
A Case for Secure and Scalable Hypervisor using Safe Language∗

Haibo Chen
Institute of Parallel and Distributed Systems

School of Software
Shanghai Jiaotong University
haibochen@sjtu.edu.cn

Binyu Zang
Parallel Processing Institute

Fudan University
byzang@fudan.edu.cn

ABSTRACT

System virtualization has been a new foundation for system soft-
ware, which is evidenced in many systems and innovations, as
well as numerous commercial successes in desktop, datacenter and
cloud. However, with more and more functionality being built into
the virtualization layer, the trustworthiness of the hypervisor layer
has been a severe issue and should no longer be an “elephant in the
room”. Further, the advent and popularity of multi-core and many-
core platforms, the scalability of the virtualization layer would also
be a serious challenge to the scalability of the whole software stack.

In this position paper, we argue that it is the time to rethink the
design and implementation of the virtualization layer using recent
advances in language, compilers and system designs. We point out
that the use of safe languages with scalable system design could ad-
dress the trustworthiness and scalability issues with virtualization.
We also argue that applying language innovations to the hypervi-
sor layer avoids the need of an evolutionary path, as it is relatively
small in scale and has little backward compatibility issue.

Categories and Subject Descriptors

D.4.7 [Operating Systems]: Organization and Design

General Terms

Design, Languages

Keywords

Hypervisor, Verification, Scalability, Trustworthiness, Object-
oriented Design, Aspect-oriented design

1. INTRODUCTION

∗This work was funded by China National Natural Science Founda-
tion under grant numbered 61003002 and 90818015, a grant from
the Science and Technology Commission of Shanghai Municipality
numbered 10511500100 and Shanghai Leading Academic Disci-
pline Project (Project Number: B114), and Fundamental Research
Funds for the Central Universities in China.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PMAM 2012 Fedruary 26, 2012, New Orleans LA, USA.
Copyright 2012 ACM 978-1-4503-1211-0/12/02 ...$10.00.

System virtualization has recently gained a resurgent interest and
made system research more relevant. Evidences include many sys-
tems and innovations [40, 8], as well as commercial successes [27,
38]. It was even claimed that hypervisors have become “the new
foundation for system software” [20] 1. Much system-related re-
search has been conducted in the hypervisor layer due to its global
view on system resources. Meanwhile, commercial pressures also
push the improvement of hypervisor to support new business mod-
els (e.g., virtual appliances [30] and cloud computing) and new ap-
plications.

However, modern hypervisors such as Xen and VMWare are
partly derived from contemporary operating systems, e.g., reusing
their code and/or sharing their design decisions. Unfortunately,
many of the design decisions “have remained unchanged, even as
hardware and software have evolved” [24], thus are somewhat in-
adequate in the context of advances in modern architecture and the
context of evolving usage scenarios. For example, the monolithic
design using unsafe procedure-based languages (i.e., C) results in
poor maintainability and robustness, while the use of global poli-
cies (including global data structures and locks) limits its scalabil-
ity for large-scale processors [36, 34]. Further, current hypervisors
are hard to extend their functionalities. An adoption of functional-
ities usually involves changes spreading across multiple files in a
hypervisor, which are hard to maintain and error prone.

Meanwhile, there have been a number of advances in both pro-
cessor architectures and languages. On the hardware side, recent
processors have stepped into the multicore era, where it is no sur-
prise to see tens of CPU cores in a single commodity server. As a
new form of the Moore’s law, multicore or many-core processors
are still evolving fast in terms of both scale and heterogeneity. On
the language side, advances in safe language design as well as the
corresponding code and model verification techniques have made
it practical to apply safe languages and verification techniques to
even an operation system [24, 25]. Further, efforts in over twenty
years of improvements in operating system scalability have also ac-
cumulated a number of systems and innovative ideas [29, 14, 11,
12, 9, 39, 33].

In this position paper, we rethink the design and implementa-
tion of the virtualization layer in the context of numerous advances
in processors, language and system design techniques. We argue
that it is time to consider the reconstruction of the hypervisor layer
using safe languages as well as new scalable system design tech-
niques, with the goal of yielding a secure, scalable, verifiable and
extensible hypervisor. We argue that the hypervisor is a better place
to integrate innovations in language, compiler, verification and sys-

1Here, we only focus on hypervisors which directly execute on bare
hardware. Hypervisors running on a host operating system (e.g.
VMWare workstation and KVM) are similar.

tem designs, due to the fact that a hypervisor sits in a much lower
layer in the software stack. For this reason, reconstructing a hyper-
visor using safe languages and system design techniques will suffer
very little compatibility issues given that most hypervisors provide
a similar hardware interface in the hope of transparently support-
ing legacy and new operating systems originally running on bare
metals.

Specifically, we believe the following language techniques could
be helpful to remedy the situation. First, a type-safe language with
verifiable extension can improve the code quality of hypervisors
by enabling formal verification [37] and soundness analysis [4].
Second, object-oriented and aspect-oriented design should be help-
ful to improve the customizability, extensible and maintainability.
Third, deliberate object management (e.g., clustered objects [29]
and cache-aware data distribution and scalable locks [12]) should
be promising to improve the locality and scalability of hypervisors.
Finally, proper object replication and partition [14] should be help-
ful to improve the fault containment of hypervisors.

The following sections are organized as follows. The next sec-
tion describes issues with current hypervisor designs and discusses
the opportunities in the face of innovations in languages and sys-
tem designs. Then, we argue why a hypervisor is a good candidate
to apply various novel language innovations, using the criteria of
practicality and cost-effectiveness. Then, we describe the design
consideration and possible design of a system (called SafeHype in
this paper). Finally, we survey literatures on various related re-
search and then conclude.

2. PROBLEMS AND OPPORTUNITIES
This section briefly describes the problems with existing virtual-

ization and discusses related advances in programming languages,
formal verification, and system designs, which open the opportuni-
ties to address issues raised in this paper.

2.1 Issues with Current Hypervisor Design
Ideally, we believe the following possibly absent but demanding

features are necessary for modern hypervisors to match their roles
in software stack and satisfy changing business needs.

2.1.1 Trustworthiness
As hypervisors be gradually used in mission-critical applica-

tions, their trustworthiness becomes vitally important. However,
there have been various issues with current hypervisor layers.
First, there are very limited security guarantees in current hyper-
visor layer, which is, however, an “elephant in the room” and
largely ignored in many security systems [18]. For example, re-
cent research [41, 18] and evidences from security vulnerability
database [1] show that current hypervisor layer is huge and com-
plex, and thus can be easily tampered with by either external attack-
ers or malicious operators. Hence, many current cloud platforms
only provide very limited security guarantees to users’ data [28, 3],
which does not match the increasing trust being put on the virtual-
ized cloud platforms.

VMM Dom0 Kernel Tools TCB

Xen 2.0 45K 4,136K 26K 4,207K
Xen 3.0 121K 4,807K 143K 5,071K
Xen 4.0 270K 7,560K 647K 8,477K

Table 1: Trusted computing base of the Xen virtualization layer
(by Lines of Code) [41].

Second, with more and more virtual machines being deployed

in a single platform managed by a single hypervisor, the robust-
ness and fault containment have also been critical issues for current
hypervisors. Unfortunately, current virtualization layers are pretty
large in terms of code size and complex in functionalities that it
implements. Thus, it may contain a number of bugs. One reason
is that most hypervisors are implemented using unsafe program-
ming languages, risking of breaking type or memory safety. One
may argue that a hypervisor is relatively small thus easy to ensure
it is bug-free via testing and code review. However, the hypervisor
layer, including both the hypervisor, management VM as well as
tools, are pretty large in code size and the code size is still steadily
increasing, as shown in Table 1. Worse even, many virtualization
developers are less sophisticated hackers than the sole hypervisor
designers, integration of their code will likely degrade hypervisor
trustworthiness. Further, the flexibility of C programming language
makes it difficult to ascertain the correctness of programs [13].

Worse even, the dramatic advances of hardware technology will
also come with significant reliability problem [2]: high-density
cores per-chip also increases the probability of both transient and
permanent failures. As the resource manager for the system plat-
form, the hypervisor layer should be designed with awareness of
fault containment, to survive it from both transient and permanent
hardware failures.

2.1.2 Scalability and Extensibility
Scalability: Recent technology advances have accelerated the

prevalence of multi-core or many-core systems. Eight to twelve
cores in a chip have already been commercially prevalent with
low cost now. Viewpoints from Intel show that “even hundreds
of cores” in a chip will be available in the next decade [10]. The
advances in processor architectures demand the hypervisor, a new
foundation for system software, be highly scalable. However, re-
cent measurements show that commodity hypervisors (e.g., Xen)
experience with low scalability due to the use of system-wide and
domain-wide locks and data structures [36, 34].

Customizability: With the prevalence of system virtualization
in both academic research and industry, hypervisors have been used
in various usage scenarios. Meanwhile, as the global manager for
computing resources, a hypervisor is likely to host many signifi-
cantly different VMs (operating systems) and applications. Thus, it
is desirable to adjust the hypervisor resource management policies
and even modules to suit diverse usage scenarios. Global policies
or a unified view are not always suitable to satisfy various appli-
cations (e.g., computation-intensive vs. I/O-intensive and latency-
intensive vs. through-intensive). In contrast, local policies should
be more suitable for existing applications. Moreover, the ability of
online-adjustment of policies is desirable to avoid loss of availabil-
ity. Also, the number of local policies (per-module or per-object)
may be much larger than global policies. They should be able to be
described using a simple policy language.

Extensibility and Maintainability: Ever since the emergence
of virtualization, a lot of research work as well as industry efforts
have been conducted to extend existing hypervisors to gain better
performance and security and support more functionalities. How-
ever, only a very few have been integrated into the mainstream hy-
pervisors. It should not merely be attributed to laziness. We believe
two main reasons cause the situation. First, mainstream hypervi-
sors inherit the monolithic and structural design from contemporary
operating systems, preventing easy extensions of the hypervisors.
Our experiences in several projects [17, 16, 15, 23, 33] in extend-
ing hypervisors show that a single extension usually span across
a number of files and could incur likely conflicting changes. Sec-
ond, traditional diff and patch approach shows poor maintainability

to system software [21]. To support easy integration of extensions
and shorten the time-to-market of new features, it is demanding that
the hypervisor be highly extensible and maintainable. Here, both
static and online extensibility are useful to increase the flexibility
and availability.

2.2 Opportunities
Here, we claim that we are not that pessimistic as would be in-

terpreted from the above argument. Instead, we actually are en-
couraged by recent advances in the programming languages, for-
mal verification and system designs, which we believe can be put
together to solve parts of the problems described above.

In the programming language community, years of research has
yielded a number of safe language and its runtime support. Re-
searchers have also successfully demonstrated the practicality of
applying it to even both new [24] and commodity [19] operating
systems. Further, formal verification techniques have also shown
its capability of verifying a small operating system kernel [25]. Fi-
nally, language design such as Aspect-oriented programming may
improve the code maintainability of code. There have been sev-
eral dialects of common languages supporting Aspect-oriented pro-
gramming, including Aspect Java and Aspect C#.

For system design techniques, previous work on scalable op-
erating systems [11, 22, 5] has shown various approaches that
could yield good scalability on large-scale shared memory multi-
processors. For example, the Corey operating system [11] ad-
vocates controlling sharing by applications among kernel objects
and has provided several kernel abstractions to improve operating
system scalability. The Hive operating system [14] and the mul-
tikernel design [9] advocate treating multicore platform as a dis-
tributed system and leverage multiple cooperative kernels to work
together to manage a large-scale shared memory machine. The
sloppy counter [12] approach provides scalable counting mecha-
nism on multicore system. The Read-Copy Update [26] mechanism
leverages a lazy memory management scheme to allow concurrent
read and write operations. All these techniques have great poten-
tial to be incorporated into the hypervisor layer to provide scalable
performance. Actually, we do notice that the Read-Copy Update
mechanism have already been used in the Xen hypervisor.

3. WHY A VMM IS A GOOD CANDIDATE?
None of the above mentioned language techniques and system

designs are new in essence. Some of the literatures have already
been used in the context of operating systems. For example, the
Singularity operating system [24] also employs type-safe language
(i.e., Sing#) and code verification techniques to improve the de-
pendability and trustworthiness of operating systems. Tornado [22]
and K42 [5] have demonstrated the power of object-oriented de-
sign to improve the customizability and scalability of operating sys-
tems. Yet, using the criteria of practicality and cost-effectiveness,
we believe building a hypervisor using modern language innova-
tions could be more applicable than in operating system level.

Brewer et al. [13] point out that a major concern in replacing
C in system software is the lack of an “evolutionary path”, which
can avoid efforts of porting or rewriting existing software. This is
the case for an operating system due to its large code size (mil-
lions to tens of millions of code) and possibly loss of backward
compatibility (e.g., Singularity [24]) to millions of legacy applica-
tions. However, we argue that for a hypervisor the impact of losing
an evolutionary path can be mitigated at a minimal level and thus
practical enough to apply innovations in language and system de-
sign.

First, a hypervisor itself is much less complex than an operat-

ing system measured in code size or implementation complexity.
A hypervisor is a software layer managing the underlying machine
resources and exposing them to operating systems in the form of
virtual machines (VMs). The major roles of a hypervisor include
abstraction and management of resources, isolation and sharing
of resources among VMs and handling inter-VM control and data
communication. Although these resemble the roles of operating
systems at first glance, the level of hypervisor abstraction and man-
agement are at a much lower level. Thus, a hypervisor incurs a
significant less complexity in code size than an operating system.
Moreover, modern hypervisors (e.g. Xen) further move the I/O de-
vice virtualization out of the hypervisor, making them even smaller.
Although the code size of a hypervisor will likely expand in light
of numerous innovations and extensions, the porting effort can be
still much less and new extensions can be developed under the new
framework. Though the management VM would be a problem due
to its large code size, there is actually very little reason to leverage
a commodity operating system to host the management tools. We
believe it is practical to either replace the operating system for a
management VM with an existing operating system written in safe
language (e.g., Singularity) or even write a new one from scratch
with only necessary functionalities needed to support the manage-
ment tools.

Second, there are little or no backward compatibility issues for
a hypervisor. As a hypervisor multiplexes resources in VM-level,
it generally does not directly interact with applications. Thus, dra-
matic changes in a hypervisor usually do not require any change in
applications. For operating system compatibility, full-system vir-
tualization obviously does not have compatibility issues. For para-
virtualized virtual machines (i.e., operating systems), if the hyper-
visor can retain the existing VM interfaces, it can also be backward
compatible with existing para-virtualized operating systems. As
a VM interface is generally much smaller than operating system
interface (i.e., system calls) with less complex semantics (such as
ioctl), it is much easier to comply with.

Finally, innovations in hypervisors have a little performance im-
plication. Using a safe language may incur additional performance
overhead due to the added call indirections and changed code lay-
out. However, as the proportion execution time in a hypervisor is
much less than an operating system for a well-formed (e.g., non-
blocking) hypervisor, the possibly added execution time should
contribute little to the overall performance of applications. Further,
using a scalable design and language can likely improve the perfor-
mance for medium- or large-scale processors due to the possibly
improved cache locality and scalability.

4. THE CASE OF SAFEHYPE
In this section, we present the design decisions of a possible hy-

pervisor called SafeHype, which uses various programming lan-
guage innovations and new system designs to improve its trustwor-
thiness, scalability, customizability, extensibility and maintainabil-
ity. The major design decisions include using scalable system de-
sign and type-safe language with verifiable extensions. We first
present specifically the design decisions in the SafeHype system,
and then provide the overall possible design of the SafeHype.

4.1 Design Decisions

4.1.1 Programming Language
“Good languages lead to good systems” [13]. To build a ro-

bust hypervisor, language is thus a critical issue. Any replacement
of C programming language in system software should not sacri-
fice its expressiveness and efficiency [13, 7], which are critical for

efficiently managing low-level objects (e.g., page tables and seg-
ments). Also, it should retain programmers’ custom and be easy to
ascertain the correctness. Here, we choose to use a type-safe C++
subset with verifiable extension.

We choose C++ because of its object-oriented nature and com-
parable expressiveness with C. We introduce a garbage collector to
the SafeHype to manage object allocation and deallocation. To en-
sure safety, we intend to discard the unsafe features in C++ (such
as pointer-arithmetic and implicit type casting). Also, we intend to
provide a static verification and soundness analysis tool to detect
and reject suspicious errors early in compilation time, to reduce the
overhead of runtime checking.

4.1.2 Trustworthiness
Using a type-safe language and software verification tool can

significantly improve the security and robustness of the hypervisor.
We plan to incorporate existing formal verification techniques in
Singularity [24] and sel4 [25] to verify the correctness and security
properties of SafeHype. As the case for fault containment, Safe-
Hype provides two levels of containment of failures: core-level and
node level. SafeHype is designed with SMP and NUMA aware-
ness. Processors with uniform memory access are considered in
the same node. As in Hive [14], SafeHype replicates the code and
data in each node in case of node failure. The wide use of object-
oriented design and clustered objects makes it easy for hypervisor
replications. Within the same node, each processor monitors the
liveness of other processors and communicates with each other to
assure the liveness in a fixed time interval. Upon a failure, they
coordinate the failure recovery by attempting to recover the failed
processes and detach the failed processors.

4.1.3 Scalability
Two key elements in hypervisor scalability are good cache lo-

cality and less lock contention. To improve cache locality, a hy-
pervisor should be designed to avoid possible false sharing. To
reduce lock contention, a hypervisor should avoid the use of global
locks and data structures. As a result, SafeHype plans to adopt
the following novel design and structures: clustered objects [29],
sloppy counters [12], and Read-Copy Update [26]. In clustered
objects, objects accessed by different processors are mapped to dif-
ferent physical addresses, yet in a uniform object-oriented inter-
face. The adoption of clustered object can efficiently support ob-
ject replication, migration and distribution, to minimize cache evic-
tion and lock contention. The sloppy counter design can make the
pervasively used counting mechanism in a hypervisor being scal-
able. The Read-Copy Update allows concurrent accesses to many
data structures. Moreover, SafeHype avoids the use of global data
structures and mostly relies on per-object locks. Large system ob-
jects are partitioned or replicated among processors to avoid access
contention. Finally, SafeHype tries to minimize sharing by explic-
itly allowing sharing only when necessary and provide mechanism
from Corey [11] to support efficient sharing.

4.1.4 Customizability
The adoption of object-oriented design naturally fits the require-

ment for customizability. SafeHype relies on inheritance and poly-
morphism to implement customizability. SafeHype provides a
modular implementation for each system resource and control. One
can provide various implementations of policies to manage system
resources, under a uniform interface. To support runtime transfor-
mation among different policies, each implementation should pro-
vide a state transforming function [6] to transfer the resident state
to a new instance. The means to customize the system thus mainly

relies on changing different policies of each system resource. To
efficiently resolve conflicts among various policies, we intend to
provide a simple policy language as well as a tool to check the va-
lidity of an overall policy description.

4.1.5 Extensibility and Maintainability
As with customizability, SafeHype also relies on inheritance and

polymorphism to implement extensibility. Extending a hypervisor
can be done via inheriting and extending existing objects. To assist
dynamic extensions, SafeHype also supports dynamically down-
loading code into the hypervisor. The downloaded code is first ver-
ified by the hypervisor and then is relinked and relocated to the
hypervisor.

To assist the static extension or adjustment of crossing-cutting
code (such as logging and debugging) code, SafeHype also sup-
ports the use of aspect-oriented programming (Aspect C++ [35]).
However, the use of Aspect C++ also complicates the soundness
analysis. To overcome this, the code of SafeHype will first be trans-
formed by Aspect C++ compiler (a source-to-source compiler) to
normal C++ source code. Then, the transformed code will be ap-
plied with soundness analysis and software verification process.

4.2 The Case of SafeHype
We plan to implement SafeHype as a research hypervisor that

investigates novel language innovations to address various issues
with commodity hypervisors. It is still in a very early stage. We
have made an initial design and the design is still under intensive
discussion. SafeHype is designed with awareness of modern archi-
tectural advances and supports and optimizes for large-scale shared
memory multiprocessor (NUMA-aware). To minimize the device
porting efforts and make SafeHype measurable, SafeHype is de-
signed to be compatible with Xen, a popular open-source hyper-
visor. SafeHype intends to support both para-virtualization and
hardware-assisted full-virtualization (e.g., support Intel VT and
AMD-V).

Figure 1 shows the general architecture of the SafeHype systems.
SafeHype is implemented in a modular manner to enable reuses of
each module. The detailed objects are not listed on due to space
constraints. The base system contains several modules managing
and virtualizing underlying processors and memory. Extensible
modules such as inter-VM communication, security manager and
fault-containment are built upon these basic modules. The Garbage
Collector manages object allocation and deallocation as well as the
RCU objects in SafeHype. The object adaptor controls the policies
of each object. The object loader handles runtime extension of the
hypervisor, which resembles module loader in Linux. All commu-
nications between the virtual machines and SafeHype are handled
by the virtual machine interface. The virtual environment manager
resides in a control virtual machine and provides an interface to
customize and extend the hypervisor.

Figure 2: The compilation process of SafeHype and its modules

Figure 2 depicts the compilation process of SafeHype and its
modules. Code must first be preprocessed by Aspect C++ com-
piler to transfer it to normal C++ files, which are then applied with
soundness analysis and verification by the verifying compiler. Then

Figure 1: The general architecture of SafeHype

the code is compiled using C++ compiler into SafeHype binary
or linkable SafeHype modules. The modules can be dynamically
loaded into a running SafeHype to take effect. The SafeHype linker
validates the module by verifying the signature embedded in the
module, which was signed by the verifying compiler.

5. RELATED WORK
Other than the system designs and language advances mentioned

before, a number of work has been conducted in language support
for system software. Previous work can be classified into two cat-
egories: providing good substitutes for the C programming lan-
guage, and exploring language techniques to operating systems. To
our knowledge, we are the first to explore language innovation to
increase the scalability, customizability, extensibility, maintainabil-
ity and reliability of a hypervisor.

In the effort of substituting C programming language, the ma-
jor concerns include type-safety and expressiveness. Ivy [13] and
BitC [32] are both C-compatible extensions with type-safe and ver-
ifiable features. SysObjC [7] provides inheritance support with ef-
ficient low-level object layout to standard C. Sing# [24] is a C#
extension with verifiable extension and have been used to construct
the Singularity operating system. All these languages are good can-
didates to be used to construct our SafeHype system. However, for
object-orientation features and availability reason, we adopt a type-
safe C++ subset with verifiable extension to construct our system.

The benefits of object-orientation in operating systems have
been heavily studied. Tornado and K42 have used various object-
oriented design techniques to improve the scalability and customiz-
ability of operating systems. Singularity [24] and Coyotos [31] are
both new operating systems built using type-safe languages. How-
ever, as we argued before, it is far more heavyweight to apply lan-
guage innovations to operating systems than to hypervisors mea-
sured by implementation complexity and manual-effort.

6. CONCLUSION
Advances in languages, compilers and hardware make it pos-

sible and demanding to improve system software. In this paper,
we have argued that object-oriented design, aspect-oriented design,
type-safe and verifiable language extension could be helpful to ad-
dress various issues of modern hypervisors, to suit their new role
in the software stack. We have also argued that applying software

innovations to hypervisors is both practical and cost-effective, due
to its medium code size and little backward compatibility issues.
To demonstrate the effect and applicability, we have discussed how
specifically language innovations are useful in improve the scala-
bility, customizability, extensibility, maintainability and reliability
of hypervisors. As an initial effort to applying language innovations
to hypervisors, we have presented the initial design of the Safe-
Hype, our intended research hypervisor, which aimed at combining
innovations in languages, verification, compilers and systems.

7. REFERENCES

[1] Common vulnerabilities and exposures.
http://cve.mitre.org/.

[2] N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E. Smith.
Configurable isolation: building high availability systems
with commodity multi-core processors. In Proceedings of the
34th annual international symposium on Computer
architecture, pages 470–481, New York, NY, USA, 2007.
ACM Press.

[3] Amazon Inc. Amazon web service customer agreement.
http://aws.amazon.com/agreement/, 2011.

[4] Z. Anderson, E. Brewer, J. Condit, R. Ennals, D. Gay,
M. Harren, G. Necula, and F. Zhou. Beyond Bug-Finding:
Sound Program Analysis for Linux. In Proceedings of the
11th Workshop on Hot Topics in Operating Systems, 2007.

[5] J. Appavoo, M. Auslander, M. Butrico, D. da Silva,
O. Krieger, M. Mergen, M. Ostrowski, B. Rosenburg,
R. Wisniewski, and J. Xenidis. Experience with K42, an
open-source, Linux-compatible, scalable operating-system
kernel. IBM Systems Journal, 44(2):427–440, 2005.

[6] J. Appavoo, K. Hui, C. Soules, R. Wisniewski, D. Da Silva,
O. Krieger, M. Auslander, D. Edelsohn, B. Gamsa,
G. Ganger, et al. Enabling autonomic behavior in systems
software with hot swapping. IBM Systems Journal,
42(1):60–76, 2003.

[7] Á. Balogh and Z. Csörnyei. Sysobjc: C extension for
development of object-oriented operating systems. In
Proceedings of the 3rd workshop on Programming
languages and operating systems, New York, NY, USA,
2006. ACM Press.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In Proceedings of the 19th ACM Symposium
on Operating Systems Principles, pages 164–177, 2003.

[9] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schuepbach, and A. Singhania. The
multikernel: A new OS architecture for scalable multicore
systems. In Proc. SOSP, 2009.

[10] S. Borkar, P. Dubey, K. Kahn, D. Kuck, H. Mulder, and
S. Pawlowski. Platform 2015: Intel Processor and Platform
Evolution for the Next Decade. Technology@ Intel
Magazine, March 2005.

[11] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek,
R. Morris, A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang,
and Z. Zhang. Corey: An operating system for many cores.
In Proc. OSDI, 2008.

[12] S. Boyd-Wickizer, A. Clements, Y. Mao, A. Pesterev, M. F.
Kaashoek, R. Morris, and N. Zeldovich. An analysis of
Linux scalability to many cores. In Proc. OSDI, 2010.

[13] E. Brewer, J. Condit, B. McCloskey, and F. Zhou. Thirty
Years is Long Enough: Getting Beyond C. In 10th Workshop
on Hot Topics in Operating Systems (HotOS X), 2005.

[14] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teodosiu,
and A. Gupta. Hive: fault containment for shared-memory
multiprocessors. In Proceedings of the fifteenth ACM
symposium on Operating systems principles, pages 12–25.
ACM Press New York, NY, USA, 1995.

[15] H. Chen, J. Chen, W. Mao, , and F. Yan. Daonity-grid
security from two levels of virtualization. Elsevier
Information Security Technical Report, 12(3):123–138, 2007.

[16] H. Chen, R. Chen, F. Zhang, B. Zang, and P. chung Yew.
Mercury: Combining Performance with Dependability Using
Self-virtualization. In Proceedings of 36th International
Conference on Parallel Processing (ICPP 2007), 2007.

[17] H. Chen, R. Chen, F. Zhang, B. Zang, and P. Yew. Live
updating operating systems using virtualization. In Proc.
VEE, pages 35–44. ACM Press New York, NY, USA, 2006.

[18] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker,
T. Deegan, P. Loscocco, and A. Warfield. Breaking up is hard
to do: security and functionality in a commodity hypervisor.
In Proc. SOSP, pages 189–202, 2011.

[19] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve. Secure
virtual architecture: A safe execution environment for
commodity operating systems. In Proc. SOSP, number 6,
pages 351–366. ACM, 2007.

[20] S. Crosby and D. Brown. The virtualization reality. Queue,
4:34–41, 2006.

[21] M. Fiuczynski, R. Grimm, Y. Coady, and D. Walker. Patch
(1) considered harmful. In 10th Workshop on Hot Topics in
Operating Systems (HotOS X). Usenix, 2005.

[22] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm. Tornado:
Maximizing locality and concurrency in a shared memory
multiprocessor operating system. In Proc. OSDI, pages
87–100, 1999.

[23] Y. Huang, H. Chen, and B. Zang. Optimizing crash dump in
virtualized environments. In Proc. VEE, number 7, pages
25–36, 2010.

[24] G. Hunt and J. Larus. Singularity: rethinking the software
stack. ACM SIGOPS Operating Systems Review,
41(2):37–49, 2007.

[25] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,

P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski,
M. Norrish, et al. sel4: Formal verification of an os kernel. In
Proc. SOSP, pages 207–220. ACM, 2009.

[26] P. E. McKenney, D. Sarma, A. Arcangeli, A. Kleen,
O. Krieger, and R. Russell. Read-copy update. In
Proceedings of Linux Symposium, pages 338–367, 2002.

[27] Microsoft Corporation. Microsoft virtual server. See
www.microsoft.com/windowsserversystem/virtualserver,
2005.

[28] Microsoft Inc. Microsoft online services privacy statement.
http://www.microsoft.com/online/legal/?langid=en-
us&docid=7, March
2011.

[29] E. Parsons. (de-) clustering objects for multiprocessor system
software. In IWOOOS ’95: Proceedings of the 4th
International Workshop on Object-Orientation in Operating
Systems, Washington, DC, USA, 1995. IEEE Computer
Society.

[30] C. Sapuntzakis and M. S. Lam. Virtual appliances in the
collective: a road to hassle-free computing. In HOTOS’03:
Proceedings of the 9th conference on Hot Topics in
Operating Systems. USENIX Association, 2003.

[31] J. Shapiro, M. Doerrie, E. Northup, S. Sridhar, and
M. Miller. Towards a verified, general-purpose operating
system kernel. In Proc. NICTA Formal Methods Workshop
on Operating Systems Verification, Sydney, Australia, 2004.

[32] J. Shapiro, S. Sridhar, and S. Doerrie. BitC Language
Specification. http://www.bitc-lang.org/docs/bitc/spec.html,
2006.

[33] X. Song, H. Chen, R. Chen, Y. Wang, and B. Zang. A case
for scaling applications to many-core with os clustering. In
Proc. EuroSys, pages 61–76. ACM, 2011.

[34] X. Song, H. Chen, and B. Zang. Characterizing the
performance and scalability of many-core applications on
virtualized platforms. Parallel Processing Institute, Fudan
University, 2010.

[35] O. Spinczyk, A. Gal, and W. Schröder-Preikschat.
AspectC++: an aspect-oriented extension to the C++
programming language. Proceedings of the Fortieth
International Confernece on Tools Pacific: Objects for
internet, mobile and embedded applications-Volume 10,
pages 53–60, 2002.

[36] A. Theurer, K. Rister, O. Krieger, R. Harper, and
S. Dobbelstein. Virtual Scalability: Charting the
Performance of Linux in a Virtual World. In Proc. of Linux
Symposium, 2006.

[37] H. Tuch, G. Klein, and G. Heiser. OS Verification - Now! In
Proceedings of the 10th Workshop on Hot Topics in
Operating Systems, pages 7–12, 2005.

[38] VMware. The VMWare software package. See
http://www.vmware.com, 2006.

[39] D. Wentzlaff and A. Agarwal. Factored Operating Systems
(fos): The Case for a Scalable Operating System for
Multicores. Operating System Review, 2008.

[40] A. Whitaker, M. Shaw, and S. D. Gribble. Denali:
Lightweight virtual machines for distributed and networked
applications. In Proc. of USENIX’02, pages 195–209, 2002.

[41] F. Zhang, J. Chen, H. Chen, and B. Zang. CloudVisor :
Retrofitting Protection of Virtual Machines in Multi-tenant
Cloud with Nested Virtualization. In Proc. SOSP, pages
203–216, 2011.

