4GHz, which has a single chip with 4

cores/8 hardware threads and 32GB RAM. Each core has a

private 32 KB L1 cache and a private 256KB L2 cache, and

all four cores share a 8MB L3 cache. The machine has two

128GB SATA-based SSD devices and runs 64-bit Linux-

3.10.0.

We use two standard benchmarks for key-value store and

databases: YCSB [5] and TPC-C [37]. The YCSB and TPC-

C benchmarks are derived from Silo [41]. To make a direct

comparison with the B+-tree part of Masstree (a state-of-

the-art trie-structured tree highly tuned for multicore), and

Silo, we fix the key length to 64 bit for both YCSB and TPC-

C. The read/write ratio for YCSB is 80/20 and the size of

a record value is 100 bytes. The write operation for YCSB

is read-modify-write. For TPC-C, DBX uses the B+-tree

memory store by default.

For experiments with durability enabled, two logger

threads are used and each is responsible for logging database

records on a separate SSD. Each SSD has 200MB/s maximal

throughput for sequential write, which accumulatively pro-

vide 400MB/s write throughput.

We use SSMalloc [26] as the memory allocator for all

evaluated systems, as it has superior performance and scala-

bility than other allocators evaluated. To eliminate network-

ing overhead, each workload generator directly issues re-

quests to a database worker. By default, we execute 5 mil-

lion transactions concurrently to evaluate the throughput of

the system with TPC-C. Logging is disabled by default, §7.6

will show the performance of DBX with durability enabled.

7.2 End-to-end Performance

We first present the end-to-end performance of DBX com-

pared to other multicore in-memory databases. We compare

DBX against two different implementations, Silo and Silo-

Masstree. Silo [41] is a most scalable and fastest in-memory

database previously published. During evaluation, we found

that Silo’s B+-tree implementation is not as optimized as

that of Masstree [28]. Hence, we used a variant of Silo, re-

ferred to as Silo-Masstree, which used the B+-tree imple-

mentation of Masstree. To make the results directly compa-

rable, DBX only uses B+-tree instead of mixing it with hash

tables by default. All three systems are evaluated using the

TPC-C standard mix benchmark. All logging functionalities

were disabled.

As shown in Figure 5, DBX performs better than both

Silo-Masstree and Silo. Compared with Silo-Masstree, DBX

has 52% improvement (119,868 vs. 78,816 transactions per

second, TPS) when running 1 worker thread and 40% im-

provement (442,230 TPS vs. 314,684 TPS) for 8 worker

threads. One source of overhead from Silo-Masstree is from

the byte stream in the tree structure of Masstree, which re-

quires it to encode the tree node structure into byte stream.

Further, Silo-Masstree allocates a new memory chunk for

both put and get operations. In contrast, DBX only allocates

memory chunks for put operations. To study the overhead of

these differences, we re-implement DBX to use byte stream

in memory store and copy records for get operations (DBX’).

After aligning the implementation difference, DBX still

has 13% improvement (356,911 TPS vs. 314,684 TPS) over

Silo-Masstree when running 8 threads. Our analysis uncov-

ered that the overhead of Silo-Masstree mainly comes from

its OCC implementation using two-phase locking: 1). Before

validation, it acquires all the locks of the records in the write

set. Thus, it needs to sort the locks to avoid deadlock; 2).

Using fine-grained locking also means using more atomic

instructions and thus memory barriers, while DBX essen-

tially groups a number of memory barriers inside an RTM

region into one; 3). During validation, it still needs to tra-

verse the write set to check if any validated record is locked

by itself. Beside these, RTM-based B+-tree also performs

slightly better than the concurrent B+-tree implementation

in Masstree (§7.3).

To understand the overhead from RTM, we removed

RTM in the transaction layer, which, however cannot guar-

antee the correctness. As shown in figure 5, RTM in DBX

has only less than 10% overhead.

7.3 RTM vs. Traditional Synchronization Means

This section compares DBX with traditional synchronization

methods for both transaction layer and data structures used

in the memory store.

7.3.1 Benefits of RTM in Memory Store

B+-tree. We use YCSB to compare the memory store per-

formance in DBX with its alternatives. First, we compare

our RTM B+-tree with Masstree and Silo’s default B+-tree.

Masstree uses a trie-like concatenation of B+-trees and uses

read-copy-update like technique to support non-blocking

read during writes. Masstree is optimized for comparison

of variable-length keys with common prefixes, which DBX

currently does not support. However, when the key length is

no larger than 64 bit, Masstree is essentially a scalable B+-

tree (Mass-B+-tree for short). As Figure 6 shows, our RTM-

based B+-tree performs slightly better than Mass-B+-tree

100K

200K

300K

400K

500K

 1 2 4 6 8

T
h
ro

u
g
h
p
u
t
(t

x
n
s
/s

e
c
)

Number of Threads

Ideal Performance
DBX
DBX’

Silo-Masstree
Silo

Figure 5: DBX vs. Silo (TPC-C)

1M

5M

10M

15M

 1 2 4 6 8

T
h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
)

Number of Threads

RTM B+ tree
Mass-B+ tree
RTM Mass-B+ tree
B+ Tree in Silo
Spin Lock B+ tree

Figure 6: RTM B
+tree vs. Fine-grained lock-

ing B
+tree in masstree (YCSB)

5M

10M

15M

20M

 1 2 4 6 8

T
h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
)

Number of Threads

Lock Free Hashtable
RTM Hashtable

Spin Lock Hashtable

Figure 7: RTM Hashtable vs. Lockfree

Hashtable (YCSB)

100K

200K

300K

400K

500K

 1 8 16 24 32

T
h

ro
u

g
h

p
u

t
(t

x
n

s
/s

e
c
)

Number of Threads

DBX (TX Layer With RTM)
DBX (TX Layer With Lock)

Silo-Masstree

Figure 8: Scalability of DBX (TPC-C)

0.0001%

0.001%

0.01%

0.1%

1%

10%

100%

1 2 4 6 8

A
b

o
rt

/L
o

c
k
 R

a
te

Number Of Threads

Abort
Lock

Figure 9: RTM Abort/Lock Rate

100K

200K

300K

400K

500K

 1 2 4 6 8

0.001%

0.01%

0.1%

1%

10%

100%

T
h
ro

u
g
h
p
u
t
(t

x
n
s
/s

e
c
)

L
o
c
k
 R

a
te

Number of Threads

DBX Throughput

Simple-TM Throughput

DBX Lock rate

Simple-TM Lock rate

Figure 10: DBX vs. protecting whole trans-

actions using RTM (Simple-TM)

(about 7.6% for 8 threads). According to our profiling re-

sults, though the tree in DBX has larger average cycles per

instruction (CPI) than Mass-B+-tree (3.67 vs. 2.76 for 8

threads) due to worse cache locality, its simple implementa-

tion results in much less instructions executed (only around

68% of Mass-B+-tree). One major source of more instruc-

tions in Mass-B+-tree is from checking conflict among con-

current operations. For example, because the readers do not

lock against concurrent writers, it needs to check versions to

avoid reading an inconsistent record during traversing the

tree (§4.6 of [28]). As for the B+-tree used in Silo, it is

slower than Masstree by 36% as it is not as optimized as

Masstree.

We also compare an RTM version of Mass-B+-tree by

using RTM to protect the single-threaded version of Mass-

B+-tree, which contains no synchronization means to coor-

dinate concurrent accesses. Note that even if we use the same

fallback handling policy for the RTM version of Masstree, it

has worse performance than Masstree (8% throughput slow-

down) mainly due to more frequent RTM aborts, which ac-

count for 16% of total CPU cycles.

We also vary the ratio of the YCSB workload to 50%

get, 25% insert and 25%put. Such workload taxes more on

the updates and structural modifications of the tree. RTM

B+-tree still slightly outperforms Masstree (by 1%), while

Masstree using RTM is around 16% worse than Masstree

and our RTM B+-tree.

Hash table. We also implement a lock-free hash table,

which is refined and tuned from the same code base with

the RTM version. The hash table is chained with a lock-free

linked list [13]. Because deletion and resizing can make the

lock-free algorithm much more complex, they are not sup-

ported in the current lock-free algorithm. To insert a node,

only one atomic instruction (cmpxchg) is used to change

the predecessor’s pointer in the linked list. No synchroniza-

tion instruction is needed to get a node. As Figure 7 shows,

the RTM version has lower throughput than the lock-free

version (19% slowdown for 8 threads). The reason is that

DBX uses RTM to protect both put and get functions, which

causes more overhead than the atomic instruction (20 cycles

vs. 70 cycles to protect a single write operation), as the crit-

ical section size is very short. The cost of RTM in the get

operation accounts for more than 90% of the total overhead.

However, if get uses no synchronization means, there will

be subtle order requirements of pointer operation in put to

prevent readers from reading an inconsistent linked list.

Third, we also use a spinlock to replace RTM. As shown

in the Figure 6, this implementation will get significantly

worse performance scalability than other alternatives.

2M

4M

6M

8M

10M

 1 2 4 6 8

T
h
ro

u
p
u
t
(t

x
n
s
/s

e
c
)

Number of Threads

Native B+ Tree
TX Layer with RTM
TX Layer with Lock

Figure 11: Overhead for small transactions

100K

200K

300K

400K

500K

600K

700K

 1 2 4 6 8

T
h
ro

u
g
h
p
u
t
(t

x
n
s
/s

e
c
)

Number of Threads

Mix
Hash Table

B+ Tree

Figure 12: Various data structures (TPC-C

New-Order)

50K

150K

250K

350K

450K

550K

 1 2 4 6 8

T
h
ro

u
g
h
p
u
t
(t

x
n
s
/s

e
c
)

Number of Threads

Mix
B+ Tree

Figure 13: Various data structures (TPC-C)

7.3.2 Cost and Benefit of RTM in DB Transactions

We use the standard workload of TPC-C with a mix of

five transactions, which includes read-only transactions and

range queries to evaluate the performance of DBX transac-

tions. Each worker thread is configured with a local ware-

house, as done in prior work [41].

Transaction layer. We compare DBX’s throughput with

its spinlock counterpart by scaling the number of worker

threads from 1 to 32. We use spinlock to replace RTM only

for the transaction layer, by using spinlock to protect the

commit phase and record read in the transaction layer. The

memory store still uses the scalable RTM B+tree implemen-

tation.

As shown in Figure 8, DBX with RTM can scale well

from 1 to 8 threads, which is the maximal number of hard-

ware threads on our machine. At 8 threads, the throughput

for TPC-C reaches 442,230 transactions per second (TPS),

projecting to 110,557 per core or 55,278 per thread. If the

number of worker threads exceeds the number of hyper-

threaded cores, DBX incurs a little performance slowdown,

e.g., 10% under 32 threads. This is mainly caused by cache

misses and RTM aborts due to frequent context switches. By

contrast, the spinlock version cannot scale beyond 4 threads

due to contention on spinlock, which causes notable over-

head and unstable performance scalability. When the num-

ber of threads exceeds 8, the slowdown is also caused by the

fact that a thread holding a lock may be preempted without

releasing the lock. If a thread tries to acquire the lock, it has

to wait until the lock-holder is re-scheduled to release the

lock.

With RTM, there is no such lock-holder preemption prob-

lem. This is because an RTM transaction will be aborted if

the thread is preempted and thus will not block other running

threads trying to enter the critical section. DBX also consis-

tently outperforms Silo-Masstree. However, the scalability

of DBX slightly degrades with more database threads than

hardware threads, because of more RTM aborts due to fre-

quent context switches. In contrast, Silo-Masstree does not

suffer from this and thus scales slightly better than DBX.

Abort Rate and Lock Rate. To evaluate if DBX can fit

into RTM, we study the RTM transaction abort rate and

fallback lock acquiring rate. Fallback lock acquiring rate is

calculated by dividing the times of acquiring fallback locks

by the number of total transactions.

Figure 9 shows the abort rate and lock acquiring rate.

Both rates are very small. For one thread, the abort rate is

0.05% and lock acquiring rate is 0.001%. Around 80% abort

is capacity abort that may succeed on retry. For 8 threads,

the abort rate increases to 1.4%, and the lock acquiring rate

increases to 0.002%. There are two major reasons for the

increase: on one hand, more concurrent threads means more

conflict aborts due to share data accesses. For 8 threads, con-

flict abort is around 46% of the total aborts, as the maximal

working set of RTM is reduced when two hardware threads

share the L1 cache. For 8 threads, capacity aborts account

for around 53% of the total aborts.

Protecting Whole Transactions with RTM. An interest-

ing question is whether RTM can protect an entire database

transaction to ensure serializability. To answer this question,

we use RTM to protect five transactions in TPC-C. In each

RTM region, the updates are applied on the records in the

memory store directly.

We evaluate the throughput and the fallback lock acquir-

ing rate when using RTM to protect the whole transactions

in TPC-C, as shown in figure 10. With 1 thread, the lock

acquiring rate is 42%, which is mainly caused by capacity

aborts. This is because the memory access pattern of TPC-C

is nearly random, which shrinks the maximal RTM work-

ing set and increases the chance of cache set conflicts. For

example, the neworder transaction accesses less than 9KB

memory but still has more than 70% lock acquiring rate,

with more than 99% from cache set conflicts. Further, the

read-only transaction stocklevel accesses more than 40KB

memory, which leads to 100% lock acquiring rate. This is

because the read only-transaction also has memory writes

and its large working set causes cache lines in the write-set

to be evicted from L1 cache, which will abort the transac-

tion. The lock acquiring rate increases for 8 threads (82%),

due to further decreases of maximum RTM working set per

thread. As a result, the throughput cannot scale up with the

number of worker threads.

Overhead of Small Transactions. To evaluate the over-

head associated with small transactions, we compare the per-

formance of DBX using B+ with the raw B+-tree of the

memory store using YCSB. Both B+-trees are protected us-

ing RTM. We also compare the transaction layer using spin-

lock. We form one transaction by enclosing a single get op-

eration for the get workload, or a get and a put operation for

the read-modify-write workload. The benchmark comprises

80% get and 20% read-modify-write.

Figure 11 shows the throughput of the three configura-

tions. Both raw RTM B+-tree and DBX scales to 8 threads,

while the spinlock version scales poorly. The overhead of

DBX for small transactions is modest (20% for 8 threads).

RTM is not only used to protect the commit phase but also

to guarantee the consistency between the sequence number

and record value for each get operation,. As a result, about

40% overhead is from starting and ending an RTM transac-

tion. This is because the cost to form an RTM region is still

large in current Haswell processors (e.g., around 70 cycles to

protect a single write operation), which is costly for a short

transaction region. However, removing RTM instructions in

the get operation will result in more code complexity. We be-

lieve that future processors with less RTM cost may further

reduce the overhead of DBX for small transactions.

7.4 Benefit from Other Design Choices

This section shows the benefit of two major design choices

of DBX: memory store customization and read-only trans-

action optimization.

7.4.1 Memory Store Customization

This section shows the performance of DBX based on the

memory store implemented using two different data struc-

tures (hash table and B+-tree), and how they compare with

DBX’s mixture of them. Because the hash table does not

support range queries, we only run the TPC-C new-order

transaction to do the comparison for all database tables. As

shown in Figure 12, both data structures can scale up to

8 threads and hash table performs better when number of

threads is more than 4.

As other transactions will perform range query on

ORDER-LINE and NEW-ORDER tables, we use B+-tree to

store the records of these two tables and secondary indexes.

The records in other seven tables are stored using hash ta-

ble. Interestingly, even there is no range query in new-order

transaction, a mixture of B+-tree and hash table still per-

forms better than hash table only implementation. The rea-

son is that the new-order transaction will perform sequential

access on the ORDER-LINE table, which is more suitable

for B+-tree than hash table. Figure 13 also compares DBX’s

mixture of data structures with B+-tree only implementa-

tion using the standard TPC-C benchmark. At 8 threads,

the former one achieves 506,817 TPS, projecting to 126,704

per core or 63,352 per thread, while the latter only achieves

442,230 TPS. This confirms the benefit of customization en-

abled by the modular design of DBX.

7.4.2 Read-Only Transactions

To evaluate the effectiveness of read-only transactions, we

run a mixed transaction of 50% new-order (read-write trans-

action) and 50% stock-level. Stock-level is the largest read-

only transaction of TPC-C that will touch hundreds of

records. Each warehouse is assigned to 2 threads. We com-

pare the throughput and abort rate of DBX with and without

read-only transaction support. In the later case, a read-only

transaction is treated as normal read-write transaction, which

has the validation phase and can be aborted due to conflict.

50K

100K

150K

200K

250K

 1 2 4 6 8

T
h
ro

u
g
h
p
u
t
(t

x
n
s
/s

e
c
)

Number of Threads

Snapshot
No Snapshot

Figure 14: Effect of read only optimization (TPC-C Read Only)

Figure 14 shows the result of this experiment. The sup-

port of read-only transaction improves the performance by

1.41x at 8 threads. The abort rate is reduced from 10% to

1.2%.

7.5 Factor Analysis

To understand the performance impact of various aspects of

DBX, we present an analysis of multiple factors in Figure 15.

The workload is the standard TPC-C mix running with 8

warehouses and 8 worker threads.

0K

100K

200K

300K

400K

500K

600K

Sim
ple

+Allocator

+R
TM

+Fallback H
andler

+N
ode Buffer

+N
o G

C

+N
o Snapshot

+M
ix D

ata Structure

T
h
ro

u
g
h
p
u
t

(t
x
n
s
/s

e
c
)

1 1.07

2.51
2.66

2.86
3.04

3.22

3.82

Figure 15: Factor Analysis

Baseline refers to DBX running with the default allocator

with a global lock. +Allocator adds the SSMalloc. +RTM

means using RTM to protect the commit protocol instead

of spinlock; when an RTM transaction aborts, it just simply

retries one hundred times before acquiring the lock. +Fall-

back handler means using the abort reason to adjust the

thresholds in the fallback handler. +Node buffer means using

the node buffer optimization. +No GC means disabling the

garbage collection. +Nosnapshot means disabling the read-

only transaction optimization. This also slightly improves

the performance for standard-mix benchmark because the

memory allocation is reduced. While read-only transaction

support can reduce abort rate for read-only transactions, the

standard-mix benchmark only contains 4% stock-level trans-

actions, whose benefit does not exceed the overhead from

additional memory allocation. This phenomenon is similar

to other systems like Silo [41].

7.6 Durability and Its Impact on Latency

We also evaluated DBX with durability enabled. Figure 16

shows the throughput of both DBX and Silo-Masstree when

running TPC-C with durability enabled. Both of them can

scale up to 8 threads, DBX with durability has 30% per-

formance improvement over Silo-Masstree with durability

on average. However, when the number of worker threads

is more than 2, the scalability of DBX with durability is a

little bit worse than DBX without logging. This is because

our test machine has only 4 cores, two logger threads start

to contend for cores when the number of working threads is

more than 2.

100K

200K

300K

400K

500K

 1 2 4 6 8

T
h
ro

u
g
h
p
u
t
(t

x
n
s
/s

e
c
)

Number of Threads

DBX
Durable DBX

Durable Silo-Masstree

Figure 16: Throughput of DBX with durability enabled (TPC-C)

Figure 17 shows the transaction latency for both sys-

tems. Since Silo-Masstree advances the epoch number for

every 40 ms, the transaction latency is more than 40ms

(117ms∼480ms). For DBX, the snapshot is advanced by

both of a separate thread for every 40ms and the read-only

transaction. As a result, DBX has lower transaction latency,

which ranges from 38 ms to 63 ms. For DBX, it has higher

latency with 1 thread. This is because only one SSD is used

0ms

100ms

200ms

300ms

400ms

500ms

600ms

 1 2 4 6 8

L
a
te

n
c
y

Number of Threads

Durable DBX
Durable Silo-Masstree

Figure 17: Laytency of DBX with durability enabled (TPC-C)

when running 1 worker thread, and the I/O becomes the bot-

tleneck. Silo-Masstree has higher latency with 8 threads.

This is because worker threads and the thread advancing

epoch contend with logger threads. However, DBX does not

have higher latency with 8 threads. This is because read-only

transactions also advance the snapshot.

8. Related Work

Multicore in-memory databases: The dominance of multi-

core processors and the need of running speedy in-memory

transactions [14] have stimulated much work on multi-

core in-memory databases. Generally, they can be classified

into three types: shared nothing [31, 35, 42], shared every-

thing [7, 18, 22, 41] and hybrid [36]. Shared-nothing de-

signs have lower synchronization overhead but may cause

imbalanced load and expensive cross-partition transactions.

Shared-everything systems usually require a sophisticated

design to reduce synchronization overhead and can be diffi-

cult to reason about correctness. DBX is essentially a shared-

everything design but uses RTM to simplify the design and

implementation.

DBX’s design is influenced by Silo [41], a shared-

everything database based on optimistic concurrency con-

trol [21]. Silo uses uses fine-grained locking with atomic in-

structions to ensure the atomicity of the validation and com-

mit stage, while DBX leverages RTM. Further, Silo allows

read-only transactions to read a potentially stale snapshot,

while DBX ensures that a read-only transaction always reads

the most recent committed transaction by creating a database

snapshot on-demand. Our evaluation shows that DBX has

higher throughput and smaller latency over Silo on a 4-core

machine due to increased concurrency from RTM. Never-

theless, Silo has been shown to scale up to 32 cores while

DBX’s evaluation is limited to 4 cores due to current hard-

ware limits.

In a position paper, Tran et al. [40] compared the perfor-

mance of using spinlocks or transactional memory in place

of database latches. However, they used a much stripped

down database with only 1,000 records and the database

transaction size is not large enough to uncover the RTM lim-

its. It is also not clear how the commit protocol is imple-

mented and whether it guarantees serializability. In contrast,

DBX is a full-fledged OLTP database with ACID properties

that can run complete TPC-C workloads.

A parallel effort [24] also investigates how to use RTM

in the Hyper main-memory database [20]. Their approach

is different from DBX. For example, it uses a variant of

timestamp ordering to group together small RTM regions,

while DBX uses a variant of OCC [21] to separate trans-

action execution from its commit. Further, DBX is carefully

designed to leverage the performance characteristics of RTM

(like asymmetric read/write set and “read before write” ac-

cess pattern), while [24] is oblivious to these issues.

DBX is also influenced by prior modular database de-

signs, such as Monet [3], Stasis [33], Anvil [27] and

Calvin [38]. Specifically, the separation of transactional

layer and the data store allows DBX to use different RTM re-

gions and RTM-friendly data structures for different stores.

Concurrent Data Structures using HTM: Transac-

tional memory [8, 16] has long been the focus of the re-

search community to provide scalable performance with less

complexity. Wang et al. [43] provide a comparative study of

RTM with fine-grained locks and lock-free designs for a con-

current skip list. This paper further studies the performance

of concurrent B+ trees and hash tables under RTM.

Dice et al. [9, 10] have implemented concurrent data

structures such as hash tables and red-black trees using

HTM in Sun’s Rock prototype processor [4]. Matveev and

Shavit [29] also conduct an emulated study of different fall-

back schemes on the scalability of common data structures

and propose reduced hardware transactions to eliminate in-

strumentation in hybrid transactional memory. There have

also been studies using HTM to simplify synchronization

primitives such as read-write lock [11] and software trans-

actional memory [6]. These studies may provide a different

way to scale up the data store of DBX.

9. Conclusion

We have presented DBX, a serializable in-memory database

using restricted transactional memory. DBX centralizes its

design by using RTM to protect memory store and trans-

actional execution accordingly. By using an optimistic con-

currency control algorithm and only protecting the valida-

tion and write phases, DBX restricts RTM’s working set to

only the meta-data of the touched records instead of the data,

which significantly reduces the RTM abort rate. DBX is also

built with a new read-only transaction protocol that requires

no validation phase but still allows a read-only transaction

to read the most-recent database snapshot. Our implemen-

tation and evaluation with DBX are encouraging: DBX has

less complexity than prior systems but still has notably bet-

ter performance and scalability on a 4-core 8-thread Haswell

machine.

10. Acknowledgement

We thank our shepherd Pascal Felber, Frank Dabek and

the anonymous reviewers for their insightful comments, and

Han Yi for evaluating DBX against its counterparts. This

work is supported in part by a research gift from Intel Corp.,

the Program for New Century Excellent Talents in Univer-

sity of Ministry of Education of China, Shanghai Science

and Technology Development Funds (No. 12QA1401700),

a foundation for the Author of National Excellent Doc-

toral Dissertation of PR China, China National Natural Sci-

ence Foundation (No. 61303011) and Singapore NRF (CRE-

ATE E2S2). Jinyang Li is partially supported by NSF CNS-

1065169.

References

[1] D. Batoory, J. Barnett, J. F. Garza, K. P. Smith, K. Tsukuda,

B. Twichell, and T. Wise. GENESIS: An extensible database

management system. IEEE Transactions on Software Engi-

neering, 14(11):1711–1730, 1988.

[2] C. Blundell, E. C. Lewis, and M. M. Martin. Subtleties of

transactional memory atomicity semantics. Computer Archi-

tecture Letters, 5(2):17–17, 2006.

[3] P. A. Boncz. Monet; a next-Generation DBMS Kernel For

Query-Intensive Applications. 2002.

[4] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin,

S. Yip, H. Zeffer, and M. Tremblay. Rock: A high-

performance SPARC CMT processor. Micro, IEEE, 29(2):

6–16, 2009.

[5] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and

R. Sears. Benchmarking cloud serving systems with YCSB.

In Proc. SoCC, pages 143–154. ACM, 2010.

[6] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. L.

Scott, and M. F. Spear. Hybrid norec: A case study in the

effectiveness of best effort hardware transactional memory. In

Proc. ASPLOS, pages 39–52, 2011.

[7] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal,

R. Stonecipher, N. Verma, and M. Zwilling. Hekaton: SQL

Servers memory-optimized OLTP engine. In Proc. SIGMOD,

2013.

[8] D. Dice, O. Shalev, and N. Shavit. Transactional locking II.

In Distributed Computing, pages 194–208. Springer, 2006.

[9] D. Dice, Y. Lev, M. Moir, D. Nussbaum, and M. Olszewski.

Early experience with a commercial hardware transactional

memory implementation. In Proc. ASPLOS, 2009.

[10] D. Dice, Y. Lev, V. J. Marathe, M. Moir, D. Nussbaum, and

M. Olszewski. Simplifying concurrent algorithms by exploit-

ing hardware transactional memory. In Proc. SPAA, pages

325–334. ACM, 2010.

[11] D. Dice, Y. Lev, Y. Liu, V. Luchangco, and M. Moir. Using

hardware transactional memory to correct and simplify and

readers-writer lock algorithm. In Proc. PPoPP, pages 261–

270, 2013.

[12] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger.

The notions of consistency and predicate locks in a database

system. Comm. of the ACM, 19(11):624–633, 1976.

[13] M. Fomitchev and E. Ruppert. Lock-free linked lists and skip

lists. In Proc. PODC, 2004.

[14] H. Garcia-Molina and K. Salem. Main memory database

systems: An overview. IEEE Transactions on Knowledge and

Data Engineering, 4(6):509–516, 1992.

[15] T. E. Hart, P. E. McKenney, and A. D. Brown. Making

lockless synchronization fast: Performance implications of

memory reclamation. In Proc. IPDPS. IEEE, 2006.

[16] M. Herlihy and J. E. B. Moss. Transactional memory: Archi-

tectural support for lock-free data structures. In Proc. ISCA,

1993.

[17] IBM. IBM solidDB. http://www-

01.ibm.com/software/data/soliddb/.

[18] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and

B. Falsafi. Shore-MT: a scalable storage manager for the mul-

ticore era. In Proc. EDBT, pages 24–35. ACM, 2009.

[19] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin,

S. Zdonik, E. P. Jones, S. Madden, M. Stonebraker, Y. Zhang,

et al. H-store: a high-performance, distributed main memory

transaction processing system. Proc. VLDB, 1(2):1496–1499,

2008.

[20] A. Kemper and T. Neumann. HyPer: A hybrid OLTP&OLAP

main memory database system based on virtual memory snap-

shots. In Proc. ICDE, pages 195–206, 2011.

[21] H.-T. Kung and J. T. Robinson. On optimistic methods for

concurrency control. ACM TODS, 6(2):213–226, 1981.

[22] P.-Å. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Pa-

tel, and M. Zwilling. High-performance concurrency control

mechanisms for main-memory databases. In Proc. VLDB,

pages 298–309, 2011.

[23] P. L. Lehman et al. Efficient locking for concurrent operations

on B-trees. ACM TODS, 6(4):650–670, 1981.

[24] V. Leis, A. Kemper, and T. Neumann. Exploiting Hardware

Transactional Memory in Main-Memory Databases. In Proc.

ICDE, 2014.

[25] B. Lindsay, J. McPherson, and H. Pirahesh. A data manage-

ment extension architecture. In Proc. SIGMOD, pages 220–

226, 1987.

[26] R. Liu and H. Chen. SSMalloc: A Low-latency, Locality-

conscious Memory Allocator with Stable Performance Scal-

ability. In Proc. APSys, 2012.

[27] M. Mammarella, S. Hovsepian, and E. Kohler. Modular data

storage with Anvil. In Proc. SOSP, pages 147–160, 2009.

[28] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness for fast

multicore key-value storage. In Proc. EuroSys, pages 183–

196, 2012.

[29] A. Matveev and N. Shavit. Reduced hardware transactions: a

new approach to hybrid transactional memory. In Proc. SPAA,

pages 11–22. ACM, 2013.

[30] C. Mohan. ARIES/KVL: A Key-Value Locking Method for

Concurrency Control of Multiaction Transactions Operating

on B-Tree Indexes. In Proc. VLDB, pages 392–405, 1990.

[31] A. Pavlo, C. Curino, and S. Zdonik. Skew-aware automatic

database partitioning in shared-nothing, parallel OLTP sys-

tems. In Proc. SIGMOD, pages 61–72. ACM, 2012.

[32] R. Rajwar and J. R. Goodman. Speculative lock elision:

Enabling highly concurrent multithreaded execution. In Proc.

MICRO, pages 294–305, 2001.

[33] R. Sears and E. Brewer. Stasis: flexible transactional storage.

In Proc. OSDI, pages 29–44, 2006.

[34] S. Sen and R. E. Tarjan. Deletion without rebalancing in

balanced binary trees. In Proc. SODA, pages 1490–1499,

2010.

[35] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,

N. Hachem, and P. Helland. The end of an architectural

era:(it’s time for a complete rewrite). In Proc. VLDB, pages

1150–1160, 2007.

[36] T. Subasu and J. Alonso. Database engines on multicores, why

parallelize when you can distribute. In Proc. Eurosys, 2011.

[37] The Transaction Processing Council. TPC-CBenchmark (Re-

vision 5.9.0). http://www.tpc.org/tpcc/, 2007.

[38] A. Thomson and D. J. Abadi. Modularity and Scalability in

Calvin. IEEE Data Engineering Bulletin, page 48, 2013.

[39] C. TimesTen Team. In-memory data management for con-

sumer transactions the timesten approach. ACM SIGMOD

Record, 28(2):528–529, 1999.

[40] K. Q. Tran, S. Blanas, and J. F. Naughton. On Transactional

Memory, Spinlocks, and Database Transactions. In Proc.

Workshop on Accelerating Data Management Systems Using

Modern Processor and Storage Architectures, 2010.

[41] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy

Transactions in Multicore In-Memory Databases. In Proc.

SOSP, 2013.

[42] L. VoltDB. Voltdb technical overview, 2010.

[43] Z. Wang, H. Qian, H. Chen, and J. Li. Opportunities and pit-

falls of multi-core scaling using hardware transaction mem-

ory. In Proc. Apsys. ACM, 2013.

