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Abstract

Multi-tenant cloud, which features utility-like computing resources to

tenants in a “pay-as-you-go” style, has been commercially popular for years.

As one of the sole purposes of such a cloud is maximizing resource usages

to increase its revenue, it usually uses virtualization to consolidate VMs

from different and even mutually-malicious tenants atop a powerful physical

machine. This, however, also enables a malicious tenant to steal security-

critical information such as crypto keys from victims, due to the shared

physical resources such as caches.
In this paper, we show that stealing crypto keys in a virtualized cloud

may be a real threat by evaluating a cache-based side-channel attack against

an encryption process. To mitigate such attacks while not notably degrading

performance, we propose an approach that leverages dynamic cache coloring:

when an application is doing security-sensitive operations, the VMM is

notified to swap the associated data to a safe and isolated cache line.

This approach may eliminate cache-based side-channel for security-critical

operations, yet ensure efficient resource sharing during normal operations.

We demonstrate the applicability by illustrating a preliminary implementation

based on Xen and its performance overhead.

1. Introduction

Multi-tenant cloud, which usually leases computing re-

sources to tenants in the form of virtual machines (VMs), have

been adopted in various usage scenarios such as application

hosting, content delivering, e-commerce and web hosting [2].

The approach of consolidating resources using virtualization

allows the cloud infrastructure providers to achieve optimal

resource utilization while maintaining adequate isolation.

However, providing virtual isolation (i.e., VM) other than

physical isolation may also have some security implications.

For example, co-locating VMs on the same platform may lead

to implicit resource sharing (e.g., cache) among co-located

VMs, which introduces opportunities of security interference.

Previous researchers have demonstrated the applicability of

using various side-channel attacks to extract information such

as physical location and workload information [13].

Side-channel attack, which leverages low-bandwidth mes-

sage channels (e.g., timing, power, cache misses) in a system

to derive or leak security-sensitive information, has been

proven to be realistic threats to modern computer systems.

Among them, cache-based side-channel attacks have been

shown practical to steal cryptographic information within a

single operating system [4], [10], [12]. The main idea is that

cryptographic algorithms usually have data-dependent memory

access patterns, which can be revealed by observing and

analyzing the associated cache hit/miss statistics. Cache-based
attacks then can rely on certain statistics during the encryption

or decryption operations to extract the cryptographic key.

In this paper, we make the first illustration of the applicabil-

ity of mounting cache-based side-channel attacks among VMs

in multi-tenant cloud, by building a simple example of cross-

VM side-channel attacks through revealing the cache hit/miss

statistics [10]. The attack is done on an Intel i7 machine

with hyper-threading technology running the Xen VMM [3],

where the victim guest VM shares the same L1 cache with the

attacking VM. Our experiment shows that the attacking VM

can still extract the cryptography key information even in the

presence of much more interference than in a single OS.

One intuitive defense against cache-based side-channel at-

tacks across VMs is to provide strong cache isolation among

VMs such as applying static page coloring in virtual plat-

forms [7]. However, this approach will proportionally decrease

the available cache sets for use, thus may significantly degrade

the performance for not only the protected VM, but also other

VMs. Further, typical processor cores usually have limited

number of cache sets, which could limit the number of

runnable VMs within a shared cache when applying static page

coloring.

To enforce cache isolation while providing good perfor-

mance, we propose a non-intrusive, low-overhead dynamic

page coloring mechanism, named Chameleon, which provides

strict cache isolation only during security-critical operations.

A specific color (named secure color) is assigned to the secure

process so that strict cache isolation can be achieved through

dynamic page coloring. We provide a specific interface for

applications to notify the hypervisor the entering of a security-

critical section. During the security-critical section, the secure

color is only available for security-critical operations and not

usable by any other co-located VMs on the same hardware

platform.

We have implemented Chameleon based on Xen [3] with

750 lines of code changes. The prototype only requires several

lines of code changes to applications and no change to

guest OS core kernel to protect VMs from cache-based side-

channel attacks. Our preliminary performance evaluation using

a key-encryption process and Apache SSL mode shows that

Chameleon incurs negligible overhead when isolating only

security-critical operations, and still acceptable performance

overhead when isolating the entire application.

The rest of this paper is organized as follows. Section 2

describes the threat model and illustrates the applicability of

cache-based attacks using a simple experiment on a virtualized
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platform. The overall idea of Chameleon is described in sec-

tion 3, followed by the design and implementation in section 4.

The preliminary evaluation result is shown in section 5. We

then briefly discuss related literatures (section 6) and conclude

the paper in section 7.

2. A Case on Cross-VMs Side Channel Attack

This section first illustrates the cache-related threat in multi-

tenant cloud and describes the threat model. Then, it shows

that the threat may be realistic by describing an attack against

an AES encryption application in a virtualized environment.

2.1. Shared Cache and Threat Model

The speed gap between processors and main memory makes

cache a critical component for performance. To hide memory

access latency and increase parallelism, many commercial

processors such as POWER, UltraSPARC and Xeon usually

support simultaneously multi-threading technology, which al-

lows multiple hardware threads simultaneously executing on

the same CPU core. Hence, except the typical sharing of

the last-level cache among multiple cores on a chip, multiple

hardware threads also shares the private (e.g., L1 and/or L2)

cache of a core in a multicore processor. While efficient, the

sharing of caches among cores and threads also introduces the

vulnerability of cache-based side-channel.

Here, we assume that the cloud provider and the underlying

infrastructure are trustworthy and will not explicitly leak data

to an adversary. Hence, the only way an adversary can steal

information is from implicitly shared resources. Given other

side-channels [13] in a multi-tenant cloud, we assume that an

adversary may leverage such information to co-locate an evil

VM whose sole purpose is stealing information from other

victim VMs.

2.2. AES First-Round Attack and Analysis

In AES, the cryptographic process needs many computation

steps. For the sake of performance, most implementations of

AES use look-up tables and one cryptographic operation is

divided into ten or more rounds. The table lookup index in the

first round is obtained from the exclusive OR (XOR) result of

the plain text and the AES key. Hence, if we know the location

of the table (i.e., index) that the AES operation accesses and

the plain text, we can guess some bits of the AES key. If a

victim VM is running some encryption services (e.g., SSL),

an attacking VM can supply some plain text to the victim

VM through networking and the monitoring the cache access

statistics to guess the index to the table. It should be noted

that the lookup table is publically available as the attacking

VM can easily guess which AES implementation the victim

VM uses.

We conducted such a first-found AES attack [10] that

leverages the first-round table lookup to guess AES key on

an Intel i7 machine (with 2 hardware threads) on the Xen

VMM. The test coexists two hardware-assisted VMs on two

different physical threads on the same core , thus sharing the

L1 cache. The attack procedure can be divided into four steps:

1) First, the attacking VM gets the starting address of an

AES encryption lookup table. This is usually not difficult

on a VM without address-space randomization if the

attacking VM has already known which software the

victim VM is running with. The starting address can be

used to determine the cache sets for the lookup table. As

the cache line size is 64 bytes and each element in the

lookup table is with 4 bytes, each cache line contains

16 elements. Typically, the entire lookup tables in AES

occupy 4 KBytes memory.

2) Second, the attacking VM allocates a buffer whose

start address also fits within the same cache set with

the lookup table. Then, the attacking VM profiles the

memory access time of the buffer in normal case when

the victim is not using that cache set, by reading the

buffer multiple times and using the average access time

from a set of minimal access time for reference.

3) Third, the attacking VM sends a random 16-byte plain

text to the victim VM for encryption. Once the victim

VM completes the encryption operation, the attacking

VM accesses its own buffer again to profile access time.

As shown in figure 1, if the encryption procedure in the

victim VM accesses the lookup table, the cached content

will be flushed out and the attacking VM will take longer

time to access its buffer because of the cache miss. To

get a convincing result, we repeat step 2 and 3 hundreds

of times and record the differences between these two

steps.

4) Finally, we analyze the differences between these two

observed cache-access time and the plain text. If there

is a cache miss for a cache line, we can then infer the

index. For instance, if the key byte is 0xa0 and the plain

text byte is 0xa1, then the attacking VM will always

touch the cache set indexed by 0xa0 ⊕ 0xa1 = 0x0e.

This encryption procedure will access the table’s 15th

(0x0e) element, which just locates in first cache set for

the lookup tables. As the encryption procedure accesses

the first cache set and any key byte such as 0xaY (Y is

any hexadecimal number) can cause table lookup in the

first cache set, we can infer that the key byte must be in

the form of 0xaY. Hence, the attacking VM successfully

steals 4 bits from the victim VM.

Figure 2 shows the analysis result of our attacking to key

byte 0xa0. We analyze the cache-missing rate in the cache

set for the lookup table classified by corresponding plain text.

The x-axis represents the plain text byte. Ranking First means

the probability of highest cache missing rate, while Ranking

Second means the probability of the second highest one. As

shown in Figure2, when the plain text byte starts with a, the

cache miss rate is the highest. In practical attack situation, we

can consider to use bytes starting with a as the candidate key

byte.
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This side-channel attack is affected by network transferring.

Cache pollution during network communication may lead to

inaccurate results. Thus, the candidate key may not be the

one causing the highest cache miss rate. For example, key

byte 0xey and 0x9y may be the right one in our previous test.

This usually requires hundreds of tests to increase accuracy.

Anyway, such an attack can shorten the key searching space

and could be powerful when combined with other social-

engineering techniques.

3. A Case for Dynamic Page Coloring

In this section, we first briefly review the technique of

page coloring, and then describe the dynamic page coloring

approach that balances the requirements for security and

performance.

3.1. Background on Page Coloring

Page coloring is a software-based technique that directs how

memory pages are mapped to cache lines. It is previously in-

troduced by Taylor et al. [16] as an OS mechanism to stabilize

performance in a virtually-tagged cache with a physical cache

index for MIPS. Recently, it is usually employed in operating

systems to improve the fairness and utilization of cache in

multicore [8], [14], [15], [18]. There are two categories of
page coloring techniques: static page coloring [8] and dynamic

page coloring [8], [14], [18].

Essentially, page coloring systems controls the memory

management module to ensure that a group of pages with

the same color will be mapped to a fixed set of cache lines.

Figure 3 illustrates how memory pages are mapped to the

cache lines. There are several overlapped bits between the

cache associative set number and the machine page number,

which are directly under the control of the page coloring

system. These bits can be used to group memory pages

into different colors. In the example of Figure 3, there are

4 overlapped bits, which indicates that the cache can be

partitioned into up to 16 colors.

3.2. Limiting Cache Side-Channel with Dynamic

Page Coloring

An intuitive approach to defending against cache-based

attacks is through static page coloring among VMs [17], which

however can proportionally decrease the number of cache sets

a VM can use. However, many applications’ performance

is very sensitive to the cache size and the sensitivity is

exacerbated by the memory wall. Further, depending on the

set associativity and the total size of a cache, there are usually

a very limited number of colors that a page coloring system

can provide, which may place a restriction on the number of

virtual machines running on a cache.

VMM

VM1 VM2

Process A

Kernel

User

Process B

Color A Color B~D Full color

csA

Fig. 4. Dynamic page coloring in Chameleon. Color A
is a secure color and is dedicated to security-sensitive
applications.

To address the issues in performance slowdown and restric-

tions on VMs, we propose a dynamic page coloring scheme
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that balances the requirements for security and performance.

Specifically, our system, called Chameleon, dedicates a set

of specific secure colors in each shared cache and allows

other colors to be flexibly used by other VMs, as shown in

Figure ??. The secure colors can also be shared by other VMs

when there are no security-sensitive operations running. When

a VM indicates that a security-sensitive application is about

to execute, Chameleon will do a page recoloring by swapping

all pages using the secure colors with pages of other colors.

The recoloring is done by manipulating the address translation

from the guest physical address to host physical address, which

is thus transparent to guest VMs. Chameleon also manages a

pool of pages that corresponds to the secure colors. Program

data (e.g., AES key tables) that demands prevention of side-

channel attacks will be allocated from this secure pool.

To provide different levels of defense against side-channel

attacks, Chameleon supports two protection modes:

• Selective Mode: In this mode, only the critical memory

section specified by the application is isolated using

secure colors. In this mode, we suppose that an ap-

plication knows the location and size of the critical

memory. Although this mode lacks strong isolation of

entire application data, it can provide sufficient protection

for security-sensitive data and can benefit from good

performance.

• Full Mode: In this mode, any pages used by an applica-

tion are isolated using secure colors.

Figure 4 also shows how Chameleon protects a security-

sensitive application on a secure VM. VM1 is the secure VM

and Process A is the security sensitive application. In selective

mode, when Process A needs to protect its security-critical

memory, all pages belonging to the memory (csA) must use

the secure color (ColorA). Meanwhile, the potential evil VM,

namely VM2, which shares the same cache with VM1, is

guaranteed not using the pages with the secure color. Process

A now can execute safely without leaking the footprint of

its secure data accesses through the shared cache. In the full

mode, all pages of the application process must be limited into

ColorA, which demands a recoloring of pages currently using

that color. This requires some page table walking and page

copying.

In Chameleon, the performance is affected the frequency of

recoloring and the available cache sets to use. Usually, if a VM

is involved in frequent security-sensitive operations (e.g., an

encryption server), it may be more beneficial to dedicate the

secure colors to the application, to avoid frequent recoloring.

For VMs that are with infrequent security operations, dynam-

ical page coloring will be a good choice to balance available

cache sets to use and security. Further, in many applications,

it is common that only a small portion of data requires guards

against information leakage. In such a case, the selective mode

will provide good performance to an application. In full mode,

as the entire application can only use the secure color, its

performance will likely be degraded.

4. Design and Implementation

We have implemented Chameleon based on Xen running

hardware-assisted virtual machines (HVM) with shadow page

management. In the following, we describe the implementation

issues of Chameleon.

4.1. Boot Preparation

During system booting, Chameleon reserves a small set

of memory for page coloring. Chameleon partitions such

memory into different colors according to the underlying

cache infrastructure. These pages are organized into different

pools according to their colors. For example, in our testing

environment, Chameleon partitions the reserved memory into

32 different colors. Chameleon organizes the memory into 8

color groups, each of which contains four color pages. The

colors in the first group are defined as security colors.

4.2. Interaction with Security-Sensitive Applications

Chameleon is a passive module inside the Xen VMM. When

a security-sensitive application needs to execute security-

critical operations, it can then use a vmmcall to notify

Chameleon to turn on the protection mode. Specifically,

Chameleon uses the VMMCALL and VMCALL instruction

on SVM [1] and VMX [9] accordingly. The request contains

additional arguments that specify the address range to protect

and the protect mode. These arguments are transferred through

registers when calling VMMCALL or VMCALL.

4.3. Preparing Protection

When Chameleon receives a protection request from the

application, it takes the action according to the protection

mode. If the selective mode is requested, Chameleon scans

the shadow page table for the specified memory area and

marks the pages as non-present with a magic bit set in its

corresponding page type info. The following accesses to these

pages will cause a page fault, and Chameleon will check the

magic bit to see if the page has been nullified by itself. In

full mode, Chameleon has to walk the application’s shadow

page table and clear pages with insecure color belonging to

the application. Besides of dealing with the shadow page table

of a protected application, Chameleon also scans the shadow

page tables for other related potential evil domains in both

modes. Chameleon clears all the pages with the secure color

in these potential evil domains.

4.4. Intercept Memory Accesses

Accessing pages marked as non-present or allocating a new

page will cause a shadow page fault, which is handled by the

shadow page fault handler in VMM. If the page fault is caused

by the nullification by Chameleon or by new page allocation,

Chameleon will replace the old page with a page with the right

color.
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4.5. Turn off Protection

When the application needs to turn off the protection, it

will send another vmmcall to Chameleon. Chameleon scans

the old page pool to return the old pages back to shadow page

tables and changes the guest-physical to host physical mapping

table. Chameleon reclaims the pages borrowed by domains

back. Chameleon rewalks the shadow page tables and locates

the page entries with the magic bit set. These entries will be

marked as present again.

4.6. Optimization for Full Mode

The full mode needs to walk the entire shadow page tables

when turning on and off the protection. Returning pages when

turning off protection also introduces performance overhead.

To reduce such overhead, Chameleon records the number of

pages taken from reserved page pools. When turning off full

mode protection, Chameleon will check the recorded pages.

If the value exceeds some threshold, Chameleon will return

the pages to reserved page pools. Otherwise, Chameleon will

ignore the turn off command. This optimization works well

in situations where an application touches a small number of

pages. However, if application touches a lot of pages during the

protecting period and the memory for the virtualized system

is scare, this optimization will have limited benefit.

4.7. Implementation Status

We initially implemented Chameleon on Xen 3.3.0 first and

ported it to Xen 4.0.0 later. Because the shadow page fault

handler in Xen 4.0.0 is almost the same as that in Xen 3.3.0.

We change very little code during the porting. In total, the

implementation adds 750 lines of code to Xen and requires

no change to the guest OS kernel.

5. Preliminary Results

This section evaluates the performance overhead of the

Chameleon system. Our evaluations were conducted on a
machine with a quad-core Intel processor (i7 930) with 2

hardware threads per-core and 2 GBytes memory. We created

two VMs, one is the victim VM (VM1) and the other is the

attacking VM (VM2).

We tested two modes of Chameleon, selective mode and

full mode, with five benchmarks. Two encryption benchmarks

are involved with encryption of 100 10M files (En-10M-100)

and 1G files once (En-1G). The other three benchmarks are

Apache HTTPD SSL mode testing. We tested the time of

transferring three files with different sizes. Their sizes are

44bytes (Ap-44b-100), 4K (Ap-4k-100) and 1M (Ap-1M-100)

accordingly. The y-axis represents consumed time normalized

to the unchanged Xen hypervisor.

Figure 6 shows the performance overhead under the selec-

tive mode, where only the encryption module is protected. All

benchmarks have overhead less than 3%, which is caused from

the reduced cache size and the associated page replacements.

Figure 7 shows the test results under the full mode. Bench-

marks En-1G and En-10M-100 have less than 12% overhead.

Our optimization has little effect in this situation, because one

process only needs to turn on the full mode only once. For the

benchmarks Ap-44b-100, Ap-4k-100 and Ap-1M-100, as the

application needs to turn on the protection several times for

each network request. Because Apache touches many pages

for each response, Chameleon has to walking page table and

return pages to the secure page pool during these 100 requests.

The optimization only reduces the times of page table walking

and returning page. In total, the cost of whole protection is

2.24X and 2.21X accordingly. Anyway, users can switch to
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use selective mode if their applications are more sensitive to

performance. Actually, for Apache with SSL mode, as the

memory needs to protect can be easily determined, they can

easily be protected using the selective mode.

6. Related Work

A lot of work has been done on cache-based side channel

attacks on stealing cryptographic information [4], [10], [12].

Ristenpart et al. [13] demonstrate that it is possible to intro-

duce side-channel attacks into commodity cloud computing

environments in which VMs belonging to different users can

co-locate on the platform with implicit resource sharing. In

this paper, we proposed a dynamic page coloring mechanism

to protect secure process dynamically. As the secure color

is exclusively owned by the secure process against other co-

located VMs, it is impossible for the VMs to steal information

of the secure process by observing and analyzing cache

behavior.

There are several defenses against cache-based side-channel

attacks. These methods may also be applied to defend against

cross-VM attacks. One approach is to rewrite the software

in a way that known attacks cannot succeed [5]. There are

also proposals that refine the processor architecture to mini-

mize cache-based information leakage [17], which, however,

requires non-standard hardware. Oswald et al. [11] presented a

method to disable cache sharing. Recently, Intel has proposed

new AES instructions that aiming at mitigating cache-based

side-channel [6]. However, this approach is only available in

newer processors and is limited to side-channels for AES

operations. In contrast, Chameleon is a more general and

portable approach to mitigating cache-based side-channels.

7. Conclusion and Future Work

In this paper, we have demonstrated the applicability of

cache-based side-channel in a virtualized environments using

a simple example. We also presented a countermeasure to

certain attacks in cloud platforms. Our approach used dynamic

page coloring to partition caches dynamically among security-

critical applications of cloud tenants to exclude any possible

cross-VMs cache interference during security-critical opera-

tions. A preliminary implementation demonstrated that the cost

of protection is not significant. In our future work, we plan

to investigate the tradeoff between the number of dedicated

cache colors and the incurred overhead. Further, we plan to

validate the approach in other virtualization techniques such

as extended page table or nested page table, which might have

even less performance overhead.
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