
GNNLab: A Factored System
for Sample-based GNN Training over GPUs

RONG CHEN
IPADS, SJTU

ASAIL 2022

Joint work with Jianbang, Dahai, Xiaoniu @IPADS, Qiang @BASICS, and Lei, Wenyuan @Ailibaba

Who AM I
2

Rong Chen (陈榕) / SJTU
https://ipads.se.sjtu.edu.cn/rong_chen

► Institute of Parallel And Distributed Systems (IPADS)

► Best paper award: EuroSys 2015, APsys 2017, and ICPP 2007

► 7 OSDI/SOSP papers and 9 EuroSys/Usenix ATC papers

► Huawei OlympusMons Pioneer Award, 2020

Research Interest
► Building efficient, scalable and reliable distributed framework

GNN Training
3

Whole-graph training: hard to scale

GNN Training
4

Whole-graph training: hard to scale

Sample-based training
► Systems: DGL, PyG, AliGraph[VLDB’19], P3[OSDI’21], . . . , GNNLab

► Friendly to GPU: massive parallelisms and limited GPU memory

► SET model: Sample, Extract and Train

Sample-base GNN Training
5

SET model

Sample-base GNN Training
6

SET model
1. Sample

Sample-base GNN Training
7

SET model
1. Sample

2. Extract

Sample-base GNN Training
8

SET model
1. Sample

2. Extract

3. Train

Sample-base GNN Training
9

SET model
1. Sample

2. Extract

3. Train

GPU-based GNN Training
10

GPUs have been widely exploited to accelerate GNN training
► Train: almost

GNN Systems Sample Extract Train TOT

TSOTA 2.93 5.55 4.00 12.50

GCN w/ 3-hop sampling on OGB-Papers100M

GPU-based GNN Training
11

GPUs have been widely exploited to accelerate GNN training
► Train: almost

► Extract: PaGraph[SOCC’20]

GNN Systems Sample Extract Train TOT

TSOTA 2.93 5.55 4.00 12.50

w/ GPU-based Caching 2.88 1.73 4.00 8.62

GCN w/ 3-hop sampling on OGB-Papers100M

GPU-based GNN Training
12

GPUs have been widely exploited to accelerate GNN training
► Train: almost

► Extract: PaGraph[SOCC’20]

► Sample: DGL, NextDoor[EuroSys’21]

GNN Systems Sample Extract Train TOT

TSOTA 2.93 5.55 4.00 12.50

w/ GPU-based Caching 2.88 1.73 4.00 8.62
w/ GPU-based Sampling 0.70 5.46 4.01 10.21

GCN w/ 3-hop sampling on OGB-Papers100M

GPU-based GNN Training
13

GPUs have been widely exploited to accelerate GNN training
► Train: almost

► Extract: PaGraph[SOCC’20]

► Sample: DGL, NextDoor[EuroSys’21]

► Both ?

GNN Systems Sample Extract Train TOT

TSOTA 2.93 5.55 4.00 12.50

w/ GPU-based Caching 2.88 1.73 4.00 8.62
w/ GPU-based Sampling 0.70 5.46 4.01 10.21
w/ Both 0.70 3.62 4.00 8.37

GCN w/ 3-hop sampling on OGB-Papers100M

Analysis
14

Traditional Design:

Analysis
15

Traditional Design:

Time sharing/multiplexing

Analysis
16

Problems
► Capacity

Graph Topo Feature cachevs.

Analysis
17

Sample Runtime Train Runtimevs.

Problems
► Capacity

Analysis
18

GPU-based
Sample

11.4 GB

Problems
► Capacity

OGB-Papers100M

OGB-Papers100M

Analysis
19

GPU-based
Sample

11.4 GB

Problems
► Capacity

1. How to eliminate contention on GPU memory
between different stages of the SET model

Analysis
20

1. Highly skewed graph

2. Random Sampling

Degree-based
Caching Policy

Problems
► Capacity

► Efficiency

Analysis
21

OGB-Papers100M Weighted sampling

Problems
► Capacity

► Efficiency

1. Highly skewed graph

2. Random Sampling

Degree-based
Caching Policy

Analysis
22

1. Highly skewed graph

2. Random Sampling

Degree-based
Caching Policy

OGB-Papers100M Weighted sampling

Problems
► Capacity

► Efficiency

2. How to achieve optimal cache efficiency for
diverse GNN datasets and sampling algorithms

General Idea
23

Time sharing
w/ multi-GPUs

General Idea
24

Time sharing
w/ multi-GPUs

Inter-task Redundancy

Intra-task Contention

General Idea
25

Observation:
HIGH
cross-GPU
similarity

General Idea
26

Observation:
HIGH
cross-GPU
similarity

LOW
cross-stage
data sharing

General Idea
27

Space sharing
w/ multi-GPUs

Our Approach
28

A factored design
► Inspired by the factored operating system (fos[ACM OSR’09])

Factored Operating Systems (fos): The Case for a Scalable Operating System for Multicores

David Wentzlaff and Anant Agarwal @MIT

Our Approach
29

A factored design
► Inspired by the factored operating system (fos[ACM OSR’09])

► GNNLab: a factored system for sample-based GNN training
v Perform each stage on dedicate processors (GPUs and/or CPUs)

An example of GNNLab on an 8-GPU machine (2 Samplers & 6 Trainers)

Trainer

Sampler

Our Approach
30

Fundamental Challenge: load imbalance
► Coarse-grained (stage-level) workload partitioning

► Limited GPUs: normally <= 8, even just 1

► Diverse datasets and workloads
v Sampling vs. Training: e.g., GCN = 1 : 1, while PinSAGE = 1 : 10

T

S

T

T

TimeIdle

G
PU

Our Approach
31

Fundamental Challenge: load imbalance
► Coarse-grained (stage-level) workload partitioning

► Limited GPUs: normally <= 8, even just 1

► Diverse datasets and workloads
v Sampling vs. Training: e.g., GCN = 1 : 1, while PinSAGE = 1 : 10

GOALs of GNNLab

1. Make stages work together efficiently
2. Assign GPUs to different stages flexibly

T

S

T

T

TimeIdle

G
PU

Execution Engine
32

Architecture
► Two executors @GPUs

v Sampler: Sample stage

v Trainer: Extract & Train stage

Execution Engine
33

Architecture
► Two executors @GPUs

v Sampler: Sample stage

v Trainer: Extract & Train stage

► A global queue @CPUs

Execution Engine
34

Architecture
► Two executors @GPUs

v Sampler: Sample stage

v Trainer: Extract & Train stage

► A global queue @CPUs
► Execution flow

v Inter-executor: Parallel

v Intra-executor: Sequential w/ pipelining

v Gradient updates w/ bounded staleness

Flexible Scheduling
35

GPU allocation scheme
► OB: performance of executors on GPU is predictable
► Ng: the number of GPUs

► Ns (resp. Nt): #GPUs allocated to Samplers (resp. Trainers)

► Ts (resp. Tt): the processing time of Sampler (resp. Trainer)

Flexible Scheduling
36

GPU allocation scheme
► OB: performance of executors on GPU is predictable
► Ng: the number of GPUs

► Ns (resp. Nt): #GPUs allocated to Samplers (resp. Trainers)

► Ts (resp. Tt): the processing time of Sampler (resp. Trainer)

► Prefer to allocate GPUs to Samplers
v temporarily switching from Sampler to Trainer is efficient

► Dynamic executor switching [see our paper]

Prefer to Sampler

GPU-based Feature Caching
37

A general caching scheme
► Hotness metric hv and cache ratio α
1. Store and sort vertices according to their hv
2. Load features of top-ranked α|V| vertices w.r.t. hv into GPU cache

For example: PaGraph[SOCC’20]

hv = out-degree of each vertex

GPU-based Feature Caching
38

Pre-sampling based caching policy (PreSC)
► OB: Cross-task (epoch) similarity of access footprint

Sampling alogrithms PR TW PA UK

3-hop random 73.97 78.89 91.29 77.46

Random walks 78.16 72.68 87.14 64.40

3-hop weighted 77.69 66.64 89.57 72.96

GPU-based Feature Caching
39

Pre-sampling based caching policy (PreSC)
► OB: Cross-task (epoch) similarity of access footprint

► General idea: pre-sample a few rounds to estimate vertex hotness
1. Conducts K sampling stages (normally 1) for the training set

2. Record visit count of the sampled vertices

3. Use average count as the hotness metric hv

Sampling alogrithms PR TW PA UK

3-hop random 73.97 78.89 91.29 77.46

Random walks 78.16 72.68 87.14 64.40

3-hop weighted 77.69 66.64 89.57 72.96

GPU-based Feature Caching
40

Pre-sampling based caching policy (PreSC)
► Efficiency: close to Optimal, vs. Degree avg 1.5× (up to 2.2×)

► Robustness: stable for all 12 cases

Cache Ratio=10% Paper100M with 3-hop random

Evaluation
41

Testbed
► 8 NVDIA V100 GPU

w/ 16GB memory

► Intel Xeon 2×24 CPU

GNNs
► GCN (3-hop rand ngb)

► GraphSAGE (2-hop rand ngb)

► PinSAGE (rand walks)

Datasets

Baselines
PR can be loaded into a single GPU

Overall Performance
42

► MERITS:
(A1) space sharing design

(A2) pre-sampling policy

(A3) efficient sampling impl.

► vs. PyG: 10.2×~74.3×

► vs. DGL: 2.4×~. 9.1×
due to (A1)~(A3)

► vs. TSOTA: 1.6×~3.8×, e.f. PR
due to (A1) and (A2)

Our flexible scheduling scheme already provides
optimal GPU allocations in an 8-GPU machine

Performance Breakdown
43

S, E, and T represent Sample, Extract, and Train stages. G, M, and C represent graph sampling,
marking cached vertices, and copying samples to host memory in Sample stage, respectively.
R% and H% represent the cache ratio of features and the cache hit rate.

Performance Breakdown
44

S, E, and T represent Sample, Extract, and Train stages. G, M, and C represent graph sampling,
marking cached vertices, and copying samples to host memory in Sample stage, respectively.
R% and H% represent the cache ratio of features and the cache hit rate.

Performance Breakdown
45

S, E, and T represent Sample, Extract, and Train stages. G, M, and C represent graph sampling,
marking cached vertices, and copying samples to host memory in Sample stage, respectively.
R% and H% represent the cache ratio of features and the cache hit rate.

Performance Breakdown
46

S, E, and T represent Sample, Extract, and Train stages. G, M, and C represent graph sampling,
marking cached vertices, and copying samples to host memory in Sample stage, respectively.
R% and H% represent the cache ratio of features and the cache hit rate.

Performance Breakdown
47

S, E, and T represent Sample, Extract, and Train stages. G, M, and C represent graph sampling,
marking cached vertices, and copying samples to host memory in Sample stage, respectively.
R% and H% represent the cache ratio of features and the cache hit rate.

Performance Breakdown
48

S, E, and T represent Sample, Extract, and Train stages. G, M, and C represent graph sampling,
marking cached vertices, and copying samples to host memory in Sample stage, respectively.
R% and H% represent the cache ratio of features and the cache hit rate.

Performance Breakdown
49

S, E, and T represent Sample, Extract, and Train stages. G, M, and C represent graph sampling,
marking cached vertices, and copying samples to host memory in Sample stage, respectively.
R% and H% represent the cache ratio of features and the cache hit rate.

Scalability
50

► DGL and TSOTA
► Time sharing design

► More work on CPUs

► CPUs stop growing

GCN on PA and TW

Scalability
51

► DGL and TSOTA
► Time sharing design

► More work on CPUs

► CPUs stop growing

► GNNLab
► Good parallelism

► Bottleneck may change

► 1 Sampler is not enough

► 3 Sampler is too much

GCN on PA and TW

GCN on PA

Training Convergence
52

Case: GraphSAGE on Papers100M

► Converge to same accuracy targets

► GNNLab outperforms
DGL by 10.2× and TSOTA by 3.5×

Training Convergence
53

Case: GraphSAGE on Papers100M

► Converge to same accuracy targets

► GNNLab outperforms
DGL by 10.2× and TSOTA by 3.5×

1. Faster training (per epoch)
► vs. DGL by 8.2× and TSOTA by 2.8×

Training Convergence
54

Case: GraphSAGE on Papers100M

► Converge to same accuracy targets

► GNNLab outperforms
DGL by 10.2× and TSOTA by 3.5×

1. Faster training (per epoch)
► vs. DGL by 8.2× and TSOTA by 2.8×

2. Fewer epochs, reduced by 1.24×
► GNNLab: 106 (6 GPU workers for training)
► DGL/ TSOTA : 131 (8 GPU workers for training)

The more GPUs allocated for model training, the fewer
gradient updates per training epoch, and more epochs
are required to achieve the same expected accuracy.

Conclusion & Thanks
55

GNNLab: a factored system for sample-based GNN training
► Replace time sharing with space sharing design

► Flexible architecture and scheduling for load balance

► A new efficient and robust caching policy

GNNLab will be published in EuroSys 2022
Artifact Evaluation: https://github.com/SJTU-IPADS/fgnn-artifacts

Open source: https://github.com/SJTU-IPADS/gnnlab (available soon)

AI needs Systems Research

https://github.com/SJTU-IPADS/fgnn-artifacts
https://github.com/SJTU-IPADS/gnnlab

Questions
56

Space sharing advance
► Fine-grained: inside a GPU (MPS and MIG)

► Decouple GPU CU and GPU memory

How about other GNNs and sampling algorithms?
► ClusterGCN and Shallow Subgraph Samplers

How to contribute to DGL?

