
Extracting More Intra-transaction Parallelism

with Work Stealing for OLTP Workloads

Xiaozhou Zhou† Zhaoguo Wang‡ Rong Chen† Haibo Chen† Jinyang Li‡

†Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

‡Department of Computer Science, New York University

Contact: zhaoguo@nyu.edu

Abstract

Online transaction processing systems use two-phase lock-

ing (2PL) to guarantee serializability. However, traditional

2PL does not perform well under high contention, because

a transaction will be blocked when it fails to acquire lock.

This paper proposes a scalable work stealing algorithm for

2PL to leverage intra-transaction parallelism. The key idea

is to parallelize the lock holder’s work among lock waiters.

Compared to traditional 2PL, our approach can achieve up to

2.8X throughput improvement for TPC-C new-order trans-

actions under high contention.

1. Introduction

Existing online transaction processing (OLTP) systems use

two-phase locking (2PL) [2, 14] or optimistic concurrency

control (OCC) [2, 24] to ensure transaction serializabil-

ity. However, these protocols do not scale on a multi-core

platform, especially when the workload exhibits high con-

tention. Under 2PL, a transaction must grab the lock of a

record before accessing it. Thus, once concurrently transac-

tions make conflicting access, their execution will be serial-

ized. Under OCC, all but one conflicting transactions must

abort and retry, resulting in worse performance than 2PL

under contended workloads. There have been work paral-

lelize highly contended workloads. Unfortunately, most of

them target on specific workloads. For examples, some sys-

tems [35, 52, 56] require the workload to be static, while

others [8, 12, 46–48] require the system to know the work-

ing set of each transaction before its execution. As a result,

these work have limited usage scenarios in practice.

OCC and 2PL do not scale well because they enforce the

execution order of conflicting transactions in coarse granu-

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

APSys 2017, September 23, 2017, Mumbai, India.

c© 2017 ACM. ISBN 978-1-4503-5197-3/17/09. . . $15.00

DOI: http://dx.doi.org/10.1145/3124680.3124748

larity (inter-transaction). Actually, there is unexploited par-

allelism in fine granularity (intra-transaction). For example,

suppose two concurrent transactions, T1 and T2, attempting

to update record a and then b. Under 2PL, if T1 has locked

a before T2, T2 cannot access a and thus idly waits until T1

commits. However, instead of idly waiting, T2 could help

T1 execute its second operation of updating b. In this way, a

single transaction (e.g., T1) can be parallelized. This paper

presents StealDB, a new approach to improving multi-core

database performance by unleashing the intra-transaction

parallelism.

Existing approaches to exploit intra-transaction paral-

lelism [22, 36, 41] dispatch the independent operations of

a transaction to different worker threads. Unfortunately, this

approach faces two technical challenges: 1) the dispatching

component can become a performance bottleneck, and 2) it

is hard to balance the load across worker threads. It is diffi-

cult to address these two challenges simultaneously: to bal-

ance the load, the system needs to check the current status of

each worker before dispatching, thereby worsening the per-

formance of the bottlenecked dispatcher.

StealDB’s key ingredients in solving these challenges

are: 1) extract intra-transaction parallelism only for con-

flicting transactions and, 2) leverage work stealing to bal-

ance the load. In the previous example, when T2 is waiting

to acquire the lock held by T1, it will steal T1’s second op-

eration to execute, resulting in intra-transaction parallelism.

However, if T2 accesses different records and does not con-

flict with T1, then no work stealing happens and there is only

inter-transaction parallelism.

Naively using existing work-stealing algorithms [5, 13]

cannot scale up under highly contended workloads. The rea-

son is that too many conflicting transactions end up attempt-

ing to steal operations from a single transaction. As a result,

all of them contend on a single data structure to get the next

runnable operation. Inspired by the scalable locking algo-

rithms [9, 33], we propose a new scalable work-stealing al-

gorithm to avoid contention. Specifically, StealDB organizes

transactions that conflict on a record into a queue. A transac-

tion steals work from the previous transaction and its work

NEW-ORDER TRANSACTION

START

OP1: RO [customer, warehouse]

RW [district] order

OP2: RW order [new_order]

foreach item in order

OP3: RO item [item]

RW item [stock]

RW order [order_line]

COMMIT

op2

op3/1

op3/2

op3/3

DEP-GRAPH

op1
op1

op2

I
n
d
e
p
e
n
d
e
n
t op3/4

op3/i

Figure 1. The pseudo-code and dependency graph (DEP-

GRAPH) of the simplified TPC-C new-order transaction. In brack-

ets are the database tables touched by each operation. RO and RW

stand for read-only and read-write accesses to the tables respec-

tively. op3/N stands for the op3 of the N th iteration.

may get further stolen by the next transaction in the queue.

This strategy avoids performance collapse when the number

of worker threads increases.

We have implemented a preliminary version of StealDB

in C++ based on Silo [49]. As an ongoing project, we have

only evaluated StealDB with a micro-benchmark and TPC-

C new-order transactions [45]. Compared to traditional 2PL,

StealDB can improve the throughput by up to 2.8X for TPC-

C new-order transactions under high contention and only

incur negligible overhead under low contention.

2. Overview

2.1 Intra-transaction Parallelism in OLTP

Transaction processing systems support inter-transaction

parallelism, i.e. the parallel execution of independent trans-

actions, by assigning each transaction to a worker thread.

Moreover, some operations within a single transaction can

also be executed in parallel, which is called intra-transaction

parallelism. For example, most of the operations in the TPC-

C new-order transactions [45] can be executed concurrently.

As shown in the left part of Figure 1, all operations except

op1 in the new-order transaction are independent of each

other. Therefore, it is possible to execute these operations

concurrently.

Although intra-transaction parallelism is widely used in

OLAP workloads [1], it is difficult to exploit it for OLTP

workloads. First, a typical OLTP transaction only accesses

a moderate number of records, thereby limiting the amount

of intra-transaction parallelism. For example, the TPC-C

new-order transaction accesses 37 records on average. Sec-

ond, parallelizing the execution of a single transaction in-

curs communication overhead among CPU cores, including

dispatching the operations, passing execution results across

operations, and coordinating the commit status of each oper-

ation. Therefore, to exploit intra-transaction parallelism ef-

ficiently, we need to fully utilize the limited potential paral-

 0

 20

 40

 60

 80

 1 4 8 16 32 64

T
h

ro
u

g
h

p
u

t
(K

 t
x
n

s
/s

e
c
)

Number of Threads

vanilla 2PL

2PL w/ ws

Figure 2. A throughput comparison of the TPC-C new-order

transaction workload.

lelism and minimize communication overhead across CPU

cores.

2.2 Basic Solution: Work Stealing

Our proposed approach parallelizes a transaction only when

there is contention. For example, suppose there are two con-

current TPC-C new-order transactions, T1 and T2 (as de-

scribed in Figure 1) and they conflict on op1. Under 2PL,

once T1 has locked the district table, T2 cannot executes

op1 until T1 commits. Existing system implementations ei-

ther suspends T2 and starts a new transaction, or keeps T2

busy waiting until T1 commits. StealDB worker also sus-

pends the execution of T2, but instead of executing a new

transaction, StealDB will schedule T2’s worker to execute

T1’s remaining operations. Consequently, T1 is parallelized

only when transactions conflict.

Using the basic work-stealing idea, T1 will put all in-

dependent runnable operations (e.g. op2 and op3 of every

item) to its runnable queue. When other transactions (T2) are

blocked at op1 due to locks held by T1, they will look up T1’s

runnable queue and steal operations to execute. Figure 2 il-

lustrates the performance of 2PL for TPC-C new-order trans-

actions under high contention. Note that the workload only

has one type of transaction accessing 37 records on aver-

age; all transactions conflict on the first operation district

record (op1), and the other operations of the transaction are

independent and access random records from different ta-

bles. Compared to vanilla 2PL, the throughput of 2PL with

basic work stealing (WS) can scale to 8 cores and has 2.2X

speedup (65.79K vs 29.02K TPS). However, the throughput

degrades after 8 cores since too many transactions steal oper-

ations from a single transaction simultaneously, causing high

contention in getting the available operations from a single

runnable queue.

2.3 Scalable Work Stealing Algorithm

To remedy the problem of basic work-stealing algorithm,

we propose to pass the information of available operations

among worker threads one-by-one, inspired by the scalable

queue-based locking [9, 34]. The idea for queue-based lock-

ing is to maintain an explicit list of all waiting threads for

each lock. Upon releasing the lock, the lock holder passes

the lock to the next waiter in the list. This approach signif-

icantly reduces the cacheline invalidation events and avoids

performance collapse as more CPU cores are involved. In

our scalable queue-based work-stealing algorithm, all con-

flicting transactions are chained together as a linked list, and

transaction Ti can only steal operations from its immediate

previous transaction Ti−1.

Suppose there are three concurrent new-order instances

(T1, T2 and T3). They all conflict with each other on the first

operation (op1), as they access the same district table. If T1

executes op1 before T2 and T3, it will put all independent

operations into its runnable queue and start to execute op2.

The successor (T2) in the chain of blocked transactions will

steal T1’s operations to execute. Similarly, T3 may steal T1’s

operations from T2 to execute. Note that T1 can further steal

its operations from the tail of the chain (T3). Consequently,

the lock holder’s operations can be efficiently parallelized

across all lock waiters.

3. Design

In this section, we introduce how to generate dependency

graphs for transactions (Section 3.1), how to exploit intra-

transaction parallelism on contention (Section 3.2), and how

to leverages queue-based mechanism to implement scalable

work stealing (Section 3.3).

3.1 Offline Analysis

Before executing a new type of transaction, StealDB will

first perform an offline analysis to construct a static depen-

dency graph (DEP-GRAPH), which is used to parallelize the

execution of the transaction. In dep-graph, the transaction is

represented as a DAG of operations (op). Operation opj is a

child of opi if opj depends on opi (e.g. opj’s execution needs

opi’s result). We assume that a transaction does not have dy-

namic control flows; otherwise, it is not parallelized. Unlike

prior work [35, 52, 56], the offline analysis in StealDB only

needs to analyze an individual transaction.

3.2 Intra-transaction Parallelism

Upon receiving a request, StealDB creates a transaction in-

stance with three pieces of data structures: 1) the DEP-

GRAPH containing all its operations and their corresponding

contexts. The context of an operation includes a pointer to

the operation’s function and the input/output of the opera-

tion (e.g., the input may contain the key of the record to be

accessed). 2) the runnable queue containing all runnable op-

erations that can be stolen by other transactions. 3) the steal

context, which is a 〈tid, index〉 tuple. The tid is the trans-

action ID of the transaction instance T which others try to

steal operations from. The index indicates the last runnable

operation in T ’s runnable queue. The steal context is a single

64-bit word to ensure atomic access.

Transaction execution and commit. Algorithm 1 shows

how a worker thread in StealDB executes a transaction

operation-by-operation (Line 1-2). StealDB executes each

operation (op) in its runnable queue from the beginning. If

all dependencies of some operation opi are satisfied upon ex-

ecuting op, StealDB will insert opi into the runnable queue

after op finishes (Line 3-4). As StealDB uses 2PL to en-

sure serializability, each operation will hold the locks of

records accessed until the end of execution. After all opera-

tions finish, StealDB checks the status of each finished op-

eration (Line 6-7). If any operation is aborted, then StealDB

will abort the entire transaction by discarding all buffered

changes. Otherwise, it will commit the transaction. In either

case, it releases all locks held by the operations before re-

turning.

ALGORITHM 1: RUNTRANSACTION (T) :

Input: T : The current transaction

// Execute transaction T

1: foreach op in T .runnable queue do

2: RUNOP (op, T.tid)

3: if ∃ opi s.t. all opi’s dependencies are satisifed after

executing op then

4: insert opi into T .runnable queue

// Commit transaction T

5: foreach op in T do

6: wait for op to finish

7: if op.status == aborted then

8: abort all ops

9: release locks held by all ops

10: T .status = aborted

11: return

12: commit all ops of T

13: release locks held by all ops

14: T .status = committed

Operation execution. The execution of each operation

consists of three phases, as shown in Algorithm 2:

• Check phase (Line 1-2): in StealDB, a transaction T

may try to execute an operation which has already been

stolen by other transactions. To ensure exactly-once ex-

ecution, StealDB performs a check before executing

the operation. Specifically, each operation has a tid

field, whose value is initialized to contain the tid of its

corresponding transaction. Before executing an opera-

tion, StealDB sets the tid field to be null (⊥) with the

CAS atomic instruction. Therefore, StealDB can know

if the operation is under execution or not by simply

checking the tid field (Line 1).

• Lock phase (Line 3-9): StealDB locks each record be-

fore accessing, according to 2PL. StealDB provides a

new TRYLOCK interface: it returns 0 upon successfully

acquiring the lock. Otherwise, it returns the latest trans-

action (tidp) waiting on this lock. We will discuss the

detail of the lock manager in Section 3.3. If StealDB

fails to acquire a lock, it will get the transaction in-

stance context (Tp) by using the tidp returned by TRY-

LOCK. Afterwards, it steals operations to execute using

the steal context kept by Tp (Algorithm 3), if Tp is still

running. After finishing a stolen operation, it will check

again whether the lock is acquired using CHECKAC-

QUIRED.

• Execute phase (Line 10-14): StealDB executes opera-

tion op and accesses the record. If op triggers a user-

initiated abort, StealDB sets the status of op to be

aborted. Otherwise, it considers op as committed.

ALGORITHM 2: RUNOP (op, tid) :

Input: op: The operation of transaction T

tid: Transaction ID of the current transaction

// Check phase

1: if op.tid != tid || CAS(&op.tid, tid, ⊥) != tid then

2: return

// Lock phase

3: T = GETTXN(tid)

4: op.lockCtx.tid = tid

5: tidp = TRYLOCK (op.record.lock, op.lockCtx)

6: if tidp != 0 then

7: Tp = GETTXN(tidp)

8: while !CHECKACQUIRED(op.lockCtx) &&

ISRUNNING(tidp) do

9: STEALOP (T , Tp)

// Execute phase

10: success = op.execute()

11: if success then

12: op.status = committed

13: else

14: op.status = aborted

Work stealing. When a transaction fails to acquire a lock,

it tries to steal operations from the previous transaction.

Algorithm 3 shows how STEALOP works: Suppose Tp is T ’s

previous transaction in the locking queue. Transaction T will

steal operation to execute by using Tp’s stealCtx (Line 1).

stealCtx of Tp maintains the current stealing information:

the transaction ID (tids) of the lock holder Ts and the index

of the Ts’s last runnable operation (iop) (Line 3-4). If Ts has

not finished, T will steal Ts’s opi from its runnable queue

(Line 8 and 11). To enable T ’s successor transactions to steal

Ts’s operations, T also sets its stealCtx with tids and iop−1

if there are further operations to steal(Line 9-10).

ALGORITHM 3: STEALOP (T , Tp) :

Input: T : The current transaction

Tp: The previous transaction of T in the locking

queue

1: stealCtx = Tp.stealCtx

2: if stealCtx != ⊥ then

3: tids = stealCtx.tid

4: iop = stealCtx.op

5: Tp.stealCtx = ⊥

6: Ts = GETTXN (tids)

7: if ISRUNNING (tids) then

8: op = Ts.runnable queue[iop]

9: if iop > 0 then

10: T .stealCtx = 〈Ts, iop − 1〉

11: RUNOP (op, tids)

3.3 Lock Manager

StealDB’s lock manager provides three interfaces to the

transaction runtime: TRYLOCK, CHECKACQUIRED and

UNLOCK.

TRYLOCK will return 0 if the thread acquires a lock suc-

cessfully. Otherwise, it will return the previous transaction’s

ID. For example, both T1 and T2 access record a, and T1

acquires a’s lock before T2. When T2 tries to lock a by call-

ing TRYLOCK, it returns T1’s ID. CHECKACQUIRED will

return true if the lock is granted to the current transaction.

Otherwise, CHECKACQUIRED will return false. UNLOCK

will release the lock of the record.

ALGORITHM 4: TRYLOCK (lock, lockCtx) :

Input: lock: The shared lock object

lockCtx: The lock context

1: lockCtx.next = ⊥

2: lockCtx.spin = true

3: ctxp = XCHG (lock.tail, lockCtx)

4: if ctxp == ⊥ then

5: return 0

6: tidp = ctxp.tid

7: ctxp.next = lockCtx

8: return tidp

To provide the semantic of TRYLOCK and CHECKAC-

QUIRED, StealDB implements its lock mechanism based on

queue-based lock algorithms (e.g. MCS lock [33] and CLH

lock [9]). Algorithm 4 shows the basic logic of TRYLOCK

which is extended from MCS lock. However, our algorithm

is also suitable for other queue-based lock primitives (e.g.,

CLH queue lock). For each MCS lock, each transaction has

a local lock context (lockCtx). It includes a pointer next,

a boolean field spin and the transaction’s tid. Each lock

 0

 10

 20

 30

 40

 50

 60

 1 4 8 16 32 64

T
h

ro
u

g
h

p
u

t
(K

 t
x
n

s
/s

e
c
)

Number of Threads

vanilla 2PL

StealDB

2PL w/ ws

Figure 3. The throughput comparison on the micro-benchmark

with high contention.

maintains an explicit list of lockCtx structures. To acquire

a lock, a transaction will add its lockCtx in the lock’s list

(line 3). If there are already some other transactions waiting

on this lock, it will check the spin field by using CHECK-

ACQUIRED. On releasing the lock, it just simply clears the

spin flag of next waiter on the waiting list.

4. Evaluation

This section evaluates the performance and scalability of

StealDB and compare it to the traditional 2PL. Our evalu-

ation seeks to answer the following three questions:

• What is the performance speedup of StealDB under

high contention?

• Does StealDB introduce overhead under low con-

tention compared to 2PL?

• What is the scalability of StealDB?

StealDB is implemented in C++ based on Silo [49],

an open-source multicore in-memory database using

Masstree [32] as a concurrent ordered index. We also im-

plemented traditional 2PL with MCS lock [33] and the basic

work stealing algorithm as baselines.

4.1 Experimental Setup

Hardware. All evaluations were conducted on a 32-core

AMD machine (with hyper-threading), which consists of

four 2.20GHz Opteron 6274 processors and 32GB DRAM.

Each worker thread is bound to a CPU core.

Workload. There are two benchmarks in our evaluation:

the micro-benchmark that performs random updates to each

table, and the TPC-C new-order transactions. For each

benchmark, we evaluate StealDB against the traditional 2PL

(vanilla 2PL) under different contention levels and measure

the throughput. In our experiments, we warm up all systems

for 30s to get stable measurement results.

 0

 50

 100

 150

 200

 250

 300

 1 4 8 16 32 64

T
h

ro
u

g
h

p
u

t
(K

 t
x
n

s
/s

e
c
)

Number of Threads

vanilla 2PL

StealDB

2PL w/ ws

Figure 4. The throughput comparison on the micro-benchmark

with low contention.

4.2 Micro-benchmarks

The micro-benchmark models a simple OLTP transaction.

The database contains 32 tables in total, and each table

contains 100K records with integer values. There is only

one type of transaction running in the workload. During

execution, each transaction chooses a random record from

each table and increments the value of the record by one.

We increase the contention level by restricting the number

of records in the first table that the transactions can access.

Under high contention, all transactions access the same first

record.

Figure 3 shows the throughput with increasing number of

threads under high contention. In this case, all waiting trans-

actions are in the lock-waiting chain of the first record. 2PL

has a flat throughput, because only one transaction can make

progress and all other transactions are waiting for the lock of

the first record. Basic work stealing scheme performs well

with a small number of threads, but it cannot scale up be-

cause too many waiters will cause high contention. StealDB

reaches 2.2X peak throughput (48.0K vs 22.1K TPS) at 16

threads and keeps the throughput nearly unchanged to 64

threads. At 16 threads, 25 out of 32 operations are executed

by lock waiters, while the average execution time of opera-

tions increases by 3.3X (1.02us vs 3.36us) due to inter-core

communication.

Figure 4 shows the throughput of various systems under

low contention. Because transactions will hardly access the

same record, all worker threads will not be blocked by locks,

and almost no stealing happens. The throughput of StealDB

is nearly identical to that of 2PL, since StealDB can also

fully leverage the inter-transaction parallelism under low

contention without additional overhead.

4.3 TPC-C New-order Transactions

We plan to run the whole TPC-C benchmark to show the

real-world performance of StealDB. Currently, however,

StealDB can only run the new-order transaction since we

 0

 20

 40

 60

 80

 100

 1 4 8 16 32 64

T
h

ro
u

g
h

p
u

t
(K

 t
x
n

s
/s

e
c
)

Number of Threads

vanilla 2PL

2PL w/ ws

StealDB

Figure 5. The throughput comparison on TPC-C new-order

transactions with high contention.

 0

 100

 200

 300

 400

 500

 1 4 8 16 32 64

T
h

ro
u

g
h

p
u

t
(K

 t
x
n

s
/s

e
c
)

Number of Threads

vanilla 2PL

StealDB

2PL w/ ws

Figure 6. The throughput comparison on TPC-C new-order

transactions with low contention.

have not implemented the read-write lock and deadlock de-

tection.

The new-order transaction first reads a warehouse, then

locks a district under that warehouse. The rest of the trans-

action does not cause much contention. We evaluated two

extreme cases of contention level. Under high contention,

there is only one warehouse with one district table. Under

low contention, each worker thread accesses its private ware-

house. The new-order transaction involves 26 operations on

average.

Figure 5 shows StealDB outperforms 2PL by up to 2.8X

under high contention. At 16 threads, 80% operations of a

transaction are executed by other worker threads, and the av-

erage execution time of operations increases by 65% (0.96us

to 1.58us) due to inter-core communication. StealDB cannot

scale further with increasing threads because the first two

operations and the lock releasing part cannot be executed in

parallel.

Further, as shown in Figure 6, StealDB can provide a

similar performance with 2PL under low contention.

5. Future work

StealDB is still an ongoing project, we are going to solve

following issues in future:

Extend to read-write and range lock. The work-

stealing algorithm can be extended to handle reader-writer

lock. The queue-based reader-writer lock maintains lock

waiters in a linked list like MCS lock [34]. Unlike the ex-

clusive lock, multiple readers can be the lock holders of a

reader-writer lock. Therefore, the lock waiters need to steal

operations from multiple readers efficiently. We also plan to

support range queries by supporting range locks to StealDB

so that transactions blocked by a range lock can also steal

operations from the lock holder.

Add deadlock detection. StealDB sorts all locks and

acquires locks in the same order to avoid deadlock, but this

lock ordering can be violoated by work stealing. In our

current implementation, if lock acquiring time exceeds a

threshold, StealDB will abort the transaction and roll back

all changes. We planned to add a wait-for graph deadlock

detector which will select a victim transaction to abort when

there is a cycle in the wait-for graph.

Analyze transactions automatically. Currently, all

transactions are implemented manually. The users of

StealDB need to manually decompose a transaction into op-

erations to enable work stealing. Similar to DORA [37], we

will make a tool to analyze the dependencies inside transac-

tions and generate code automatically.

6. Related Work

There are existing work [7, 22, 41] to improve database per-

formance by leveraging intra-transaction parallelism. These

systems [22, 41] dispatch independent sub-transactions to

different CPU cores at the beginning of transaction. Colo-

han et al. [7] also propose to speculatively execute inde-

pendent sub-transactions concurrently. By contrast, StealDB

only exploits the intra-transaction parallelism when transac-

tions conflict.

Database partitioning [15, 20, 44, 50] is another ap-

proach to take advantage of intra-transaction parallelism.

Database records are divided into multiple disjoint parti-

tions, and all transactions are also divided into a couple of

sub-transactions, which will be dispatched to different parti-

tions in advance. However, since each partition is protected

with a global lock, it is hard to scale when there are lots of

conflicting cross-partition transactions. DORA [36, 37] pro-

vides a fine-grained approach to associating each record with

a private lock. However, it would increase the complexity of

deadlock detection.

There also have been several efforts [35, 52, 56, 59] to

improve database performance under high contention via

static analysis. They usually assume a static workload and

build a conflict graph among all transaction types in ad-

vance [3, 4, 42]. Compared to StealDB, these approaches

are not suitable for those workloads in which new types of

transactions are encountered during the runtime. Some other

approaches [8, 12, 46–48] enforce the execution order of

all transactions to ensure serializability. However, they re-

quire knowing each transaction’s access pattern before exe-

cution [40]. In contrast, StealDB has fewer constraint on the

workload.

Multicore in-memory databases provide low latency and

high throughput for transaction processing comparing to

disk-based databases, and several commercial databases [11,

26, 29] have already taken this advantage. StealDB contin-

ues this line of research by optimizing transaction processing

in multicore and in-memory databases [23, 25, 26, 28, 36,

49, 54, 58, 60]. Yu et al. [58] studied the scalability of seven

concurrent control mechanisms by simulating up to 1024

cores, and identified the scalability bottlenecks of these con-

currency control mechanisms. Silo [49] uses a epoch based

transaction ID generation mechanism and a decentralized

validation protocol to avoid contention points in OCC; it

achieves near-linearly scalability under low contention. Ci-

cada [28] executes transactions in a optimistic multi-version

fashion, and uses multiple loosely synchronized clocks to

do the scalable timestamp generation. Cicada also includes

several optimizations to handle varied workloads, such as

choosing a maximum backoff time dynamically to adapt

to different contention level. Recently, some databases start

to improve multicore scalability by eliminating centralized

locks and latches [16, 17, 19, 39] for databases implemented

using 2PL. StealDB is orthogonal with these approaches and

can be applied to these systems.

Hardware transactional memory (HTM) has recently ap-

peared in the latest commercial processors (e.g., Intel’s

RTM). Since HTM features like atomicity, consistency and

isolation (ACI) make it very promising for database transac-

tions [6, 27, 53–55], it is interesting to explore how to uti-

lize HTM for even better intra-transaction parallelism. Al-

though, we focus on a single multi-core machine, it is pos-

sible to extend our scalable work-stealing scheme to dis-

tributed in-memory systems with highly concurrent transac-

tion and query processing [43, 55].

The idea of StealDB is also influenced by multicore

research in identifying and avoiding unwanted interleav-

ings [10, 18, 30, 31, 51, 57]. Examples include identify-

ing harmful interleavings to detect concurrency bugs [30,

31], and constraining interleavings to avoid bugs [18, 38],

making multithreading stable [10, 57], and reducing non-

determinism for state machine replication [21].

7. Conclusion

This paper proposes a scalable work-stealing algorithm to

efficiently exploit intra-transaction parallelism among con-

flicting transactions. It uses run-time information of run-

ning transactions to dynamically parallelize OLTP work-

load among waiting threads, so that it can adapt to differ-

ent contention levels. Our resulting system can significantly

improve the performance of OLTP workloads under high

contention without sacrificing the performance under low

contention. Our research opens a new way to extract intra-

transaction parallelism for OLTP workloads.

Acknowledgments

We thank the anonymous reviewers for their insight-

ful suggestions. This work is supported in part by the

National Key Research & Development Program (No.

2016YFB1000500), the National Natural Science Founda-

tion of China (No. 61402284, 61572314, 61525204), the Na-

tional Youth Top-notch Talent Support Program of China,

Singapore NRF (CREATE E2S2), and National Science

Foundation under CNS 1218117.

References

[1] F. Akal, K. Böhm, and H.-J. Schek. Olap query evaluation in

a database cluster: A performance study on intra-query paral-

lelism. In Advances in Databases and Information Systems,

pages 181–184. Springer, 2002.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-

rency control and recovery in database systems. Addison-

wesley New York, 1987.

[3] P. A. Bernstein and D. W. Shipman. The correctness of

concurrency control mechanisms in a system for distributed

databases (sdd-1). ACM Transactions on Database Systems

(TODS), 5(1):52–68, 1980.

[4] P. A. Bernstein, D. W. Shipman, and J. B. Rothnie Jr. Concur-

rency control in a system for distributed databases (SDD-1).

ACM Transactions on Database Systems (TODS), 5(1):18–51,

1980.

[5] D. Chase and Y. Lev. Dynamic circular work-stealing deque.

In Proceedings of the seventeenth annual ACM symposium

on Parallelism in algorithms and architectures, pages 21–28.

ACM, 2005.

[6] Y. Chen, X. Wei, J. Shi, R. Chen, and H. Chen. Fast and

general distributed transactions using rdma and htm. In Proc.

EuroSys, pages 26:1–26:17, 2016.

[7] C. B. Colohan, A. Ailamaki, J. G. Steffan, and T. C. Mowry.

Optimistic intra-transaction parallelism on chip multiproces-

sors. In Proceedings of the 31st international conference

on Very large data bases, pages 73–84. VLDB Endowment,

2005.

[8] J. Cowling and B. Liskov. Granola: low-overhead distributed

transaction coordination. In Proceedings of the 2012 USENIX

conference on Annual Technical Conference, pages 21–21.

USENIX Association, 2012.

[9] T. Craig. Building fifo and priority queuing spin locks from

atomic swap. Technical report, Technical Report TR 93-02-

02, University of Washington, 02 1993.(ftp tr/1993/02/UW-

CSE-93-02-02. PS. Z from cs. washington. edu), 1993.

[10] H. Cui, J. Wu, C.-c. Tsai, and J. Yang. Stable determinis-

tic multithreading through schedule memoization. In Proc.

OSDI, 2010.

[11] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal,

R. Stonecipher, N. Verma, and M. Zwilling. Hekaton: SQL

Servers memory-optimized OLTP engine. In Proc. SIGMOD,

2013.

[12] J. M. Faleiro, A. Thomson, and D. J. Abadi. Lazy evalua-

tion of transactions in database systems. In Proceedings of

the 2014 ACM SIGMOD international conference on Man-

agement of data, pages 15–26. ACM, 2014.

[13] M. Frigo, C. E. Leiserson, and K. H. Randall. The implemen-

tation of the cilk-5 multithreaded language. In ACM Sigplan

Notices, volume 33, pages 212–223. ACM, 1998.

[14] J. Gray and A. Reuter. Transaction processing: concepts and

techniques, 1993.

[15] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker.

OLTP through the looking glass, and what we found there. In

Proc. SIGMOD, pages 981–992. ACM, 2008.

[16] T. Horikawa. Latch-free data structures for DBMS: design,

implementation, and evaluation. In Proc. SIGMOD, pages

409–420. ACM, 2013.

[17] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and

B. Falsafi. Shore-MT: a scalable storage manager for the mul-

ticore era. In Proc. EDBT, pages 24–35. ACM, 2009.

[18] H. Jula, D. M. Tralamazza, C. Zamfir, G. Candea, et al. Dead-

lock immunity: Enabling systems to defend against deadlocks.

In Proc. OSDI, volume 8, pages 295–308, 2008.

[19] H. Jung, H. Han, A. D. Fekete, G. Heiser, and H. Y. Yeom.

A scalable lock manager for multicores. In Proc. SIGMOD,

pages 73–84. ACM, 2013.

[20] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin,

S. Zdonik, E. P. Jones, S. Madden, M. Stonebraker, Y. Zhang,

et al. H-store: a high-performance, distributed main memory

transaction processing system. VLDB Endowment, 1(2):1496–

1499, 2008.

[21] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, and

M. Dahlin. All about eve: execute-verify replication for multi-

core servers. In Proc. OSDI, 2012.

[22] H. Kaufmann and H.-J. Schek. Extending tp-monitors for

intra-transaction parallelism. In Parallel and Distributed In-

formation Systems, 1996., Fourth International Conference

on, pages 250–261. IEEE, 1996.

[23] A. Kemper and T. Neumann. Hyper: A hybrid oltp&olap main

memory database system based on virtual memory snapshots.

In Data Engineering (ICDE), 2011 IEEE 27th International

Conference on, pages 195–206. IEEE, 2011.

[24] H.-T. Kung and J. T. Robinson. On optimistic methods for

concurrency control. ACM Transactions on Database Systems

(TODS), 6(2):213–226, 1981.

[25] P.-Å. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Pa-

tel, and M. Zwilling. High-performance concurrency control

mechanisms for main-memory databases. In Proc. VLDB,

2011.

[26] J. Lee, M. Muehle, N. May, F. Faerber, V. Sikka, H. Plattner,

J. Krueger, and M. Grund. High-performance transaction

processing in sap hana. IEEE Data Eng. Bull., 36(2):28–33,

2013.

[27] V. Leis, A. Kemper, and T. Neumann. Exploiting Hardware

Transactional Memory in Main-Memory Databases. In Proc.

ICDE, 2014.

[28] H. Lim, M. Kaminsky, and D. G. Andersen. Cicada: Depend-

ably fast multi-core in-memory transactions. In Proceedings

of the 2017 ACM International Conference on Management of

Data, pages 21–35. ACM, 2017.

[29] J. Lindström, V. Raatikka, J. Ruuth, P. Soini, and K. Vakkila.

Ibm soliddb: In-memory database optimized for extreme

speed and availability. IEEE Data Eng. Bull., 36(2):14–20,

2013.

[30] S. Lu, S. Park, and Y. Zhou. Finding atomicity-violation bugs

through unserializable interleaving testing. IEEE Transac-

tions on Software Engineering, 38(4):844–860, 2012.

[31] S. Lu, J. Tucek, F. Qin, and Y. Zhou. Avio: detecting atomic-

ity violations via access interleaving invariants. In Proc. AS-

PLOS, pages 37–48. ACM, 2006.

[32] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness for fast

multicore key-value storage. In Proc. EuroSys, pages 183–

196, 2012.

[33] J. M. Mellor-Crummey and M. L. Scott. Algorithms for

scalable synchronization on shared-memory multiprocessors.

ACM Transactions on Computer Systems (TOCS), 9(1):21–65,

1991.

[34] J. M. Mellor-Crummey and M. L. Scott. Scalable reader-

writer synchronization for shared-memory multiprocessors.

In ACM SIGPLAN Notices, volume 26, pages 106–113. ACM,

1991.

[35] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extracting more

concurrency from distribted transactions. In Proceedings of

the 11th USENIX conference on Operating Systems Design

and Implementation, pages 479–494. USENIX Association,

2014.

[36] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki.

Data-oriented transaction execution. VLDB Endowment, 3(1-

2):928–939, 2010.

[37] I. Pandis, P. Tözün, M. Branco, D. Karampinas, D. Porobic,

R. Johnson, and A. Ailamaki. A data-oriented transaction ex-

ecution engine and supporting tools. In Proceedings of the

2011 ACM SIGMOD International Conference on Manage-

ment of data, pages 1237–1240. ACM, 2011.

[38] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: treating

bugs as allergies—a safe method to survive software failures.

In Proc. SOSP, pages 235–248. ACM, 2005.

[39] K. Ren, A. Thomson, and D. J. Abadi. Lightweight locking

for main memory database systems. Proceedings of the VLDB

Endowment, 6(2):145–156, 2012.

[40] K. Ren, A. Thomson, and D. J. Abadi. An evaluation of

the advantages and disadvantages of deterministic database

systems. Proceedings of the VLDB Endowment, 7(10):821–

832, 2014.

[41] M. Rys, M. C. Norrie, and H.-J. Schek. Intra-transaction

parallelism in the mapping of an object model to a relational

multi-processor system. In VLDB, pages 460–471, 1996.

[42] D. Shasha, F. Llirbat, E. Simon, and P. Valduriez. Transaction

chopping: Algorithms and performance studies. ACM Trans-

actions on Database Systems (TODS), 20(3):325–363, 1995.

[43] J. Shi, Y. Yao, R. Chen, H. Chen, and F. Li. Fast and con-

current rdf queries with rdma-based distributed graph explo-

ration. In Proc. OSDI, pages 317–332, 2016.

[44] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,

N. Hachem, and P. Helland. The end of an architectural

era:(it’s time for a complete rewrite). In Proc. VLDB, pages

1150–1160, 2007.

[45] The Transaction Processing Council. TPC-C Benchmark (Re-

vision 5.9.0). http://www.tpc.org/tpcc/, 2007.

[46] A. Thomson and D. J. Abadi. The case for determinism in

database systems. Proceedings of the VLDB Endowment, 3(1-

2):70–80, 2010.

[47] A. Thomson and D. J. Abadi. Modularity and Scalability in

Calvin. IEEE Data Engineering Bulletin, page 48, 2013.

[48] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and

D. J. Abadi. Calvin: fast distributed transactions for parti-

tioned database systems. In Proceedings of the 2012 ACM

SIGMOD International Conference on Management of Data,

pages 1–12. ACM, 2012.

[49] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy

Transactions in Multicore In-Memory Databases. In Proc.

SOSP, 2013.

[50] L. VoltDB. Voltdb technical overview, 2010.

[51] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. A. Mahlke.

Gadara: Dynamic deadlock avoidance for multithreaded pro-

grams. In Proc. OSDI, pages 281–294, 2008.

[52] Z. Wang, S. Mu, Y. Cui, H. Yi, H. Chen, and J. Li. Scal-

ing multicore databases via constrained parallel execution. In

Proceedings of the 2016 International Conference on Man-

agement of Data, pages 1643–1658. ACM, 2016.

[53] Z. Wang, H. Qian, H. Chen, and J. Li. Opportunities and pit-

falls of multi-core scaling using hardware transaction mem-

ory. In Proc. Apsys. ACM, 2013.

[54] Z. Wang, H. Qian, J. Li, and H. Chen. Using restricted

transactional memory to build a scalable in-memory database.

In Proc. EuroSys, 2014.

[55] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast in-

memory transaction processing using rdma and htm. In Proc.

SOSP, pages 87–104, 2015.

[56] C. Xie, C. Su, C. Littley, L. Alvisi, M. Kapritsos, and Y. Wang.

High-performance acid via modular concurrency control. In

Proceedings of the 25th Symposium on Operating Systems

Principles, pages 279–294. ACM, 2015.

[57] J. Yang, H. Cui, J. Wu, Y. Tang, and G. Hu. Determinism

is not enough: Making parallel programs reliable with stable

multithreading. Communications of ACM, page 75, 2014.

[58] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker.

Staring into the abyss: An evaluation of concurrency control

with one thousand cores. Proceedings of the VLDB Endow-

ment, 8(3):209–220, 2014.

[59] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. K. Aguilera, and

J. Li. Transaction chains: achieving serializability with low
latency in geo-distributed storage systems. In Proc. SOSP,

pages 276–291. ACM, 2013.

[60] W. Zheng, S. Tu, E. Kohler, and B. Liskov. Fast databases

with fast durability and recovery through multicore paral-

lelism. In Proceedings of the 11th USENIX conference on

Operating Systems Design and Implementation, pages 465–

477. USENIX Association, 2014.

