
Computation and Communication Efficient Graph
Processing with Distributed Immutable View

Rong Chen†, Xin Ding†, Peng Wang†, Haibo Chen†, Binyu Zang†, Haibing Guan§
Shanghai Key Laboratory of Scalable Computing and Systems

†Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University
§Department of Computer Science, Shanghai Jiao Tong University

{rongchen, dingxin, peng-wp, haibochen, byzang, hbguan}@sjtu.edu.cn

ABSTRACT

Cyclops is a new vertex-oriented graph-parallel framework
for writing distributed graph analytics. Unlike existing dis-
tributed graph computation models, Cyclops retains simplicity and
computation-efficiency by synchronously computing over a dis-

tributed immutable view, which grants a vertex with read-only ac-
cess to all its neighboring vertices. The view is provided via read-
only replication of vertices for edges spanning machines during a
graph cut. Cyclops follows a centralized computation model by
assigning a master vertex to update and propagate the value to its
replicas unidirectionally in each iteration, which can significantly
reduce messages and avoid contention on replicas. Being aware
of the pervasively available multicore-based clusters, Cyclops is
further extended with a hierarchical processing model, which ag-
gregates messages and replicas in a single multicore machine and
transparently decomposes each worker into multiple threads on-
demand for different stages of computation.

We have implemented Cyclops based on an open-source Pregel
clone called Hama. Our evaluation using a set of graph algorithms
on an in-house multicore cluster shows that Cyclops outperforms
Hama from 2.06X to 8.69X and 5.95X to 23.04X using hash-based
and Metis partition algorithms accordingly, due to the elimination
of contention on messages and hierarchical optimization for the
multicore-based clusters. Cyclops (written in Java) also has com-
parable performance with PowerGraph (written in C++) despite the
language difference, due to the significantly lower number of mes-
sages and avoided contention.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Programming—
Distributed programming

Keywords

Graph-parallel Computation; Distributed Processing

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

HPDC’14, June 23–27, Vancouver, BC, Canada.

Copyright 2014 ACM 978-1-4503-2749-7/14/06 ...$15.00.

http://dx.doi.org/10.1145/2600212.2600233 .

1. INTRODUCTION
Graph-structured computation has become increasingly popular

due to its emerging adoption in a wide range of areas including
social computation, web search, natural language processing and
recommendation systems. With the continually increasing scale
and complexity of graph dataset, it is vital to effectively express and
efficiently process large-scale graph dataset, while allowing users
to trivially write graph-processing programs and reason about the
correctness.

The strong desire of efficient and expressive programming mod-
els for graph-structured computation has recently driven the de-
velopment of several graph-parallel programming models and run-
time such as Pregel [24] and its open-source alternatives [2, 1, 30],
GraphLab [23, 22] and a hybrid approach called PowerGraph [12].
Basically, they encapsulate computation as vertex-oriented pro-
grams, but follow different approaches in interactions between ver-
tices, i.e., synchronous message passing [24] vs. asynchronous
shared memory [23].

As a large graph inevitably needs to be partitioned among multi-
ple machines, we believe the following three properties are critical
to a graph processing system: 1) expressiveness and programmer-
friendliness so that it is not difficult to write and reason about a
graph algorithm, even if it is distributed; 2) computation-efficiency
so that the computation overhead is small; 3) communication-
efficiency so that there won’t be large amount of messages among
machines and heavy contentions among messages. However, none
of the above graph engines hold all the three properties. Pregel
and its variants are easy to program but not computation and com-
munication efficient as they lack support of dynamic computation
and incur a lot of redundant messages. GraphLab is harder to pro-
gram due to its asynchronous programming model and there is non-
trivial overhead due to distributed vertex scheduling and locking.
PowerGraph, which performs the best among these graph systems,
requires extensive messages among machines due to distributing
computation among replicated vertices.

In this paper, we describe Cyclops, a vertex-oriented graph-
parallel model for distributed environment. Cyclops departs from
the BSP (bulk synchronous parallel) model [32] in providing syn-
chronous computation, but additionally introduces a key abstrac-
tion called distributed immutable view that provides a shared-
memory abstraction to graph algorithms. To provide such a view,
Cyclops replicates vertices for inter-partition edges across a par-
titioned graph in a cluster and only grants the master vertex with
write access, whose updates will be propagated to its replicas uni-
directionally at the end of each superstep (i.e., iteration). To pro-
vide computation efficiency, Cyclops grants a vertex with read-only
access to all its neighbors using shared memory. As a result, a pro-

grammer can easily write a distributed graph algorithm with local
semantics.

Unlike prior work (e.g., PowerGraph [12]) that distributes com-
putation among multiple replicas of a vertex, Cyclops follows a
centralized computation model such that only a master vertex does
the computation and sends messages to its replicas. This is based
on our evaluation that many real graphs [27, 15] do not exhibit ex-
tremely high skewed power-law distribution such that one machine
cannot accommodate the computation over one vertex. Hence,
it may not always be worthwhile to distribute graph computation
for a single vertex among multiple machines, which causes exces-
sive message exchanges (usually more than 5X than Cyclops, sec-
tion 6.12). In contrast, there is only one unidirectional message
from the replica master to each of its replicas in Cyclops, and thus
there is no contention in receiving messages.

Further, being aware of the hierarchical parallelism and locality
in a multicore-based cluster, Cyclops is extended with a hierarchi-
cal processing model that transparently decomposes each worker
into several threads on-demand in a superstep, which is hard or im-
possible on the general BSP model. This significantly reduces the
amount of replicas and messages within a single machine, and fully
harnesses the CPU and network resources.

We have implemented Cyclops based on Hama [2], a popular
open-source clone of Pregel. Cyclops mostly retains the program-
ming interface and fault tolerance model of Hama so that most ex-
isting graph algorithms for Hama can be trivially ported to Cyclops.
Our evaluation results using a set of popular graph algorithms such
as PageRank [5], Alternating Least Squares, Single Source Short-

est Path, and Community Detection, show that Cyclops outper-
forms Hama ranging from 2.06X to 8.69X on a 6-machine clus-
ter (each machine having 12 cores and 64 GB memory) using the
default hash-based graph partition algorithm. When integrating a
better graph partition algorithm (i.e., Metis [20]), Cyclops achieves
a significantly larger speedup over Hama, ranging from 5.95X to
23.04X. We further show that Cyclops performs comparably with
PowerGraph for PageRank on different graphs, despite the fact that
Cyclops is based on a worse baseline (execution deficiency due to
managed runtime, poor object serialization and inferior RPC li-
brary). The reason is that PowerGraph has 5.5X messages com-
pared to Cyclops.

In summary, this paper makes the following contributions:

• The distributed immutable view abstraction that allows ef-
ficient graph computation and distributed activation (Sec-
tion 3).

• An optimization that exploits the hierarchical parallelism and
locality of multicore clusters (Section 5).

• An implementation based on Hama (Section 4) and a thor-
ough evaluation on Cyclops that confirms the efficiency and
effectiveness of Cyclops (Section 6).

The rest of the paper is organized as follows. Section 2 presents
an overview of BSP, and discusses issues with prior graph compu-
tation models. Section 3 describes the graph computation model of
Cyclops and its overall execution flow. Section 4 describes system
implementation of Cyclops, followed by the hierarchical optimiza-
tion in section 5. Section 6 presents the performance evaluation
results. Section 7 describes the remaining related work. Finally,
we conclude the paper with a brief discussion on future work in
section 8.

Compute

Compute

Compute

b
a
rr
ie
r

Figure 1: The execution flow of BSP model

2. BACKGROUND AND MOTIVATION
This section first briefly introduces the Bulk Synchronous Par-

allel (BSP) model and the Pregel framework. Then, we examine
issues with other graph programming models like GraphLab and
PowerGraph.

2.1 Pregel and BSP
Pregel [24] and its open-source clones [2, 1] are built on the Bulk

Synchronous Parallel (BSP) [32] programming model and use pure
message passing to exchange updates among vertices. The Pregel
framework mostly only requires programmers to provide a compute

function for each vertex to implement a graph algorithm. Figure 1
uses a flow chart to illustrate an outline of the BSP model, which
expresses the program as a sequence of supersteps. In each su-
perstep, each vertex receives messages in the previous superstep
from its neighbors, updates its local value using the user-defined
compute function and sends messages to its neighbors. There is a
global barrier between two consecutive supersteps where messages
are aggregated and delivered to vertices. Figure 2 illustrates the
pseudo-code of the PageRank algorithm using the BSP model. The
compute function sums up the ranks of incoming vertices through
the received messages, and sets it as the new rank of current vertex.
The new rank will also be sent to its neighboring vertices by mes-
sages until a global convergence estimated by a distributed aggre-
gator is reached or the number of supersteps exceeds a threshold.

public void compute(Iterator msgs) {
double sum = 0, value;

while (msgs.hasNext())

sum += msgs.next();

value = 0.15 / numVertices + 0.85 * sum;

setValue(value);

double error = getGlobalError();

if (error > epsilon)

sendMessageToNeighbors(value / numEdges);

else

voteToHalt();

}

Figure 2: The compute function of PageRank using the BSP model

2.2 Issues with the BSP model
Though the BSP model has been successfully shown by Pregel

to be a simple and effective alternative to handle large-scale graph
processing applications, it also comes with some deficiencies in
performance and accuracy. In the following, we will use the
PageRank, the original example in the Pregel paper, on GoogleWeb
dataset [27] as an example to illustrate potential issues with perfor-
mance and accuracy.

10
3

10
4

10
5

10
6

 0 5 10 15 20 25 30 35

#
V

e
rt

ic
e

s

#Superstep

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35

R
a
ti
o
 o

f
R

e
d
u
n
d
a
n
t
M

e
s
s
a
g
e
s

#Superstep

Figure 3: (1) Number of vertices converged in each superstep. (2) Ratio of redundant messages in each superstep. (3) Distribution of vertices error (The

left ones are with higher page rank values).

2.2.1 Computation Efficiency

The BSP model described in PageRank proactively pushes val-
ues by message passing in each superstep. However, some algo-
rithms like PageRank are essentially pull-mode algorithm 1, where
a vertex needs to collect all values from its neighboring vertices to
compute the new rank. The algorithm shown in Figure 2 actually
relies on the programmer to ask the framework to proactively fetch
messages before the computation can continue. This unfortunately
requires all neighboring vertices of a non-convergent vertex to be
alive just to send (redundant) messages, even if the neighbors have
converged in a very early superstep.

For many pull-mode algorithms, however, the convergence of
vertices is usually asymmetric, where a majority of vertices con-
verge in the first few iterations. Consequently, a large fraction of
time is wasted to repeatedly compute over converged vertices and
send messages with the same values. Figure 3(1) shows the number
of vertices converged in each superstep for PageRank algorithm on
GoogleWeb [27]. In the BSP model, about 20% vertices converge
after the first two supersteps, and the majority of the vertices con-
verge in less than 16 supersteps.

2.2.2 Communication Efficiency

The BSP model focuses on parallelizing computation using bulk
synchronization, which avoids potential contention on sharing ver-
tices. However, the communication overhead dominates the exe-
cution time in distributed environment. For example, The PageR-

ank spends more than 50% execution time on sending and parsing
messages in our test environment. Figure 3(2) also shows that the
ratio of messages with the same value in each superstep. After 14
supersteps, there are more than 30% redundant messages in each
superstep.

The communication in the BSP model allows multiple vertices
to simultaneously send updates to a single vertex, which may re-
sults in contention in the receiving end. Even if the updates from
the same machine can be combined, the contention from different
machines is still inevitable. Further, the combiner should only be
used for commutative and associative operations. Figure 4 provides
an example of the communication cost for each iteration on parti-
tioned graph for vertex 1 in different models. In the BSP model,
the message enqueue operation should be protected by a lock. Usu-
ally, a system may use a global queue for all vertices to improve the
locality of enqueue operations on batched messages, thus a global

lock would significantly degrade the performance of communica-
tion.

1 Informally, in a pull-mode algorithm, a vertex will proactively fetch val-
ues from its neighboring vertices to compute; a push-mode algorithm in-
stead lets a vertex passively wait for messages from its neighboring vertices
and only become active to compute upon receiving a message.

2.2.3 Convergence Detection

The termination condition of a BSP job depends on all vertices
converging to an error bound and voting to halt, which means that
the update of value is less than an epsilon defined by user. For pull-
mode algorithms written in BSP, since all vertices must be alive in
each superstep, the system cannot detect convergence through live-
ness of vertices. Hence, an application usually uses a distributed
aggregator to estimate the global error (the average error of live
vertices), and relies on it to determine whether to terminate the job
or not.

However, there are several issues with such a convergence de-
tection approach. First, the aggregator adds extra overhead to each
superstep, since it has to apply an aggregation function to live ver-
tices and gather results to the master. This may easily become
a scalability bottleneck. Second, the global error is a relatively
coarse-grained parameter, and thus a user cannot exactly control
the proportion of converged vertices. Specifically, an algorithm us-
ing the same global error bound may get a diverse proportion of
convergence with different dataset. For example, the proportion of
converged vertices of the PageRank algorithm on Google Web and
Amazon dataset [27] with the same error (e = 10−10) is 94.9% and
87.7% respectively, according to our evaluation. Finally, as all ver-
tices are alive in each superstep, the converged vertices may be still
repeatedly computed and contribute little or even zero impact to the
accumulated global error. The excessive number of converged ver-
tices not only wastes a large number of computation and network
resources, but also falsely converges some important vertices with
still large error values.

Figure 3(3) shows the final errors of all vertices when the global
error (e = 10−10) is reached. The vertices are sorted by their rank
values (a lower rank means a higher rank value), which means the
importance of vertex. The vertices above the red line mean that
they are still not converged yet. All non-converged vertices reside
centrally on the upper-left corner, which is the important area due
to their high rank values. A large number of vertices are with zero
error values, which sink to the bottom of the figure. Hence, using
global error convergence detection may cause significant accuracy
issues in graph computation.

2.3 Issues with Other Models
GraphLab follows an asynchronous distributed shared memory

programming model by allowing a vertex to directly read and up-
date the values of its neighbors, which may result in relatively
efficient convergence [4]. However, programmers need to under-
stand the consistency model, and the execution on GraphLab is
non-deterministic in essence, making it hard to debug and diag-
nose correctness and performance bugs. Further, the performance
overhead due to distributed vertex scheduling and locking for con-
sistency may reduce the improvement from the elimination of the
global barrier and allowing direct vertex access using shared mem-

2

1 5

4

1

3

1 3 5

4

2

1 5

4

1

3

1 3 3

2

1 5

4

5

43

1

3

2

1 5

4

3

2

5

4

1

Figure 4: An example of communication cost in different models

ory. As shown in Figure 4, to compute over vertex 1, it first locks

itself and then asks all its neighboring vertices (may through repli-
cas) to be locked using distributed vertex locks before computation.
Finally, GraphLab enforces all operations on vertices in a pure local
fashion, thus it requires to create duplicate replicas for each edge
spanning machines and demands bidirectional messages (i.e., send-
ing update from master to replicas and activation from replicas to
master). In Figure 4, the edge from vertex 1 to vertex 4 appears in
both machines and incurs two replicas. The replica 4 implements
local activation for vertex 1, while the replica 1 implements local
access for vertex 4. Due to bidirectional communication, vertex 1
may receive multiple activation messages from its replicas. Hence,
there may be contention on vertex 1 and it requires a lock to coor-
dinate message receiving.

PowerGraph [12] abstracts computation as Gather, Apply and
Scatter (GAS), in which a vertex collects messages from its repli-
cas, computes its new value and sends the new value to all its repli-
cas, and ask all its replicas to activate their neighboring vertices. As
shown in Figure 4, it takes three rounds of bidirectional message
passing between a master and its replicas in each iteration to sup-
port the GAS model. The major benefit is that this can decompose
the computation of an extremely skewed vertex in natural graphs
to multiple machines. However, the bidirectional message passing
between a master and replicas also results in contention when mul-
tiple replicas send messages to the master in the Gather and Scatter
phase. Further, the GAS model requires about 5 messages for each
replica of the vertex in one iteration (2 for Gather, 1 for Apply and
2 for Scatter), which significantly degrades the performance.

3. DISTRIBUTED IMMUTABLE VIEW
Being aware of the deficiency with prior systems, we describe

Cyclops, a synchronous graph processing model that departs from
the BSP model implemented in Pregel, and combines the best fea-
tures from both GraphLab and PowerGraph. From GraphLab, Cy-
clops borrows direct memory access through vertex replicas to
avoid redundant computation and messages. From PowerGraph,
Cyclops borrows distributed activation to avoid duplicate replicas
and bidirectional communication.

At the heart of Cyclops is the distributed immutable view ab-
straction, which presents a graph application with the view of the
entire graph right before the beginning of each superstep. Unlike
Pregel that requires message passing to push updates to neighbor-
ing vertices, the view grants a vertex with read-only access to its
neighboring vertices through shared memory, thus providing local
semantics to programmers. The immutable view abstraction still
retains the synchronous and deterministic nature of the BSP model.
Unlike GraphLab that limits replicas to single purpose (i.e., access

public void compute() {
double sum = 0, value, last = getValue();

Iterator *edges = getInEdgesIterator();

while (edges.hasNext())

sum += edges.next().vertex.getMessage();

value = 0.15 / numVertices + 0.85 * sum;

setValue(value);

double error = Math.abs(value - last);

if (error > epsilon)

activateNeighbors(value / numEdges);

voteToHalt();

}

Figure 5: The compute function of PageRank in Cyclops

or activation), the replicas in distributed immutable view also bear
the task of distributed activation of vertices, thus avoiding the mes-
sages from replicas to its master. Hereby, distributed immutable

view only requires one round one-way message from master to its
replicas, and thus is immune from contention among messages.

In the rest of this section, we will use the PageRank algorithm as
a running example and describe the programming interface, graph
organization, vertex computation, message passing and execution
model in Cyclops.

3.1 Programming Interface
Cyclops mostly retains the programming interface of BSP imple-

mented in Pregel (see Figure 2). The key difference is that instead
of using message passing to receive updates from its neighboring
vertices, Cyclops relies on shared memory access to directly read
the values from its neighboring vertices. Further, Cyclops uses a lo-
cal error detection scheme instead of using the average error from
all vertices, thus a vertex will deactivate itself by default and only
become active again upon receiving activation signal.

Figure 5 shows an example implementation of the compute func-
tion of PageRank in Cyclops. In contrast to the implementation in
Figure 2, the iterator of messages is no longer necessary, but instead
the application directly reads values from neighboring vertices pro-
vided by the distributed immutable view. Hence, Cyclops no longer
requires keeping all vertices alive for sending messages. Further, it
no longer relies on the global error but instead uses the local er-
ror to decide whether to activate neighboring vertices. By default,
a vertex will deactivate itself and only become active again upon
receiving activation signal at the end of each superstep.

3.2 Graph Organization
The program state in the BSP model is modeled as a directed

graph, which is split into multiple partitions and assigned to multi-
ple workers. Each worker is in charge of running the compute func-
tion on local vertices in parallel. Since a graph is partitioned, the
communication between vertices is performed by message passing.

Similarly, the graph in Cyclops is also split and assigned to work-
ers. However, to provide a distributed immutable view for each ver-
tex, Cyclops maintains a read-only replica of each vertex for edges
spanning machines during a graph cut. This makes sure that there
is always a read-only memory reference for a partitioned graph in
each machine. In each superstep, only the master vertex may be
scheduled to execute the compute function, while replicas are just
one-way synchronized by its master vertex at the end of each su-
perstep.

Figure 6 shows a sample graph with six vertices, which is split
and assigned to three workers. In the BSP model (Part A), for ex-
ample, the worker 2 would run the compute function on vertex 3

1 2
1 2 2 1

1 4 1 3

3 4
3 4

4 5 3 2

4 3

5 6
6 5

5 2 6 3
6 4 5

34

1

5
6

4

6

2

1

3

5

1

34

5

6

2

1 2 send 1

3 4 send
3

4

5 6 send
6

5

3

34

16

3

2

2 1

3 25

3

1 36

1 4

:

1

34

5

6

2

Figure 6: An example of PageRank algorithm on Pregel and Cyclops for a simple graph. The symbol Out and In mean out-edges and in-edges, and the

L-Out represents out-edges to local vertices. The message from vertex X is label as X:M.

with messages from vertices 1, 4 and 6, and send two messages to
vertices 2 and 4. In contrast, the compute function on vertex 3 in
Cyclops (Part B) may directly read data from vertex 4 and replicas
1 and 6, and synchronize data with replica 3 in worker 1.

3.3 Vertex Computation
Vertex computation in the BSP model is presented in the form

of user-defined compute functions. The compute function can be
executed in parallel, as it is only allowed to inspect and modify the
data of the current vertex, including the value and edges. In addi-
tion, all external information is obtained by messages as parame-
ters, which should be sent in the previous superstep. Accordingly,
the messages sent by the compute function will arrive before the
forthcoming superstep.

Rather than using message passing, Cyclops provides a dis-

tributed immutable view of the previous superstep to each vertex
like the scope in GraphLab [22]. However, the immutable view
is synchronous, and thus the compute function can freely access
it in read-only mode without worrying about consistency issues.
Based on the immutable view, Cyclops naturally implements dy-
namic computation to support pull-mode algorithms. The compute

function can directly access values of neighbors, even if they have
converged and are inactive.

As shown in Figure 6, vertex 3 in the BSP model (Part C) main-
tains information (e.g., the unique identifier) of outgoing neighbors
(vertices 2 and 4) for sending messages, and messages from in-
coming neighbors (vertices 1, 4 and 6). In Cyclops (Part D), the
references of incoming neighbors (vertices 1, 4 and 6) are stored
to in-edges of vertex 3, which provide an immutable view to the
compute function on vertex 3. Note that the references of vertices 1
and 6 are pointed to the replicas, since they are the remote vertices.
The rest edges of vertex 3 are used to activate local vertices and
synchronize with its replicas.

3.4 Message Passing
In the BSP model, message passing is used both to transfer data

and to activate vertices. It results in the contention on message en-
queue, and a large number of redundant computation and message
passing for converged vertices in pull-mode algorithms.

In Cyclops, the data movement between adjacent vertices is de-

coupled from message passing as data transfer between them is

performed by shared memory access. Cyclops uses a distributed

approach to implement vertex activation by using a master vertex
to send activation requests together with values to propagate to its
replicas. As the remote worker with outgoing neighbors of current
vertex must have a replica of vertex, each vertex and its replicas are
responsible for activating its local outgoing neighbors.

The only message required in Cyclops is used to synchronize
replicas with their master vertices in each superstep. It guarantees
each replica only receiving at most one message, thus there is no
protection mechanisms in message passing of Cyclops. For the
sample graph in Figure 4, all messages could be served in parallel
in Cyclops.

In Figure 6, the out-edges of vertex 3 in the BSP model (Part C)
are used to send message to outgoing neighbors (vertices 2 and 4)
regardless of whether they are in local or remote workers. In Cy-
clops (Part D), vertex 3 maintains the location (worker 1) of replica
for synchronization. The local out-edges to vertices 4 and 2 main-
tained in vertex 3 and its replica are used for distributed activation.

3.5 Execution Model
The BSP execution model uses a separate ingress phase to load

and split a directed graph from the underlying file system. The in-
put graph is split by a distributed graph partitioning heuristic (e.g.,
random hashing, Metis [20]) into multiple partitions and assigned
to workers. The execution phase of the BSP model presents as
a single loop of supersteps. Each superstep consists of four se-
quential operations: message parsing (PRS), vertex computation
(CMP), message sending (SND) and global barrier (SYN). At the
beginning of each superstep, while there are messages or vertices
alive, the worker parses messages received in the last superstep and
uses them to activate vertices. After that, all active vertices execute
user-defined compute function, and send messages to neighbors. A
vertex deactivates itself by voting to halt. Before entering the global
barrier, all messages sent in current superstep should be transmitted
to destination.

Cyclops follows a similar execution model. Each worker exe-
cutes the compute function on active master vertices, which pulls
data from neighbors through shared memory access. The modifica-
tion on non-converged vertices results in synchronization messages
from master to replicas. Because the messages are directly used to
update replicas and activate local neighbors in parallel by receiv-

Figure 7: An example of communication in BSP and Cyclops

ing threads, Cyclops does not require the message parsing before
vertex computation.

Figure 6 illustrates four consecutive operations intercepted from
two connected supersteps. The two execution flows are similar
(Part E and F), except for messages. The workers in the BSP model
send and parse messages from vertices to its outgoing neighbors
(e.g., from vertex 3 to vertices 2 and 4). In contrary, the worker
in Cyclops only sends the messages and update the replicas (e.g.,
vertex 3 to replica 3).

3.6 Fault Tolerance
The fault tolerance mechanism used in Pregel is based on check-

point and restore. After each global barrier, workers can save
the states of their graph partition to underlying storage layer (e.g.,
HDFS). The necessary state consists of superstep count, vertex val-
ues, edge values and messages. This is much simpler than an asyn-
chronous shared memory system like GraphLab, which requires
an eventual consistent checkpoint algorithm [8]. Cyclops follows
a similar mechanism used in Pregel, except that workers does not
require to save the replicas and messages.

4. IMPLEMENTATION ISSUES
We have implemented Cyclops and its optimizations based on

Apache Hama [2], a popular clone of Pregel implemented in Java.
Cyclops adds around 2,800 SLOCs to Hama. Cyclops is mostly
compatible with the interfaces and graph processing in Hama.
However, there are a few differences to support the distributed im-

mutable view in Cyclops.

4.1 Message Passing
Hama splits the vertex computation and message passing to

avoid interference. As shown in Figure 4, all messages are cached
in a global out-queue before sending. To improve the network uti-
lization, Hama combines the messages sent to the same vertex if
possible, and bundles the messages sent to the same worker in one
package. Further, Hama uses a global in-queue to temporally store
all messages to exploit locality of enqueue operations, and parses
messages to each vertex at the beginning of next superstep. The
enqueue operations from multiple receiving threads should be seri-

alized to avoid contention.
In Cyclops model, the replica only receives at most one message,

thus we optimize message passing to directly update replicas in
parallel by multiple receiving threads. The message combining and
parsing are no longer necessary. To further improve the locality,
Cyclops groups replicas according to the location of its master, and
sorts replicas within group at graph ingress. Cyclops uses multiple
sub-queues to separately cache messages sent to different workers,
and sorts the messages in bundle before sending.

4.2 Graph Partition
Cyclops is orthogonal to the graph partition algorithms and the

default partition algorithm (i.e., hash partition) can be used directly
without changes to Cyclops. However, as the graph partition qual-
ity may affect the amount of replicas in Cyclops, using a better
partition algorithm may generate a balanced edge-cut. This may
evenly assign vertices to workers and reduce the number of inter-
partition edges, thus reduces the amount of replicas and replica
synchronization messages. Hence, we additionally implement the
Metis [20] partition algorithm that tries to minimize inter-partition
edges and balance the vertices among partitions. In section 6.6, we
will show that this may result in significant performance boost.

4.3 Graph Ingress
The in-memory graph organization is slightly different from that

in Hama due to the need for creating replicas, adding in-edges
and local out-edges for all vertices to maintain the distributed im-

mutable view for the compute function. To avoid unnecessary bur-
den for programmer, Cyclops maintains compatibility of the input
file format with Hama, but instead reuses the ingress phase to load
and split graph.

In addition to the ingress phase in Hama, Cyclops adds its own
ingress phase to create replicas and add in-edges and local out-
edges. This is done by letting each vertex to send a message to
its out-edges. Each vertex will create a replica for the sending ver-
tex upon receiving a remote message when such a replica is not
created yet. It will further create an in-edge from the replica and a
local out-edge for the replica to itself. This is essentially a super-
step in Hama.

4.4 Convergence Detection
Cyclops supports the original global aggregation based conver-

gence detection. However, as we discussed in section 2.2.3, using
such a global error to indicate whether the graph processing have
converged may cause accuracy problems. Hence, we further add a
fine-grained convergence detection scheme by counting the propor-
tion of converged vertices, which is more suitable for the dynamic
computation nature of many graph algorithms.

5. HIERARCHICAL GRAPH PROCESS-

ING WITH CYCLOPS
With the prevalence of multicore-based clusters, the two-level

hierarchical organization raises new challenges and opportunities
to design and implement an efficient large-scale graph processing
framework. To our knowledge, Pregel and its open-source clones
like Hama currently are oblivious to the underlying hardware topol-
ogy and use a uniform way to manage all workers.

Inspired by the hierarchical-BSP model [6], we apply a hier-
archical design to exploit such parallelism and locality, which is
called CyclopsMT. CyclopsMT uses a three-level scheme to orga-
nize tasks: the main task in superstep (level 0) is first partitioned
into machines in cluster (level 1), and the worker in each machine
further partitions the task to multiple threads running on multicore
hardware (level 2). At any time, only the last-level threads perform
tasks. Their parents, i.e., the workers in higher levels, just wait until
all their child threads finish their tasks. Note that, CyclopsMT still
preserves the synchronous and deterministic computation nature in
Cyclops, as all threads sharing the same parent synchronize with
each other at the end of each superstep.

However, it is non-trivial to parallelize tasks in each superstep
using multi-thread for BSP model. This is because the message op-
erations in each superstep have poor locality and heavy contention.

Figure 8: The architecture of hierarchical Cyclops (CyclopsMT)

For message parsing, trivially splitting received messages to multi-
ple threads may result in heavy contention on destination vertices,
especially when a large number of messages are delivered to the
same vertex. For message sending, using a separate queue to buffer
messages for each thread is harmful to message batching and ag-
gregation.

In Cyclops, fortunately, the data movement between vertices is
decoupled from message passing, and thus the messages are only
sent from master vertices to their replicas and there are no duplicate
replicas in the destination. This opens opportunities of paralleliz-
ing each superstep in Cyclops. Hence, CyclopsMT adopts a split

design to parallelize computation on master vertex and message
passing to replicas in each superstep, and to exploit the locality of
communication and synchronization without contention.

Figure 5 illustrates how CyclopsMT parallelizes all operations in
a superstep. For vertex computation, all vertices are evenly mapped
to multiple threads and are executed fully in parallel. The vertex
activation requests in the compute function are treated differently.
The remote activation is delayed to message sending during replica
synchronization, while the local activation is performed immedi-
ately by setting the corresponding incoming edge of destination
vertex, which is a lock-free operation.

In the message sending phase, all updated vertices with repli-
cas need to send synchronization messages. The remote activation
requests will be combined with synchronization messages. Since
there are no duplicate messages sent to the same destination replica,
message combination is no longer required. Private out-queues are
used to reduce the contention on underlying network hardware.

In the message receiving phase, multiple message receivers are
launched to exploit the parallelism. Because there are no duplicate
messages sent to the same replica, the update operation on replica
is lock-free and non-blocking. However, with the growing number
of threads within one worker, too many message receivers would
result in heavy contention on underlying network hardware. The
improvement is also devoured by the workload imbalance of mes-
sage receivers.

CyclopsMT support separately configure the parallelism of ver-
tex computation and message passing according to different behav-
ior of algorithm and workloads. In Figure 5, CyclopsMT launches

Table 1: A collection of real-world graphs.

Algorithm Graph |V | |E|

PageRank

Amazon 403,394 3,387,388
GoogleWeb(GWeb) 875,713 5,105,039

LiveJournal(LJournal) 4,847,571 69,993,773
Wiki 5,716,808 130,160,392

ALS SYN-GL 110,000 2,729,572
CD DBLP 317,080 1,049,866

SSSP RoadCA 1,965,206 5,533,214

4 working threads to compute master vertices in parallel, and 2
message receivers to receive messages and update replicas.

Finally, with the growing number of participants, the perfor-
mance overhead of global barrier rapidly increases. Hierarchical
design in CyclopsMT provides a natural solution to reduce the over-
head. The main thread represented as the whole worker performs
distributed protocol of a global barrier, and the rest of threads wait
on a local barrier. The hierarchical barrier reduces the number of
messages and the latency of communication.

6. EVALUATION
This section evaluates Cyclops and its optimizations against the

baseline system Hama using four typical graph algorithms: PageR-

ank (PR), Alternating Least Squares (ALS), Community Detection

(CD) and Single Source Shortest Path (SSSP). The first three are
pull-mode algorithms, while the fourth one is a push-mode algo-
rithm.

6.1 Overview of Tested Graph Algorithms
PageRank [5] (PR): It is a widely-used and well-studied graph

algorithm. A web page’s rank is computed as a weighted sum of
all its incoming neighbors’ rank value. In graph-parallel models,
each vertex receives messages from all its incoming neighbors to
compute its new rank and send the new value to all its outgoing
neighbors. Since a vertex needs to gather data from all its neigh-
bors, PageRank is a typical pull-mode algorithm.

Alternating Least Squares (ALS): It was used by Zhou et.al [36]
to do recommendation in Netflix. The input to ALS is a sparse users
by movies matrix R, where each entry contains the movie rating of
each user. This algorithm uses U * R to simulate the ranking value.
It iteratively refines U and V by computing the least square solution
with the other fixed. ALS can easily fit into the graph computation
framework if we consider the input matrix as a graph connecting
users with movies [12].

Community Detection (CD): It is a simple community detection
application based on label propagation [36]. Each vertex has a label
value, which is assigned with the most frequent labels in its neigh-
bors. Vertices with the same label are considered as a community.

Single Source Shortest Path (SSSP): It is a typical push-mode
application. A vertex will not do computation unless messages ar-
rive to wake it up. A vertex uses only the incoming messages to
update its value. After that, it can go to sleep. We use the SSSP
algorithm to show that even the push-mode applications has no
redundant vertex computation and message passing, Cyclops and
CyclopsMT still outperforms Hama through the elimination of con-
tention on communication and exploiting the parallelism and local-
ity of multicore-based cluster.

All these algorithms can be trivially written/ported to Cyclops
due to its synchronous nature with local semantics exported to the
compute function. It requires 8 and 7 SLOCs to adapt the existing
Hama implementation of PR and SSSP to Cyclops. We implement
ALS and CD to both Hama and Cyclops and the code difference
between Hama and Cyclops is only 10 and 6 SLOCs accordingly.

 0

 2

 4

 6

 8

 10

Amazon GWeb LJounral Wiki SYN-GL DBLP RoadCA

N
o

rm
a

liz
e

d
 S

p
e

e
d

u
p

PageRank ALS CD SSSP

Hama
Cyclops
CyclopsMT

 0

 5

 10

 15

 20

 25

 30

 35

6 12 24 48 6 12 24 48 6 12 24 48 6 12 24 48 6 12 24 48 6 12 24 48 6 12 24 48

N
o

rm
a

liz
e

d
 S

p
e

e
d

u
p

5
0

.2

Amazon GWeb LJournal Wiki SYN-GL DBLP RoadCA

Hama
Cyclops
CyclopsMT

Figure 9: (1)The speedup of Cyclops and CyclopsMT over Hama using 48 workers for a variety of dataset. (2)The scalability of Cyclops and CyclopsMT

over Hama using 6, 12, 24 and 48 workers for a variety of dataset (Speedup is normalized against Hama with 6 workers).

 0

 0.2

 0.4

 0.6

 0.8

 1

R
a
ti
o
 o

f
E

x
e
c
u
ti
o
n
 T

im
e

Amazon GWeb LJournal Wiki SYN-GL DBLP RoadCA

SYN PRS CMP SND

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30

#
V

e
rt

ic
e

s

#Superstep

x10
5

Hama
Cyclops

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30

#
M

e
s
s
a

g
e

s

#Superstep

x10
5

Hama
Cyclops

Figure 10: (1) The breakdown of execution time on Hama, Cyclops and CyclopsMT using 48 workers with different benchmarks. (2) The number of

active vertices in each superstep on Hama and Cyclops for PageRank algorithm with GWeb dataset. (3) The number of messages in each superstep on

Hama and Cyclops for PageRank algorithm with GWeb dataset.

6.2 Experimental Setup
All experiments are performed on an in-house 6-machine mul-

ticore cluster. Each machine has a 12-core AMD Opteron 6168
CPU, 64GB RAM, 2x1TB Hard Drivers and 1 GigE network ports.
We run HDFS on the same cluster for underlying storage layer, and
use a graph ingress phase to load the graph to main memory before
doing graph computation.

Table 1 lists a collection of large graphs used in our experiments.
Most of them are from Stanford Large Network Dataset Collec-
tion [27]. The Wiki dataset is from [15]. The dataset for the ALS
algorithm is synthetically generated by tools provided from that
used in the Gonzalez et al. [12]. The SSSP algorithm requires the
input graph to be directed and weighted. Since the RoadCA graph
is not originally weighted, we synthetically assign a weight value
to each edge, where the weight is generated based on a log-normal
distribution (µ = 0.4,σ = 1.2) from the Facebook user interaction
graph [34].

6.3 Overall Performance
Figure 9 summarizes the normalized performance of Cyclops

and CyclopsMT compared to Hama with different configurations.
Note that we evenly distribute workers in each machine, and run 8
threads at most on a single machine for CyclopsMT because JVM
doesn’t scale well on large-scale multicore platforms and the JVM
itself will create a number of auxiliary threads. The number of
workers shown in figure for CyclopsMT is equal to the total num-
ber of threads.

As shown in Figure 9(1), Cyclops and CyclopsMT outperforms
Hama in all algorithms over different datasets with 48 workers. For
PR, the speedup increases with the growing size of input graph.

The largest speedup of Cyclops and CyclopsMT comes from Wiki
(our biggest graph), which is 5.03X and 8.69X accordingly. The
speedup of Cyclops and CyclopsMT is also remarkable for ALS
with SYN-GL (3.48X and 5.60X) and CD with DBLP (2.55X and
5.54X). For SSSP with RoadCA, the performance improvement is
relative small (1.33X and 2.06X). This is because SSSP is a typ-
ical push-mode algorithm, and thus there are no redundant vertex
computation and message passing.

Figure 9(2) compares the scalability of Cyclops and CyclopsMT
compared to Hama with different workers from 6 to 48. With
the growing of workers, the number of edges spanning machines
rapidly increases, which results in the amplification of the number
of messages. Hence, the time spent on message passing in sev-
eral applications significantly degrades the performance of Hama
and Cyclops. However, due to exploiting the locality of messages
and using hierarchical barrier, CyclopsMT reduces the performance
degradation in communication. Further, for applications whose
performance are dominated by vertex computation, the scalability
is still quite good, including PR with most graphs, ALS and CD.
For the performance of application dominated by communication,
the growth of speedup appears slightly slowdown, including PR
with Amazon and SSSP with RoadCA.

6.4 Performance Breakdown
In this section, we categorize the source of performance speedup

through a breakdown of execution time and the number of active
vertices and messages in each superstep.

Figure 10(1) shows the ratio of execution time breakdown of
benchmarks on Hama, Cyclops and CyclopsMT using 48 work-
ers with different benchmarks. The result is normalized to Hama,
and the labels SYN, PRS, CMP and SND correspond to synchro-

 0

 2

 4

 6

 8

 10

 6 12 24 48

R
e

p
lic

a
ti
o

n
 F

a
c
to

r

#Partitions

Hash
Metis

 0

 2

 4

 6

 8

 10

R
e

p
lic

a
ti
o

n
 F

a
c
to

r

0
.0

7

0
.0

1

Amazon GWeb LJournal Wiki SYN-GL DBLP RoadCA

Hash
Metis

 0

 5

 10

 15

 20

 25

Amazon GWeb LJounral Wiki SYN-GL DBLP RoadCA

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

PageRank ALS CD SSSP

Hama
Cyclops
CyclopsMT

Figure 11: (1) The replication factor on Wiki dataset using different partitions. (2) The replication factor for a variety of dataset using 48 partitions. (3)

The performance of Hama, Cyclops and CyclopsMT with Metis partition using 48 workers for a variety of dataset. Speedup is normalized against Hama

under Metis partition.

 0

 5

 10

 15

 20

 25

 30

6
x
1
x
1

6
x
2
x
1

6
x
4
x
1

6
x
8
x
1

6
x
1
x
1

6
x
1
x
2

6
x
1
x
4

6
x
1
x
8

6
x
1
x
8
/1

6
x
1
x
8
/2

6
x
1
x
8
/4

6
x
1
x
8
/8

E
x
e
c
u

ti
o
n
 T

im
e
 (

S
e
c
)

SYN

CMP

SND

Figure 12: The breakdown of execution time on CyclopsMT for PageR-

ank with GWeb dataset using different configurations. The labels under

histogram are the configuration, and the symbol of ‘MxWxT/R’ corre-

sponds to #machines, #workers, #threads and #receivers.

nization, message parsing, vertex computation and message send-
ing accordingly. Cyclops and CyclopsMT significantly outperform
Hama for pull-mode applications because of two major benefits.
The first is from the elimination of redundant computation and mes-
sage passing for converged vertices, which efficiently improves the
performance of pull-mode applications. The second exploits the
parallelism and locality of message passing, through the elimina-
tion of the contention in message parsing. The significant improve-
ment in SYN phase also benefits from the load balance in each su-
perstep. CyclopsMT further reduces the number of replicates and
messages within a single machine, and improves the synchroniza-
tion among workers by the hierarchical barrier. For SSSP, Cyclops
and CyclopsMT achieves modest speedup to Hama through opti-
mized message passing and efficient vertex access through shared
memory.

Figure 10(2) and (3) show the number of active vertices and mes-
sages in each superstep for PageRank algorithm on GWeb. The
number of active messages and messages decides vertex compu-
tation time and message passing time respectively. Compared to
Hama, Cyclops significantly reduces the number of active vertices
and messages as expected.

6.5 Improvement of CyclopsMT
To illustrate the effect of hierarchical Cyclops (CyclopsMT) on

multicore-based clusters, we evaluate the PR algorithm on GWeb
dataset with different configurations of CyclopsMT. In Figure 12,
the configuration labeled 6xWx1 correspond to Cyclops, which
launch W single thread workers on each machine. With the increase
of workers, the workload of vertex computation is constant, but the
number of messages increases because of the growing number of

replicas. Cyclops can efficiently parallelize the vertex computa-
tion and message parsing, thus the execution time of computation
(CMP) rapidly decreases and the communication time(SND) is sta-
ble. Further, the overhead of synchronization (SYN) increases with
the growing number of participants, which results performance
degradation when the number of workers exceeds 24. The config-
uration labeled 6x1xT correspond to CyclopsMT, which launch 1
worker with T threads on each machine. Because of the fixed num-
ber of worker, the overhead of communication and synchronization
are also stable. The performance improvement mainly comes from
vertex computation. The only contention in CyclopsMT is from the
underlying hardware. Too many receiving threads would contend
on CPU and network resources, thus CyclopsMT provides sepa-
rate configuration to control interference. The best performance is
from configuration labeled 6x1x8/2, which only launches 2 receiv-
ing threads for communication.

6.6 Impact of Graph Partitioning Algorithms
In all prior evaluation, we simply use the naive hash-based graph

partitioning algorithm, which may result in an excessive amount
of edges being cut. To study the impact of graph partition algo-
rithm on Hama and Cyclops, we compare the performance using
two graph partitioning methods (e.g., Hash-based and Metis [20])
with all algorithms on different datasets. Figure 11(1) depicts the
average number of replicas for different number of partitions for
Wiki dataset and Figure 11(2) shows the average number of repli-
cas for different datasets on 48 partitions, using the hash-based and
Metis partition algorithms. With the increase of partitions, the av-
erage number of replicas under the hash-based partition algorithm
rapidly approaches the average number of edges per vertex. In con-
trast, Metis significantly reduces the average number of replicas.

In Figure 11(3), Cyclops and CyclopsMT using Metis signifi-
cantly outperform their counterparts using hash-based partitions.
However, Hama does not obviously benefit from the Metis parti-
tion algorithm, because the Metis partition algorithm only tries to
minimize the total number of edges spanning machines while try-
ing to balance vertices, and the vertices may be a little bit out of
balance. In Cyclops, as the number of converged vertices rapidly
increases along with graph computation, the degree and impact of
imbalance for vertices will be decreased. However, Hama will re-
main imbalanced along all of its execution.

6.7 Ingress Time
The input graph is loaded from a text file stored in a distributed

file-system (HDFS). The graph processing runtime then splits the
file into multiple blocks and generates in-memory data structures
by all workers in parallel. Each worker reads vertex from a block
and sends vertices to their target workers according to the graph

H / C H / C H / C H / C

Amazon 6.2 / 5.9 0.0 / 2.5 1.7 / 1.5 7.9 / 9.9

Gweb 7.1 / 6.8 0.0 / 2.8 2.6 / 1.9 9.7 / 11.4

Ljounral 27.1 / 31.0 0.0 / 44.7 17.9 / 9.2 45.0 / 84.9

Wiki 46.7 / 46.7 0.0 / 62.2 33.4 / 20.4 80.0 / 129.3

SYN-GL 4.2 / 4.0 0.0 / 2.6 2.4 / 1.8 6.6 / 8.4

DBLP 4.1 / 4.1 0.0 / 1.5 1.3 / 0.9 5.4 / 6.5

RoadCA 6.4 / 6.2 0.0 / 3.9 0.9 / 0.6 7.3 / 10.7

Graph
LD (sec) REP (sec) INIT (sec) TOT (sec)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20

E
e

x
c
u

ti
o

n
 T

im
e

 (
S

e
c
)

#Edges (Millions)

Hama
CyclopsMT

10
-3

10
-2

10
-1

10
0

 0 5 10 15 20 25 30

L
1
-N

o
rm

 D
is

ta
n
c
e

Execution Time (Sec)

Hama
Cyclops

CyclopsMT

Figure 13: (1)The execution time of graph ingress. H represents Hama, and C represents Cyclops (2)The scalability of Cyclops with ALS benchmark.

(3)The L1-Norm distance of Hama, Cyclops and CyclopsMT on PageRank algorithm with GWeb dataset.

Table 2: The memory behavior of Hama, Cyclops and CyclopsMT on

PageRank algorithm with Wiki dataset.

Num Sec Num Sec

Hama/48 1.7 1.5 132 45.7 69 18.7

Cyclops/48 4.0 3.0 45 62.9 15 13.9

CyclopsMT/6x8 12.6/8 11.0/8 268/8 67.8/8 32/8 2.52/8

Configuration

Max

Cap

(GB)

Max

Usage

(GB)

Young GC Full GC

partition algorithm. Finally, each worker initializes its own ver-
tices. Cyclops requires an additional phase to create replicas and
refine vertices.

Figure 13(1) shows the breakdown of ingress time using 48
workers with different input graphs. We split the ingress time into
graph loading (LD), vertex replication(REP) and vertex initializa-
tion (INIT). The overhead of ingress time in Cyclops is mainly from
the vertex replication phase, and the rest portion of time is close to
Hama. The time spent on vertex replication depends on the size
of graph, and the increase of time is still modest. Nevertheless,
this is a one-time cost as a loaded graph will usually be processed
multiple times.

6.8 Scale with Graph Size
To show how CyclopsMT scales with graph size, Figure 13(2)

illustrates the execution time of ALS algorithm on dataset with a
varying number of edges from 0.34M to 20.2M using 48 work-
ers. The execution time only increases from 9.6 (for 0.34M) to
207.7 (for 20.2M) seconds, indicating that the performance of Cy-
clopsMT scales well with the growing size of input graph.

6.9 Convergence Speed
To evaluate the convergence speed of Cyclops and CyclopsMT

compared to Hama, we evaluate the L1-Norm distance to the final
result as the execution time goes by. The final result is collected of-
fline, and the partial result of applications on Cyclops, CyclopsMT
and Hama are dumped after each superstep. In Figure 13(3), both
Cyclops and CyclopsMT significantly accelerate the convergence
of PageRank on GWeb dataset compared to Hama.

6.10 Memory Consumption
As Cyclops needs some replicas for vertices to maintain the dis-

tributed immutable view, an intuitive impression is that Cyclops
may significantly increase the memory consumption. To compare
the memory behavior of Cyclops and Hama, we use jStat to eval-
uate the memory usage and the times of the garbage collection
(GC) execution. Note that we configure the Hama and Cyclops
are configured using Concurrent Mark-Sweep (CMS) collector as

Table 3: Message passing micro-benchmark results.

SND PRS TOT SND PRS TOT

5M 9.7 0.4 10.1 0.7 0.1 0.8 1.0

25M 56.4 1.9 58.3 3.4 0.2 3.6 5.6

50M 183.4 3.8 187.2 6.9 0.4 7.3 9.6

Hama (sec) PowerGraph (sec)
#Message

Cyclops
(sec)

GC. The partition algorithm is the hash-based partition instead of
Metis, which should be a worst case of memory consumption for
Cyclops.

Table 2 illustrates the memory behavior per worker of Hama,
Cyclops and CyclopsMT using 48 workers for the PageRank al-
gorithm. The input graph is Wiki, and CyclopsMT is configured
as 1 worker per machine with 8 threads. The maximum memory
spaces allocated to Cyclops is larger than that in Hama. However,
The number of Young and Full GC in Cyclops is actually less than
Hama due to the elimination of redundant messages, which occu-
pies a large number of memory in each superstep. CyclopsMT
overall consumes much less memory per work than Cyclops and
Hama, since it shares replicas among threads, and replaces the us-
age of internal message with memory reference.

6.11 Communication Efficiency
We demonstrate the benefits of unidirectional communication of

Cyclops by comparing the results of the message passing micro-
benchmark using three different implementations. The micro-
benchmark launches five workers to concurrently send messages
to update the element of an array in master worker. Each message
is a pair of index and value. The first implementation used by Hama
is based on Apache Hadoop RPC lib. It uses a global queue to seri-
ally buffer messages from multiple senders, and uses an additional
message parsing phase to update values to array. The second im-
plementation used by PowerGraph is based on C++ Boost RPC lib,
and it adopts the same method to send and parse messages. The last
implementation used by Cyclops is also based on Apache Hadoop
RPC lib, but it directly updates the messages from multiple senders
to array without protection. As shown in Table 3, there is one or-
der of magnitude performance slowdown between the implemen-
tations on Hama and PowerGraph, even using the same method.
However, the implementation used by Cyclops has slightly better
performance than PowerGraph, even if Cyclops uses a much worse
RPC library as that in Hama, due to significantly less messages (see
next section).

6.12 Comparing with PowerGraph
Since PowerGraph [12] is the well-known distributed graph pro-

cessing system, readers might be interested in how the performance
of Cyclops compares to that of PowerGraph, even if PowerGraph

Table 4: A comparison between CyclopsMT and PowerGraph.

Cyclops : PG Net Cyclops : PG Cyclops : PG Cyclops : PG Cyclops : PG Net Cyclops : PG

Amazon 10.5 : 14.8 +41% 3.86 : 3.77 38 : 192 1.0 : 5.2 4.9 : 7.8 +59% 0.24 : 0.40

GWeb 11.4 : 15.2 +33% 2.44 : 2.57 38 : 212 1.0 : 5.3 4.9 : 6.5 +33% 0.04 : 0.82

Ljournal 97.1 : 72.9 -25% 2.69 : 2.62 353 : 1873 1.0 : 5.4 53.0 : 49.1 -8% 0.64 : 1.18

Wiki 75.6 : 61.9 -18% 2.51 : 2.60 218 : 1366 1.0 : 6.2 59.9 : 43.2 -28% 0.93 : 1.08

Heuristic Paritition
Execution Time(s) AVG #Replicas #Messages(M) Msg/Rep CMP Execution Time(s) AVG #Replicas

11%

15%

25%

39%

DataSet
Hash-based Partition

Cyclops

was written in C++. We use the bulk synchronous version as op-
ponent, since it has the best performance among three variants of
PowerGraph. We use the CyclopsMT for comparison as Power-
Graph is essentially multithreaded.

Table 4 summarizes the comparison between Cyclops and Pow-
erGraph for PageRank algorithms with different datasets and graph
partition algorithms. For comparison under hash-based graph parti-
tion, the similar hash functions are used to partition graphs based on
vertex and edge for Cyclops and PowerGraph accordingly. Though
the average number of replicas in Cyclops and PowerGraph are
close, each vertex sends 5 messages in each superstep in Power-
Graph, of which 3 are used in Gather and Apply phases and the
other 2 are used in Scatter phase. Cyclops only requires at most
1 message for vertex in one iteration. Due to the improvement
in communication, Cyclops outperforms PowerGraph on Amazon
and GWeb datasets. However, for LJournal and Wiki datasets, the
performance is affected more by vertex computation, which takes
more than 25% and 39% of execution time in Cyclops, respectively.
The improvement from communication is not enough to overcome
the performance gap between languages.

For heuristic graph partitioning, Cyclops uses Metis algorithm
and PowerGraph uses Coordinated Greedy algorithm to partition
graphs. We did not use the same partition algorithm as the for-
mer tries to minimize edges to cut while the latter tries to minimize
vertices to cut. As the average numbers of replicas are still compa-
rable, the results are similar to that of hash-based partition.

7. RELATED WORK
Large-scale graph processing: The emergence of social net-

work and web search have stimulated the development of a num-
ber of large-scale graph processing. MapReduce [11] and its rel-
atives [17, 7] have been shown to effectively process web graphs
by ranking pages [5] and other graph-related algorithms [25, 35].
Based on MapReduce and its relatives, there have been several
systems such as PEGASUS [19], Presto [33], HADI [18] and
MadLinq [29] that extend such platforms for graph processing.
However, the iterative nature and cross-computation dependence
in typical graph algorithms may result in suboptimal performance
for large-scale graph processing [22, 21, 12] on such platforms.

Piccolo [26] uses a distributed key-value table abstraction to al-
low computation on different machines to access shared and muta-
ble states. Unlike Piccolo, the immutable view abstraction provides
just read-only access to distributed shared graph views and thus is
immune to possible data races and does not have to worry about
consistency issues. Trinity [31] in an on-going research project
that supports online graph processing, which, however, has to con-
front users from the consistency models. It also proposes to restrict
message passing by buffering and aggregating messages in mem-
ory. However, it still requires message passing to access the cached
messages. Kineograph [10] aims at online graph processing by us-
ing an epoch commit protocol on periodic snapshots, which may

be beneficial for extending Cyclops to support incremental graph
processing.

Bulk synchronous parallel: Since its first invention by
Valiant [32], there have been a number of BSP library implemen-
tations, including BSPlib [16] and Greep BSP library [13]. There
have also been several extensions to the BSP model, including the
hierarchical BSP model [6], which is similar to the hierarchical pro-
cessing optimization in Cyclops.

Graph Replication and Partition: Parallel BGL [14] dis-
tributes graphs by using a property map to store values correspond-
ing to a vertex. It introduces the ghost cell, which allows a vertex
to access values through the put/get interfaces to the property map.
However, the ghost cell in parallel BGL is write accessible and an
application-specific resolver is required to arbitrate and combine
messages, which may cause consistency issues and incur burdens
to programmers. In contrast, the immutable view provided in Cy-
clops allows read-only replication of vertices and is with clearer
semantics and potentially better scalability due to elimination of
frequent coherence messages. Pujol et al. [28] describe an online
partition scheme that tries to minimize replicas of vertices through
joint partition and replication. This can benefit Cyclops from re-
ducing requires replicas without comprising load balancing. The
Surfer [9] captures the network unevenness in cloud environments
during graph partitioning by accounting both the machine topology
graph and data graph. Such an integrated partitioning may improve
performance of Cyclops running in cloud environments.

8. CONCLUSION AND FUTURE WORK
This paper identified issues with existing graph computa-

tion models and presented Cyclops, a synchronous vertex-
oriented graph processing system that is easy to program
and provide efficient vertex computation, yet with significantly
less messages than prior systems. We showed that Cy-
clops performed comparably with PowerGraph despite the lan-
guage difference due to less messages. A release of Cyclops
is available at: http://ipads.se.sjtu.edu.cn/projects/

cyclops/cyclops-snapshot-0.1.tar.gz

Cyclops currently has no support for topology mutation of graph
yet, as its baseline system (i.e., Hama) does not have such a fea-
ture yet. We plan to add such support in our future work. Further,
we currently evaluated Cyclops only in a small-scale in-house clus-
ter. We plan to study its performance in a larger scale cluster us-
ing Amazon EC2-like cloud platforms. In addition, Some features
of efficient software and hardware, such as zero-copy protocol in
Ibis [3] and RDMA in Infiniband, can also benefit Cyclops. We
will consider them in future work.

9. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful com-

ments. This work is supported in part Doctoral Fund of Ministry
of Education of China (Grant No. 20130073120040), the Program

for New Century Excellent Talents in University of Ministry of Ed-
ucation of China, Shanghai Science and Technology Development
Funds (No. 12QA1401700), a foundation for the Author of Na-
tional Excellent Doctoral Dissertation of PR China, China National
Natural Science Foundation (No. 61003002) and Singapore NRF
(CREATE E2S2).

10. REFERENCES
[1] Apache. The Apache Giraph Project.

http://giraph.apache.org/.

[2] Apache. The Apache Hama Project. http://hama.apache.org/.

[3] H. E. Bal, J. Maassen, R. V. van Nieuwpoort, N. Drost,
R. Kemp, T. van Kessel, N. Palmer, G. Wrzesinska,
T. Kielmann, K. van Reeuwijk, et al. Real-world distributed
computer with ibis. Computer, 43(8):54–62, 2010.

[4] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and distributed

computation: numerical methods. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1989.

[5] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. In WWW, pages 107–117,
1998.

[6] H. Cha and D. Lee. H-bsp: A hierarchical bsp computation
model. J. Supercomput., 18(2):179–200, 2001.

[7] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. SCOPE: easy and efficient parallel
processing of massive data sets. VLDB Endowment,
1(2):1265–1276, 2008.

[8] K. Chandy and L. Lamport. Distributed snapshots:
determining global states of distributed systems. ACM TOCS,
3(1):63–75, 1985.

[9] R. Chen, M. Yang, X. Weng, B. Choi, B. He, and X. Li.
Improving large graph processing on partitioned graphs in
the cloud. In ACM SOCC, 2012.

[10] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu,
F. Yang, L. Zhou, F. Zhao, and E. Chen. Kineograph: taking
the pulse of a fast-changing and connected world. In
EuroSys, pages 85–98, 2012.

[11] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. Commun. ACM, 51(1):107–113,
Jan. 2008.

[12] J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
PowerGraph: Distributed graph-parallel computation on
natural graphs. In OSDI, 2012.

[13] M. Goudreau, K. Lang, S. Rao, T. Suel, and T. Tsantilas.
Portable and efficient parallel computing using the bsp
model. IEEE Trans. Computers, 48(7):670–689, 1999.

[14] D. Gregor and A. Lumsdaine. The Parallel BGL: A generic
library for distributed graph computations. Parallel

Object-Oriented Scientific Computing (POOSC), 2005.

[15] H. Haselgrove. Wikipedia page-to-page link database.
http://haselgrove.id.au/wikipedia.htm, 2010.

[16] J. Hill, B. McColl, D. Stefanescu, M. Goudreau, K. Lang,
S. Rao, T. Suel, T. Tsantilas, and R. Bisseling. BSPlib: The
BSP programming library. Parallel Computing,
24(14):1947–1980, 1998.

[17] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
distributed data-parallel programs from sequential building
blocks. In EuroSys, pages 59–72, 2007.

[18] U. Kang, C. Tsourakakis, A. Appel, C. Faloutsos, and
J. Leskovec. HADI: Fast diameter estimation and mining in
massive graphs with Hadoop. ACM TKDD, 5:8:1–8:24, 2011.

[19] U. Kang, C. E. Tsourakakis, and C. Faloutsos. PEGASUS: A
Peta-Scale Graph Mining System Implementation and
Observations. In ICDM, pages 229–238, 2009.

[20] G. Karypis and V. Kumar. Parallel multilevel k-way
partitioning scheme for irregular graphs. In Int. Conf.

Supercomputing, 1996.

[21] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi:
Large-scale graph computation on just a PC. In OSDI, 2012.

[22] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. M. Hellerstein. Distributed GraphLab: a framework for
machine learning and data mining in the cloud. VLDB

Endow., 5(8):716–727, 2012.

[23] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. M. Hellerstein. GraphLab: A New Parallel Framework for
Machine Learning. In Conf. on Uncertainty in Artificial

Intelligence, Catalina Island, California, 2010.

[24] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system for
large-scale graph processing. In SIGMOD, pages 135–146,
2010.

[25] B. Panda, J. Herbach, S. Basu, and R. Bayardo. PLANET:
massively parallel learning of tree ensembles with
MapReduce. VLDB Endowment, 2(2):1426–1437, 2009.

[26] R. Power and J. Li. Piccolo: building fast, distributed
programs with partitioned tables. In OSDI, pages 1–14, 2010.

[27] S. N. A. Project. Stanford large network dataset collection.
http://snap.stanford.edu/data/.

[28] J. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris,
P. Chhabra, and P. Rodriguez. The little engine (s) that could:
scaling online social networks. In ACM SIGCOMM, pages
375–386, 2010.

[29] Z. Qian, X. Chen, N. Kang, M. Chen, Y. Yu, T. Moscibroda,
and Z. Zhang. MadLINQ: large-scale distributed matrix
computation for the cloud. In EuroSys, pages 197–210, 2012.

[30] S. Salihoglu and J. Widom. GPS: A Graph Processing
System. http://infolab.stanford.edu/gps/, 2012.

[31] B. Shao, H. Wang, and Y. Li. The trinity graph engine.
Technical Report 161291, Microsoft Research, 2012.

[32] L. G. Valiant. A bridging model for parallel computation.
Commun. ACM, 33(8):103–111, Aug. 1990.

[33] S. Venkataraman, E. Bodzsar, I. Roy, A. AuYoung, and R. S.
Schreiber. Presto: distributed machine learning and graph
processing with sparse matrices. In Proc. EuroSys, pages
197–210. ACM, 2013.

[34] C. Wilson, B. Boe, A. Sala, K. P. Puttaswamy, and B. Y.
Zhao. User interactions in social networks and their
implications. In EuroSys, pages 205–218, 2009.

[35] J. Ye, J. Chow, J. Chen, and Z. Zheng. Stochastic gradient
boosted distributed decision trees. In ACM CIKM, pages
2061–2064, 2009.

[36] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale
parallel collaborative filtering for the netflix prize. In Int.

Conf. on Algorithmic Aspects in Information and

Management, pages 337–348, 2008.

