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Abstract

This paper presents the open-source COREMU, a scalable and
portable parallel emulation framework that decouples the complex-
ity of parallelizing full-system emulators from building a mature
sequential one. The key observation is that CPU cores and devices
in current (and likely future) multiprocessors are loosely-coupled
and communicate through well-defined interfaces. Based on this
observation, COREMU emulates multiple cores by creating mul-
tiple instances of existing sequential emulators, and uses a thin
library layer to handle the inter-core and device communication
and synchronization, to maintain a consistent view of system re-
sources. COREMU also incorporates lightweight memory trans-
actions, feedback-directed scheduling, lazy code invalidation and
adaptive signal control to provide scalable performance. To make
COREMU useful in practice, we also provide some preliminary
tools and APIs that can help programmers to diagnose performance
problems and (concurrency) bugs.

A working prototype, which reuses the widely-used QEMU as
the sequential emulator, is with only 2500 lines of code (LOCs)
changes to QEMU. It currently supports x64 and ARM platforms,
and can emulates up to 255 [ cores running commodity OSes
with practical performance, while QEMU cannot scale above 32
cores. A set of performance evaluation against QEMU indicates
that, COREMU has negligible uniprocessor emulation overhead,
performs and scales significantly better than QEMU. We also show
how COREMU could be used to diagnose performance problems
and concurrency bugs of both OS kernel and parallel applications.

Categories and Subject Descriptors C.4 [Performance of Sys-
tems]: Modeling techniques; 1.6.0 [Simulation and Modelling]:
General; D.2.5 [Testing and Debugging]: Debugging aids

General Terms Design, Experimentation, Performance

Keywords  Full-system Emulator, Parallel Emulator, Multicore

1. Introduction

The continuity of the Moore’s Law has shifted the current com-
puting to multicore or many-core eras. Currently, eight cores and

! The xAPIC specification in x86 supports up to 255 cores.
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twelve cores on a Chip are commercially available. It was pred-
icated that tens to hundreds (and even thousands) of cores on a
single chip would appear in the foreseeable future [31].

The advances of many-core hardware also make full-system
emulation more important than before, due to the increasing need of
pre-hardware development of system software, characterizing per-
formance bottlenecks, exposing and analyzing software bugs (es-
pecially concurrent ones). Full-system emulation, which emulates
the entire software stack including operating systems, libraries and
user-level applications, is extremely useful in serving the above
purposes. It is even claimed with evidence that simulators might
be inaccurate or even useless if ignoring the system effects [7]. In
light of the importance of full-system emulation, there has been a
considerable amount of effort to build efficient full-system emu-
lators. Examples include QEMU [21], Bochs [3], Simics[15] and
Parallel Embra [14].

The many-core or multicore computing also creates tremen-
dous challenges and opportunities to full-system emulation. On one
hand, the rapid-increasing number of emulated cores requires full-
system emulation to be scalable and be able to handle a reasonable
scale of input. On the other hand, the abundant physical cores pro-
vide even more resources for full-system emulators to harness.

Unfortunately, most commodity full-system emulators are se-
quential and only time-slice emulated cores on a single physical
core in a round-robin fashion [15,116,121, 23], or only support dis-
continued outdated host and guest processor pairs [14]. Hence, they
cannot fully harness the power of likely abundant resources in cur-
rent CMP architecture, resulting in poor performance scalability
and restricted parallelism.

First, the sequential emulation design indicates linear slowdown
when the number of emulated cores grows, thus scales poorly on
current multicore platforms. Figure [1] shows the average execu-
tion time of processing 10 MB and 100MB input using WordCount
in log scale, a MapReduce application for shared-memory multi-
processors in the Phoenix testsuite [22], running on an emulated
Debian-Linux with kernel version 2.6.33-1 using the recent version
of QEMU. The performance degrades linearly with the number of
cores. When processing relative large input (e.g., I00MB), QEMU
times out for only 32 emulated cores.

Second, the sequential design implies that there is limited par-
allelism exposed among emulated cores. This significantly restricts
the use of full-system emulator to analyze software behaviors, thus
sacrifices the fidelity of full-system emulation. This problem is crit-
ical as parallelism is crucial to exhibit bugs when running parallel
workloads or debugging system software, which are especially im-
portant due to the pervasive existence of parallelism and the diffi-
culty in writing correct parallel code.

Figure 2] shows the restricted parallelism problem using a sim-
ple parallel counter program. The program increases the counter
using two parallel threads, with each thread increase it 500 times.
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Figure 1: The execution time of WordCount processing 10 MB and
100MB input on QEMU running on a 16-core machine.
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Figure 2: Bad Counter: the result will be incorrect as INC will
not be executed atomically.

The expected output should be 1000 but it fails on a multicore
system due to the data race between two threads. Unfortunately,
this program usually behaves correctly on full-system emulators
that sequentially emulate multicore. This is because the schedul-
ing among cores only happens at a coarse-grained granularity (e.g.,
basic block) for the sake of performance, which naturally renders
the increment atomic, resulting in no data race. In this example, a
much subtler problem occurs on a CISC machine where the incre-
ment is translated to a single INC instruction without lock prefix. In
such a case, the data race can only appear at microinstruction level,
hence even scheduling at instruction granularity can hardly expose
the data race bug.

Unfortunately, building a parallel full-system emulator is usu-
ally resource-intensive and requires years to be mature. Full-system
emulators, unlike user-mode emulators, need to model the system
aspects of a computing platform, including system-ISA, address
translation, privilege levels, interrupts and a set of devices. Further,
building a portable emulator is even harder because of the dramatic
differences of both the user-ISA and system-ISA among diverse
architectures. For example, QEMU becomes mature and widely
adopted after years of active development and is currently still in
active evolvement.

To address the difficulty of building a portable parallel emulator,
this paper presents COREMU, a parallel emulation framework for
CMP systems that decouples the complexity of supporting parallel
emulation from maturing a sequential emulator. The key observa-
tion is that CPU cores and devices in current (and likely future)
multiprocessors and multicore are loosely-coupled and these cores
and devices communicate through well-defined interfaces. Based
on this observation, COREMU emulates multiple cores by creating
multiple instances of existing sequential emulators, and uses a thin

library layer to handle the inter-core and device communication and
synchronization, to maintain a consistent view of system resources.

To ensure correctness and provide scalable performance, COREMU

also incorporates several techniques to enable efficient parallel em-
ulation. First, efficient and portable core-to-core synchronization is
achieved through lightweight memory transactions, with the only
assumption that the host architecture supports compare and swap
(CAS) primitives [, and allows the reuse of existing code gener-
ation for sequential emulation. Second, COREMU is built with
a workload-aware feedback-directed scheduling that avoids situa-
tions such as lock-holder preemption and allows balanced schedul-
ing of emulated cores. Third, to improve the scalability of code
cache management, COREMU uses a private code cache scheme
and addresses the issues with excessive inter-core cache eviction
through lazy cache invalidation. Finally, efficient core-to-core com-
munication is implemented through non-blocking data structures
and real-time signals with adaptive signal control.

To make COREMU useful in practice, we also provide some
preliminary tools and APIs to enable programmers to diagnose per-
formance bottlenecks and bugs of both OS kernels and applications.
First, COREMU provides a set of APIs including dynamically in-
strumenting programs and watching the accesses to user-specified
addresses. Second, programmers could also use COREMU to col-
lect memory traces of a program, which could be fed into a cache
simulator (e.g., GEMS [17]) to study the cache behavior of a pro-
gram.

We have built a working prototype that fully supports the x64
and ARM platform, in the form of a thin library composed of
2700 lines of code (LOCs) with only about 2500 LOCs changes to
QEMU. Application benchmarks (such as MapReduce, PARSEC,
dbench and Kernel Build) show that COREMU scales much bet-
ter than QEMU: COREMU can emulate up to 255 cores of x64
architecture and 4 cores of ARM platform [ while QEMU either
fails to boot or times out when only emulating 32 cores. Com-
pared to QEMU, the uniprocessor emulation overhead measured by
SPECINT-2000 shows negligible performance penalty (within 1%)
incurred by the parallel emulation. However, it achieves more than
20X speedup when emulating 16 cores compared to QEMU. The
performance benefit is due to the fact that COREMU can leverage
multiple available caches on multicore system and increased paral-
lelism.

To demonstrate the usefulness of COREMU, we also use
COREMU to debug both Linux kernel and user applications. Our
study shows that COREMU can provide precise evidences to un-
cover several bugs. Cache simulation results using the typical ma-
trix multiply show that COREMU can also accurately observe the
cache behavior of a program.

In summary, this paper makes the following contributions:

1. A case for parallelizing full system emulators by reusing ex-
isting mature sequential emulator, which decouples the com-
plexity of supporting parallel emulation from constructing and
optimizing a sequential emulator.

2. A set of techniques to scale COREMU: lightweight memory
transactions to achieve efficient synchronization among cores,
feedback-directed scheduling, private code cache with lazy
cache invalidation and adaptive signal control for scalable com-
munication.

3. Implementation, evaluation and case studies of COREMU,
which demonstrate the performance scalability and usefulness
of COREMU.

2 Other primitives such as il/sc are similar to CAS.
3 The Cortex-A9 MPCore supports a maximum of 4 cores



The rest of the paper is organized as follows: Section [2] pro-
vides background information on full-system emulation and re-
lates COREMU to previous approaches. Section[3]and [4] presents
the design and implementation of COREMU. Section [3] evaluates
COREMU using various benchmarks. Section [6] demonstrates the
usefulness of COREMU using several case studies. Finally, sec-
tion[7] discusses future work and concludes.

2. Background and Related Work

In this section, we first use QEMU as an example to describe key
techniques used in full-system emulation based on dynamic binary
translation and then relate COREMU to previous work.

2.1 Full-System Emulation with Binary Translation

Binary translation: The main loop of QEMU translates and exe-
cutes the emulated code based on basic blocks. Each block has one
entry and one exit point and is sequentially executed. QEMU first
translates the target machine code into common intermediate code,
which is recognized by its Tiny Code Generator (TCG).

Original Inst.
// Move a constant to stack )
mov $0x80494e4, (%esp)
J
\ Translation /
Translated Inst.

#cpu_AO0=&env->esp
INDEX_op_ld_i32
# cpu_T[0]=imm32
INDEX_op_movi_i32 cpu_T[0], imm32
# (cpu_AO0)=cpu_T[0]

INDEX_op_gemu_st32 cpu_T[0], cpu_AO0

cpu_AO0, env, offset(esp)

J

Figure 3: An example binary translation of a mov instruction in
QEMU.

Figure[3]shows the generated operation code of each micro op-
eration, along with its required parameters, when translating a mov
instruction. The first item of each line represents the operation code
(opcode), which is stored in gen_opc_ptr buffer. Other items
give the parameters which are stored in gen_opparam_ptr
buffer. The comment before each line shows the semantics of the
line. Here, cpu_AO and cpu_T[0] are temporary registers allocated
through TCG. The imm32 is $0x8049424 in this case, and QEMU
gets the immediate when disassembling the binary code. After reg-
ister allocation and machine code generation, the intermediate code
will finally be emitted as binary code.

Multiprocessor emulation: QEMU emulates multiprocessor
in a round-robin fashion: each emulated core has a time slice to
execute, and yields the physical CPU to the next emulated core if
the time slice has exhausted. Hence, there is no need to emulate
atomic instructions, as the scheduling at basic blocks naturally
guarantees the atomic execution of each instruction. Further, the
time-slicing of cores will result in bad performance scalability due
to the serialization of parallel code. For example, when a core
holding a lock has exhausted its time slice, other cores waiting on
such a lock will waste their time slices on spin-waiting the lock.

Full-system emulation support: Device emulation is done by
providing port and memory mapped I/O callback functions. QEMU
implements asynchronous I/O access, such as DMA, through signal
mechanism and pipe. Interrupts are handled by setting vector bits
in emulated interrupt controller. Before searching and executing
translation blocks, QEMU peeks the interrupt controller to see if an
interrupt presents, and emulates the interrupt handling procedure
accordingly. This typically includes changing privilege level and

pointing the emulated program counter to the entry of the interrupt
handler.

To support full-system emulation, QEMU implements a soft-
MMU that translates the target virtual address to host virtual ad-
dress. QEMU uses a soft-TLB to speedup target address translation.
Soft-TLB caches address results in the same way as the hardware
TLB. QEMU places look-up code before the code calling the soft-
MMU callback.

Translation cache management: QEMU uses a single pro-
cess to do system emulation and uses a single global translation
cache. The central data structure used to manage translated code is
TranslationBlock, which contains a pointer to the start of a
translated block in the cache. Given an emulated program counter
(target virtual address), QEMU checks whether its corresponding
code has been translated and in the cache and translates the code
and puts them into the cache upon a miss.

Physical pages containing translated code (code pages) are
write-protected by QEMU to maintain code cache consistency.
Specifically, the soft-TLB entries that point to code pages are
marked as clean so that any modifications to the page will trap
to a callback function, which invalidates the translation block by
deleting the corresponding items from the virtual and physical tag
hash tables.

2.2 Related Work

2.2.1 Full-system Emulation

The most related work with COREMU is Parallel Embra [14],
which extends the original Embra emulator [29]. However, it was
designed to support the SGI Origin 2000 with MIPS R10000 pro-
cessors, which are out-of-date (15 years ago) and not commer-
cially available now. In a contrast, COREMU runs current prevalent
Chip-multiprocessors (e.g., x64) and supports emulation of multi-
ple contemporary processors (e.g., x64 and ARM). To decouple
the complexity of parallelism from binary translation, it adopts a
layered structure and is likely to be easily re-targeted to new host-
target architecture pairs. Further, COREMU uses a general and uni-
fied approach to handling atomic instruction emulation for weak
ordering adopted by modern processors such as x64 and ARM,
while Parallel Embra only emulates MIPS processor with a se-
quential consistency model. Finally, COREMU introduces several
new techniques absent in Parallel Embra, such as synchronization
with lightweight memory transactions, feedback-directed schedul-
ing and thread-private cache with lazy invalidation. These tech-
niques make COREMU able to run contemporary workloads with
reasonable performance.

QEMU/KVM [2] is an accelerator that uses a virtualization
layer to accelerate emulation on the same-ISA platform. However,
the use of system virtualization loses both portability (e.g., only x86
to x86) and flexibility (e.g., no instrumentation support). Moreover,
it requires hardware support.

Sulima [20] and Parallel Mambo [26] (which extends Mambo [6]
for PowerPC) are two parallel full system emulators. They achieve
parallel emulating through parallelizing the original sequential em-
ulators. However, COREMU adopts a different, core-per-thread,
organizing strategy and reuses mature sequential emulator for
extensible cross-platform emulation. There are several user-level
parallel emulators developed (for example, [19,33]). Similar to
COREMU, Graphite [19] provides user-level parallel functional
simulation also using a multicore-on-multicore model. Instead of
emulating only user-level applications, COREMU focuses on full-
system emulation.

2.2.2 Simulation

There has been much research work devoted to fast and faithful
simulation of multiprocessors. Broadly speaking, these work can



be categorized to software approaches and hardware-assisted sim-
ulations. We discuss their relationships with COREMU in turn.

Software Approaches PTLsim [32] simulates x64 processor
using a Virtual Machine Monitor (VMM). By contrast, COREMU
supports cross-platform emulation, and uses binary translation for
emulation, which provides flexibility such as instrumentation capa-
bility and statistics generation.

Most of the software approaches exploit tradeoff between
speed and detail to achieve significant speedup, for example,
Statistical simulation 28], DiST [30], AMD SimNow [3] and
GEMS [17]. Compared to these systems, COREMU introduces
non-determinism and leverages the true parallelism in the underly-
ing processors to accelerate parallel full-system emulation.

Hardware-assisted Simulation The RAMP project from Berke-
ley investigates the use of FPGA to accelerate simulation of the
CMP architecture. Specially, the RAMP Blue [27] models the fu-
ture architectural features such as message-switching and transac-
tional memory.

ProtoFlex [8,19] is a hybrid functional emulator that uses FPGAs
to accelerate performance-critical parts in emulation. The proposed
technique, called transplanting, dynamically selects hot-traces to
be emulated in FPGAs, while leaving uncommon traces being
emulated in CPUs.

Recently, Chung et al. [10] proposed an approach to solve the
emulation of atomic instruction using hardware support for trans-
actional memory. In contrast, COREMU uses a more lightweight
solution that only requires compare-and-swap support of the un-
derlying processors, which is readily available on commodity pro-
CEssors.

Compared to these approaches, COREMU exploits abundant
multicore resources for full-system emulation, which achieves rea-
sonable performance without special hardware and is easy to de-
ploy and use.

3. The COREMU Parallel Full-system Emulator

This section identifies the challenges in building a scalable parallel
full-system emulator, shows the overall architecture of COREMU
and presents the solutions to the identified challenges. Finally, we
also present the preliminary support in COREMU for debugging
and performance diagnosis.

3.1 Challenges in Building a Scalable Parallel Emulator

Compared to building a sequential emulator, there are several chal-
lenges in designing and implementing a scalable parallel emulator,
due to the inherent differences during execution (i.e., time slicing
vs. true parallelism). Here, we identify the key issues in building
such an emulator for contemporary CMP architecture:

e Aromic Instructions: Unlike sequential emulators that inher-
ently handles atomic instructions by scheduling at the basic-
block level, a parallel emulator needs to efficiently emulate syn-
chronization primitives to coordinate concurrent accesses to the
emulated shared memory from each emulated core.

Scheduling Support: To emulate a large number of cores with
practical performance, it is critical to understand the workload
behavior to schedule the emulated cores. For example, lock-
holder preemption [25] can easily consume the available limited
CPUs, resulting in extremely bad performance.

Scalable Code Cache Management: There could be intensive
contentions if adopting a shared code cache as that in sequential
emulator when emulating a large number of virtual cores. Thus,
an efficient code cache scheme is critical for the performance of
parallel emulator.

e Scalable Communications: When emulating CPU cores in the
scale of hundreds and even thousands, there could be easily ex-
cessive core-to-core and core-to-device messages, due to device
interrupts (e.g., DMA, timer interrupts) and interprocessor in-
terrupts (such as remote TLB shootdowns). Hence, it is likely
that an emulated core could be frequently disturbed for process-
ing messages, limiting its performance.

3.2 Overall Architecture

COREMU is designed based on the observation that cores in mod-
ern multicore or multiprocessor machines are loosely-coupled and
communicated with well-defined interfaces. For example, each
core has its own register file, control logic and separate cache.
They independently execute instruction stream assigned to it and
the communication channels between cores are well defined, such
as Inter Processor Interrupt (IP I). Such an organization allows the
separation of building fine-tuned sequential emulators from effi-
ciently parallelizing it, thus decreases the complexity of building
a parallel full-system emulator. It could be much easier to adapt
the emulator to different host/target pairs to make such an emulator
portable.

Figure[d]depicts the architecture of COREMU. Overall, COREMU
is a multithreaded user program running on the hosted operating
systems, emulating a cache-coherent shared memory multiproces-
sor to run operating systems and the applications. Each sequential
emulator is essentially a threaded binary translator with its own
translation cache holding already translated blocks (TBs). All de-
vices are emulated using a separate thread. There is a thin library
layer handling communications and synchronizations among em-
ulated cores and devices through intercepting callouts. The library
also maintains the coherence between each translation cache by
coordinating the invalidation requests.

Atomic Instructions || Lightweight Memory Transactions
Scheduling Feedback-Directed Scheduling
Code Cache Private Cache w/ Lazy Inval.

Communication Adaptive Signal Control

Table 1: Methodologies in COREMU.

In additional to memory consistency, Table [1| summarizes the
underlying techniques in COREMU to enable a scalable parallel
emulation of a large number of cores with practical performance,
which will be presented in detail in the following sections.

3.2.1 Synchronization with Lightweight Memory
Transactions

The fact that all emulated cores share a global, cache-coherent
memory poses a challenge to scalable parallel emulation. Specif-
ically, microprocessor exports a set of aromic instructions executed
atomically, which are usually used to implement synchronization
primitives. An efficient emulation of atomic instructions is critical
to parallel emulation: (1) the emulation of atomic instruction should
be fast and correct; (2) the emulation should be portable across a
variety of architectures.

An intuitive solution is to perform an identical translation that
maps the emulated atomic instruction to one on the host architec-
ture, which is used in Parallel Embra [14]. This solution is fast and
correct, but not portable, due to the idiosyncratic nature of different
ISAs. For example, the ARM processor has only 2 atomic instruc-
tions, while x86 has around 20, which indicates that it is not always
feasible for such a direct mapping. Furthermore, an atomic instruc-
tion in an emulated x86 core is usually decomposed into several
non-atomic micro-operations on host architecture.

Another intuitive solution is to use lock to synchronize all par-
allel accesses, by associating each memory region with a lock to
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Figure 4: Overall architecture of COREMU, which uses a two-layer parallel emulation organization. COREMU library acts as the bonding

agents between different emulated components.

serialize accesses to this region (in our initial implementation, each
64-byte region has a lock). Such a solution avoids a global lock so
that parallel accesses to different memory regions are allowed. Un-
fortunately, while this solution seems plausible, it has correctness
issues.

Processor 1 Processor 2

N
spin_unlock: spin_lock:
- . try:
TO =r10; .
’ T1 = *addr; ro=1;
™ addr = TO- xchg addr, r10;
’ ’ if(r10 == 0)
goto success;
fail:
pause;
if(*addr != 0)
Race here causes (ﬁgt? f?”;
deadlock ! gototry;
success:
Y,

Figure 5: Weak atomicity problem due to partial locking.

For example, consider the deadlock illustrated in Figure[3] This
example implements an efficient spin_lock and spin_unlock opera-
tions on Intel/AMD x64 machines. The spin_unlock operation sim-
ply stores a O into a lock. The spin_lock exchanges a 1 into the
lock using atomic xchg, and checks whether the original value is
0. QEMU translates xchg by first reading out the two values into
temporaries, and then storing them back with swapped order. If we
partially protect the exchange with a lock, the store operation in
spin_unlock can still happen during xchg, causing a deadlock af-
terwards.

Hence, to ensure strong atomicity, one must passively protect
all atomic instructions using lock. However, this solution will incur
prohibitive performance overhead as every memory access needs
to acquire and release a lock.

COREMU solves the multiprocessor synchronization problem
with lightweight memory transactions based on the well-known
Multi-Word Compare and Swap (CASN) algorithm [12]. COREMU

Translate ATOMIC INC [ADDR]

l l FAIL:RETRY I
LOAD  |REG <- [ADDR] OLD <- [ADDR]
INC REG <- REG+1 NEW <- OLD+1
STORE  |[ADDR] <- REG CAS [ADDR],0LD,NEW

Sgeuencial Emulation Parallel Emulation

Figure 6: Example translation of an atomic INC

supports this operation with the only assumption that the under-
lying architecture supports CAS like synchronization primitives,
which holds for most modern architectures. Figure [6]shows an ex-
ample translation of INC instruction where host and target system
uses the same word size.

Generally, the working flow is as follows: (1) Calculate the re-
sult into tmp; (2) Use CAS to store tmp into destination; (3) Proceed
to the next instruction on success, or re-execute this instruction.
Overall, our solution guarantees an efficient emulation of atomic
instruction and allows the reuse of most sequential code generation.
Further, our memory transactions are much more succinct com-
pared to the general transactional memory due to the simple and
clean semantics of instructions. These instructions usually only up-
date a single memory location and the memory state only has one
transition, hence very few states are needed to record during such
transactions.

To illustrate the effectiveness of COREMU , we start two paral-
lel threads to atomically update a shared counter one million times.
The lock-based emulation only uses lock to partially protect the
emulated INC. From our evaluation results COREMU emulation is
8X faster (6.82s vs. 47.69s) than a lock-based solution.

3.2.2 Feedback-Directed Scheduling

COREMU creates one thread for each emulated core or device.
There might be more threads than physical cores with the num-
ber of emulated cores increasing. Hence, thread scheduling is crit-



ical to ensure practical performance when an excessive number of
threads co-exist in the system. To address this problem, we pro-
pose a flexible feedback-directed scheduling mechanism to provide
good scalability and reasonable fidelity for parallel emulation. The
scheduling algorithm aims at utilizing the workload information in
the emulated environments at the binary translation layer and uses
such information as feedback to direct the scheduling among phys-
ical cores:

Lock-holder Preemption: Lock holder preemption is one of
the limitations for performance scalability and fidelity for parallel
emulating large scale virtual cores. The guest parallel workloads
(including the operating system kernel) usually use spin-locks to
guarantee exclusive accesses to shared data. Such spin-locks are,
by design, only held for a short period of time and will be unlikely
preempted until the lock is released.
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Figure 7: The problem of lock-holder preemption (top half) and the
solution in COREMU to remedy the problem (bottom half).

However, when running a commodity operating system on a
parallel emulator, the emulated environment may violate such a
premise of using spin-locks. The emulated virtual core can be pre-
empted even it is executing critical code protected by a spin-lock,
as shown in the top half of Figure[7} Such lock holder preemption
could result in a significant increase of the lock holding time. For
workloads running on large-scale emulated cores, such a situation
could be common and cause a serious performance degradation and
poor fidelity.

Avoiding lock holder preemption can be achieved by either
modifying (e.g., compiler instrumentation) the guest operating sys-
tems or workloads to give hints to the emulator (intrusive), or hav-
ing the emulation layer to detect when the guest operating sys-
tems are not holding a lock (non-intrusive). To retain transparency,
COREMU currently uses the latter approach to detecting the spin-
locks.

Based on the observation that a spin-lock usually uses a pause
instruction after the lock prefix instruction, we can pre-translate

more translation blocks when we find a lock prefix instruction has
been translated. When COREMU detects a spin-lock, it tags the
corresponding TBs. Afterwards, COREMU can detect if a virtual
core has acquired a spin-lock successfully. To avoid lock holder
preemption, COREMU feeds such hints to the underlying scheduler
to avoid preemption when a virtual core is still executing a critical
section. After the lock is released, COREMU also gives such a hint
to the scheduler and the scheduler will decide if re-preempting the
virtual cores. Finally, COREMU can also detect if a core is waiting
on a lock and feed such a hint to the scheduler, which yields the
virtual core until the lock release action is detected, as shown in the
bottom half of Figure 7}

3.2.3 Thread-Private Cache with Lazy Invalidation

Like other binary translators, COREMU uses translation cache that
caches translated code to improve emulation performance. For a
parallel emulator that emulates a number of cores, as each core will
access the translation cache, an efficient scheme is vitally important
for the performance and scalability.

Basically, there are two design choices: thread-shared cache and
thread-private cache. For thread-shared cache, all emulated cores
share a single global cache and each piece of code has only one
copy in the cache, which is efficient in memory space usage, yet
would cause heavy contentions on the cache when emulating a rel-
atively large number of cores or running workloads with poor code
locality. For thread-private cache, where each emulated core has its
own translation cache, which would result in fewer contentions, yet
requires more memory spaces and excessive inter-core communi-
cations to maintain cache consistency.

To avoid possible contentions, COREMU uses a thread-private
cache scheme because it naturally fits into COREMU’s decoupled
emulation model, where each core thread independently caches
their executed code. However, this design leads to the code eviction
problem, where a write to a code page must synchronize with other
emulated cores to invalidate all cached translation blocks. A typical
case for such an invalidation event corresponds to self-modifying
code. In full system emulation, this happens more frequently when
a code page owned by one process is reused as a data page by an-
other process. For example, after a multi-threaded application exits
and its memory pages have been reclaimed by the OS kernel, its
pages could be used for holding program data. Unfortunately, such
pages might still be in translation cache and other emulated cores
are not aware of the status changes of these pages. Consequently,
COREMU needs to issue code eviction events to other emulated
cores to invalidate the code cache. According to our experience,
there are typically hundreds of thousands of such events when boot-
ing Linux with 4 emulated cores. Furthermore, this number rapidly
grows with the increase of emulated cores, which dramatically lim-
its the performance scalability.

To address the scalability problem caused by excessive code
evictions, COREMU uses a technique called lazy invalidation.
Our key observation is: the invalidated code pages are rarely re-
executed later. Hence, the invalidation could be postponed until
the re-execution of stale cached-code (if such code is really self-
modifying code or the page will again be used as code page).
Specifically, on a code page write, all cached translation blocks
are updated to return a value, which indicates that code eviction is
needed. If such code is re-executed, COREMU removes the cached
block from thread-private translation cache, re-translates and exe-
cutes it. Lazy invalidation ensures the common case is fast, as the
real re-execution of stale code cache implies self-modifying code
or reused code, which is rare in practice.

Finally, to implement code page protection similar to QEMU,
COREMU uses CAS to implement code page protection. Specif-
ically, the core that maps the code should atomically replace the



soft-TLB entries of other cores to protect the page so that any write
afterwards traps into the lazy invalidation callback.

3.2.4 Communication with Adaptive Signal Control

In a sequential emulator, it is easy to handle core-to-core commu-
nication and core-to-device communication because it can process
these asynchronous events in a synchronous way. For example, to
emulate the IPI broadcasting, it simply sets the interrupt vector for
each emulated core. However, for a parallel emulator, such a direct
modification indicates concurrent or even parallel modifications to
internal states of an emulated component. Using locks to provide
safe concurrent modification is complicated and time-consuming.
Further, it violates the design principle to decouple parallel emula-
tion complexity from optimizing sequential ones.

Asynchronous communication in COREMU is handled using
Real Time Signal (RT-Signal) [1] and non-blocking data structures.
RT-Signal is used as communication primitive for its two useful
properties. First, the delivering order is guaranteed to be FIFO,
which ensures the fairness of handling the events. Second, the
signals with the same type are buffered rather than ignored, thus
all asynchronous events will not be lost. To handle asynchronous
events from hardware and other cores, each core maintains a non-
blocking FIFO queue to hold all these events.

However, naively sending all interrupts using RT-signals would
result in excessive signals and cause significant overhead due to
the high cost of trapping into and returning from signal handlers.
Further, it limits system scalability as the number of interrupts
increases rapidly with the increase of cores. For example, our tests
indicates that a WordCount application with 10 MB input running
on 8 emulated cores with 8 physical cores is even a bit slower than
on 4 emulated cores on 4 physical cores (5.78s vs. 5.14s).

To solve this problem, COREMU uses a technique called adap-
tive signal control to reduce the signal-handling overhead by con-
trolling the rate of signal sending. Specifically, COREMU only uses
RT-signal to notify the target processor when the number of pend-
ing interrupts exceeds a threshold. The threshold is dynamically ad-
justed in the signal handler according to the frequency of received
signals. Otherwise, each emulated core polls for pending interrupts.
Using such an optimization, the execution time of WordCount on 8
emulated cores with 8 physical cores decreases from 5.78s to 2.47s.

3.3 Debugging and Diagnosis Support

COREMU is also built with some preliminary mechanisms to assist
programmers to debug and diagnose the bugs and performance
problems of parallel systems and applications:

Watchpoints: To assist programmers to find memory-related
bugs effectively, COREMU is integrated with a watchpoint mecha-
nism that can constantly monitor the accesses to a range of not only
virtual addresses but also physical addresses. Programmers can also
associate a callback function which will be triggered when a spe-
cific type of accesses to a watched address occur. A set of utility
functions are also provided to be invoked by the callback function,
including dumping the call stack, showing the execution context,
showing the content of the stack, which helps programmers to un-
derstand the execution context. Programmers could control the ex-
ecution of the monitoring by specifying the condition that triggers
the monitoring, which could save the associated overhead.

Cache Simulation: Cache behavior is critical to program per-
formance. Instead of writing a cache simulator to COREMU, we
reuse a state-of-the-art simulator (i.e., GEMS [17]) by collecting
memory traces using COREMU and feeding the traces to GEMS.
This helps programmers to qualitatively identify the performance
problems of some applications and system software.

4. Implementation

COREMU is implemented on x64 processors and currently uses
QEMU as the sequential emulator. It is in the form of a multi-
threaded application scheduled by the host operating systems. It
supports the full system emulation of x64 and ARM processors.
The COREMU library only requires around 2700 lines of C code,
including the thin synchronization and communication layer and
some well-known non-blocking data structures such as Michael and
Scott’s non-blocking FIFO queue [18].

Portability of COREMU: a Case Study using ARM Given
the fully-fledged support for x64 platform, we found it quite easy
to port it to other platforms. We chose ARM MPCore as the porting
target given the popularity of ARM platform on mobile systems, as
well as the readily support of sequential emulation of multiproces-
sors in QEMU. Two of our developers who are quite familiar with
COREMU but are completely new to ARM platform, spend four
days to port COREMU for ARM, adding only 150 LOCs.

Parallel Emulator Construction To construct a full-system
emulator, we reuse all the high-level abstractions in QEMU, such
as devices, processors and interrupt controllers. As we model each
processor as a single thread, per-core objects need to be marked
with __thread specifier. The marking is usually quite straight-
forward since emulated processor objects are well defined.

The communication interfaces need slight adjustment which
typically does not require deep understanding of the internal logic
of QEMU. For example, we need to use COREMU interfaces to
send I/O requests or interprocessor interrupts, and these interfaces
are usually just wrapper functions for original QEMU interfaces.
For device emulation, COREMU provides debug mode device em-
ulation in case the driver is incorrect. Each emulated device has a
lock and the lock is acquired at the entry of its I/O hook functions.

Atomic instruction emulation needs to be adjusted to be aware
of their atomicity. This requires inserting calls to COREMU library
to use memory transactions. Fortunately, most of the code can still
be reused. For example, we can completely reuse all the code in
QEMU that generates the decomposed micro operations.

Currently, COREMU allocates a fixed portion of memory for
each emulated core as their translation cache. This strategy properly
fits into the loose coupling nature of cores, except the disadvantage
of linear space overhead with the number of cores. Fortunately, we
found a 5 MB cache for each core is enough, even for some large
parallel workloads. In future, we plan to implement a two-layer
translation cache management scheme that combines the space
efficiency of shared cache and the scalability of private cache, to
support a larger scale many-core parallel emulation.

COREMU modifies the translated code invalidation callback.
Every invalidated cached block is rewritten to just return a value,
which indicates if code eviction is needed. Note that, while COREMU
needs translated code modification, there is no need to modify the
complicated internal states of the emulated core, such as transla-
tion block unlink or hash map invalidation. However, this requires
a core to see the translation blocks produced by other cores. To
achieve such a goal, COREMU maintains a data structure which
records, across all cores, all translation blocks on a code page. Fur-
ther, each translation block is provided with a lock and a flag to
indicate whether the block has already been evicted. Upon getting
the lock, COREMU checks the flag to see whether the rewriting
has been done, hence avoids rewriting the code twice.

When emulating a large number of cores, the excessive time
interrupts (i.e., signals) could easily exhaust most of the CPU
cycles and starve the user programs. Hence, COREMU adaptively
adjusts the rate of delivering time interrupt by emulating an time
device (e.g., programmable interval time, PIT) according to the
proportion of the number of emulated cores with the physical cores.
To associate each emulated core with a signal, COREMU creates a



per-thread local timer which signals the emulated processor based
on the thread ID, which is retrieved using gettid system call.

5. Evaluation

This section evaluates COREMU by comparing it with QEMU
when emulating x64 and ARM MPCore using various contempo-
rary benchmarks that either require a relatively large input size and
working set or require relatively long execution time.

5.1 Experimental Setup

All performance evaluation is performed on a 4 Quad-core (1.6
GHZ) Intel x64 system running Debian-Linux with kernel version
2.6.26-2. The guest OS is also a Debian-Linux with kernel version
2.6.33-1 since the kernel version 2.6.26-2 cannot boot when em-
ulated core exceeds 64. The host machine has 32GB memory and
the guest is configured with 8 GB memory. We use several differ-
ent types of applications to study their performance with regard to
QEMU and COREMU: (1) SPECINT-2000 [13], a CPU-intensive
benchmark; (2) the Canneal benchmark from PARSEC benchmark
suite [4] using native input set, whose working set is around 2 GB;
(3) WordCount benchmark included in Phoenix MapReduce test-
suite for multicore [22], using a 100 MB word file; (4) dbench [24],
a file system benchmark; (5) Parallel kernel build, which builds
a compacted Linux kernel by specifying the currency level as the
number of (emulated) cores.

We ported two MapReduce applications in the Phoenix testsuite
to ARM platform to study the performance and scalability of emu-
lated ARM MPCore: Matrix Multiply that multiply two 800 * 800
matrices; WordCount with a 10 MB file. The version of Linux used
for emulated ARM is 2.6.28.

QEMU and the one used in COREMU are obtained from its GIT
repository on May, 4, 2010. COREMU and QEMU are configured
with the same options. All these applications are compiled using
gee-4.3.2. As typical timing mechanism in emulated environments
could be inaccurate on a large number of emulated cores, we use
rdtsc instruction in such cases instead, since such an instruction
will read the timestamp registers in the host platform directly in
COREMU. For all the tests, we run the test program 5 times to get
the average. In many cases, QEMU times out so we omit the results
of QEMU.

5.2 Performance of Emulated x64
5.2.1 Uniprocessor Emulation Overhead

Figure[8ldepicts the relative performance overhead to native Linux
with 8 applications in SPECINT-2000 benchmark suite. As shown
in the figure, COREMU incurs negligible performance overhead
compared to QEMU, within 1% for all of these benchmarks. Com-
pared to native execution, COREMU is 11X slower on average.
The single core emulation overhead mainly comes from the com-
munication among different components and the use of transactions
to synchronize multiple cores. However, as the proportion of com-
munications as well as memory transactions is relatively small in
single-threaded applications, the incurred performance overhead is
negligible.

5.2.2 Performance and Scalability of Emulated x64
‘We use four applications with diverse characteristics to evaluate the

performance and scalability of COREMU on x64. The characteris-
tics of those benchmarks are described as follows.

e WordCount: Data-parallel applications The WordCount
(wc) benchmark tries to demonstrate that COREMU can also
run data-parallel applications with good performance.

® Canneal: the case of handling large working set: To demon-
strate that COREMU can handle a large working set, we com-

T T
— QEMU
mmmm COREMU

Normalize Execution Time

ogzip vpr gcc  mcf crafty parser bzip2 twolf geomean

Figure 8: Uniprocessor emulation overhead with SPECINT-2000:
the execution time is normalized to native execution time.

pared the performance and scalability of the Canneal bench-
mark from the PARSEC benchmark suites with 2GB input size.

® dbench: Evaluating file system and I/O Performance: We use
dbench to evaluate file system and I/O performance and scala-
bility of COREMU.

® Parallel kernel build: evaluating complex workload: Building
a Linux Kernel is a relatively complex workload as it involves
creating a number of parallel processes to compile the source
file.

To evaluate the performance and scalability, we compare the
results of COREMU and those of QEMU with these benchmarks
running on 1, 2, 4, 8, 16, 32, 64, 128 and 255 emulated cores. The
results are shown in Figure [9] Figure[10] Figure [I1]and Figure [12]
in log scale. To illustrate the relative performance of COREMU, the
native execution time of different applications are also presented.
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Figure 9: Performance and scalability of the WordCount bench-
mark with 100 MB input in log scale.

- —A— COREMU

B-—o0-——C —--©0-- QEMU
= 1000 - -@- Native
5 L
)
E e
'_
c
il
5 100
3 Te.
ﬁ R

10 L L L L L L L
1 2 4 8 16 32 64 128 255

Number of Cores

Figure 10: Performance and Scalability with Canneal benchmark
from PARSEC testsuite in log scale.
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Figure 11: I/O performance results with dbench in log scale.
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Figure 12: Performance and Scalability of the parallel kernel build
benchmark in log scale.

As shown in the figures, COREMU achieves good performance
scalability. It scales pretty well when the number of emulated cores
increases from 1 to 16. When the emulated cores is larger than
physical cores, the performance degradation is still acceptable. It
can emulate up to 255 virtual cores with reasonable performance.
In contrast, QEMU times out or crashes when emulating more than
16 cores due to cache thrashing or contentions. COREMU achieves
a speedup from 20X to 67X when 16 virtual cores are emulated.

There are two reasons for the much better performance and
scalability of COREMU. First, when emulating larger number of
multiprocessors, there are a lot of synchronizations among threads,
and threads frequently fall into spin-wait state. Sequential emula-
tion can only exhaust the time slice of spin-wait. In COREMU,
the feedback-directed scheduling can handle this case by detecting
lock situation in emulated cores and yielding the control to another
thread. Actually, during our process of development and optimiza-
tion, COREMU can only emulate 32 cores without the feedback-
directed scheduling optimization. Second. with the number of vir-
tual core increasing, the implementation of COREMU can also lead
to a good data locality and better usage of cache compared to that
of QEMU.

As the four mentioned optimizations work together to make
COREMU scale beyond 32 cores, we currently failed to identify
the contribution of each optimization to the overall performance
scalability, which will be our future work.

5.3 Performance of Emulated ARM

We use two applications, Matrix Multiply and WordCount to study
the performance and scalability of emulated 1, 2, 3 and 4 ARM
cores. Figure shows the performance of the two applications
running on QEMU and COREMU. As we currently do not have an

ARM MPCore machine in hand, we omit the native data here. Like
the performance trend of emulating x64, COREMU has similar
performance with QEMU when emulating uniprocessor, but has
better performance and scalability when emulating 2 to 4 cores,
with the corresponding speedup of 1.67X (11.3s vs. 18.9s), 2.56X
(7.2 vs. 16.25s) and 2.5X (6.1s vs. 15.5s) for WordCount and 1.96X
(46s vs. 90.5s), 2.9X (30.96s vs. 90.85s) and 4.3X (22.9s vs. 91.17s
) for Matrix Multiply accordingly.
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Figure 13: Performance results with Matrix Multiply and Word-
Count on QEMU and COREMU.

6. Case Studies of COREMU

To demonstrate the effectiveness of COREMU, we make several
case studies by using COREMU to diagnose and debug the per-
formance problems and (concurrency) bugs in both OS kernel and
user applications.

Cache Simulation: We use the matrix multiply (mm) appli-
cation from the Phoenix MapReduce framework [22], which is
a parallel version of matrix multiply written using the MapRe-
duce programming model. By collecting the memory traces using
COREMU and replaying them in GEMS, we found that even when
using 4 cores, the default version in COREMU incurs more than
26% L1 cache miss rate with the input size to be 500 X 500. By
transposing the input matrices before executing the MapReduce
tasks, we observe that the L1 cache miss rate degrades to only 5%,
leading to a performance speedup of more than 2X.

Debugging using Watchpoints: We use one kernel bug and one
user bug to demonstrate how COREMU could be used for debug-
ging. The kernel bug is a NULL pointer dereference bug caused by
incorrect concurrent updates to the inode->i_pipe variable in Linux
kernel version 2.6.21 [1. After one thread has freed inode->i_pipe
and set it to NULL, another thread tries to deference it. To detect
such a bug, we inserted a watchpoint on updates to that variable and
log accesses that write a NULL to that variable. Using COREMU,
we quickly located the function and execution context nullifying
that variable.

The user-level bug is from pbzip2[l, which is an order violation
concurrency bug. There are still accesses to the fifo->mut variable
from the consumer threads after the variable has been freed by the
main thread, which causes a segmentation fault. With COREMU,
we diagnose the root cause of this bug similarly by inserting a
watchpoint on fifo->mut and logging the accesses.

7. Conclusion and Future Work

We have presented the open-source COREMU, a scalable and
portable full-system emulator for CMP systems. COREMU clus-
ters multiple mature sequential emulators using a thin library layer,

4 https://bugzilla.kernel.org/show_bug.cgi?id=14416
5 http://www.eecs.umich.edu/ jieyu/bugs/pbzip2-094.html



hence decouples the complexity of supporting parallel emulation
from building an optimizing sequential emulator. Experimental
results show that COREMU has negligible uniprocessor perfor-
mance overhead and scales much better than sequential emulators,
and is orders of magnitude faster. From our experiences of building
COREMU, we found that efficient emulation of synchronization
primitives, efficient scheduling, scalable code cache management
and efficient communication mechanism are the key to the perfor-
mance and scalability of a parallel full-system emulator. We hope
that our experiences could be useful for building other similar sys-
tems.

We plan to extend our work in several directions in future. First,
while currently COREMU trade the determinism for performance
by parallelizing the emulator, determinism is extremely useful to
replay uncovered bugs. Hence, we plan to add record and replay
support in COREMU, to support the execution replay of the full
emulated multiprocessors [11]. Second, though there is no funda-
mental limitation to support other Host/Emulated processors pairs,
we currently only tried a few. We are now trying to add more pro-
cessors pairs to make it more portable. Finally, we are also provid-
ing more debugging and instrumentation support in COREMU to
enable a more wide range of usages in performance debugging and
diagnosis.
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