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Abstract

This paper presents POLUS, a software maintenance
tool capable of iteratively evolving running software into
newer versions. POLUS’s primary goal is to increase the
dependability of contemporary server software, which is
frequently disrupted either by external attacks or by sched-
uled upgrades. To render POLUS both practical and pow-
erful, we design and implement POLUS aiming to retain
backward binary compatibility, support for multithreaded
software and recover already tainted state of running soft-
ware, yet with good usability and very low runtime over-
head. To demonstrate the applicability of POLUS, we re-
port our experience in using POLUS to dynamically up-
date three prevalent server applications: vsftpd, sshd and
apache HTTP server. Performance measurements show that
POLUS incurs negligible runtime overhead: a less than 1%
performance degradation (but 5% for one case). The time
to apply an update is also minimal.

1. Introduction

The scale of software has increased dramatically in the
past two decades, so do the bugs and security vulnerabil-
ities. Despite progress made in software engineering with
better programming support, improved developing models
and more effective testing tools, it is undeniable that soft-
ware is still far from perfect, and this trend is likely to con-
tinue. Consequently, there has been an increasing number
of software updates to fix bugs, close vulnerabilities and
evolve with new features.

Unfortunately, traditional software updating approaches
usually require stopping the running software, applying
the updates and restarting the software again. Such stop-
and-restart approaches inevitably disrupt the execution of
running services, thus decrease the availability of soft-
ware. For example, one previous study [12] indicated that
75% of about 6000 outages in highly available applications

were caused by hardware and software maintenance. Since
such absence-of-service is ill affordable for many mission-
critical systems, such as air control systems, credit card au-
thorization and brokerage operations[17], these systems de-
mand highly dependable services and require services to be
available 24X7.

Dynamic updating [6, 9, 10, 3, 14], or live updating is a
promising software maintenance technique aiming to rem-
edy such situations, yet still much cheaper and less complex
compared to hardware based approaches such as hot/cold
standby [18]. By allowing the running systems to be up-
dated on-the-fly without service disruption, such a tech-
nique has gained considerable interests and popularity from
both researchers and practitioners. Nevertheless, there are
few dynamic updating systems that are powerful enough to
support rich semantics in modern complex applications. For
example, few of them could support updates to broadly used
multi-threaded systems when changes involve data. Fur-
ther, to the best of our knowledge, there is still no effective
mechanism to roll back already committed updates and to
fix already tainted state for currently running software.

This paper presents POLUS, a POwerful Live Updating
System for existing software. POLUS is designed to sup-
port realistic software changes involving both code and
data. We design POLUS with an attempt to meet the cri-
teria that we believe are required in dynamically updating
software nowadays:

1. Binary Compatibility: Dynamic updating systems
should ensure backward binary compatibility, thus
supporting updates to existing binaries and already
running software on-the-fly.

2. Multithreading Support: As nowadays non-stop
software is often implemented using multithreaded
programming models, dynamic updating systems
should be able to support the prevalent multithreaded
software.

3. Recovery of Tainted State: To the best of our knowl-
edge, most existing dynamic updating systems inad-



vertently assume the integrity of the targeted soft-
ware, without any precaution that the targeted software
might have already entered a tainted state, such as a
deadlock. Therefore, we feel that it is desirable for dy-
namic updating systems to be able to recover potential
tainted states.

4. Usability and Manageability: Dynamic updating
systems should be simple to use. It should not be dif-
ficult to generate patches to feed such systems. Oper-
ators should have control over the process of dynamic
updates so that one update will not interfere with an-
other. Moreover, an operator should be able to roll
back a committed update if it is found to be buggy.

5. Low Overhead: Dynamic updating systems should
have minimal impact on software during normal ex-
ecution.

To demonstrate the applicability of POLUS, we have im-
plemented a prototype system that tries to satisfy the desir-
able criteria above. We evaluate POLUS using three preva-
lent sever applications that demand non-stop features: vs-
ftpd (a commonly used FTP daemon), the sshd (secure shell
daemon) in OpenSSH suite, and the apache HTTP server
with multithreading enabled. All updates to these appli-
cations are generated from realistic software releases over
a relative long period. Although a complete automation
of patch code generation is impossible, we have developed
tools to generate most parts of the patch code for dynamic
update. The performance measurements on these systems
show that our approach only incurs a less than 1% perfor-
mance degradation (but 5% for one case). Also, the time
to completely evolve an application into a newer version is
minimal.

In summary, our main contributions in this paper are as
follows:

1. We design and implement a powerful dynamic soft-
ware updating system with a rich set of desirable fea-
tures. To the best of our knowledge, most of these fea-
tures are absent in other similar systems.

2. We demonstrate that POLUS can deliver realistic up-
dates to real, large and complex server software with-
out disrupting its service. Our experience shows that
dynamic update is a promising approach to evolve con-
temporary complex software.

The next section provides a brief overview of the capabil-
ities of POLUS in terms of the criteria we described above.
An outline of the rest of the paper will also be presented.

2. POLUS: Overview and Approach

In this section, we will first provide a brief survey of
existing approaches and describe how they fail to meet the
desirable criteria. Then, we will provide an overview of our
approach in meeting all these criteria. Finally, we will give
an overview on the work flow of POLUS.

2.1. Limitations of Existing Approaches

Unfortunately, no existing approach has met all of the
desirable criteria. Generally, many existing approaches are
update-point based [6, 9, 10, 3, 14]. That is, updates to a
running system can only be applied at some specific points
of execution, e.g., when the code and data to be updated are
not being executed or referenced. Otherwise, the system
will result in an inconsistent state.

Update-point based approach has several drawbacks in
satisfying the mentioned criteria. First, the ability to find
a safe update point relies heavily on the analysis ability of
compilers or programmers. Unfortunately, for flexible lan-
guages such as C, compilers often have great difficulties in
pointer analysis and alias analysis. Therefore, they have
to make conservative assumptions and incur possible false
positives in the analysis result. Although there is a recent
proposal that facilitates compiler transformations to make
programs updatable [14], their approach is only for single-
threaded applications, and it does not maintain binary com-
patibility. Thus, it cannot be applied to compiled binaries
and currently running software.

Second, it is difficult to find update points for multi-
threaded software, and some modules in a busy system may
not even have a safe point [2, 4]. To the best of our knowl-
edge, there is no updatability analysis that can account for
multithreaded software to date when changes involve data.
If an update point cannot be reached or detected in time,
some security updates will be delayed, exposing the vulner-
able system to possible attacks.

Finally, for some update-point based dynamic updating
systems, an operator may have no control over the process
of dynamic update, as the time when the system will reach
a safe point to apply the update is not known to the oper-
ator. If an operator has no knowledge of whether the sys-
tem has completed its current update, another update could
be inadvertently applied when an existing update is still in
progress.

2.2. Our Approaches

Being aware of the difficulties in update-point based ap-
proaches, we use a different approach that allows an update
to be applied at any time. Our key idea is to allow the co-
existence of both the old and the new versions of data, and



maintain the coherence by calling some state synchroniza-
tion functions whenever there is a write access to either ver-
sion of the data to be updated: POLUS write-protects either
version of the data during the updating process using the
debugging APIs provided by operating systems (e.g. ptrace
in Unix and DebugActiveProcess in Windows.). Such APIs
allow a process to gain control over another process, and
track a write access to the protected data using signal mech-
anism (catching and checking the SIGSEGV signal). When
there is no function manipulating the old version of data,
the update process can be safely terminated.

In the rest of the section, we will give an overview on
how the desirable criteria are satisfied by POLUS:

1. Binary Compatibility: Instead of using program
transformation or reconstruction to make a program
updatable [14], POLUS utilizes the debugging API to
gain control over the patching process and modify the
state of running program, similar to the approach used
in [1]. In addition, not relying on update points elimi-
nates many constraints on the types of admissible up-
dates, and increases the flexibility of updates.

2. Multithreading Support: The difficulty in dealing
with multithreaded software lies in the fact that there
may be several threads concurrently accessing the to-
be-updated data. As mentioned earlier, we discard the
update-point based approach and instead allow an up-
date to be immediately applied. POLUS will track the
write attempts to either version of data and maintain
their consistency using state synchronization functions
to synchronize the states of the old and the new data.

3. Recovery of Tainted State: In our experience, we
found that some running software may be already in
a tainted state due to internal software bugs or exter-
nal attacks against known vulnerabilities. Therefore,
updating such software without being aware of such
situations may cause a system to fail. Although com-
pletely solving these problems may be impossible be-
cause sometimes it is impossible to know the correct
running state, we try to change the software state to
some known safe state. Thus, POLUS provides mech-
anisms in dynamic patches to check for a tainted state
and fix it using the provided recovery code if the sys-
tem is already tainted.

4. Usability and Manageability: To ease the burden of
operators, we developed a user interface to facilitate
the process of updates. Operators only need to tell the
system minimal information (process IDs and patch
names) to apply an update. The patch process is also
visible to operators. Moreover, POLUS allows opera-
tors to rollback committed updates.

To help a user to construct a dynamic patch for PO-
LUS, we provide a source to source compiler that
could identify semantic differences between an old
version and a new version of source code. Most
POLUS patches can be automatically generated, with
some occasional manual adjustments.

5. Low Overhead: As we use binary rewriting to direct
a function call from its old version to a new version,
there may be a little overhead due to the function in-
direction when the software is being evolved into the
new version. Indeed, such overhead is very minimal
and our performance measurement shows that it is less
than 1% for most applications.

2.3. An Overview of POLUS

As shown in Figure 1, POLUS is composed of three
components: a patch constructor, in the form of a source
to source compiler, which detects the semantic differences
between two successive software versions and generates the
POLUS patch files. A patch injector, which is a running
process that applies the updates. A runtime library, which
provides some utility functions to manage POLUS patches
for the patch injector.

Figure 1 also shows the life-cycle of software and gen-
eral work flow of dynamic updating using POLUS. Tradi-
tional ways of software evolution involve stopping the run-
ning software, applying the updates and restarting the soft-
ware again, while dynamic updating supports changes to
code and data on-the-fly. To retain binary compatibility, a
dynamic update to the software can be started in any run-
ning version. The static patch is obtained by analyzing the
semantic difference of two successive software versions. To
facilitate iterative updates, a version file is used to control
the renaming of functions and data in the patches. The static
patch is then compiled using regular compilers to generate
a dynamic patch as a shared library. The POLUS runtime
library will be injected into the running software before the
first update. The dynamic patch will be injected by the patch
injector on-the-fly, facilitated by POLUS runtime library.

In the next four sections, we describe the key issues in
design and implementation of POLUS. We first describe the
key issues to support dynamic update (section 3). Then, we
present an overview of patches in POLUS (section 4.1), and
describe in detail the process of patch generation (section
4.2). Later, we describe the mechanism of the patch injec-
tor and the shared library (section 5). Finally, we describe
the implementation details of POLUS for Linux on x86 plat-
forms.

In addition, we discuss our experience in using POLUS
to update three real-life server applications and their relative
performance in section 7. Section 8 presents a discussion



Figure 1. An overview of POLUS and its working flow.

on related work. We close this paper with a discussion on
further work and a conclusion.

3. Supporting Dynamic Updates

3.1. Version Management

To support iterative patching, POLUS uses version files
[14] to record the patch history of functions, types and
variables to avoid naming conflicts. POLUS renames each
function, type and variable in the patch file according to its
patch history. For example, if function foo has been updated
three times, then the version number for foo in version data
file is 3 and its name in the new patch file is foo v4. PO-
LUS maintains a global version to record the total update
times. The version for each element in the version file may
not be the same if the history of individual updates differs.

3.2. Function Indirection

To implement function indirection, POLUS inserts an in-
direct jump instruction in the prologue of the original func-
tion to force all function calls from the old function to the
new function.

As POLUS supports iterative updates to a single func-
tion, it should be carefully designed to avoid multiple indi-
rections, which can degrade performance. Also, new func-
tions are permitted to directly call other new functions with-
out indirection. As shown in Figure 2, POLUS is carefully
designed with a consideration of such cases. When a func-
tion is updated, all function indirections from previous ver-

Figure 2. Function Indirection in POLUS.

sions will directly jump to the newest version. Therefore,
the indirection depth will always be no more than one.

Keeping all these functions in memory does incur some
memory overhead. However, as one of our goals is to sup-
port rollbacks of committed patches, keeping them in mem-
ory will make rolling back and updating forward more eas-
ily.

3.3. State Management

POLUS is a coarse-grained, function-level updating sys-
tem, that is, it does not take into consideration the local
function state (such as local stacks, local variables). In-
stead, POLUS only considers a global visible state (e.g.,
global variables) and treats each function manipulating the
state as a black box. POLUS is designed to support both
single-threaded and multi-threaded applications.



In our approach, both the old and the new instances of
data are allowed to co-exist simultaneously. As old func-
tions manipulating the old instance may still be active, there
might be concurrent accesses to the old or the new in-
stances. As there should be only one instance of data being
active, POLUS must ensure the coherence between them.
POLUS employs state synchronization functions provided
by the patch constructor to maintain the coherence between
each pair of instances.

When a dynamic update is being applied, the patch in-
jector write protects both the old and the new versions of an
instance and associates a signal handler to catch each write
attempt to either version of the instance. The signal handler
will invoke the corresponding state synchronization func-
tions to transfer the modified state from one version to the
other.

In our experience, some of the changed global variables
may be read-only throughout their whole life-cycle. For
such changes, there is no need to write protect any instance
of data and maintain their consistency. As the patch con-
structor ensures the old (new) instances will only be used
by old (new) functions, the old instances will not be used
when all old functions accessing them have completed.

3.4. Recovering Tainted States

Existing approaches assume the correctness of the state
for running software when an update is being applied. How-
ever, it’s likely that the running software is buggy and a
bug may have occurred. The software may have entered a
tainted state (such as a deadlock situation). For example, a
known vulnerability on SSL connection in Apache 2.0 will
cause a child process to enter an infinite loop, risking denial
of service 1. As a considerable number of software updates
are to fix existing bugs, we feel it is necessary to take into
consideration the detecting and fixing of the buggy situa-
tion.

To support recovery from a tainted state, there are five
opportunities in the update process to check and fix such a
situation, in the form of callback functions:

1. pre-update callbacks, to be called before an update
process is started.

2. thread callbacks, to be invoked each time a thread
leaves a function being updated.

3. function callbacks, to be called when all threads have
left a function being updated.

4. data callbacks, to be invoked when all threads using
a data structure have returned from the functions that
manipulate the instance of the data structure.

1http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0748

5. post-update callbacks, to be called when an update
process is to be terminated.

Patch vendors can selectively provide their checking
code in these callbacks to detect possible buggy situations
and fix them if needed. These callbacks give POLUS oppor-
tunities to recover a system from a tainted state. To handle
the case for Apache 2.0, one should provide code in the pre-
update callbacks to check for the infinite loop and break it if
necessary. However, not all buggy situations can be easily
resolved. For example, in some memory-leaking programs,
it will be hard to reclaim all leaked memory if it cannot trace
all of them.

3.5. Rolling Back Committed Updates

Some operators choose not to install certain updates due
to their lack of confidence in those updates [1]. It is pos-
sible that an update might bring new vulnerabilities to the
system. In such situations, operators may want to discard
some already committed updates. POLUS is designed to
provide system administrators with such flexibility.

POLUS treats rollbacks as a special type of updates us-
ing existing versions of code and data to update the commit-
ted ones. POLUS is carefully designed so that the original
code and data could be reused in the rollback process. PO-
LUS use a flag to indicate whether an update is a rollback or
a normal update. To support fast rollbacks, POLUS keeps
all old versions of code and data in memory. Although it
does incur some resource overhead, doing so allows the run-
ning software to freely switch among selected versions.

4. POLUS Patches

4.1. An Overview of Dynamic Patches

The notion of POLUS patches are whole-program
patches similar to the patches in [9, 14], and are opposed
to one patch file per code change used in [10]. We choose
one patch file for the whole program because it is easier
to ensure the system consistency during the patch process.
POLUS patches are coarse-grained, that is, they do not take
into consideration the local function state (local variables).
Instead, POLUS patches only consider global visible state
(such as global variables) and take each function manipu-
lating the state as a black box.

POLUS patches describe the software changes from an
old version to a new version. To meet our desirable criteria
for a powerful dynamic updating system, POLUS patches
should contain rich semantics to express arbitrary changes
and fixes to the running software, such as fixing a deadlock
situation. Further, as one of the main goals of POLUS is
to support contemporary multithreaded software, POLUS



patches need to contain code that maintains the data con-
sistency among threads when they manipulate shared data
structures.

4.2. Patch Construction

An upgrade to software usually involves changes to func-
tions, type definitions and global variables. The main goal
of the patch generator is to identify the changes in types,
global variables and functions, and the interaction between
functions and global variables. This information will be
used by the patch injector to apply or rollback POLUS
patches.

The first step is the merge process. As POLUS patches
are whole-program patches and contemporary software is
usually composed of multiple files, we must ensure that
if one function or type is changed, all affected code and
data must be updated accordingly. For simplicity, POLUS
merges all related files into a single file using the merge
feature in CIL [15]. In the merge process, POLUS carefully
handles the naming conflict by associating clashed names
with their filename. To resolve such conflicted names, the
patch generator generates code to notify the patch injector
to resolve such name conflicts by scanning the original bi-
nary file.

Next, the patch constructor finds all changed types,
global variables and modified functions by comparing the
syntax tree of both the old and the new versions of files. For
each changed type, the patch constructor finds all global
variables that derive from the type and adds them to the
changed variables list. Then, for each changed variable, a
state synchronization function will be generated to main-
tain the coherence between the old and the new variables.
Also, the patch constructor gathers all functions that use
each changed variable and build the relationship between
them. For each modified function, the patch constructor
detects all changed global variables it uses and builds their
relationship.

Finally, the patch constructor generates a single file that
contains all changed type definitions, all changed global
variables, all modified functions, and some support code to
build the relationship between variables and functions. This
file will be compiled using regular compilers (such as GCC)
to generate a dynamic patch file in the form of a shared li-
brary.

It’s possible that the patch constructor may fail to obtain
all changed information in the presence of pointer aliases
and void pointer casting. To solve this problem, the patch
constructor will generate warnings that ask operators to ad-
just the source code or add needed source annotations to
make sure that the patches generated are correct.

5. Applying POLUS Patches

Applying a new patch requires three phases. In the first
phase, the patch injector does some preparation work, such
as loading the patch into memory, resolving symbols and
registering the patch information to the patch injector. In
the second phase, the patch injector injects the patch into
the running process and maintains the state coherence. Fi-
nally, if no thread is executing the old version of modified
functions and variables, the patch process can be safely ter-
minated. Rolling back a committed patch is similar except
it does not require the preparation work because all required
code and data are already in memory.

5.1. Patch Preparation

Two things are done in this phase. First, as mentioned
before, POLUS patches are in the form of shared libraries.
They must be loaded into memory before being applied.
However, there may be some renamed symbols (static vari-
ables, renamed symbols due to name clashing) which can-
not be resolved using standard linking procedure. The patch
injector invokes helper functions in POLUS shared library
to resolve them. As static variables are statically linked, the
helper functions scan the original and the new executable
files to find addresses for the renamed symbols, using bi-
nary utility tools from the compiler tool chain.

Second, as the patch injector must trace the use of
changed variables and maintain their consistency, it needs
to know the relationship between the functions and vari-
ables. By invoking the corresponding code in the POLUS
patch, the patch injector will generate the relationship maps
describing which variables are used by an updated function
and which functions manipulate an updated variable. Also,
the patch injector will register the updated functions, data
and their corresponding versions. All these patch informa-
tion will be stored in the POLUS runtime library for further
use in patch application and rollbacks.

5.2. Patch Application

This phase requires three steps. First, the pre-update
callbacks will be invoked here if they are provided. The
patch injector will get the inflight call graph of each thread
in the running software using stack inspection [1]. For a
changed variable, if no thread is executing in all functions
that reference that variable, then updates to these functions
could be done by function indirection and no tracing work
is required.

Second, the patch injector write protects all changed
global variables currently in use and does the function in-
direction. Afterwards, all function calls to the original ones
will be redirected to the new ones.



Finally, the patch injector resumes the execution of the
running software. There may be old functions that are still
active. They may need to read and write old global vari-
ables. To ensure correct execution, the patch injector tracks
any write access to the new and the old versions of the
global variables and synchronizes them by transforming the
state from one to the other after the commitment of a write
access.

5.3. Patch Termination

The criteria to safely terminate an inflight update are:
all threads executing in functions that manipulate changed
global variables have been inactive. To decide whether an
old function is still active, the patch injector maintains a list
of active threads for each old function.

At the patch application stage, the list is initialized ac-
cording to the inflight call graphs. The patch injector tracks
the thread execution by replacing the return address of the
original function with the address of a stub function. The
stub function will remove the executing thread from the
thread list, invoke the thread callback, and return to the
caller of the original function. On removing a thread from
the thread list, the patch injector checks whether the thread
list becomes empty or not. If it is empty, the original func-
tion is no longer active, and at this time the function call-
back will be invoked. When all functions manipulating a
data structure become inactive, the data callback will be
invoked and the global variable will be marked as unused.
When all changed global variables become inactive, the live
update process can be safely terminated. The patch injec-
tor will invoke the post-update callbacks, and perform some
cleanup work such as restoring the write-protected memory.

6. POLUS Implementation

We have implemented our approach in Linux on x86
platforms. The patch constructor is a source-to-source
compiler based on CIL-1.3.5 [15] using OCaml. The run-
time library consists of a number of utility functions to
maintain the update information of each software evolution.
It is compiled into a shared library to be dynamically linked
by each application. We illustrate the detailed implementa-
tion of the patch injector by examining the process of load-
ing and applying (or rolling back) an update.

One key issue is how to hijack the running process to be
patched (RPP). To apply an update, we run the patch injec-
tor as a process using ptrace to attach the running process
to be updated.

POLUS first loads the POLUS runtime library and the
dynamic patch to RPP’s address space. This requires cre-
ating a code playground [1] in RPP. More precisely, PO-
LUS maps a range of addresses using mmap in RPP, injects

code containing dlopen and uses ptrace to force RPP to ex-
ecute the injected code. To regain control after the execu-
tion leaves the playground, POLUS appends an “int3” to
any code in the code playground and hijacks the SIGTRAP
signal.

After the patch has been loaded to RPP, the patch injector
invokes code in the patch to retrieve the patch information,
and applies the patch. POLUS first replaces the prologue
of each affected function with an indirect jump to the new
function. As an indirect jump takes up five bytes, POLUS
first checks if there is any thread executing in between by
iterating the program counter for each thread. POLUS then
write protects both the old version and the new version of
data structures using mprotect. RPP then resumes its normal
execution.

To track the write accesses, the patch injector hijacks
the SIGSEGV signal for RPP. On receiving the signal,
POLUS unprotects the related data structure and uses
ptrace to execute the code in a single-step mode (with
PTRACE SINGLESTEP). Then, POLUS invokes the pro-
vided state synchronization functions to transfer the state
from/to the new/old versions of data.

To determine when it’s safe to terminate an update, PO-
LUS gains the inflight call graph for each thread by inspect-
ing their call stacks. On inspecting, POLUS replaces the
return address of each old function to our supplied stub
function. The stub function will remove the calling thread
from its active thread list and return to the correct function
address. When all functions’ thread lists are empty, PO-
LUS restores all write-protected memory and restores RPP
to execute in a normal, untraced mode using ptrace with
PTRACE DETACH. Afterwards, the update process could
be safely terminated.

7. Experience and Evaluation

7.1. Experience

To demonstrate the applicability of POLUS, we have
used POLUS to dynamically evolve three prevalent long-
running server applications into newer versions, over a pe-
riod of releases:

1. the Very Secure FTP daemon (vsftpd), which is the de
facto FTP server in UNIX environments. We consid-
ered the online evolution from 2.0.0 through 2.0.4.

2. the ssh daemon (sshd) from the OpenSSH suite, which
is a widely-used secure shell daemon. We followed the
evolutions from version 3.2.3p1 to 3.6p1.

3. the apache HTTP server (httpd) , which is a most
prevalent HTTP server used nowadays. We tested the
upgrades from version 2.1.7 to 2.2.0.



Prog. First version Last version Functions Types Global variables
Ver. LOC Ver. LOC Add Del. Chg. Add Del. Chg. Add Del. Chg.

vsftpd 2.0.0 13,917 2.0.4 14,293 10 4 81 2 0 16 12 1 3
sshd 3.2.3 54,360 3.6 56,960 32 9 512 1 2 6 27 3 11
httpd 2.1.7 319,366 2.2.0 315,381 18 3 195 4 1 5 12 3 3

Table 1. Update information for three applications over time.

The vsftpd and sshd are single thread software, while
httpd is usually configured as multithreaded software.

Table 1 shows the evolution history of the three appli-
cations. We report the total number of changes to func-
tions, types and global variables from the starting version to
the last updated version. The number of changes is some-
what larger than other approaches due to the fact that PO-
LUS uses function-level updating. For example, if a type
is changed, then all affected functions and variables are af-
fected. Nevertheless, we believe it is worthwhile as PO-
LUS retains binary compatibility compared to the compiler-
transformation approach [14].

The work flow to upgrade the software is shown in Fig-
ure 1. Upgrades can take place in arbitrary running version.

Recovery of Tainted State: POLUS is designed to sup-
port recovery from a tainted state. In upgrading sshd, we
found all versions prior to 3.7.1 contain possible buffer
management errors 2. To detect and resolve such situation,
we added checking and recovering code in pre-update call-
backs in the dynamic patch to check whether the buffer size
is valid for each global variable derived from Buffer type.
Also, we added such code in the function callback for each
function manipulating such global variables. If the size of
a buffer exceeds the defined threshold, the buffer will be
truncated in case of a heap overflow.

Although it is sometimes difficult to fix a tainted state
and resolving it requires a vulnerability-specific knowledge,
we believe our work has raised an important issue to re-
searchers and practitioners about the detection and recovery
of tainted states during dynamic updating of running soft-
ware. Further, to the best of our knowledge, POLUS is the
first system to provide mechanisms to resolve such issues.

7.2. Experimental Results

In this section, we present our experimental results using
some “real world” tests to get the runtime performance.

The experiments were conducted on a dual Xeon
2.4GHZ server with 2GB RAM, a 1G Realtek 8169 NIC
in 100M LAN, and a single 73G 10k RPM SCSI disk. The
systems were configured with a Linux Enterprise edition 4,
with kernel version 2.6.9-5.ELsmp. The compiler used is

2http://www.cert.org/advisories/CA-2003-24.html

gcc-3.4.3 at optimization level -O2. The reported result is a
median of 10 runs.

Relative Performance: For the three applications, we
measured their performance using two metrics: connection
time and transfer rate. The test methodologies are shown in
Table 2. To measure the performance of apache, we used
ab (apache benchmark) to issue 50,000 requests for a single
2.4 KB file, with 500 simultaneous threads.

As shown in Table 3, POLUS incurs undetectable perfor-
mance overhead. This reflects the fact that the only runtime
overhead in POLUS is in function indirection. Although
the connection time for vsftpd increases about 5%, we don’t
think such a 0.4 ms difference is noticeable in practice.

Update Time: Generally, the update time of an applica-
tion is decided by the amount of changed types, variables
and affected functions. We measured the update time for
applying and rolling back an update. We first updated an
application from its first version to its last version and then
rolled back to the first version. Figure 3 shows the total
update time (Tot.) and the real update time (Real.) of our
measured three applications. The total update time includes
the whole process to apply a patch. It includes loading the
patch into memory, doing necessary preparation work and
applying the patch. By contrast, the real update time counts
the time to apply a dynamic patch, during which there may
be some performance degradations to the running systems.

As shown in Figure 3, the total time to apply/roll back
an update is modest and the real update time is rather lit-
tle. Apache httpd requires relative longer update compared
to sshd and vsftpd because it is multithreaded and all its
threads needed to be updated. All updates are finished
within less than one fifth of a second. The real update time
is only several dozens of milliseconds.

Service Disruptions: To measure the impact of dynamic
updates on running services. We used ab to issue 15,000 re-
quests for a single 2.4 KB file and collected the throughput
of apache httpd server when an update from version 2.1.7 to
2.1.8 is in progress. Figure 4 depicts the curve for through-
put in the whole process of updating. The time to evolve
apache httpd is still very little even under a heavy load.
There is only a modest amount degradation (about 30%)
during the update. Therefore, we can conclude that POLUS
has little impact on running software.



Figure 3. Total update time and real update time for the three applications (in millisecond).

Apps connection time transfer rate
vsftpd average time of requesting 1,000 empty files using wget download rate of a single 222MB file
sshd total elapsed time of 1,000 requests divided by 1,000 use scp to copy a single 138MB file
httpd use ab (apache benchmark) with “ab -n 50000 -c 500 http://localhost/apache pb2.gif”

Table 2. Test methodologies for the three applications.

Figure 4. Impact of live update on httpd under
a heavy load.

8. Related Work

A considerable number of systems have been proposed
to dynamically update running software. We compare our
approach with some of those systems in terms of the desir-
able criteria mentioned in section 1.

Ginseng[14] is a recent system for dynamic software up-
dating. By using compiler transformation to make software
dynamically updatable, Ginseng made substantial improve-
ments over their previous work [10], which required the
program to be designed to be updatable (e.g. specifying
when to update). Moreover, Ginseng shows its practical-
ity by applying it to three commodity server applications.
In contrast to POLUS, using compiler transformation fails
to meet our first goal of binary compatibility, and limits its
application to already running software. Further, Ginseng
and its predecessor are only applicable to single-threaded
software to date. Finally, they lack mechanisms such as
rollback support and recovery from tainted states, and their
updates can only be applied at specific update points. Nev-
ertheless, Ginseng made a large stride in making dynamic

software updating practical to commodity software.

Many other systems lack comparable functionalities or
are under rigid restrictions. For example, some systems
require the program to be specially constructed [6, 8] in
a top-down style of programming, or designed with dy-
namic updating in mind [11, 10]. Some systems only sup-
port changes to abstract data types [5], or do not support
changes to interfaces [16, 11]. Some systems only support
changes to code [1], or disallow updates to currently active
code [7, 6, 8, 13, 2]. None of them satisfies our criteria
in terms of backwards binary compatibility, multithreading
support, recovery from a tainted state and rollback support,
when changes involve both code and data.

LUCOS [4] might be the most similar system. However,
LUCOS supports on-the-fly updates to contemporary oper-
ating systems, using system virtualization techniques. In
our current work, we apply similar concepts to application
software, yet without an additional virtualization layer as in
LUCOS. Further, to reduce the tedious work in patch con-
struction, we provide compiler support to automate most of
the work.

There are some theoretical efforts on the safety of dy-
namic update. For example, Gupta [9] used formal methods
to understand the validity of a dynamic update and proved
that finding safe update points to apply updates is, in gen-
eral, undecidable. Proteus [19] examined the safety of a
dynamic update and proposed the notion of representation
consistency. However, to the best of our knowledge, their
analysis is only applicable to single-threaded, update-point
based systems. In POLUS, since both the old and the new
versions of code and data are allowed to co-exist, there is no
update time-line issue and no need for representation con-
sistency.



Application
connection time (ms) Transfer rate (MB/s)

orig. upd.once upd.mult orig. upd.once upd.mult
vsftpd 7.626 7.666 8.015 11.62 11.62 11.63
sshd 146.2 146.6 146.7 11.53 11.54 11.54
httpd 108.4 108.3 108 11.57 11.58 11.50

Table 3. Performance data for original, updated once and updated multiple times applications.

9. Conclusion and Future Work

We have presented POLUS, a powerful live updating
system for contemporary server software. In contrast to pre-
vious systems, POLUS is capable of updating multithreaded
software, and is designed with an awareness of supporting
recovering tainted software states and rolling back commit-
ted updates, yet with good usability and backwards binary
compatibility. Our results suggest that POLUS has negligi-
ble impact on application performance. We plan to apply
our approach to a wider range of real-life software in the
future.

Current implementation of POLUS retains binary com-
patibility because we feel it necessary to support legacy sys-
tems or already running software. Doing so complicates the
implementation of POLUS and may make it difficult to han-
dle some infinite loops during update (although updates to
the calling functions of such loops are rather rare in prac-
tice). For newly developed software, we plan to use com-
piler transformations (as in [14]) to make the program more
friendly to POLUS, thus making the implementation of PO-
LUS easier and reducing some update-time overhead.
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