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a b s t r a c t

The service oriented architecture of grid computing has been thoughtfully engineered to

achieve a service level virtualization: not only should a grid be a virtual machine (also

known as a virtual organization, VO) of unbounded computational power and storage ca-

pacity, but also should the virtual machine be serviceable in all circumstances independent

from serviceability of any of its component. At present, a grid VO as a result of service level

virtualization only is more or less confined to participants from scientific computing com-

munities, i.e., can have a limited scale. It is widely agreed that for a grid to pool resources of

truly unbounded scale, commercial enterprises and in particular server-abundant financial

institutions, should also ‘‘go for the grid,’’ i.e., open up their servers for being used by grid

VO constructions. We believed that it is today’s inadequate strength of the grid security

practice that is the major hurdle to prevent commercial organizations from serving and

participating the grid.

This article presents the work of Daonity which is our attempt to strengthening grid secu-

rity. We identify that a security service which we name behavior conformity be desirable for

grid computing. Behavior conformity for grid computing is an assurance that ad hoc re-

lated principals (users, platforms or instruments) forming a grid VO must each act in con-

formity with the rules for the VO constitution. We apply trusted computing technologies to

achieve two levels of virtualization: resource virtualization and platform virtualization.

The former is about behavior conformity in a grid VO and the latter, that in an operating

system. With these two levels of virtualization working together it is possible to build

a grid of truly unbounded scale by VO including servers from commercial organizations.

ª 2007 Published by Elsevier Ltd.
1. Introduction

Virtualization of resources is the key element in grid comput-

ing. Viewed by a user, a computational grid (Bair, 2004; Foster

and Kesselman, 1999; Foster et al., 2001) should be a ‘‘virtual

machine’’ of unbounded resources. In reality, this virtual
machine is ad hoc constructed for the user, comprising a num-

ber – possibly very large – of physically separate resources to

combine to a federated or collaborated computing environ-

ment called virtual organization (VO). Fig. 1 illustrates a typical

VO structure in a high performance computing setting which

comprises of one user (whose platform is in the left),
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Fig. 1 – A typical grid computing virtual organization.
brokerage servers (Portal, Domain Manager, Information Cen-

ter and Job Manager in the middle) and job execution farm (re-

source in the right). This grid VO model depicts typical steps of

how grid jobs are submitted and executed. The following enu-

meration corresponds to the numbered steps in Fig. 1:

1 User begins by logging onto Portal. Independently, re-

sources, which are formed by principals are willing to

lease computing/storage resources, register resources to

Information Center. The latter will play the role of a re-

source broker.

2 Domain Manager verifies user’s legitimacy of using the

grid services. The verification can be based on a pre-

arranged relationship between these two principals (e.g.,

a credential of user on the basis of a shared secret), or

based on a trusted third party’s certification (e.g., a creden-

tial of user on the basis of a public-key certification). Do-

main Manager is in a security server’s position in a VO.

3 User, having logged onto Portal, can check, by interacting

with Information Center, service state and obtain the

state information to match his/her jobs’ requirement.

4 After obtaining satisfactory service state information,

user submits jobs to Job Manager.

5 Job Manager cooperates with Information Center and ob-

tains the addresses of the resources which can satisfy

user’s job requirements.

6, 7 Job Manager works on user’s jobs with selected resources.

It supplies user’s data to resources, and stores returned

computing results for user.

8, 9 Upon completion of jobs execution, Job Manager flags up

for user to fetch the results.

The principals in the middle of Fig. 1 (Portal, Domain Man-

ager, Information Center and Job Manager) play important

roles to achieve resource virtualization. The organization of

these principals in Fig. 1 achieves a service oriented architec-

ture (SOA) for grid computing. A characteristic feature in the

SOA can be referred to as a high degree of dependability which

covers desirable services collectively in terms of reliability,

availability, privacy and scalability. A grid VO can typically
execute jobs for a user in a streamlined manner: the user sub-

mits a batch of jobs to the middle principals in Fig. 1 in one go

and comes back to fetch the result only after the jobs are done.

It should be possible that, after the submission of a user’s jobs,

the jobs must be processed without requiring any further in-

tervention by the user. Moreover, the continuation in the exe-

cution of the jobs should not depend on the continuation of

serviceability of any component of the VO. We shall see in Sec-

tion 3 how this property is realized by the leading grid archi-

tecture Globus Toolkit Version 4 (GT4). GT4 has several

thoughtful designs to virtualize resources with an intension

to achieve high dependability for grid computing. Among

other means in the architectural design, the security part of

the grid architecture plays an enabling role for achieving

grid resource virtualization.

However, in Section 3 we will also see through in-depth

analyses and discussions a (hidden) point that grid resource

virtualization in GT4 is done in a trade-off by working with

a weakened notion of trust, even though a strong notion of

trust is needed among grid VO participants in order to build

a VO of large scale. Our discussions will reveal that the

trade-off turns out to be responsible for a limited benefit we

can gain from resource virtualization of GT4 as a result of

a lowered quality of resource virtualization we have at

present.

Therefore the work presented in this article has the follow-

ing goal: to retain the property of high dependability of, at the

same time to strengthen trustworthiness for, the leading grid

architecture.

1.1. Our approach: trusted computing for two levels
of virtualization

We consider that Trusted Computing Group (TCG) technologies

(Trusted Computing Group; Trusted Computing Group, 2001,

2003; Pearson, 2003) developed by TCG form a practical and

readily applicable technical means to serving the need of

grid security. TCG is an important industrial initiative for im-

proving computer security by means of a hardware supported

security architecture. TCG uses a hardware module Trusted
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Platform Module (TPM) which is integrated into a computing

platform. With an assumed degree of tamper protection on

the TPM and its integration to the platform (tamper-evidence

is more valid assumption with the server side), TCG in fact as-

sumes a platform owner a potential adversary with respect to

policy enforcement in a federated or collaborated computing

system. With hardware protected cryptographic capabilities,

the TPM integrated into a computing platform is effectively

an in-platform trusted third party (TTP) to ensure policy en-

forcement for all participants, whether the owner of the plat-

form or a guest user. In contrast to the conventional security

mechanisms against external, or less privileged, adversaries,

the owner of a platform usually is in a privileged position,

i.e., a stronger adversary. TCG’s goals include to prevent this

privileged entity from easy wrongdoing.

Our applications of TCG technologies will involve working

on virtualization at two different levels in the grid architecture:

� Resource virtualization in which the work will mainly in-

volve improving virtualization techniques which are used

in the present grid middleware.

� Platform virtualization in which the work involves a novel

virtualization technique which we propose for strengthen-

ing general purpose operating systems upon which a grid

middleware run as a trust enhanced application.

1.2. Organization

The remainder of this article is organized as follows. In

Section 2 we specify assumptions which our solution should

be based on, the threat environment for grid computing and

security services our solution should provide to collaborated

computing. In Section 3 we review advantages and limitations

of the current grid security practice. In Sections 4 and 5 we

describe why and how TCG technologies can provide a

complementary solution to grid security; Section 4 is for

strengthening resource virtualization, and Section 5 is for

strengthening platform virtualization. In Section 6 we review

related work. We conclude in Section 7. We also include

in Appendix A rudimental material for TCG technology

introduction.

2. Assumptions, threats and security
services

2.1. Assumptions

We assume that a platform’s internal hardware systems (CPU,

Memory, internal BUS, etc., and in particular, the TPM) are not

in any control and tampering by a wrong hand. By hardware

systems being controlled or tampered by a wrong hand, we

mean that the hardware system or any component is modified

to behave in any way which is not originally designed. How-

ever, we do not demand any peripheral hardware systems

which are accessed by I/O devices to be trustworthy; these

parts are usually shared among operating systems and/or

platforms and therefore are vulnerable to unauthorized

tampering.
We assume that the software environment over a platform

– including the operating system – may be modified and com-

promised by malicious users, with one exception: a specially

tailored code named virtual machine monitor (VMM)

(VMware; NGSCB, 2005; Dragovic et al., 2003) is assumed to

be the only trustworthy software system.

We consider our trust assumptions to be reasonable be-

cause they are supported by the following two insights.

First, it is practical to implement entrust in the VMM code.

This piece of software is designed not only to be the most priv-

ileged component in a virtualized environment, but also have

the following persistent behavior which makes it immune to

external intervention not even by a privileged user of the plat-

form. The persistent behavior of the VMM is that it intercepts

and monitors all control flows among processes, the operating

system’s kernel and the underlying hardware systems. In Sec-

tions 5.3 and 5.5.1 we will see why the VMM has this privileged

behavior. To cause a deviation to this behavior, one needs to

modify the code. Then we shall rely on the second insight of

protection below.

To prevent unauthorized modification to the VMM code,

we call for support from the Trusted Computing Group (TCG)

technologies (Trusted Computing Group; Trusted Computing

Group, 2001, 2003; Pearson, 2003). The integrity metrics of

the VMM code will always be measured by the TCG underlying

system upon boot (Sailer et al., 2004b), and we assume the TCG

integrity measurement up to the VMM code to be sound. The

mechanism of TCG protection on software integrity is given

in Appendix A.

The VMM being the only trustworthy software is a much

shrunken assumption in comparison to entrusting a whole

operating system, and therefore is much more realistic. Under

this much shrunken assumption, we consider that the VMM

and its underlying TCG foundation forms a trusted computing

base (TCB).

2.2. Threats

From a user’s viewpoint on collaborated computing, the

owner of a (remote) platform is a potential adversary who is

free to conduct modifications of any software systems, includ-

ing the VMM running on the platform. The latter case of attack

is assumed to be difficult since a successful attack will have to

pass the integrity metrics measurement of the TCG technolo-

gies and so the user gets a correct integrity report. Considering

an infeasibility to succeed a cryptographic attack, tampering

the VMM code is essentially not easy than doing the hardware

systems.

Having assumed the platform owner being a potential at-

tacker, there is no need for us to differentiate internal and ex-

ternal adversaries. The goal of these adversaries is regarded

the same: to attempt a successful deviation from the rule of

the game of collaborated computing.

2.3. Security services

Conventional security services are in terms of information

confidentiality, system integrity, service availability, and com-

mitment accountability. In the work of Daonity, we cover

these notions of security services under the unified modifier:
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system behavior conformity. Behavior conformity is an assur-

ance that principals (users, platforms or instruments) forming

a collaborated computing task must each act in conformity

with the rules and policy of the collaborated computing, a pol-

icy violation should not be easy. In our goal, the policy of be-

havior conformity can specify, e.g., that even a platform

owner or a privileged entity should not be able read the con-

tent in a given memory location on a platform which is even

under the full control of the adversary. For another example,

the policy can also specify a system integrity protection re-

quirement, in that a malicious operating system should

have no way to tamper the executable code and data of

a trusted process to cause a deceptive execution result to be

returned to a service requester.

2.4. Non-assumption and non-service

We make no assumption that a trusted application is seman-

tically error free, i.e., not buggy or even malicious. Instead, we

aim to ensure that a malicious application running as trusted

processes cannot tamper the execution of other trusted

processes.

We also do not guarantee availability of services for and/or

from trusted applications. This is because our approach does

not protect the whole operating system and thereby some

part of the tampered operating system may cause denial of

services to a trusted process.

3. Grid security infrastructure – key enabler
for resource virtualization

A key technical enabler for resource virtualization and the re-

sultant property of high dependability in grid computing is

a result of a thoughtful architectural design which makes

servers working in a proxy-delegation manner. Any of the

servers in the middle and right-hand side in Fig. 1 can be

proxy-delegated. For ones working in security (i.e., for most

readers of this article), this architecture of server proxy-dele-

gation is best described using figure which is the architecture

for Grid Security Infrastructure (GSI) (Open Grid Forum; Foster

et al., 1998). Fig. 2 can be thought of as an abstraction of Fig. 1

by highlighting the notion of server proxy-delegation with

reasons we now explain.

GSI’s VO structure presented in Fig. 2 emphasizes a threat

model which considers resource users to attack resource
providers (e.g., to spread malware or free ride). In reality mu-

tual authentication is needed and in place, however, the ar-

chitecture in Fig. 2 has an emphasis on the direction of

authentication from the user to the servers. Let us for the mo-

ment consider this unbalanced threat-model emphasis on

a valid consideration. Then GSI is essentially a result of direct

applications of the standard public-key authentication infra-

structure (PKI). The VO in Fig. 2 is initiated by a user Alice

who is assumed to have an identity certificate issued by a sys-

tem-wide known grid certification authority (CA). Alice initi-

ates the VO by ‘‘recruiting’’ a member (Proxy 1 in Fig. 2, who

is most likely ‘‘credential manager’’ in Fig. 1). Further enlarge-

ment of the VO, if necessary, is proxy-authorized to be carried

out by Proxy 1 (i.e., without Alice’s involvement), and likewise

with respect to subsequent ‘‘recruitment’’ of proxies until the

VO becomes sufficiently large (e.g., contains nþ 1 members in

the case of Fig. 2). The practical meaning of ‘‘sufficiently large’’

should be that the VO contains at least each type of the server

entities in the middle and right-hand side of Fig. 1. In order for

the process of VO enlargement to be worked out in streamline

without tracing back to Alice via a chain of servers (Alice and

some of the servers in the chain may have already become off-

line and unavailable), GSI applies PKI in the form a chained

proxy certification: Alice creates a proxy credential, which is

a public/private key pair; she certifies the public part using

her own identity credential and sends the key pair to Proxy

1 who in turn creates a proxy credential and certifies it using

the private key (proxy credential) received from Alice; the lat-

ter key pair with the certified public part are sent to Proxy 2

(who is recruited by Proxy 1), ., and so on. This way, a new

member can verify, without interaction with Alice, to deem

it is indeed Alice who has authorized the organization of the

VO. Also, any member in the chain can become off-line while

Alice’s science can indeed be kept on, as long as recruiting an-

other proxy takes place before a server goes off.

One might want to ask why GSI’s VO formation in Fig. 2

(i.e., that of Open Grid Forum) abstracts the grid VO in Fig. 1

into a chained and sequential construction, i.e., why in GSI

servers join a VO in a one-after-another manner by sequen-

tially verifying Alice’s delegated authorization. It would

clearly be more efficient should a joining server down the

chain in Fig. 2 contact Alice for her to authenticate it (and au-

thorize it) directly. That way there would be no need for the

server to verify a possibly very long chain of proxy-authoriza-

tion signatures which are supported by the long chain of proxy

certificates. This very issue was indeed discussed in the
CA
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2 certs
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n+2 certs
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cert

sending
cred
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Fig. 2 – VO abstraction in GSI.
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original GSI paper under a scalability consideration (Section

5.3 of Foster et al. (1998) ‘‘reliance on a single user proxy to for-

ward request to resource proxy lacks scalability’’). The key

point manifested by the GSI abstraction of the grid VO in

Fig. 2 (that of Open Grid Forum) is the following: the chained

construction of a VO permits any subsequent joining server

to be proxy-authorized by Alice without demanding Alice to

be staying on-line in order to materialize the authorization.

This way, a VO to be constructed for Alice’s jobs can really

scale up, e.g., to involve in under-utilized resources in the

other side of the planet in a dynamic way. In GSI, this chained

delegation of services utilities, in which the user can initiate

the delegation of rights without any subsequent intervention,

is a featured QoS advantage. This advantageous feature

achieves unattended user authentication (Open Grid Forum).

(Now it is clear why we stated above that Fig. 2 emphasizes

user authentication to the servers.) It is obvious that unat-

tended user authentication is a necessary element for achiev-

ing grid resource virtualization in a service oriented manner.

GSI is therefore regarded as a service oriented architecture.

3.1. Limitation of GSI: high dependability at the cost
of lowered trustworthiness

With the straightforward PKI application described above, GSI

implies a usual and familiar trust model which can be referred

to as reputation and best effort maintenance. An unknown

entity is deemed trustworthy if it is introduced by a trusted

third party (TTP). It is hoped that the introduced entity will be-

have in a responsible manner by trying its best effort to honor

the introduction. We remark that in this introduction based

trust model a TTP is usually positioned outside the system of

partners. In particular, the TTP is usually not placed inside

the platforms of the system participants.

Unfortunately, the introduction based trust model actually

does not suit well grid security requirements.

For the first reason, it is unclear how Alice can have any

control that any of the proxy credentials in the chain will

not be misused. Even if it may be reasonable to assume that

the servers themselves are trustworthy, it would be unreason-

able to assume that they cannot be attacked by an intruder,

perhaps a disgruntle operator. Consider, a compromise at

a server can be disastrous as a national super computer center

can help spreading malware in such an effective way to bring

down a grid infrastructure at a grand scale. Actually, GSI does

have tried to anticipate this potential threat to some extent. In

order to mitigate the potential compromise or misuse of these

proxy credentials, GSI stipulates a short lifetime for a proxy

credential: 12 h. If we consider this a security policy enforce-

ment realized using a public-key certificate, then this is

a rather coarse policy and can greatly limit the power and use-

fulness of grid computing. To renew the security setting for

a VO lasting longer than 12 h is at best a nuisance for the user.

For the second reason, by handing the credential uncondi-

tionally over to a next entity down the chain for the full con-

trol of rights delegation, we can say that the VO constructed

in Fig. 2 is only (or more) suitable for a collegial environment

in which partners are colleagues or friends alike. Few financial

servers, for example, would be confident enough to allow their

under-utilized resources to become part a non-collegial
environment as a VO in the GSI architecture. Nowadays,

most computational resources are with the much under-uti-

lized servers in financial institutions (with utilization at

a mere 10% level, Server Utilization). It is envisioned that to in-

clude financial servers into the pool of grid resource providers

will be a major boost to the development and deployment of

the grid technology.

For yet a third reason, the other direction of threat which is

very pertinent to grid security but not possibly preventable by

GSI is from a server toward the user. Most grid applications

entail code written in one place being executed in another. A

host platform’s owner should not be able to compromise eas-

ily a guest user’s security. For example, a guest algorithm run-

ning on a host may need protection, in data confidentiality

and integrity, for the guest’s input to the algorithm and the

output result to be returned back to the guest. The protection

may need to have a strength against even a privileged entity

(e.g., superuser) at the host.

4. Strengthening resource virtualization for
grid middleware

We now describe why and how TCG technologies can play

a useful role in improving grid security. We assume the reader

is familiar with the TCG technologies. Appendix A provides

a suitable level of TCG background for the reader to under-

stand the technical terms and their uses in the context of

this article.

In Section 4.1 we will introduce the main idea of our solu-

tion at an abstract level of description. In Section 4.2 we will

explain in detail how to call the standard TCG protocols to re-

alize our solution. In Section 4.3 we will describe the imple-

mentation status of this part of the work.

4.1. Protection of user/VO credential in trusted
computing base

We have discussed in Section 3 that unattended user authen-

tication is a key technical enabler for grid resource virtualiza-

tion. GSI achieves unattended user authentication by a VO

participant handing a proxy credential (i.e., a cryptographic

key) to another VO participant. In order for the VO construc-

tion to be done automatically, the proxy credential is simply

stored in the file system of the platform protected under the

access control of the operating system. The obvious danger

of leaving a private key in the file space is mitigated by stipu-

lating a short lifetime for the proxy certificate. The default life-

time of a proxy certificate in the GSI is 12 h. Upon expiration,

a new proxy certificate must be re-issued. We feel this is an

unacceptable security exposure.

Assuming that with TCG technologies becoming more and

more pervasive,1 we consider to store the VO credential inside

the trusted computing base (TCB) of the participating plat-

forms. Fig. 3 illustrates the creation and enlargement of

a VO using TCBs to protect the VO credential. This VO has

1 According to IDC’s forecast (Rau, 2006), by 2009, about 80% of
�86 platforms which include desktop PCs, mobile PCs and �86
servers will be equipped with TPMs.
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Fig. 3 – VO construction in Daonity using TCG credential migration.
essentially the same structure as the GSI architecture in Fig. 2,

and hence Daonity will retain the property of unattended user

authentication of GSI. The only difference is that we now can

use TPM to hold the VO credential and have it migrated within

the TPMs of the VO platforms. Credential migration is a TCG

function designed for a user to retain security environment

when changing (e.g., upgrading) platforms. The essence of

Daonity is to make an extensive use of this standard TCG

functionality.

Apart from using an ‘‘Online Certificate Revocation Au-

thority’’ (its role to be described in Section 4.2), the construc-

tion of this VO has no essential difference from the GSI VO

in Fig. 2. The VO’s creation is also initiated by Alice, and

each enlargement step proxy-authorized to a proxy without

interacting back to Alice. Now with the involvement of cre-

dential migration, the use of chained proxy certificates is

avoided. A single proxy credential, which we shall name ‘‘pri-

vate-key-VO,’’ will be created in the TPM of Alice’s platform

and proxy-authorized to migrate to each of the TPMs of the

principals participating the VO. The matching public-key-VO

is certified by Alice. With the VO credential in TPMs, the coarse

policy of 12 h VO lifetime in GSI is now unnecessary.

Grid computing certainly needs security policy enforce-

ment at the VO level. However, it seems that GSI has quite lim-

ited means to do so. Like the case of stipulating 12-h lifetime

for a proxy credential, security policy enforcement in GSI is

mainly in the form of a pre-setting statement, perhaps speci-

fied inside a certificate. We feel this method is not a very pow-

erful one. We envision that the use of TCG technologies in grid

security will result in a major improvement on the method of

policy enforcement in grid computing. Let us now provide

more details.

4.2. Policy enforcement afar

With a conformed behavior enforced by a TPM as an in-plat-

form TTP, we can further realize policy enforcement in a VO.

A simple use case scenario we can describe here is that a mem-

ber who is removed from the VO shall not be able to take any

VO data away. In this use case, a TPM enforces a conformed

way of using the VO credential: the credential is usable in

each instance only after the TPM has obtained an explicit ap-

proval from the ‘‘Online Certificate Revocation Authority’’

(OCRA). The OCRA can be instructed by Alice to enlist the rev-

ocation of the VO membership with a given TPM. Once
a revocation of membership with a TPM is enlisted in OCRA,

the TPM will no longer use the credential anymore. This

way, Alice can remove a member from the VO without letting

it take away VO data. Notice that this removal procedure is

non-interactive: no need to obtain the consent from the mem-

ber to be removed. Non-interactive removal prevents possible

refusal and so the VO functions cannot be stopped by a non-

cooperative party.

One might want to ask: how can a TPM be so clever to en-

force complex policy afar? The crux rests in the collaboration

between the TPM and the trusted software stack the TPM

serves. In the TPM there are a rack of Platform Configuration

Registers (PCRs). As TCG’s ‘‘Root of Trust for Measurement

(RTM)’’ function, a PCR records, via ‘‘eavesdropping’’ or ‘‘wire-

tapping’’ the input–output bus (aka ‘‘low-pin count bus’’ in the

‘‘southbridge’’ of an �86 platform) between external devices

and the CPU’s input–output control hub, the hash total value

of the software executables which have been loaded from

the external drives to the platform so far. To work with this

RTM function, the TPM is programmed to have the following

simple behavior: to perform a critical service (e.g., decryption

or digitally signing) upon the current PCR value in the TPM

(this is the ‘‘eavesdropped’’ software environment of the plat-

form outside the TPM) matching that in the service descrip-

tion given by Alice. The PCR value which is ‘‘eavesdropped’’

by a remote TPM can be reported to Alice via attestation, i.e.,

Alice can deem the trustworthiness of the software environ-

ment in a remote platform (‘‘Root of Trust for Reporting

(RTR)’’). Thus, a critical service from a TPM to the external soft-

ware environment can be made only available to the software

environment when the software environment has been ap-

proved by Alice. In our simple use case scenario, for example,

the software environment is one which includes a program to

check the OCRA for whether or not Alice has revoked the VO

membership of the underlying TPM.

To detail the know-how, we first introduce a protected

functionality inside the TPM which permit the TPM to take

control whether or not to provide a critical service to the exter-

nal software environment.

4.2.1. To serve or not to serve? An internal decision
by the TPM
A TPM contains a number of Platform Configuration Registers

(PCRs). Each PCR is a 20-byte register of volatile memory.

The use of a PCR is to record the measurement result on the
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software environment which has been loaded onto a platform.

A PCR records the software measurement in the following

‘‘extension’’ formula:

PCR)SHA� 1ðPCRka software binary executableÞ: (1)

A recorded measurement on the software environment over

a platform can be attested to a remote querier using a standard

challenge-response mechanism (in cryptographic protocols).

Under the assumption that the TPM does not cheat a querier,

the latter can re-compute the hash total value to deem if the

remote platform has loaded a needed software environment

desired by the querier.

A protected cryptographic capability is a basic function of

a TPM. With a crypto key and algorithm inside the TPM, basic

crypto operations such as decryption and signature creation

can be conducted in a protected manner without revealing

the key to the external environment. More importantly,

a TCG complying TPM can be instructed by a remote stake-

holder only to provide a crypto operation if the external soft-

ware environment is deemed desirable by the remote

stakeholder. Let Alice be a stakeholder remote to Bob’s plat-

form. Alice can create the following blob (formulated in

pseudo code) for Bob’s TPM to process or not to process,

depending on whether Bob’s platform has a software environ-

ment measurement Alice approves:

Encrypt(Bob-TPM-PubKey, Data, PCR)

In this line of pseudo code, ‘‘Encrypt’’ is a public-key encryp-

tion algorithm, ‘‘Data’’ is the information encrypted inside the

blob, ‘‘PCR’’ is the PCR value which Alice wants to instruct the

TPM of Bob that decryption of ‘‘Data’’ should only be served if

the local PCR value in the TPM matches that in the blob. In or-

der for Bob’s TPM to decrypt this blob, the two PCR values must

match, i.e., Bob needs to load his platform with the software

environment which Alice approves. In the actual use of this

formula, Alice can provide a list of possible PCR values which

she accepts; Bob’s TPM will serve if the local PCR value in the

TPM meets one in the list. This makes it possible for the situ-

ations Alice and Bob using different platforms, or Alice per-

mits varied sequences of software loading at Bob’s platform.

To exemplify the usefulness of this conditional decryption

service by a TPM, we can imagine that the software environ-

ment approved by Alice should include an executable which

has the following behavior: it checks a revocation authority

regarding the certificate of ‘‘Bob-TPM-PubKey’’ before loading

the decryption result to the memory. If Alice is able to instruct

an authority to revoke the certificate, then the blob of encryp-

ted ‘‘Data’’ becomes not usable to Bob anymore. It is now not

difficult to imagine a rich way of policy enforcement afar.

This TCG mechanism of protected cryptographic capability

is functioning even for the complying TPMs under the TCG

TPM specification version 1.1b. It has also been tested working

properly for the TCG TPM specification version 1.2.

4.2.2. Realization detail
In TCG’s specification, there are two modes of credential

migration. An implementor can choose a mode by

specifying one of the following parameters in the function/

protocol calls:
TCPA_MS_MIGRATE: This mode is in the real sense of

credential migration because it is designed for backing up

a credential from one TPM to another. We use this mode

in our implementation of Daonity since in our application

we need to move a VO credential from one platform to

another.

TCPA_MS_REWRAP: This mode is designed for moving a creden-

tial which is already secured under a parent key to be re-se-

cured under a new parent key. This move can include the

case that the credential remains under the same storage

root key, i.e., secured by the same TPM. While this mode

may also permit a credential to move from one SRK tree to an-

other, i.e., between different TPMs, doing so involves more

complex protocol calls than the other mode does. (This

mode is much simpler if the move is within the same SRK

tree.)

We note that in both modes, the credential can be still used

(loaded) under the original SRK system after a migration. This

means that a migration of a credential can result in a sharing

of the credential by two SRK systems or two TPMs. This is a de-

sirable result we want in order to build a grid VO sharing a VO

credential.

Below we provide annotated pseudo-code TCG protocols

and function calls to describe how we have really achieved

migration of a VO credential between two platforms.

Generalization of these protocols and function calls to

a larger VO is standard. We notice that for exposition clar-

ity, we have omitted many parameters and specification

details (such as TCPA_MS_MIGRATE) from our pseudo-code

presentation.

To migrate a VO key from A to B (here and below A and B

stand for TPM-A and TPM-B), a series of protocols will run

between A and B.

4.2.2.1. Attestation of B’s software environment to A. The first

protocol is for B to attest to A the status of B’s software envi-

ronment measurement. Let the attestation output to A include

the following two elements:

� PCR Value PcrValueB which is constructed inside the TPM

of B using the ‘‘PCR-extension’’ formula (1) where ‘‘a soft-

ware binary executable’’ in (1) is the executable loaded

onto B sequentially when B boots its software environment.

PcrValueB denotes the final value of PCR resulted from the

‘‘PCR-extension’’ formula (1).

� Public-key B-PubKey. This is a public key created inside the

TPM of B under the software environment measured as

PcrValueB. Its role is to receive a VO credential to be mi-

grated to B. In a moment we shall see more detail on how

B has created B-PubKey.

4.2.2.2. Preparation of a PCR-conditioned VO credential by A.
After the attestation, A can set its PCR-No 8 to PcrValueB,

whose length is 20 bytes, using the following command

(here and below the use of the 8th PCR is for illustration

purpose):

SetPcrValue(PcrComposite, 8, 20, PcrValueB)
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A then creates a VO key named VOKeyPair. This is an RSA

Key pair of which the private part will be migrated to B. This

key pair is created using the following command:

CreateKey(VOKeyPair, A-SRK, PcrComposite)

Here, A secures the private part of VOKeyPair under its stor-

age root key A-SRK. This VO key is created to be bound to

PCR-No 8 of the value PcrValueB. This means that any in-

stance of use of the private part of VOKeyPair by A is condi-

tioned that the value of PCR-No 8 in A should be PcrValueB;

otherwise, loading this key in A will fail with returning an

error message.

4.2.2.3. Creation of a migration blob by A. Next, A can create

a migration blob to send to B. The first step is to authorize B-

PubKey which has been output to A in the attestation protocol

(see above). The authorization of B-PubKey is done by gener-

ating a ‘‘migration ticket’’ as follows:

AuthorizeMigTkt(B-PubKey, &TktLen, &MigTkt)

Now A creates a migration blob as follows:

CreateMigBlob(VOKeyPair, B-PubKey, TktLen, MigTkt,

&MigBlobLen, &MigBlob)

In this function call, A encrypts the private part of VOKeyPair

using B-PubKey which has authorized by A (in the ticket) ear-

lier. The protocol will output to B the following migration blob

data: (MigBlobLen, MigBlob).

Below let us look at what B should do in these protocols.

First, we recall that in the time of running with A the attes-

tation protocol, B has created the key pair B-PubKey under

the environment measured as PcrValueB. The private part

of B-PubKey is encrypted in a secure storage rooted by B’s

storage root key B-SRK.

Having received from A the migration blob data (MigBlo-

bLen, MigBlob), B can convert it as follows:

ConvertMigBlob(B-PubKey, MigBlobLen, MigBlob)

In this function call, the migration blob is decrypted by the pri-

vate part of B-PubKey, and as a result, the VO credential

VOKeyPair becomes a son of B-PubKey in B’s secure storage.

Because B-PubKey has been created to be usable condi-

tioned on the software environment measured by the given

PCR value, the following LoadKey function call will only

work if the correct PCR value is in B:

LoadKey(VOKeyPair, B-SRK)

In TCG’s specification, if PCR value is incorrect, the above

function LoadKey should fail. In our experiments, if the PCR

value is incorrect, LoadKey does not return error immediately,

instead, an error will occur later when we call Unbind function

(see below).

4.2.2.4. VO confidential communications. Suppose that the

migration is successful, the subsequent VO confidential
discussions can be encrypted using the public key of VOKey-

Pair. Both A and B know that the decryption by any VO mem-

ber must be conditioned in a software environment setting

which is measured as a PCR value in PcrValueB. The encryp-

tion step is as follows:

Bind(VOKeyPair, BindDataLen, DataToBind)

and the corresponding decryption step is

Unbind(VOKeyPair,BindDataLen,DataToBind,&UnbindData)

Here, UnbindData is the plaintext output.

As we have mentioned above, Unbind will fail to decrypt if

the LoadKey function has been called when inconsistent PCR

values were used.

4.3. Implementation status

Planned as a contribution to leading grid standard, Globus

Toolkit, which has been developed in open source, our work

will also be in open source as a component for the ever evolv-

ing Globus Toolkit. In the time of writing this article we have

completed the design, specification and implementation for

a proof-of-concept (PoC) system of the Daonity system and

have released it.

The PoC system works on PCR values loaded in two TPMs,

one is migrator (the TPM with an out-going VO credential), and

the other, migratee (the TPM with an in-coming VO creden-

tial). We have assumed that the migrator and migratee TPMs

share the same PCR-No 8. We have tested the workability:

with the same PCR value in the two TPMs, the migration

will succeed; otherwise, it fails. However, in reality, sharing

of a PCR value between two TPMs as an assumption does

not make a useful sense. We need an attestation protocol,

e.g., one described in Section 4.2.2, to allow the migratee to re-

port its PCR value (i.e., the software environment outside the

migratee) to the migrator for the latter to verify the acceptabil-

ity. Such an attestation protocol has not been implemented in

the first release of the PoC. Implementation of the attestation

protocol will be the immediate next step of the work.

The implementation of the Daonity PoC system has been

greatly benefited from the open-source Trusted Software

Stack (TSS) package TrouSerS, and the open-source grid mid-

dleware package Globus Toolkit (GT4). In fact, apart from the

TPM migration component which we have described in Sec-

tion 4.2.2, all other TSS parts of Daonity are readily adapted

and modified from TrouSerS, and plugged into GT4. With

TCG’s TSS soon to become available for TPMs of all complying

vendors, we have planned to add the migration part to TCG’s

TSS and so Daonity will become usable over TPMs of those

vendors.

5. Strengthening operating systems via
platform virtualization

The conformed behavior for the grid middleware we have

been working on up to this end is valid only under an assump-

tion that the operating system upon which the grid
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middleware runs will not provide an attacker with an easy

shortcut. No matter how strong the policy enforcement in

the middleware is, if an attacker can exploit weaknesses in

the operating system then the policy can still be violated eas-

ily. For example, the key management scheme which realizes

TCG’s Root of Trust for Storage (RTS, see Appendix A.1.3) have

most part of the cryptographic operations executed outside

the TPM; namely, a session key can actually be extracted

from a register or a memory location if the operating system

permits the extraction (a commodity OS usual does). It is vi-

tally important that an operating system upon which trusted

applications run should not be easily tampered with for policy

deviation, not even by privileged user such as the platform

owner. Thus, our work inevitably involves strengthening the

operating system.

We shall take a platform virtualization approach to

strengthening commodity versions of the Linux OSes. This

part of the work is named CHAOS – Conformity and High As-

surance within OSes. The work reported here is organized as

follows. In Section 5.1 we overview contemporary operating

systems on their unsuitability to serve a trustworthy execu-

tion environment for applications which need behavior con-

formity. In Section 5.2 we specify requirements related to

our work. In Section 5.3 we describe the working principle of

virtual machine monitor and how it forms a confined and

practical trusted computing base for our use. In Section 5.4

we provide an overview on the CHAOS architecture. Finally

in Section 5.5 we describe realization details of CHAOS.

5.1. Security overview of commodity
operating systems

So far standard grid middlewares run on commodity operat-

ing systems (e.g., GT4 runs on Linux). Unfortunately, contem-

porary commodity operating systems are essentially

untrustworthy. This point can be discussed in three aspects.

Firstly, these OSes are usually very big, complex – meaning

a non-negligible probability for them to be buggy – and devel-

oped without a priori and special considerations on security

over other prioritized properties such as optimization for per-

formance, resource utilization and other useful functional-

ities such as flexibility and openness. This is nevertheless

the least problematic part when we talk about OS security be-

cause errors as a result of problems in this aspect are most

likely non-intentional and non-maliciously designed.

Secondly, the design principle of contemporary commod-

ity OSes actually violates the principle of least privilege

(PoPL) National Computer Security Center, 1991. The PoLP re-

quires that only least privilege should be granted for a process

to complete a task. Instead, commodity OSes usually expose

permissive interface in terms of system calls to applications

thereon. As a consequence, applications with diverse security

requirements are poorly isolated within an operating system.

A success in tampering one application will likely enable easy

ways to further tampering other applications in the same

operating system, and so the weakness can be exploited

by a malicious user to gain an attacking advantage.

Finally, these OSes provide poor guarantees on the execu-

tion integrity of software systems, in particular if the execu-

tion environment is in remote setting. Since a machine
owner is usually granted with unrestricted permissions, a ser-

vice requester can hardly have confidence that the code and

data run and processed remotely will not be used in some un-

authorized way, e.g., confidential information to be disclosed

to a wrong hand, and proprietary material to be made avail-

able to a competitor. Meanwhile, these OSes lack a confident

means for a remote user to verify that results returned from

a collaborated computing application is tamper-free.

5.2. Requirements

We aim to create a tamper-resistant execution environment

for security sensitive grid applications by applying TCG tech-

nologies to hardening the OS. We are aware of several desir-

able requirements in such a system.

� It must retain full functionalities as existing operating sys-

tems, thus applications will not sacrifice functionalities

when running on it.

� It should retain backward compatibility so that existing ap-

plications need not be reconstructed to run on the platform.

� It should be cost-effective that commodity hardware can be

used as building blocks to construct it.

5.3. Virtual machine technology – virtual machine
monitor

Making an operating system ‘‘trustworthy’’ proves to be

a non-trivial task. On the one hand, to talk about trust in the

context of a commodity operating system seems not very

meaningful. On the other hand, to design and realize a new

OS from scratch with trust and security as a priori design con-

siderations should be a grandiose task beyond the scope of our

current work.

We take a practical approach to ‘‘hardening’’ a commodity

OS by working on virtual machine monitor (VMM) techniques

(VMware; NGSCB, 2005; Dragovic et al., 2003). A VMM is a layer

of the most privileged code which has been abstracted from

the rest of the OS. In the virtual machine architecture, this

code is placed in the layer under the rest of the OS and special-

izes the functions of intercepting, monitoring and processing

service calls from processes to the OS and the underlying

hardware systems. For example, a cut-and-paste action from

one process (e.g., a web page viewing application) to another

(e.g., a document editor) will cause the following events in

the OS: it first issues a service call for a read access to a mem-

ory location used by the former process, it then issues another

call for a write access to a memory location of the latter pro-

cess. If this OS is on top of a VMM, then these calls will all

be first intercepted by the VMM to be relayed to and from

the hardware layer under. A VMM can serve a plural number

of (even different) OSes to use one piece of hardware re-

sources. To this end we can see that, in essence, the VMM

acts as a middle man in between not only processes but also

a process and the OS kernel. All inter-process communica-

tions and inter-process-OS communications will be intercep-

ted by the VMM.

The above behavior of the VMM is privileged and mandatory.

A malicious entity, even controlling the OS kernel, cannot
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cause a deviation for the interception behavior of the VMM to

be bypassed, unless the VMM code is modified by the attacker

(then see our countermeasure from TCG technologies to be

described in a moment). A malicious OS kernel can refuse to

cooperate with the VMM, and this seems to be the only feasi-

ble attack which is of course not very interesting in collabo-

rated computing applications. This property of non-

deviation is essential for achieving a meaningful sense of

entrusting in the system’s behavior. In our use of the VMM,

we focus on the following functions:

� interception of inter-process and inter-process-OS

communications;

� memory location isolation;

� sealing of CPU context, memory contents and I/O data

which are owned by an application which needs behavior

conformity as a security service.

With the VMM having the above mandatory property of

intercepting inter-process communications, we can consider

that the VMM form a trusted part of the system. By a trusted

VMM, we mean that the code is to be measured by the TCG

mechanism of the Root of Trust for Measurement (RTM, see

Appendix A.1.2). For applications needing behavior confor-

mity, the participant of a collaborated computing will make

an authenticated boot of the genuine version of the VMM.

The fact of the authenticated boot of the VMM can be attested

to a remote participant of the collaborated computing (see Ap-

pendix A.1.4) as evidence of no tampering on the boot se-

quence and the correct VMM running on the platform

participating the collaborated computing. This prevents in-

stalling a root-kit below the VMM or launching a malicious

VMM.

Thus, the TCG system and the integrity protected VMM

form the trusted computing base (TCB) for our solution.

Another important property of the VMM layer is transpar-

ency. Applications which can run on an OS without the VMM

layer can also run on an OS with the layer. This property en-

ables to a commodity operating system to work with the

VMM, and thus to retain the existing programming interface

and functionalities. Thus our goals of backward compatibility

are satisfied.

5.4. CHAOS architecture overview

Fig. 4 depicts the system architecture of CHAOS. This system

design is adapted from that of the open-source VMM system

Xen (Barham et al., 2003). While Xen mainly focuses on effi-

cient utilization of platform hardware resources by multiple

VM OSes, our adaption in CHAOS has a focus on monitoring

security sensitive applications which are as VMs. In CHAOS,

security sensitive applications are executed as trusted pro-

cesses, which should be resilient to tampering by other pro-

cesses and even the OS kernel. This is a result of protecting

the CHAOS VMM by TCG technologies. CHAOS transparently

creates a tamper-resistant environment by implementing

a trust management layer in the VMM.

As shown in the architecture of Fig. 4 for a general virtual-

ization scenario, there could be several untrusted operating

systems running simultaneously atop the VMM. Note,
although a management VM (not shown in the figure) in

CHAOS contains tools to create and manage other VMs, that

VM is still restricted by the VMM from tampering the execu-

tions of trusted processes. Examples of tampering are, e.g.,

mapping the process owned memory location and getting

the execution context.

5.5. CHAOS realization

We have implemented a prototype system of CHAOS for Linux

2.6.16 running on Xen 3.0.2. The hardware platform is �86 ar-

chitecture. However, we believe that the architecture and ap-

proach of CHAOS are not Xen-specific and its concept and

architecture should be applicable to other VMMs and operat-

ing systems.

Untrusted processes and trusted processes co-exist atop an

untrusted OS kernel. The VMM only monitors trusted pro-

cesses without interventions to normal process. For a trusted

process, the protection of sensitive information needs to be

considered from three categories: in CPU execution context,

in memory pages and in I/O data. In the remainder of this sec-

tion, we provide an abstract level of descriptions of the CHAOS

implementation work with respect to these three categories of

protection. The respective protection measures are interposi-

tion, isolation and I/O sealing. The following three subsections

(Sections 5.5.1–5.5.3) describe these measures respectively.

5.5.1. Interposition
The interposition mechanism intercepts all kernel-user

transitions to give the VMM chance to protect sensitive

information.

Fig. 5 depicts the control flow transitions for a trusted sys-

tem call (TSC) and a normal system call in CHAOS. Normally,

a system call is essentially an interrupt2 (0� 80 in Linux) inter-

cepted and forwarded by the VMM. However, for the sake of

performance, Xen optimizes the system call forwarding and

allows user processes to directly call into the operating system

kernel. To intercept control transitions incurred by system

calls, CHAOS needs to intercept system calls made by a trusted

process. It is rather straightforward to make Xen to regain

Fig. 4 – The CHAOS architecture: components surrounded

with zigzag are protected.

2 Other forms such as sysenter (Intel) and syscall (AMD) can be
similarly handled in CHAOS.
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control over trusted system calls (TSC ), simply by replacing the

system call entry in the interrupt description table (IDT) with

a routine provided by CHAOS. The routine performs necessary

operations such as isolation and sealing to protect sensitive

data. Moreover, to avoid the performance loss for normal pro-

cesses, CHAOS utilizes another unused interrupt line (i.e.

0� 81) for trusted system calls. We provide a binary rewriting

tool to rewrite all system calls in a trusted application to uti-

lize the new interrupt line, i.e., to change the system call

code from int 0� 80 to int 0� 81.

To protect CPU context, the VMM interposes all the transi-

tion between user space and kernel space. Upon the intercep-

tion of a transition, the VMM is responsible for saving and

restoring the CPU context owned by a trusted process. The

VMM also conceals some general purpose registers from the

OS kernel. No replay attack is possible since the OS kernel can-

not set a malicious CPU context that resumes the execution of

a trusted process in a previous execution.

5.5.2. Memory isolation
The isolation mechanism isolates the CPU context and mem-

ory location owned by a trusted process from accessing by the

OS kernel.

The memory owned by a trusted process is protected in

two ways. First, the VMM hides the user-level mapping in

a page table to prevent the OS kernel from accessing the mem-

ory owned by a trusted process. Second, the VMM tracks the

usage of each memory page to prevent unauthorized map-

pings to memory pages owned by a trusted process. Conse-

quently, the OS kernel cannot tamper the code or inspect

the data for a trusted process. Notice that hiding the user-level

mapping will prevent the process-kernel data exchanges. To

handle this, recall that the VMM acts as a middle man to assist

the data exchanges by copying the data between the OS kernel

and a trusted process.

5.5.3. I/O sealing
The I/O sealing mechanism transparently encrypts and de-

crypts sensitive I/O data to prevent the OS kernel from

observing the data.

Fig. 5 – System call control flow for trusted system calls and

normal ones in CHAOS.
Sensitive data of a trusted process, when to be input from

or output to persistent storage, will be protected by crypto-

graphic means. CHAOS transparently encrypts sensitive I/O

data in the VMM layer. Generally, I/O operations are made us-

ing system calls or memory-mapped I/O. For system calls, the

VMM intercepts each I/O related system call and encrypts the

data before passing it to the OS kernel. On fetching it from the

OS kernel, the VMM will also decrypt the data before passing it

to the user space. For memory-mapped I/O, the VMM inter-

cepts the page table updating requests and decrypts the data

on the first page fault. When the page is unmapped (i.e.,

cleared the mapping from the user-level page table), the

page is encrypted again to prevent the OS kernel from

observation.

Another important issue is to secure launch grid applica-

tions. To prevent information leakage during the loading

process, CHAOS requires the program code and data to be

encrypted using a key provided by the platform. The VMM

will assist the process creation to decrypt the code and data.

Because only the VMM can decrypt the code and data during

process creation, there is no leakage of sensitive information

during this process.

6. Related work

We now review related work. This is separated into two parts

with respect to our work on two levels of virtualization: those

for enhancing security for collaborated computing above op-

erating systems, and those for enhancing operating systems

trustworthiness.

6.1. Security for collaborated computing above operating
systems

SHEMP (Secure Hardware Enhancement for MyProxy) (Mar-

chesini and Smith, 2005) is a system which hardens MyProxy,

the on-line PKI credential management servers, using a hard-

ware trusted computing base. A MyProxy server as an impor-

tant server is an attractive target to attack. Strong hardware

based protection on the credentials and user passwords which

are centrally managed by a MyProxy server is very desirable.

The hardware TCB proposed by SHEMP is an IBM crypto-

graphic co-processor. A hardware protection method for

credential is also proposed in Lorch et al. (2004). These pro-

posed just use a TCB secure hardware as secure storage de-

vices. The protection is considered on local resources and

assets. By contrast, in Daonity, we treat TPM as a TTP in re-

mote platform, here we intend to enforce security policy

afar, i.e., in addition to care about local resources, Daonity

also cares about protection of resources afar.

Property-based attestation for computing platforms (Sade-

ghi and Stüble, 2004; Chen et al., 2006) argues that the attesta-

tion functionality proposed by the existing specification of the

TCG can be misused to discriminate certain platforms and the

operating systems running on the platform. Therefore the re-

ally essential element for an attestation should be properties

of the software systems in the platform, not the software sys-

tems themselves. How to make use of property-based attesta-

tion may be of an interest for a future work of Daonity.
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Apart from TCG for grid security, many other works have

also applied TCG technologies to applications with remote ac-

cess control (Sailer et al., 2004a, 2005a,b; Haldar et al., 2004;

Sandhu and Zhang, 2005) in distributed computing. The

work of Sailer et al. (2004a) and Sailer et al. (2005b) proposed

a remote access control system for client-server based sys-

tems using integrity measurement and software stack

measurements. The work of Haldar et al. (2004) employed lan-

guage level virtual machines to attest the behavior of remote

entities. Compared with Daonity, it seems that none of these

systems support task delegation and secure redistribution

of tasks, as they do not involve credential migration. The

approach in Sandhu and Zhang (2005) is similar to Daonity

in that it also supports credential migration and secure redis-

tribution. However, it is mainly for policy enforcement in

Peer-to-Peer computing.

Architectural supports for software copy and tamper resis-

tant have been intensively studied in Lie et al. (2000), Shi et al.

(2004), Suh et al. (2003a,b). These architectures use secure pro-

cessors to encrypt/decrypt data when interacting with off-

chip memory. These technologies can provide very strong pro-

tection to OS kernel and applications. With the combination of

a kind of remote attestation mechanism such as using TPMs,

secure processors can serve well for trusted grid computing.

6.2. Previous efforts on OS trustworthiness

To guarantee operating systems level security, Terra (Garfin-

kel et al., 2003) first advocated to build a trusted platform

upon a trusted virtual machine monitor (TVMM), instead of di-

rectly using commodity operating systems. TVMM isolates the

upper VMs to allow a program to run in an authenticated VM.

NGSCB (2005) proposed to use a similar verifiable micro-kernel

as trusted base and provide trusted services for secure appli-

cations running thereon. Machine partitioning (e.g. Terra; Gar-

finkel et al., 2003; NGSCB, 2005; Peinado et al., 2004, 2005)

solved this problem by multiplexing commodity operating

systems and dedicated operating systems on a single hard-

ware platform. While they could result in strong isolation be-

tween applications with diverse security requirements, they

do not essentially resolve the impasse. Secure applications

can only execute in dedicated operating systems, which pro-

vide only restricted functionalities and require a reconstruc-

tion of applications. sHype (Sailer et al., 2005a) focuses on

providing a secure resource sharing between VMs. Sharing

of resources is controlled by a MAC (Mandatory Access Con-

trol) module. Currently, Daonity aims at providing an abstract

model for grid security and focusing on application level secu-

rity. Therefore, Daonity is orthogonal to these OS-level ap-

proaches. No doubt, these OS enhancement approaches will

complement Daonity and further enhance grid security under

secure infrastructure secured by a Daonity-like solution.

Micro-kernel based approaches (Chen and Morris, 2003;

Shieh et al., 2005; Härtig et al., 2005) are promising in reducing

the trusted computing base. However, they either require a re-

design of operating systems and applications (Shieh et al.,

2005), or they only provide restricted functionalities for secure

applications (Chen and Morris, 2003; Härtig et al., 2005).

Recent architectural enhancements (Lie et al., 2000; Suh

et al., 2003a) aimed to provide a private, tamper-resistant
execution environment for high-assurance applications.

XOMOS (Lie et al., 2003) examined these enhancements to

support trusted processes running in an untrusted operating

system. However, as the brought benefits greatly surpass the

incurred overhead in terms of cost, complexity and perfor-

mance, they are inherently expensive and impractical to be

adopted by industry.

Mandatory access control (MAC) systems have been widely

used to enhance system security. One typical system is SELi-

nux (Loscocco and Smalley, 2001), which integrates fine-

grained access control policies to control access to many sys-

tem resources in Linux. However, the policies are usually

rather big and complex, which are hard to derive and to verify

the completeness. Eros (Shapiro et al., 1999) is a micro-kernel

based capability system that integrates MAC to control ac-

cesses to critical resources. Asbestos (Efstathopoulos et al.,

2005) and Histar (Zeldovich et al., 2006) restrict the privilege

of processes by using capability-like mechanisms to explicitly

track and restrict the process privilege. By contrast with

CHAOS, they trust the operating systems and machine

owners, thus have a different trust model. Moreover, Eros, As-

bestos and Histar are not designed to retain backwards com-

patibility. They build new operating systems from scratch

and require existing applications to be ported to run in them.

Recently, a method (Jaeger et al., 2003) on how to realize in-

formation flow model on SELinux was proposed to isolate

multiple security layer processes and sensitive data in memo-

ries for different processes. PRIMA (Jaegar et al., 2006) was pro-

posed to provide TCG-based dynamic integrity measurement

based on CW-Lite mode (Shankar et al., 2006). They can be

useful guiding our future work in this direction.

System virtualization has gained great popularity in grid

computing (Figueiredo et al., 2003; Krsul et al., 2004; Adabala

et al., 2005) due to the fact that virtualization is promising to

provide a unified management of heterogeneous grid re-

sources with an enhanced security. We believe the approach

in Daonity could be seamless integrated to these systems to

enhance their security in the form of policy enforcement afar.

7. Conclusion

As grid security is becoming a more and more important topic,

a number of problems remain un-tackled by the existing grid

security solutions. We have identified that policy enforcement

afar is an essential requirement for grid security, or in fact, for

any distributed computing applications where a partner-and-

adversary threat model applies. We have argued that trusted

computing technology, thanks to its inherent property of be-

havior conformity, can provide suitable solutions to the iden-

tified problems in the existing grid security solutions.

As hardware and software supports for TCG technologies

are gradually becoming widely deployed, it is timely to con-

sider how such tools can be used to maximum effect in en-

hancing trust and security in grid environments. The work

of Daonity can be regarded as an early trial. The policy-en-

forcement-afar property in the work of Daonity is still in

a very primitive stage, mainly and specifically, to limit the be-

havior of the TPM owner. Nevertheless, sufficient innovations

have been identified through the progress of the work.
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While there are many systems and innovations in creating

tamper-resistant execution environment, our work in both

levels of virtualization differs from previous efforts in that it

relies on existing programming languages, conventional oper-

ating systems and commodity hardware to retain backward

compatibility with existing applications. It is designed to re-

quire only minimal changes to commodity operating system

and to incur only modest performance overhead to applica-

tions demanding trustworthiness.

Service oriented architecture (SOA) is a readiness for prac-

tice. Grid computing is a promising SOA to enable generalized

resource sharing in a virtual organization across physical or-

ganizations. TCG enabled security with strong means for re-

mote policy enforcement forms not only a practical and

near-term realizable service oriented methodology for service

providers, but also a sufficiently strong evidence for commer-

cial enterprises including financial institutions to be con-

vinced with high confidence to go for and offer out-sourced

enterprise computing and grid computing services.

Important next steps of the work include to support the

standard grid middleware GT4. This is a challenging task in-

volving standardization effort across areas of the grid, TCG

and OS virtualization.
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Appendix A. Trusted computing

In recent years, increased reliance on computer security

and the unfortunate fact of lack of it, particularly in the

open-architecture computing platforms, have motivated

many efforts made by the computing industry. Among these

is the development of Trusted Computing (TC). In 1999 five com-

panies – Compaq, HP, IBM, Intel and Microsoft – founded

Trusted Computing Platform Alliance (TCPA). The motivation of

TCPA was to add trust to open-architecture computing

platforms. In 2003 TCPA achieved a membership of 190 plus

companies, when it was incorporated to Trusted Computing

Group (TCG) (Trusted Computing Group, 2003; Pearson, 2003).

TCG is a vendor-neutral and not-for-profit organization for de-

fining, specifying and promoting industrial standards for the

TC technology. The TCG work has so far been developed to

contain sufficient innovations and become a standard
methodology for adding trust and security to open computing

platforms.

TCG’s approach to adding trust is to integrate to a com-

puter platform a hardware module called Trusted Platform

Module (TPM). TPM has a tamper-protection property. It is

intended by TCG that TPM can play the role of an in-plat-

form trusted third party agent to enforce a conformed be-

havior for software systems running on the platform. TPM

must be trusted to function properly as it is designed. Trust

in TPM’s correct functionality is underpinned by a number

of elements. As an industrial standard body, TCG considers

that this notion of trust is materialized by the following

elements:

� The tamper-protection assumption of the TPM that the be-

havior of any of its inner component cannot be subverted

by any external principal.

� Open specifications of the design for the hardware, soft-

ware, firmware components, algorithms and protocols,

which are used by the TCG. The open specifications facili-

tate expert review for minimizing the possibility of design

errors.

� Standard processes and criteria for evaluation and certifica-

tion of the system. TCG stipulates that evidence of engineer-

ing practice and industry review follow the Common

Criteria (CC) certification results.

� Good engineering practices by the manufacturer, with stan-

dard approach to defining, guiding and industry review of

manufacturing processes.

We believe that the above mechanism of trust is reason-

able for establishing and maintaining a reliable behavior to

be expected from a TPM. Although it was expressed in the

guise of arguing the meaning of trust, that view is in fact a con-

cern on whether the TCG technology may be misused, in par-

ticular by a few large companies, to stifle competitions. Given

the fact that a TPM can indeed play the role of an in-platform

agent with a conformed behavior which is designed out of

control of the platform owner, the concern of technology mis-

use is an understandable one.

At any rate, we are fortunate to be able to avoid the issue of

technology misuse. In this article when we speak of trust, we

confine ourselves to the idea of a platform system having an

expected behavior supporting grid, federated or collaborated

computing applications in which principals accept that they

should comply with a commonly agreed behavior. In our grid

computing model, conformed behavior is a requirement rather

than a problem, and hence misuse of trust is not an issue.

A.1. TC working principle

The following four notions are at the core of the TC

technology.

A.1.1. Trusted platform module (TPM) – an in-platform
trusted third party
This is a tamper-protection hardware module uniquely inte-

grated to a platform. The tamper protection is in the following

two senses:
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Shielded locations: These are places (memory, register, etc.)

which have the hardware base inside the TPM and may be ex-

tended to a place outside the TPM via the supporting software

system. A shielded location holds information which cannot

be accessed by any external principal in any way to violate

data confidentiality. The information held in a shielded loca-

tion can only be used in the TCG designed ways by ‘‘protected

capabilities’’ (see below). Information protected by shielded

locations includes cryptographic keys and some system integ-

rity metrics which are held by a number of hardware registers

inside the TPM.

Protected capabilities: These are designated computations

and operations performed by the TPM which have exclusive

permission to access shielded locations. Because of the need

for accessing shielded locations which are not available to

any principal external to the TPM, a protected capability can-

not be controlled or subverted by any of such principals in any

non-pre-designed manner. Protected capabilities include:

cryptographic operations inside the TPM such as the genera-

tion of random numbers and cryptographic keys, encryption,

decryption and digital signature generation using keys in

shielded locations; TPM functional operations which are re-

lated to measuring, storing and reporting of system metrics

(see below), and TPM’s system operations which maintain

power detection, counters, etc.

The tamper protection is an assumption. Under this as-

sumption, any principal external to the TPM is considered

a potential adversary, and this even includes the owner of

the TPM. This assumption is an important concept in TCG. Us-

ing the tamper-protection assumption it is intended that

a TPM can indeed play the role of an in-platform trusted third

party to protect some important data and perform some des-

ignated computations and functions.

It is actually reasonable to believe the validity of the

tamper-protection assumption. The validity rests on an in-

equality between the cost of making a hardware chip with

a tamper-protection quality and that of subverting it. This is

somewhat analogous to the following fact in cryptography:

designing a hard problem using an NP witness element is eas-

ier than solving the problem without the witness.

The integration between a TPM and a platform is also

tamper protected. We note that this property will be impor-

tant in our application of TC to realize a conformed policy

for a VO.

A.1.2. Root of trust for measurement (RTM)
The simplest form of platform measurement is the hardware

configuration properties of the platform in which a TPM is

integrated in a tamper-protection manner. A certificate of

hardware configuration can be issued by a trusted third party

to the TPM-platform after the integration of the TPM into the

platform. The signing capability of the TPM can later report

the platform’s hardware configuration status to a remote

querier (see ROR in Appendix A.1.4). In this simple form of

RTM, the TTP is trusted (by the remote querier) that it will

not issue the certificate of hardware configuration if the plat-

form does not have the configuration specified in the

certificate.

A TPM contains a plural number of registers inside the TPM

called Platform Configuration Register (PCR). A PCR is a 160-bit
hardware register which must be realized in volatile storage.

Upon either system startup or the system reset event, a PCR

is always reset to the initial state with a default NULL value.

The TPM is integrated in the platform’s hardware system in

such a manner: it can obtain (or ‘‘eavesdrop’’, or ‘‘overhear’’,

or ‘‘wiretap’’, or whatever you like to call it) any binary execut-

able code which is loaded from an external device to the in-

put–output hub in the CPU via the input–output bus. The

‘‘eavesdropped’’ copy of the binary executable is hashed in-

side the TPM and stored in a PCR in the PCR extension formula

(1). The hash total valued of a PCR value in that formulation is

called an RTM measurement result, which is in fact a digest

image of the software measurement in the platform system

(another name: the RTM integrity metric). The hash total for-

mula permits a PCR to cumulatively record the RTM integrity

metric results in an unbounded fashion. The stored platform

environment status is maintained until system reboot.

A more advanced form of platform measurement is on its

software configuration properties. At the platform boot time,

the TPM measures the system’s data integrity status. The

measurement starts from the integrity of BIOS, then that of

OS and finally to applications. Note that the lowest part of

the program code of the RTM is also called the core RTM

(CRTM) which is a firmware implemented instruction code

programmed to measure the very first piece of software sys-

tem a platform will be running. With CRTM, it is in principle

possible to establish a desired platform environment by load-

ing only well behaved systems. Although a practical realiza-

tion is so far still beyond commercial use. New thoughts on

virtualization of operating systems have been proposed, e.g.,

OpenTC, to be a way round the problem.

A.1.3. Root of trust for storage (RTS)
The RTS is a computing mechanism which realizes TPM-en-

abled shielded locations in such a manner that they are able

to hold information of a size not bounded to the (usually

small) size of the TPM. There are two ways to achieve the

RTS for two different services, respectively. One of the storage

service is for storing information which requires confidential-

ity protection and the RTS locations for this use are usually

outside the TPM in an external persistent storage (e.g.,

a hard disk drive). The other is for storing the RTM integrity

metrics and the RTS locations for this use are usually inside

the TPM.

The RTS location for storing confidentiality data is

a straightforward application of the well-known crypto-

graphic key management technique. At the TPM initialization

time, the owner of the TPM creates a storage root key (SRK) in its

shielded locations. The SRK a public/private key pair with the

private key residing in a shielded location inside the TPM. Now

consider a tree-structured hierarchy of key management sys-

tem in which the SRK is in the root of the tree. The public key

of the SRK is used to encrypt a plural number of children

‘‘blobs.’’ Each of the children blobs can be a ‘‘wrapped key

blob’’ (encrypted key) or a ‘‘wrapped data blob.’’ A key in

a wrapped key blob can be a symmetric key, a private key

for decryption or signature generation uses. A symmetric

key in a key blob can further encrypt a plural number of chil-

dren blobs, and the same structure of the hierarchy is main-

tained downwards, .
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The RTS location for storing the RTM integrity metrics of

the system software is PCRs (see RTM in Appendix A.1.2).

Related to these two RTS services, in TCG there is a notion

of ‘‘migratable TPM information’’ (TPM migration). The TPM

migration mechanism allows an authorized user of a TPM to

securely transfer a secret in a shielded location of the TPM

(the one the user is authorized to use) to a shielded location

of another TPM of the user’s choice. This mechanism permits

a user to move her/his cryptographic credentials and/or mis-

sion-critical data from one trusted platform to another. This

is a necessary security service for, e.g., a situation when the

user changes platforms. While some user credentials and

data secured in the RTS under the key management system

of the SRK tree may be rendered migratable, information in

the RTS for storing system integrity metrics is non-migratable.

A.1.4. Root of trust for reporting (RTR) and remote platform
attestation
The TPM can report to a remote requester a RTM result regard-

ing an executable running in the platform system. Here, the

RTM result has been recorded in an RTS protected location.

This service is achieved using a well-known cryptographic

protocol technique of challenge-response: a remote querier

challenges the TPM-platform with a random number, and

the TPM-platform responses by the TPM signing the random

challenge. The protocol enabling this TCG feature is called

remote platform attestation protocol.

Remote platform attestation is a very innovative part in

TCG. It is highly relevant to secure collaborated computing us-

ing the TCG technology. With remote platform attestation,

a remote principal as a stakeholder in a collaborated comput-

ing job can be assured of a conformed behavior of a platform

which is required by the secure collaborated computing appli-

cation. Under the tamper-protection assumption of the TPM,

the remote stakeholder knows that the conformed platform

behavior cannot be easily subverted, not even by the platform

owner.
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