

GNNLab: A Factored System for Sample-based GNN Training over GPUs

RONG CHEN IPADS, SJTU ASAIL 2022

Joint work with Jianbang, Dahai, Xiaoniu @IPADS, Qiang @BASICS, and Lei, Wenyuan @Ailibaba

Rong Chen (陈榕) / SJTU // IPADS

https://ipads.se.sjtu.edu.cn/rong_chen

- Institute of Parallel And Distributed Systems (IPADS)
- Best paper award: EuroSys 2015, APsys 2017, and ICPP 2007
- 7 OSDI/SOSP papers and 9 EuroSys/Usenix ATC papers
- ► Huawei OlympusMons Pioneer Award, 2020

Research Interest

Building efficient, scalable and reliable distributed framework

Whole-graph training: hard to scale

GNN Training

Whole-graph training: hard to scale

Sample-based training

- Systems: DGL, PyG, AliGraph^[VLDB'19], P3^[OSDI'21], ..., GNNLab
- Friendly to GPU: massive parallelisms and limited GPU memory
- ► SET model: <u>Sample</u>, <u>Extract</u> and <u>Train</u>

SET model

Graph topc

5

โรมาน

Features

0	••	6	7	••	10	11	12
A_1	••	G ₁	H_1	••	K ₁	L_1	M_1
A_2	••	G ₂	H_2	••	K ₂	L ₂	M_2
A ₃		G ₃	H_3	••	K_3	L_3	M_3
A ₄	••	G ₄	H_4	••	K ₄	L_4	M_4

SET model

1. <u>S</u>ample

6

Isitu

Features

0	••	6	7	••	10	11	12
A_1	••	G ₁	H_1	••	K ₁	L_1	M_1
A_2	••	G ₂	H_2	••	K ₂	L ₂	M_2
A ₃		G ₃	H_3	••	K_3	L_3	M_3
A ₄	••	G ₄	H_4	••	K ₄	L_4	M_4

SET model

- 1. <u>S</u>ample
- 2. <u>E</u>xtract

7

ໂຮມານ

SET model

- 1. <u>S</u>ample
- 2. <u>E</u>xtract
- 3. <u>T</u>rain

8

ໂຮມານ

SET model

- 1. <u>S</u>ample
- 2. <u>E</u>xtract
- 3. <u>T</u>rain

9

கா

GPU-based GNN Training

GPUs have been widely exploited to accelerate GNN training

► Train: almost

GNN Systems	Sample	Extract	Train	τοτ
T _{SOTA}	2.93	5.55	4.00	12.50

GCN w/ 3-hop sampling on OGB-Papers100M

GCN w/ 3-hop sampling on OGB-Papers100M

GPUs have been widely	exploited to	accelerate	GNN training
Train: almost		[

Extract: PaGraph^[SOCC'20]

GNN Systems	Sample	Extract	Train	τοτ
T _{SOTA}	2.93	5.55	4.00	12.50
w/ GPU-based Caching	2.88	1.73	4.00	8.62

GPU-based GNN Training

GCN w/ 3-hop sampling on OGB-Papers100M

GPU-based GNN Training

GPUs have been widely exploited to accelerate GNN training

- ► Train: almost
- Extract: PaGraph^[SOCC'20]
- ► Sample: DGL, NextDoor^[EuroSys'21]

GNN Systems	Sample	Extract	Train	TOT
T _{SOTA}	2.93	5.55	4.00	12.50
w/ GPU-based Caching	2.88	1.73	4.00	8.62
w/ GPU-based Sampling	0.70	5.46	4.01	10.21

GPUs have been widely exploited to accelerate GNN training

- ► Train: almost
- Extract: PaGraph^[SOCC'20]
- Sample: DGL, NextDoor^[EuroSys'21]

GPU-based GNN Training

► Both ?

GNN Systems	Sample	Extract	Train	τοτ
T _{SOTA}	2.93	5.55	4.00	12.50
w/ GPU-based Caching	2.88	1.73	4.00	8.62
w/ GPU-based Sampling	0.70	5.46	4.01	10.21
w/ Both	0.70	3.62	4.00	8.37

GCN w/ 3-hop sampling on OGB-Papers100M

Traditional Design:

14

Traditional Design:

15

G Graph topo S Samples S Cache F Features M Model R Runtime state

G Graph topo S Samples S Cache F Features M Model R Runtime state

Problems

100

80

Capacity

9.1M

Sam

1.3GB

G

OGB-Papers: 6.4GB

GO

11.4 GB

3.7GB

Extract —

277MB

3.6GB

Train

<1M

mini-batch

19

(S) Samples (\$) Cache (F) Features (M) Model (R) Runtime state (G) Graph topo

General Idea E - Extract --Sample-Train -Time sharing w/ multi-GPUs (G) (\mathbf{R}) R M OGB-Papers: 6.4GB 1.3GB 9.1M 3.7GB 277MB 3.6GB <1M

23

ໂຮມານ

Π

General Idea

Observation:

HIGH

cross-GPU similarity

25

General Idea

Observation:

HIGH

cross-GPU similarity

LOW cross-stage data sharing

26

Our Approach

A factored design

Inspired by the factored operating system (fos[ACM OSR'09])

Factored Operating Systems (fos): The Case for a Scalable Operating System for Multicores

David Wentzlaff and Anant Agarwal @MIT

Our Approach

A factored design

- ► Inspired by the **factored operating system** (fos^[ACM OSR'09])
- ► **GNNLab**: a factored system for sample-based GNN training
 - Perform each stage on **dedicate processors** (GPUs and/or CPUs)

Fundamental Challenge: load imbalance

- Coarse-grained (stage-level) workload partitioning
- Limited GPUs: normally <= 8, even just 1</p>
- Diverse datasets and workloads
 - Sampling vs. Training: e.g., GCN = 1 : 1, while PinSAGE = 1 : 10

Our Approach

Fundamental Challenge: load imbalance

- **Coarse-grained** (stage-level) workload partitioning
- Limited GPUs: normally <= 8, even just 1
- **Diverse** datasets and workloads
 - ✤ Sampling vs. Training: e.g., GCN = 1 : 1, while PinSAGE = 1 : 10

GOALs of GNNLab

- Make stages work together efficiently
- 2. Assign GPUs to different stages **flexibly**

Execution Engine

Architecture

- ► Two executors @GPUs
 - Sampler: Sample stage
 - Trainer: Extract & Train stage

Execution Engine

Architecture

- ► Two executors @GPUs
 - Sampler: Sample stage
 - Trainer: Extract & Train stage
- ► A global queue @CPUs

33

SIL

Execution Engine

Architecture

- Two executors @GPUs
 - Sampler: Sample stage
 - Trainer: Extract & Train stage
- A global queue @CPUs
- ► Execution flow
 - Inter-executor: Parallel
 - Intra-executor: Sequential w/ pipelining
 - Gradient updates w/ bounded staleness

Flexible Scheduling

GPU allocation scheme

- ► OB: performance of executors on GPU is **predictable**
- \triangleright N_g: the number of GPUs
- ▶ N_s (resp. N_t): #GPUs allocated to Samplers (resp. Trainers)
- ► T_s (resp. T_t): the processing time of Sampler (resp. Trainer)

 $N_{s} = \left[\frac{N_{g}}{K+1}\right]$ $K = \frac{T_{t}}{T_{s}}$

Flexible Scheduling

GPU allocation scheme

- ► OB: performance of executors on GPU is **predictable**
- \blacktriangleright N_g: the number of GPUs
- ▶ N_s (resp. N_t): #GPUs allocated to Samplers (resp. Trainers)
- \blacktriangleright T_s (resp. T_t): the processing time of Sampler (resp. Trainer)
- Prefer to allocate GPUs to Samplers
 - temporarily switching from Sampler to Trainer is efficient
- Dynamic executor switching [see our paper]

 $N_s = \left\lceil \frac{N_g}{K+1} \right\rceil$

Prefer to Sampler

A general caching scheme

- \blacktriangleright Hotness metric h_v and cache ratio **a**
- 1. Store and sort vertices according to their h_v
- 2. Load features of *top-ranked* **a V** vertices w.r.t. **h**_v into GPU cache

37

For example: PaGraph^[SOCC'20]

h_v = out-degree of each vertex

Pre-sampling based caching policy (*PreSC*)

► OB: Cross-task (epoch) *similarity* of access footprint

Sampling alogrithms	PR	TW	ΡΑ	UK
3-hop random	73.97	78.89	91.29	77.46
Random walks	78.16	72.68	87.14	64.40
3-hop weighted	77.69	66.64	89.57	72.96

Pre-sampling based caching policy (PreSC)

OB: Cross-task (epoch) similarity of access footprint

Sampling alogrithms	PR	TW	ΡΑ	UK
3-hop random	73.97	78.89	91.29	77.46
Random walks	78.16	72.68	87.14	64.40
3-hop weighted	77.69	66.64	89.57	72.96

General idea: pre-sample a few rounds to estimate vertex hotness

- 1. Conducts **K** sampling stages (normally 1) for the training set
- 2. Record **visit count** of the sampled vertices
- 3. Use average count as the hotness metric h_v

Pre-sampling based caching policy (*PreSC*)

Efficiency: close to Optimal, vs. Degree avg $1.5 \times$ (up to $2.2 \times$)

40

Robustness: stable for all 12 cases

Evaluation

41

Testbed

- 8 NVDIA V100 GPU
 w/ 16GB memory
- ► Intel Xeon 2×24 CPU

Datasets

Dataset	#Vertex	#Edge	Dim.	#TS	\mathbf{Vol}_G	\mathbf{Vol}_F
PR [5]	2.4M	124M	100	197K	481MB	934MB
TW [33]	41.7M	1.5B	256	417K	5.6GB	40GB
PA [4]	111M	1.6B	128	1.2M	6.4GB	53GB
UK [9]	77.7M	3.0B	256	1.0M	11.3GB	74GB

PR can be loaded into a single GPU

GNNs

- ► GCN (3-hop rand ngb)
- GraphSAGE (2-hop rand ngb)
- PinSAGE (rand walks)

Baselines

System	Design	Sample	Extract	Train
PyG	N/A	CPU	No cache	GPU
DGL	Time S.	GPU	No cache	GPU
T _{SOTA}	Time S.	GPU w/ Opt.	Cache w/ Degree	GPU
GNNLab	Space S.	GPU w/ Opt.	Cache w/ PreSC	GPU

Overall Performance

► MERITS:

(A1) space sharing design(A2) pre-sampling policy(A3) efficient sampling impl.

- ► vs. PyG: 10.2×~74.3×
- vs. DGL: 2.4×~.9.1×
 due to (A1)~(A3)
- ▶ vs. T_{SOTA} : 1.6×~3.8×, e.f. PR due to (A1) and (A2)

Our flexible scheduling scheme already provides optimal GPU allocations in an 8-GPU machine

GNN Model	Dataset	PyG	DGL	T _{SOTA}	GNNL	ab
	PR	11.91	1.33	0.22	0.33 (2	2S)
CON	TW	12.15	3.86	1.80	0.47 (2	2S)
GCN	PA	14.82	4.56	2.46	0.84 (2	2S)
	UK	15.04	OOM	OOM	1.47 (2	2S)
	PR	8.17	0.79	0.07	0.11 (4	lS)
CrapheACE	TW	8.18	1.81	0.35	0.20 (2	2S)
GraphSAGE	PA	9.68	2.47	0.85	0.30 (2	2S)
	UK	9.86	OOM	2.01	0.61 (1	lS)
	PR	×	0.94	0.30	0.40 (1	lS)
PinSAGE	TW	×	2.50	0.98	0.58(1	lS)
	PA	×	2.97	1.65	1.05 (1	lS)
	UK	×	OOM	OOM	1.81 (1	lS)

GNN	Datasat	DGL			T _{SOTA}				GNNLab			
GININ	Dataset	<u>s</u>	<u>E</u>	T	<u>S</u> =	G + M	<u>E</u> (R%, H%)	T	<u>s</u>	= G + M + C	<u>E</u> (R%, H%)	T
	PR	0.35	2.81	1.22	0.30 =	0.29 + 0.01	0.04 (100, 100)	1.18	0.39	0.29 + 0.01 + 0.09	0.15 (100, 100)	1.18
CON	TW	0.74	9.44	1.48	0.29 =	0.26 + 0.03	3.68 (1, 29)	1.53	0.37	= 0.26 + 0.03 + 0.08	0.76 (25,89)	1.51
GCN	PA	1.20	10.70	4.00	0.79 =	0.70 + 0.10	3.64 (7, 38)	4.00	0.96	= 0.68 + 0.10 + 0.18	0.49 (21, 99)	3.82
	UK	OOM	OOM	OOM	OOM		OOM	OOM	0.56	= 0.39 + 0.03 + 0.14	3.06 (14, 70)	3.09
	PR	0.13	1.92	0.23	0.16 =	0.15 + 0.01	0.03 (100, 100)	0.25	0.20	= 0.15 + 0.01 + 0.04	0.08 (100, 100)	0.24
CSC	TW	0.38	4.65	0.44	0.12 =	0.11 + 0.01	0.62 (15, 77)	0.44	0.16	= 0.11 + 0.01 + 0.03	0.41 (32, 89)	0.43
636	PA	0.56	6.06	1.25	0.38 =	0.33 + 0.06	1.42 (11, 56)	1.18	0.46	= 0.31 + 0.06 + 0.08	0.28 (25, 99)	1.15
	UK	OOM	OOM	OOM	0.19 =	0.19 + 0.00	4.49 (0, 0)	1.08	0.26	= 0.18 + 0.02 + 0.06	1.39 (18, 72)	1.01
	PR	0.40	1.64	1.75	0.16 =	0.16 + 0.01	0.03 (100, 100)	1.74	0.20	= 0.15 + 0.01 + 0.04	0.08 (100, 100)	1.72
DSC	TW	0.72	5.22	2.59	0.23 =	0.22 + 0.02	1.12 (4, 60)	2.60	0.28	= 0.21 + 0.02 + 0.05	0.51 (26, 86)	2.52
PSG	PA	1.86	4.85	5.78	0.54 =	0.49 + 0.05	1.68 (6, 37)	6.09	0.61	= 0.47 + 0.04 + 0.09	0.33 (22, 97)	6.01
	UK	OOM	OOM	OOM	OOM		OOM	OOM	0.65	= 0.49 + 0.03 + 0.13	3.37 (13, 57)	7.00

CNN	Datasat	DGL			Г	SOTA		GNNLab			
GININ	Dataset	<u>S</u>	Ē	T	$\underline{\mathbf{S}} = \mathbf{G} + \mathbf{M}$	<u>E</u> (R%, H%)	T	$\underline{\mathbf{S}} = \mathbf{G} + \mathbf{M} + \mathbf{C}$	<u>E</u> (R%, H%)	T	
	PR	0.35	2.81	1.22	0.30 = 0.29 + 0.01	0.04 (100, 100)	1.18	0.39 = 0.29 + 0.01 + 0.09	0.15 (100, 100)	1.18	
CON	TW	0.74	9.44	1.48	0.29 = 0.26 + 0.03	3.68 (1, 29)	1.53	0.37 = 0.26 + 0.03 + 0.08	0.76 (25, 89)	1.51	
GUN	PA	1.20	10.70	4.00	0.79 = 0.70 + 0.10	3.64 (7, 38)	4.00	0.96 = 0.68 + 0.10 + 0.18	0.49 (21, 99)	3.82	
	UK	OOM	OOM	OOM	OOM	OOM	OOM	0.56 = 0.39 + 0.03 + 0.14	3.06 (14, 70)	3.09	
	PR	0.13	1.92	0.23	0.16 = 0.15 + 0.01	0.03 (100, 100)	0.25	0.20 = 0.15 + 0.01 + 0.04	0.08 (100, 100)	0.24	
CSC	TW	0.38	4.65	0.44	0.12 = 0.11 + 0.01	0.62 (15, 77)	0.44	0.16 = 0.11 + 0.01 + 0.03	0.41 (32, 89)	0.43	
636	PA	0.56	6.06	1.25	0.38 = 0.33 + 0.06	1.42 (11, 56)	1.18	0.46 = 0.31 + 0.06 + 0.08	0.28 (25, 99)	1.15	
	UK	OOM	OOM	OOM	0.19 = 0.19 + 0.00	4.49 (0, 0)	1.08	0.26 = 0.18 + 0.02 + 0.06	1.39 (18, 72)	1.01	
	PR	0.40	1.64	1.75	0.16 = 0.16 + 0.01	0.03 (100, 100)	1.74	0.20 = 0.15 + 0.01 + 0.04	0.08 (100, 100)	1.72	
DSC	TW	0.72	5.22	2.59	0.23 = 0.22 + 0.02	1.12 (4, 60)	2.60	0.28 = 0.21 + 0.02 + 0.05	0.51 (26, 86)	2.52	
PSG	PA	1.86	4.85	5.78	0.54 = 0.49 + 0.05	1.68 (6, 37)	6.09	0.61 = 0.47 + 0.04 + 0.09	0.33 (22, 97)	6.01	
	UK	OOM	OOM	OOM	OOM	OOM	OOM	0.65 = 0.49 + 0.03 + 0.13	3.37 (13, 57)	7.00	

GNN	Datasat	DGL			Т	SOTA		GNNLab			
GININ	Dataset	<u>s</u>	<u>E</u>	T	$\underline{\mathbf{S}} = \mathbf{G} + \mathbf{M}$	<u>E</u> (R%, H%)	T	$\underline{\mathbf{S}} = \mathbf{G} + \mathbf{M} + \mathbf{C}$	<u>E</u> (R%, H%)	T	
	PR	0.35	2.81	1.22	0.30 = 0.29 + 0.01	0.04 (100, 100)	1.18	0.39 = 0.29 + 0.01 + 0.09	0.15 (100, 100)	1.18	
CON	TW	0.74	9.44	1.48	0.29 = 0.26 + 0.03	3.68 (1, 29)	1.53	0.37 = 0.26 + 0.03 + 0.08	0.76 (25, 89)	1.51	
GUN	PA	1.20	10.70	4.00	0.79 = 0.70 + 0.10	3.64 (7, 38)	4.00	0.96 = 0.68 + 0.10 + 0.18	0.49 (21, 99)	3.82	
	UK	OOM	OOM	OOM	OOM	OOM	OOM	0.56 = 0.39 + 0.03 + 0.14	3.06 (14, 70)	3.09	
	PR	0.13	1.92	0.23	0.16 = 0.15 + 0.01	0.03 (100, 100)	0.25	0.20 = 0.15 + 0.01 + 0.04	0.08 (100, 100)	0.24	
CSC	TW	0.38	4.65	0.44	0.12 = 0.11 + 0.01	0.62 (15, 77)	0.44	0.16 = 0.11 + 0.01 + 0.03	0.41 (32, 89)	0.43	
636	PA	0.56	6.06	1.25	0.38 = 0.33 + 0.06	1.42 (11, 56)	1.18	0.46 = 0.31 + 0.06 + 0.08	0.28 (25, 99)	1.15	
	UK	OOM	OOM	OOM	0.19 = 0.19 + 0.00	4.49 (0, 0)	1.08	0.26 = 0.18 + 0.02 + 0.06	1.39 (18, 72)	1.01	
	PR	0.40	1.64	1.75	0.16 = 0.16 + 0.01	0.03 (100, 100)	1.74	0.20 = 0.15 + 0.01 + 0.04	0.08 (100, 100)	1.72	
DSC	TW	0.72	5.22	2.59	0.23 = 0.22 + 0.02	1.12 (4, 60)	2.60	0.28 = 0.21 + 0.02 + 0.05	0.51 (26, 86)	2.52	
PSG	PA	1.86	4.85	5.78	0.54 = 0.49 + 0.05	1.68 (6, 37)	6.09	0.61 = 0.47 + 0.04 + 0.09	0.33 (22, 97)	6.01	
	UK	OOM	OOM	OOM	OOM	OOM	OOM	0.65 = 0.49 + 0.03 + 0.13	3.37 (13, 57)	7.00	

<u>S</u>, <u>E</u>, and <u>T</u> represent Sample, Extract, and Train stages. **G**, **M**, and **C** represent graph sampling, marking cached vertices, and copying samples to host memory in Sample stage, respectively. **R%** and **H%** represent the cache ratio of features and the cache hit rate.

CNN	Datasat	DGL			Г	T _{SOTA}			GNNLab			
GININ	Dataset	<u>s</u>	<u>E</u>	T	$\underline{\mathbf{S}} = \mathbf{G} + \mathbf{M}$	<u>E</u> (R%, H%)	T	$\underline{\mathbf{S}} = \mathbf{G} + \mathbf{M} + \mathbf{C}$	<u>E</u> (R%, H%)	T		
	PR	0.35	2.81	1.22	0.30 = 0.29 + 0.01	0.04 (100, 100)	1.18	0.39 = 0.29 + 0.01 + 0.09	0.15 (100, 100)	1.18		
CON	TW	0.74	9.44	1.48	0.29 = 0.26 + 0.03	3.68 (1, 29)	1.53	0.37 = 0.26 + 0.03 + 0.08	0.76 (25, 89)	1.51		
GCN	PA	1.20	10.70	4.00	0.79 = 0.70 + 0.10	3.64 (7, 38)	4.00	0.96 = 0.68 + 0.10 + 0.18	0.49 (21, 99)	3.82		
	UK	OOM	OOM	OOM	OOM	OOM	OOM	0.56 = 0.39 + 0.03 + 0.14	3.06 (14, 70)	3.09		
	PR	0.13	1.92	0.23	0.16 = 0.15 + 0.01	0.03 (100, 100)	0.25	0.20 = 0.15 + 0.01 + 0.04	0.08 (100, 100)	0.24		
CSC	TW	0.38	4.65	0.44	0.12 = 0.11 + 0.01	0.62 (15, 77)	0.44	0.16 = 0.11 + 0.01 + 0.03	0.41 (32, 89)	0.43		
636	PA	0.56	6.06	1.25	0.38 = 0.33 + 0.06	1.42 (11, 56)	1.18	0.46 = 0.31 + 0.06 + 0.08	0.28 (25, 99)	1.15		
	UK	OOM	OOM	OOM	0.19 = 0.19 + 0.00	4.49 (0, 0)	1.08	0.26 = 0.18 + 0.02 + 0.06	1.39 (18, 72)	1.01		
	PR	0.40	1.64	1.75	0.16 = 0.16 + 0.01	0.03 (<u>100, 1</u> 00)	1.74	0.20 = 0.15 + 0.01 + 0.04	0.08 (<u>100, 1</u> 00)	1.72		
DSC	TW	0.72	5.22	2.59	0.23 = 0.22 + 0.02	1.12 (4, 60)	2.60	0.28 = 0.21 + 0.02 + 0.05	0.51 (26, 86)	2.52		
PSG	PA	1.86	4.85	5.78	0.54 = 0.49 + 0.05	1.68 (6, 37)	6.09	0.61 = 0.47 + 0.04 + 0.09	0.33 (22, 97)	6.01		
	UK	OOM	OOM	OOM	OOM	OOM	OOM	0.65 = 0.49 + 0.03 + 0.13	3.37 (13, 57)	7.00		

GNN	Datasat	DGL			Г	SOTA		GNNLab		
GININ	Dataset	<u>S</u>	Ē	T	$\underline{\mathbf{S}} = \mathbf{G} + \mathbf{M}$	<u>E</u> (R%, H%)	T	$\underline{\mathbf{S}} = \mathbf{G} + \mathbf{M} + \mathbf{C}$	<u>E</u> (R%, H%)	<u>T</u>
	PR	0.35	2.81	1.22	0.30 = 0.29 + 0.01	0.04 (100, 100)	1.18	0.39 = 0.29 + 0.01 + 0.09	0.15 (100, 100)	1.18
CON	TW	0.74	9.44	1.48	0.29 = 0.26 + 0.03	3.68 (1, 29)	1.53	0.37 = 0.26 + 0.03 + 0.08	0.76 (25,89)	1.51
GUN	PA	1.20	10.70	4.00	0.79 = 0.70 + 0.10	3.64 (7, 38)	4.00	0.96 = 0.68 + 0.10 + 0.18	0.49 (21, 99	3.82
	UK	OOM	OOM	OOM	OOM	OOM	OOM	0.56 = 0.39 + 0.03 + 0.14	3.06 (14, 70)	3.09
	PR	0.13	1.92	0.23	0.16 = 0.15 + 0.01	0.03 (100, 100)	0.25	0.20 = 0.15 + 0.01 + 0.04	0.08 (100, 100)	0.24
CSC	TW	0.38	4.65	0.44	0.12 = 0.11 + 0.01	0.62 (15, 77)	0.44	0.16 = 0.11 + 0.01 + 0.03	0.41 (<u>32, 89</u>)	0.43
636	PA	0.56	6.06	1.25	0.38 = 0.33 + 0.06	1.42 (11, 56)	1.18	0.46 = 0.31 + 0.06 + 0.08	0.28 (25, 99	1.15
	UK	OOM	OOM	OOM	0.19 = 0.19 + 0.00	4.49 (0, 0)	1.08	0.26 = 0.18 + 0.02 + 0.06	1.39 (18, 72)	1.01
	PR	0.40	1.64	1.75	0.16 = 0.16 + 0.01	0.03 (100, 100)	1.74	0.20 = 0.15 + 0.01 + 0.04	0.08 (100, 100)	1.72
DSC	TW	0.72	5.22	2.59	0.23 = 0.22 + 0.02	1.12 (4, 60)	2.60	0.28 = 0.21 + 0.02 + 0.05	0.51 (_26,_86)	2.52
PSG	PA	1.86	4.85	5.78	0.54 = 0.49 + 0.05	1.68 (6, 37)	6.09	0.61 = 0.47 + 0.04 + 0.09	0.33 (22, 97	6.01
	UK	OOM	OOM	OOM	OOM	OOM	OOM	0.65 = 0.49 + 0.03 + 0.13	3.37 (13, 57)	7.00

GNN	Datasat	DC			7	SOTA		GNNLab		
GININ	Dataset	<u>s</u>	Ē	T	$\underline{\mathbf{S}} = \mathbf{G} + \mathbf{M}$	<u>E</u> (R%, H%)	T	$\underline{\mathbf{S}} = \mathbf{G} + \mathbf{M} + \mathbf{C}$	<u>E</u> (R%, H%)	T
	PR	0.35	2.81	1.22	0.30 = 0.29 + 0.01	0.04 (100, 100)	1.18	0.39 = 0.29 + 0.01 + 0.09	0.15 (100, 100)	1.18
CON	TW	0.74	9.44	1.48	0.29 = 0.26 + 0.03	3.68 (1, 29)	1.53	0.37 = 0.26 + 0.03 + 0.08	0.76 (25, 89)	1.51
GCN	PA	1.20	10.70	4.00	0.79 = 0.70 + 0.10	3.64 (7, 38)	4.00	0.96 = 0.68 + 0.10 + 0.18	0.49 (21, 99)	3.82
	UK	OOM	OOM	OOM	OOM	OOM	OOM	0.56 = 0.39 + 0.03 + 0.14	3.06 (14, 70)	3.09
	PR	0.13	1.92	0.23	0.16 = 0.15 + 0.01	0.03 (100, 100)	0.25	0.20 = 0.15 + 0.01 + 0.04	0.08 (100, 100)	0.24
CSC	TW	0.38	4.65	0.44	0.12 = 0.11 + 0.01	0.62 (15, 77)	0.44	0.16 = 0.11 + 0.01 + 0.03	0.41 (32, 89)	0.43
030	PA	0.56	6.06	1.25	0.38 = 0.33 + 0.06	1.42 (11, 56)	1.18	0.46 = 0.31 + 0.06 + 0.08	0.28 (25, 99)	1.15
	UK	OOM	OOM	OOM	0.19 = 0.19 + 0.00	4.49 (0, 0)	1.08	0.26 = 0.18 + 0.02 + 0.06	1.39 (18, 72)	1.01
	PR	0.40	1.64	1.75	0.16 = 0.16 + 0.01	0.03 (100, 100)	1.74	0.20 = 0.15 + 0.01 + 0.04	0.08 (100, 100)	1.72
DSC	TW	0.72	5.22	2.59	0.23 = 0.22 + 0.02	1.12 (4, 60)	2.60	0.28 = 0.21 + 0.02 + 0.05	0.51 (26, 86)	2.52
PSG	PA	1.86	4.85	5.78	0.54 = 0.49 + 0.05	1.68 (6, 37)	6.09	0.61 = 0.47 + 0.04 + 0.09	0.33 (22, 97)	6.01
	UK	OOM	OOM	OOM	OOM	OOM	OOM	0.65 = 0.49 + 0.03 + 0.13	3.37 (13, 57)	7.00

<u>S</u>, <u>E</u>, and <u>T</u> represent Sample, Extract, and Train stages. **G**, **M**, and **C** represent graph sampling, marking cached vertices, and copying samples to host memory in Sample stage, respectively. **R%** and **H%** represent the cache ratio of features and the cache hit rate.

GNN	Datasat	DGL			Т	T _{SOTA}			GNNLab		
GININ	Dataset	<u>s</u>	<u>E</u>	<u>T</u>	$\underline{\mathbf{S}} = \mathbf{G} + \mathbf{M}$	<u>E</u> (R%, H%)	T		$\underline{\mathbf{S}} = \mathbf{G} + \mathbf{M} + \mathbf{C}$	<u>E</u> (R%, H%)	<u>T</u>
	PR	0.35	2.81	1.22	0.30 = 0.29 + 0.01	0.04 (100, 100)	1.18		0.39 = 0.29 + 0.01 + 0.09	0.15 (100, 100)	1.18
CCN	TW	0.74	9.44	1.48	0.29 = 0.26 + 0.03	3.68 (1, 29)	1.53		0.37 = 0.26 + 0.03 + 0.08	0.76 (25,89)	1.51
GCN	PA	1.20	10.70	4.00	0.79 = 0.70 + 0.10	3.64 (7, 38)	4.00		0.96 = 0.68 + 0.10 + 0.18	0.49 (21, 99)	3.82
	UK	OOM	OOM	OOM	OOM	OOM	OOM		0.56 = 0.39 + 0.03 + 0.14	3.06 (14, 70)	3.09
	PR	0.13	1.92	0.23	0.16 = 0.15 + 0.01	0.03 (100, 100)	0.25		0.20 = 0.15 + 0.01 + 0.04	0.08 (100, 100)	0.24
CSC	TW	0.38	4.65	0.44	0.12 = 0.11 + 0.01	0.62 (15, 77)	0.44		0.16 = 0.11 + 0.01 + 0.03	0.41 (32, 89)	0.43
636	PA	0.56	6.06	1.25	0.38 = 0.33 + 0.06	1.42 (11, 56)	1.18		0.46 = 0.31 + 0.06 + 0.08	0.28 (25, 99)	1.15
	UK	OOM	OOM	OOM	0.19 = 0.19 + 0.00	4.49 (0, 0)	1.08		0.26 = 0.18 + 0.02 + 0.06	1.39 (18, 72)	1.01
	PR	0.40	1.64	1.75	0.16 = 0.16 + 0.01	0.03 (100, 100)	1.74		0.20 = 0.15 + 0.01 + 0.04	0.08 (100, 100)	1.72
DSC	TW	0.72	5.22	2.59	0.23 = 0.22 + 0.02	1.12 (4, 60)	2.60		0.28 = 0.21 + 0.02 + 0.05	0.51 (26,86)	2.52
PSG	PA	1.86	4.85	5.78	0.54 = 0.49 + 0.05	1.68 (6, 37)	6.09		0.61 = 0.47 + 0.04 + 0.09	0.33 (22, 97)	6.01
	UK	OOM	OOM	OOM	OOM	OOM	OOM		0.65 = 0.49 + 0.03 + 0.13	3.37 (13, 57)	7.00

Scalability

- ► DGL and T_{SOTA}
 - ► Time sharing design
 - More work on CPUs
 - CPUs stop growing

50

โรมาน

Scalability

- ► DGL and T_{SOTA}
 - Time sharing design
 - More work on CPUs
 - CPUs stop growing
- GNNLab
 - Good parallelism
 - Bottleneck may change
 - 1 Sampler is not enough
 - ► 3 Sampler is too much

Training Convergence

Case: GraphSAGE on Papers100M

- Converge to same accuracy targets
- GNNLab outperforms
 DGL by 10.2× and T_{SOTA} by 3.5×

Training Convergence

Case: GraphSAGE on Papers100M

- Converge to same accuracy targets
- GNNLab outperforms
 DGL by 10.2× and T_{SOTA} by 3.5×
 - 1. Faster training (per epoch)
 - ▶ vs. DGL by $8.2 \times$ and T_{SOTA} by $2.8 \times$

Training Convergence

Case: GraphSAGE on Papers100M

- Converge to same accuracy targets
- GNNLab outperforms
 DGL by 10.2× and T_{SOTA} by 3.5×
 - 1. Faster training (per epoch)
 - ▶ vs. DGL by $8.2 \times$ and T_{SOTA} by $2.8 \times$
 - 2. Fewer epochs, reduced by $1.24 \times$
 - GNNLab: 106 (6 GPU workers for training)
 - ► DGL/T_{SOTA} : 131 (8 GPU workers for training)

The more GPUs allocated for model training, the fewer gradient updates per training epoch, and more epochs are required to achieve the same expected accuracy.

GNNLab: a factored system for sample-based GNN training

- Replace time sharing with space sharing design
- Flexible architecture and scheduling for load balance
- A new efficient and robust caching policy

GNNLab will be published in EuroSys 2022

Artifact Evaluation: https://github.com/SJTU-IPADS/fgnn-artifacts

Open source: https://github.com/SJTU-IPADS/gnnlab (available soon)

Al needs Systems Research

Questions

Space sharing advance

- ► Fine-grained: inside a GPU (MPS and MIG)
- Decouple GPU CU and GPU memory

How about other GNNs and sampling algorithms?

ClusterGCN and Shallow Subgraph Samplers

How to contribute to DGL?