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ABSTRACT
Serverless computing promises auto-scalability and cost-
efficiency (in “pay-as-you-go” manner) for high-productive
software development. Because of its virtue, serverless com-
puting has motivated increasingly new applications and ser-
vices in the cloud. This, however, also presents new chal-
lenges including how to efficiently design high-performance
serverless platforms and how to efficiently program on the
platforms.

This paper proposes ServerlessBench, an open-source
benchmark suite for characterizing serverless platforms. It in-
cludes test cases exploring characteristic metrics of serverless
computing, e.g., communication efficiency, startup latency,
stateless overhead, and performance isolation. We have ap-
plied the benchmark suite to evaluate the most popular server-
less computing platforms, including AWS Lambda, Open-
Whisk, and Fn, and present new serverless implications from
the study. For example, we show scenarios where decoupling
an application into a composition of serverless functions can
be beneficial in cost-saving and performance, and that the
“stateless” property in serverless computing can hurt the execu-
tion performance of serverless functions. These implications
form several design guidelines, which may help platform
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designers to optimize serverless platforms and application
developers to design their functions best fit to the platforms.
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Software and its engineering → Cloud computing.
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1 INTRODUCTION
In recent years, serverless computing becomes the new trend-
ing paradigm in cloud computing. Many public cloud plat-
forms have been providing serverless computing services,
including AWS Lambda [5], IBM Cloud Function [4], Mi-
crosoft Azure Functions [10], Google Cloud Functions [15],
and more private cloud platforms [52]. Users favor server-
less computing for three reasons. First, it helps developers
focus on the core application logic, as the serverless plat-
forms support the infrastructure-related properties (e.g., auto-
scalability) and take over the server management. Second,
serverless users can save costs with the pay-as-you-go model
in serverless computing, i.e., serverless functions will only
run and charge when there are requests. Third, designing an
application with multiple serverless functions provides modu-
larity benefits. Using serverless computing also benefits the
cloud providers, since they can manage their resources more
efficiently [1].

Despite the newfound popularity of serverless computing,
designing an efficient, scalable, and user-friendly serverless
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platform remains challenging for system software design-
ers. The challenge arises because serverless computing rep-
resents a significant departure from the way cloud platforms
are traditionally designed. For example, startup latency is
usually not a critical factor in prior cloud platforms, since
most applications are long-running and do not frequently re-
start. However, in serverless computing, the platform creates
a new function instance for each incoming request if there
are no idle ones to reuse; therefore, function startup affects
the end-to-end latency of each request and thus affects the
user-experience [26, 34, 38, 40, 43]. Besides, serverless appli-
cation developers face challenges on how to architect a server-
less application that is both performant and cost-efficient.
The real-world use cases for serverless computing that the
developers can refer to are limited, especially for complex ap-
plications that consist of cooperating serverless functions. We
examine AWS serverless application repository [6], but the
applications in the repository are mainly simple and demon-
strative serverless functions that are meant to be used as a
tool or a supportive component in a real-world system. There-
fore, the impact of serverless computing model is still unclear
for sophisticated use of serverless computing, and the design
guidelines for complex serverless systems are sorely needed.

Therefore, a benchmark suite that can reveal the critical
metrics of serverless computing and characterize serverless
platforms is significant and necessary for both serverless plat-
form designers and serverless application developers. Unfortu-
nately, such a benchmark suite for serverless computing is still
missing. The most related work is DeathStar [32], an open-
source microservice benchmark, which does not consider
some essential metrics in serverless platforms, e.g., the startup
latency, auto-scalability, and overheads caused by stateless
execution. Other works [34, 36] present tests to show the
benefits of serverless computing over traditional paradigms.
However, these tests fall short in exploring new implications
to guide serverless platform optimization or serverless appli-
cation design.

This paper proposes ServerlessBench, a general and open-
source benchmark suite for serverless computing that helps
system developers design and evaluate their serverless sys-
tems and provides useful hints for application developers to
architect their serverless applications. ServerlessBench has
three key distinctions compared with prior benchmark suites.
First, it identifies critical metrics in serverless computing rang-
ing from communication latency and startup latency to per-
formance isolation. Second, it provides a set of test cases cus-
tomized to evaluate the critical metrics, including real-world
serverless workloads that cover popular cloud scenarios, e.g.,
image processing, Alexa skill application [2], online compil-
ing system [31] and data analysis. Third, ServerlessBench
is general to use in different kinds of serverless platforms,

e.g., container-based systems [4], virtual machine-based sys-
tems [53], or recently proposed lightweight virtualization
systems [12, 16, 25, 41, 42, 47, 54].

We conduct the evaluation on a commercial serverless plat-
form (AWS Lambda [5]), two open-source serverless plat-
forms (OpenWhisk [4] and Fn [13]), and one in-production
private cloud (Ant Financial). The paper then presents the
discovered implications on characteristic metrics of server-
less computing. For example, we present scenarios where
decoupling an application into a composition of serverless
functions can be beneficial in both cost-saving and per-
formance (Implication I and Implication II). We call the
serverless platform designers’ attention to the implicit states
(e.g., Just-in-Time profile) that are typically lost across re-
quests due to the “stateless” property in serverless com-
puting, as we discover that their absence might introduce
performance penalty to the execution of serverless func-
tions (Implication X). The implications can guide the de-
sign of serverless platforms and applications. We present
a case study to optimize serverless startup with inspiration
from the implications. ServerlessBench is open-sourced at
https://github.com/SJTU-IPADS/ServerlessBench.

The main contributions of this paper are as follows:

• A detailed analysis of critical metrics for serverless
computing systems.

• A pertinent benchmark suite with customized test cases
targeting different aspects of serverless computing.

• An evaluation of existing serverless platforms using
ServerlessBench and characteristics of different server-
less platforms found from the evaluation.

• Implications on serverless computing that can guide the
design of serverless platforms and serverless applica-
tions.

2 BACKGROUND
Serverless platform. In serverless computing, the computa-
tion unit is a function. Application developers send their func-
tions to a serverless platform, which provides sandboxed
execution environments (containers [11, 44] or virtual ma-
chines [12, 16, 17]) for the functions to run. The platform
compiles the serverless functions offline together with a run-
time, then initializes the environment and invokes the handler
function when requests arrive. A requirement for the function
is being stateless—a function should not rely on states across
requests. One reason for being stateless is to implement auto-
scalability, as a serverless platform is responsible for scaling
the instances of functions according to the request traffic.
Function startup. In existing serverless platforms, a function
instance can handle a request with either cold start or warm
start, depending on whether there are available idle sandboxes.
The first execution of a function always begins with a cold
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start, which needs to prepare function image (e.g., Docker
image), create sandboxes (e.g., Docker container), and load
function codes. The cold start usually causes long latency.
When a function instance finishes execution, the sandbox
might pause for a specified period, so that it can serve the
subsequent requests for the same function by unpausing, i.e.,
warm start.
Function compositions. Serverless application developers
tend to decouple a complex application into a composition of
loosely-coupled serverless functions in pursuit of fine-grained
scalability and modular development and deployment. There
are two function composition types: sequence function chain
and nested function chain. Typically, a platform-provided or
third-party coordinator (e.g., IBM Action Sequences [20] and
AWS Step Functions [7]) is responsible for conducting a se-
quence function chain. Each function in a sequence chain
finishes their work by transferring the result data to the next
function in the sequence. In the nested chain, a function in-
vokes a callee function and waits for the callee’s results before
it can return. These composition methods provide different
flexibility and performance characteristics, thus should be
carefully chosen according to the application needs.
Serverless billing. The pay-as-you-go manner billing in
serverless computing is a significantly attractive factor for
serverless users. The execution bill (the major cost in server-
less computing) can be calculated by C * Time * Resource,
in which C is a platform-specific constant, Time is the func-
tion execution time with millisecond-level granularity (100ms
in AWS Lambda [5], IBM Cloud Function [4], and Google
Cloud Functions [15], 1ms in Azure Functions [10]), Re-
source typically represents the memory and CPU resources
provisioned to the function (in rarer cases such as Azure
Functions it represents the average memory usage). Existing
serverless platforms, including AWS Lambda, Google Cloud
Functions and IBM Cloud Functions, usually allocate CPU
computing resources in proportion to the provisioned memory
size for a function.

3 OVERVIEW
This section illustrates the methodology that we adopt to eval-
uate serverless platforms and reveal implications in serverless
computing. We first present four distinguishing metrics in
serverless computing (§3.1). Based on the metrics, we con-
struct ServerlessBench (Table 1), a pertinent benchmark suite
for evaluating serverless computing systems. We carefully
implement the applications in ServerlessBench with a variety
of programming languages, resource needs, and composition
patterns, to reflect the diversity in existing serverless applica-
tions, and thus enhance the representativeness of Serverless-
Bench. ServerlessBench can characterize serverless platforms
and help expose defects in different subsystems (e.g., CPU,

memory, OS, etc.). We use ServerlessBench to evaluate ex-
isting serverless platforms with the evaluation environment
explained in §3.2.

3.1 Serverless Metrics
We now analyze four distinguishing metrics in serverless
computing.
Metric1: Communication performance. A complex server-
less application is typically composed of several interact-
ing functions and other cloud services. There are different
function-interacting models to initiate the inter-function com-
munication, such as using a function coordinator (sequence
chain model) or using the serverless provider’s SDK (nested
chain model).
Metric2: Startup latency. The startup overhead is a unique
challenge in serverless computing [36, 44, 52]. Contrary to
traditional cloud services which are typically long-running,
waiting or polling for incoming requests, serverless func-
tions are initiated on-demand. Thus, the processing latency of
each request contains the startup overhead (including sandbox
preparation, function loading and initialization), which even-
tually affects the user experience. Besides, as the execution
unit (serverless function) is typically small and short-lived (in
seconds or even milliseconds) in serverless computing, the
second-level startup can be a considerable overhead. More-
over, the possible high concurrency in a serverless platform
makes it harder to achieve low-latency startup.
Metric3: Stateless execution. Although stateless is one of
the natures of serverless computing, it may compromise the
application performance in two ways: 1) data transmission
overhead to maintain the states needed by the function logic
in external storage services (e.g., AWS S3 [3]); 2) loss of
system states which contain useful information that can help
improve performance (e.g., Just-in-Time profile and session
cache).
Metric4: Resource efficiency and performance isolation.
Co-locating serverless functions (of different patterns and
priorities) as well as other computing workloads on the same
machine is normal in the cloud for better resource utiliza-
tion, especially for private serverless platforms. However, co-
location may seriously damage the Service Level Agreement
(SLA) if without strong performance isolation.

3.2 Methodology
We conduct evaluations on existing serverless platforms with
ServerlessBench to explore serverless implications and in-
spire serverless platform designs and best practices. We eval-
uate a commercial serverless platform (AWS Lambda [5]),
two open-source serverless platforms (OpenWhisk [4] and
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Table 1: Test cases with ServerlessBench. “TC” is short for “Test Case”. The “Platforms” means whether the test case is applied in
OpenWhisk, Fn, AWS, and Ant Financial, respectively, e.g., “ ” means a test case is only evaluated on OpenWhisk.

Test name Metrics Functions Description Platforms

TC1: Varied resource needs Communication Alu Analyze resource-efficiency in function composition.
TC2: Parallel composition Communication Alu Analyze performance with parallel functions.
TC3: Long function chain Communication Node.js Array Sum Analyze the performance of a long function chain.
TC4: Application breakdown Communication Four representative Apps Breakdown the latency of real-world applications.
TC5: Data transfer costs Communication Node.js Image Evaluate the efficiency of cross-function data transfer.
TC6: Startup breakdown Startup latency Hello, App Breakdown the OpenWhisk and Fn startup latency.
TC7: Sandbox comparison Startup latency Four languages Analyze four serverless sandbox systems. \
TC8: Function size Startup latency Python PackageImporter Analyze the startup latency with different function sizes.
TC9: Concurrent startup Startup latency Java Hello, C Hello Analyze the startup latencies of concurrent requests.
TC10: Stateless costs Stateless Java ImageResize Evaluate the costs of stateless execution.
TC11: Memory bandwidth Perf isolation DB-cache, MemBandwidth Analyze the performance isolation on memory resource.
TC12: CPU contention Perf isolation DB-cache, Alu Analyze the performance isolation on CPU resource.

Fn [13]), and one in-production private cloud (Ant Finan-
cial). The two evaluated open-source platforms run on a x86-
64 machine with an 80-core Intel Xeon (@2.00GHz) CPU
and 192GB memory. We elaborate our evaluation around the
above four metrics from §4 to §7 and present the implications
for serverless usage and serverless platform design inferred
from the evaluations.

4 FUNCTION COMPOSITION
As the name “Function-as-a-Service” implies, the execution
units in serverless computing are typically simple and short-
lived functions. Therefore, it is natural that a complex server-
less application is composed of several loosely-coupled func-
tions. Existing serverless platforms support several function
coordination mechanisms, allowing two composition types:
nested function chain and sequence function chain. Server-
less application developers have to make design choices such
as (1) how to split a complex serverless application into
functions, (2) which composition method to adopt, and (3)
what intermediate states to pass across interacting func-
tions.

Due to the lack of references and guidelines, serverless ap-
plication developers can be confused about how to compose
a performant and resource-efficient serverless application.
Moreover, our evaluation (Figure 6) shows that communica-
tion overhead can take up as much as 70% of the end-to-end
latency for an online compiling application, which implies
a significant optimization opportunity for platforms. We try
to fill this void with a set of implications on serverless com-
position design, which are drawn from a thorough analysis
of serverless composition methods based on our evaluation
using ServerlessBench on existing serverless platforms.

4.1 Function Granularity
Splitting a standalone application into a swarm of coordinated
serverless functions introduces extra startup and communica-
tion overhead. Therefore, serverless application developers
might be tempted to include as much logic as possible in a

single function for performance concerns. However, putting
all the logic in a single function is not a universal solution
for all scenarios. We analyze two scenarios where function
granularity can affect the serverless billing and performance
in TestCase1 and TestCase2, respectively. As the resource
allocation is largely configurable in a self-controlled environ-
ment, we conduct the tests on AWS Lambda to explore the
billing and performance behaviors on black-box commercial
systems.
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Figure 1: The execution time and billing of integrated and split-
ted Alu application with different provisioned memory sizes. (a)
Different phases have different resource needs. (b) The X-axis
represents memory size provisioned for the “Compute” func-
tion, while the memory allocation for the “Load configuration”
function stops growing at 1024MB.

TestCase1: Varied resource needs. As mentioned in §2,
serverless platforms typically charge the execution bill in
proportion to the provisioned resources (e.g. memory and
CPU resources), which is usually decided by the peak re-
source needs during the function execution. Thus, in the low-
resource-needs phases during the execution, the resources
are over-provisioned and overcharged. We evaluate a CPU-
intensive Alu application on AWS Lambda and analyze its
execution bill when it executes as a single function or splits
into two functions. The application consists of two execution
phases: in the first phase, it connects to S3 and requests for a
number N (Load configuration phase); in the second phase,
it spawns 100 threads to conduct N times of arithmetic calcu-
lations (Compute phase). We construct a split version of the
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application with a sequence function chain of two functions,
handling the two execution phases in the original application,
respectively. As AWS Lambda provides vCPUs in proportion
to the provisioned memory size, we adjust the provisioned
memory sizes to control the vCPU allocation in different
execution phases.

Figure 1 (a) suggests that the “Compute” phase is more
CPU-intensive, observing performance improvement with
provisioned memory size increasing all the way to 3GB, while
the execution time for the “Load configuration” phase does
not change much when the provisioned memory is larger
than 1GB. We then compare the billing in the integrated and
split cases with different provisioned memory sizes. For the
split case, We provision at most 1GB memory to the “Load
configuration” function, as the performance does not improve
with larger memory size. Figure 1 (b) shows that the billing
(represented by Memory * Time) grows drastically in the
integrated case after the provisioned memory size is larger
than 1GB, while remains steady in the split case. These results
suggest that splitting the application and provision appropriate
amount of resources to the composing functions can save
costs with a small additional communication overhead. 1 The
underlying explanation is that the billing model refers to the
provisioned resources instead of the actual resource needs. 2

Implication I
Decoupling a serverless application with varied re-

source needs across execution phases might save costs.

Listing 1 Function code of Alu.
1: def Alu(loopTimes):
2: result = 0
3: for i in range(loopTimes):
4: result += doAlu()
5: return result

TestCase2: Parallel composition. While TestCase1 presents
an example of cost-saving with a little overhead added to the
function composition, in this test case, we illustrate a sce-
nario where splitting an application into interacting functions
improves the performance with parallel execution. We demon-
strate with the Alu application in ServerlessBench (Listing 1).
The Alu application performs abundant independent arith-
metic calculations, with the core handling logic capable of
parallel execution. We rewrite the application to adopt paral-
lel execution in two ways: using in-function multi-threading
(Figure 2 (b)), or exploiting parallelization between function
instances (Figure 2 (c)).

1The added communication latency is typically less than 100ms, as evaluated
in Figure 7.
2Azure Functions charges the resource consumption fee according to the
average memory usage, with additional resource tracing mechanisms such as
memory usage sampling employed by the platform [9].

ALU

Main

AC

ALU

AC AC
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AC AC

Main

In-func threads Function 

instances

Results

ResultsResults

(a) Sequential (b) In-function parallel (c) Parallel

Figure 2: Different function execution patterns. “AC” is short
for “Arithmetic Calculation”.
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Figure 3: The latency and billing of parallel-executed Alu appli-
cation. The “Latency” denotes the end-to-end latency of Main
function.

We implement the original application and two of its paral-
lel variants and evaluate their performance on AWS lambda.
The results in Figure 3 (a) show that splitting an applica-
tion with a parallelizable part and executing with concurrent
functions outperforms the original standalone application.
The request processing latency decreases with added parallel-
executed functions, and the performance can improve by 5x
with ten concurrent functions. Notice that the in-function
parallelization does not perform as well as inter-function par-
allelization. This is because serverless platforms restrict the
computing resources (e.g., vCPUs) that can be allocated to a
function instance. Therefore, the concurrency level in a sin-
gle function instance is confined, and regardlessly running
many threads in a single function can even hurt performance.
Figure 3 (b) shows less billing with higher function concur-
rency. This is because the parallel application is composed
with nested function chain which faces double-billing prob-
lem (analzyed in TestCase4, §4.2). Therefore, with higher
concurrency level the double-billed time (execution time for
the Arithmetic Calculation) is shorter, so the total bill is also
reduced.
Implication II

Decoupling the parallelizable part in an application
might help boost the overall performance with parallel-
executed serverless functions.

4.2 Composition Method
We now analyze the two main composition methods sup-
ported by existing serverless platforms: sequence function
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chain and nested function chain. For sequence function chain,
platforms or third-parties provide coordination mechanisms
to take care of the workflow and pass the intermediate states
across interacting functions (e.g., AWS Step Functions [7],
Azure Durable Functions [8]). For nested function chain, the
caller function calls another function by platform-provided
SDK or direct network requests. Compared to the sequence
function chain method, the nested function chain is more
widely supported as it does not need additional mechanisms
to conduct; instead, any serverless platform allowing network
requests from function codes can support the nested function
chain. We analyze the two composition methods with precise
breakdown on the open-source platform (OpenWhisk).
TestCase3: Long function chain. To explore the performance
implications with the two composition methods, we evaluate
two variants of the Array Sum application in ServerlessBench.
Array Sum is a serverless application with a configurable num-
ber of chained functions (the chain length is set to 100 in our
test). We implement the two variants of the application with
the sequence function chain method and the nested function
chain method, respectively. We send the requests successively
and record the processing latency of each request.

Figure 4 shows that the performance of the sequence chain
and the nested chain differs significantly. For the sequence
chain, the first invocation triggers a cold start for the first
function in the chain, leading to higher latency for the first
request. However, since a subsequent function in a sequence
chain can reuse the container holding prior functions, the cold
start overhead is still minor as it is amortized by all the func-
tions in the chain. For the nested chain, the first five requests
fail with a timeout error. The reason is that the first function
in a nested chain waits for all the following 99 functions to
finish before it can return, so it easily exceeds the timeout
value (default to 60s in OpenWhisk), especially when all the
functions execute with cold starts. From the 6th request, there
are enough warmed containers to allow the nested chain to fin-
ish request handling without a timeout, and the performance
improves with more warmed functions. We learn a lesson
from the evaluation that the nested function chain method
faces a higher timeout risk than the sequence function chain
method, as the timeout limit of the first function is enforced
on the whole chain.

Implication III
Nested function chain requires more resources and exe-

cution time as the caller function needs to wait for callee
functions and, bares higher timeout risk compared to the
sequence function chain method.

TestCase4: Serverless processing breakdown. To further ana-
lyze the impact of different composition methods on complex
serverless applications, we include four real-world serverless
applications with different composition patterns in Server-
lessBench. The four applications are image processing, Alexa
skill, online compiling, and data analysis. Image processing
is one of the most widely-used serverless workloads in the
cloud [18, 22]. We compose the image processing applica-
tion with five functions in a sequence chain (Figure 5 (a)).
Alexa skill is a representative of serverless workloads in the
IoT world. It equips Alexa [2] with capabilities that the users
want, e.g., reading the daily news. We implement the Alexa
skill application with nested function chain (Figure 5 (b)).
We implement the online compiling application based on gg
framework [31], which leverages the auto-scaling nature of
serverless computing to boost the compiling performance.
Online compiling relies on an external coordinator to sched-
ule functions (sequence function chain). Data analysis is an
example of serverless applications that are triggered by a third-
party event-source. The application begins with the insertion
of personal wage data (implemented with nested function
chain), then it detects the database change, and triggers a
database analysis sequence function chain (Figure 5 (c)). We
evaluate the request processing time of the four real-world
serverless applications on OpenWhisk [4]. We first upload the
tested application into the platform, then sequentially request
the application for ten times. We send each request after the
response of the last request is received. Thus, the applications
serve the first request with a cold started function instance,
and serve all subsequent requests with the warm start. For
each application, we repeat the evaluation for ten times and
calculate the average latency.

We break the end-to-end request processing latency into
three parts: startup, communication, and execution. Figure 6
(a) shows the proportion of time spent on each part in cold
start and warm start for the four applications. Surprisingly,
we notice that in Alexa skill application, although the startup
latency decreases from 38,194ms on average in cold start
cases to 2,067ms in warm start cases, the proportion of the
three parts in the end-to-end latency does not change much.
The reason is that we construct the Alexa skill application
with nested function chain method, so the execution time of
the caller function includes the startup latency of the callee
functions as well as the communication overhead. Similar ob-
servations occur in the data analysis application (constructed
with a combination of sequence and nested function chain):
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Figure 6: Real-world serverless applications on OpenWhisk.

with the startup latency decreases from 39,528ms to 1,975ms
when switching from cold start to warm start, the execution
time also decreases from 5,170ms to 900ms. This phenome-
non reflects the double-billing drawback of nested function
chain, i.e., the function processing time is charged more than
once in a nested chain. As is shown in Figure 6 (b), the billing
duration contains all the overhead between nested chain func-
tions, including startup and communication. Thus, the slow
cold start not only affects the startup latency but can also poi-
son the execution performance in the nested function chain,
and cause a drastic rise in serverless cost. By contrast, the
execution time and overhead variation in one function do not
affect the execution time of another in a sequence chain, thus
free of double-billing problem.
Implication IV

Composition methods can significantly impact the billing
in serverless computing as the platforms charge the execu-
tion time and overhead more than once in a nested function
chain.

Despite the higher timeout risk and double-billing problem,
serverless application developers might still prefer the nested
chain method in specific scenarios with its advantages in flex-
ibility. First, not all serverless platforms provide sequence
function chain mechanisms with semantics needed by the
application. For example, Google Cloud Functions [15] does
not have a platform-provided serverless orchestration mecha-
nism. OpenWhisk provides Action Sequence [20], but only
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Figure 7: Communication latency with different message sizes.

supports a single chain, i.e., common composition patterns
such as branching and parallelization are not supported. Sec-
ond, even for function coordinators with rich semantics such
as Amazon Step Functions [7], which orchestrates functions
with user-defined state machines, the supported semantics
might not be flexible enough for many use cases. For exam-
ple, Amazon Step Functions support the Parallel state type to
execute tasks in parallel. However, the application developers
have to list all the tasks to execute in parallel in an array in the
state machine, restricting the flexibility of concurrency level.
Besides, it is a waste of effort if all the tasks to execute in
parallel are the same function. Third, adopting coordinators
with rich semantics usually require application developers to
make extra efforts on the orchestration services, e.g., the state
machine for whole application using Amazon Step Functions.

4.3 Payload Size
TestCase5: Data transfer costs. The data transfer between
serverless functions typically involves several steps, e.g., re-
quest routing, load balancing, and message queue operations.
To examine how efficient existing serverless platforms trans-
fer data between functions, we evaluate a Node.js serverless
application which transfers images with different sizes (from
0KB to 50KB) on OpenWhisk, Fn, and AWS Lambda. We im-
plement the chain on OpenWhisk with OpenWhisk’s Action
Sequence [20]. For Fn, we leverage flow [14], a lightweight
workflow model provided by Fn project. We employ AWS
Step Functions [7] for AWS Lambda. As AWS Step Functions
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restricts the directly-passing payload size to less than 32KB,
we upload the payload data to S3 before the caller function
finishes, and let the callee function download the data before
it starts the handling logic for the payload with sizes more
than 32KB (this is also the suggested workaround for large
payloads by AWS [21]). We record the period between the
caller function finishes and the callee function ready to un-
pause as OpenWhisk’s communication latency, and use the
period between the end of the caller function and the start
of the callee function as the communication latency in Fn
and AWS Lambda with payload size under 32KB. For large
payload (more than 32KB) in AWS Lambda, we record the
time between the data uploading (to S3) in the caller function
and the start of handling (after downloading the payload) in
the callee function as the communication latency.

The results in Figure 7 show that communication latency in-
creases very slowly within a small range of transferred image
sizes (0KB–30KB) on all three platforms. Because the data
passing method changes from direct data passing to indirect
data passing via S3 due to the AWS Lambda data passing
limit, the communication latency rises drastically at 35KB.
Placing interacting functions on the same node further in-
spires data passing optimizations such as using local message
bus [22] or shared memory [49] for data transfer. Thus, we
address the observation that passing a limited size of data
between functions may only add neglectable communication
overhead compared to the case with no data passed between
functions. This observation can motivate possible serverless
execution optimization with state passing, as explored in [48].
Implication V

Passing small messages during communication incurs lit-
tle additional costs, while the applicaiton developers might
use the takeaway information to optimize the execution of
subsequent functions.

5 STARTUP LATENCY
This section analyzes the startup latency challenge faced by
serverless applications with a set of detailed evaluation in
different platform settings and requesting scenarios.
TestCase6: Startup breakdown. To analyze the source of
serverless startup cost, we make a detailed breakdown of the
startup latency of four functions in ServerlessBench: Python-
Hello, Java-Hello, Python-Django and Java-ImageResize. We
examine the warm start and cold start cases on two open-
source serverless platforms, OpenWhisk and Fn [13].

Table 2 presents the time spent in each phase of the startup
process in OpenWhisk. In a typical cold start with image
pulling (when the function not specifies the docker image tag
or uses the “latest” tag), the image pulling phase (“Image pull”
in Table 2) is the primary source of cost, taking up to 81%

of the total startup latency. In addition, sandbox initialization
(“Docker run” and “Docker init” in Table 2) takes up 20%
of the startup latency (or more than 95% when a local image
is used and free of image pulling overhead), during which
Docker uncompresses the function image into the local stor-
age, prepares the isolation environment (e.g., namespaces and
cgroups), and initiates the language runtime (e.g., Python and
JVM) of the invoked function. The warm start takes about
135ms, which is 35x faster than a cold start with image pulling
(or 7x faster than a cold start without image pulling). In the
warm start, “Docker unpause” becomes the primary source of
cost, composing up to 71% of the total startup latency. In this
phase, the serverless platform wakes up a paused container
with the same function image to handle the new requests.
OpenWhisk also provides a hot start mechanism, where a
request reuses the container holding a just-finished function
instance without pausing/unpausing. With OpenWhisk hot
start, the function startup time can reduce to less than 10ms.
However, OpenWhisk pauses the function container after
50ms since it finishes, so the hot start case only applies to
requests arrive within 50ms interval since a reusable function
instance finishes.

Table 3 breaks down the cold start latency of a Hello Python
function in Fn. Fn platform always looks for and uses the lo-
cal function image in a cold start, contrasting to OpenWhisk,
which only looks to the local image registry when a specific
docker image tag is configured. The overall cold start latency
(without image pulling) is 941ms, which slightly outperforms
OpenWhisk, as the complex components involved in Open-
Whisk (e.g., Kafka for message passing from OpenWhisk core
controller to the function invokers and CouchDB for func-
tion lifetime management) introduce additional overheads. Fn
also provides a high-performance “hot function” mechanism,
which can achieve around 1ms startup latency.

The results above show the effort to optimize the startup
latency by holding or caching the finished sandboxes on the
platform to avoid long latency incurred by cold start for every
request. However, the finished function instances can remain
in hot or warm state only for a short period of time before
they cool down, because the platform cannot predict when
will a next request arrive, and keeping idle sandboxes wastes
platform resources. There are existing methods that use user-
provided information to increase the warm start probability.
For example, AWS Lambda provides “provisioned concur-
rency” configuration that promises fast startup for the config-
ured concurrency. However, this configuration is static and
pre-defined. For more flexible and dynamic resource alloca-
tion, we suggest that an end-user who is knowledgeable about
the request issuing pattern can inform the platform with some
hints in each request, e.g., expected arrival time of the next
request and the numbers of subsequent requests. This nego-
tiation can benefit both the serverless provider and the user.
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Table 2: OpenWhisk startup latency breakdown.

Applications Routing Load balance Msg
queue

Image pull
(optional)

Docker
run

Docker
init

Send
Arg. Sum

Cold
start
(ms)

Complex Java 30.7 3.0 0.8 3645.7 749.3 158.4 18.7 960.9 (+3645.7)
Complex Python 30.3 3.0 0.9 3812.8 733.0 266.6 2.1 1035.9 (+3812.8)
Hello Java 30.5 2.6 0.6 3609.0 744.2 159.7 18.0 955.6 (+3609.0)
Hello Python 30.5 2.8 0.9 3763.6 741.0 259.7 1.2 1036.1 (+3763.6)

Applications Routing Load balance Msg
queue

Prepare con-
tainer

Docker
unpause

Prepare
Arg.

Send
Arg.

Sum

Warm
start
(ms)

Complex Java 30.3 2.7 0.8 0.2 97.2 1.8 2.3 135.4
Complex Python 30.2 2.7 0.7 0.3 96.0 1.7 3.3 135.2
Hello Java 30.0 2.4 0.9 0.3 95.6 1.4 2.5 133.0
Hello Python 30.1 2.6 0.8 0.3 96.7 1.7 1.8 134.4

Table 3: Fn startup latency breakdown.

Routing Image pull (optional) Image validate Docker create Docker run Function exec Sum

Cold start (ms) <1 6281.2 1.8 99.6 529.5 263.4 894.6 (+6281.2)

The serverless provider can charge the resource idling fee on
the user thus avoid resource wasting, and users are willing to
be charged as the warm start leads to shorter execution time
and thus lower execution cost.
Implication VI

Serverless platforms can accept hints of the expected
arrival time of the next request that can help adjust the
resource holding time to serve requests with warm start as
much as possible.
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TestCase7: Sandbox comparison. As illustrated in §2, differ-
ent serverless platforms might employ different sandboxing
methods to hold the function runtime environment. For exam-
ple, both Fn and OpenWhisk adopt Docker containers as the
function sandbox. The startup breakdown for OpenWhisk and
Fn shows that Docker operations (e.g., Docker run, Docker
unpause) are significant sources of startup overhead. We ana-
lyze how different sandboxes perform in the function booting
process with four widely-used sandbox runtimes: Docker [11],
FireCracker [12], gVisor [16], and HyperContainer [17]. We
evaluate functions written in four programming languages,
including Python, Node.js, Ruby, and C, which are the most

used languages in existing serverless platforms [1]. For each
language, a simple “HelloWorld” application and a real-world
application are included. For C, we use Stateless-Nginx as a
real-world application. We use Django for Python and Sinatra
for Ruby as the real-life applications, which are both web
applications. For Node.js real-life application, we use a web
server.

The results (Figure 8) show that sandboxes with higher
isolation levels (e.g., HyperContainer, gVisor) typically suffer
from longer startup latency, as the sandbox runtime is heavier.
Firecracker is a lightweight virtual machine designed and
employed by AWS Lambda. It stands out with the shortest
startup latency in all evaluated applications except for Node.js
applications.
Implication VII

General-purpose sandboxes such as Docker containers
are not efficient enough for serverless computing. Server-
less platform designers should research on serverless-
specific sandbox designs (e.g., FireCracker microVM)
that might reduce the startup overhead and even provide
stronger isolation.
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TestCase8: Function size comparison. Function code size is
an often-overlooked factor in serverless use cases. Before a
serverless platform can execute a function for the first time
(cold start), it has to prepare the execution environment by
first importing and unzipping the function package (contain-
ing the function source codes and dependency packages), then
loading the function codes and dependencies for execution.
In this process, larger function package might bring higher
overhead to the total startup latency. We analyze the impact
of function size on serverless startup latency using the Python
PackageImporter application in ServerlessBench. We con-
struct the application by packing the Python handler codes
with different numbers of dependency packages, producing
varying package sizes. Specifically, we add four popular PyPI
packages (mypy, numpy, django, and sphinx) of sizes be-
tween 10–23MB into the function package accumulatively,
producing five function packages of sizes: 276B (no depen-
dency packages included), 22.7MB (with mypy), 44.1MB
(with mypy and numpy), 54.4MB (with mypy, numpy, and
django), and 72.6MB (with all four packages). For each pack-
age size, we compare the startup latency when the function
handler actually imports the packages or not (the dependency
packages are redundantly included in this case).

We evaluate how function size affects startup latency on
a typical commercial serverless platform (AWS Lambda).
We break down the startup latency into “prepare” and “load”
phases. The latency in the “prepare” phase includes time spent
from the request issuing at the client-side, to the request han-
dling and function triggering directed by AWS platform, and
function code transmission from S3 storage to the compute
node where the lambda function will execute on. We extract
the time spent in the “load” phase from Lambda execution
logs (“Init Duration” attribute provided by AWS Lambda).
During this phase, the platform prepares the function execu-
tion environment on the compute node and loads the function
codes into the execution environment.

Figure 9 shows the evaluation results. Comparing the “im-
port” and “no-import” cases of the same package size, we
observe similar latency on the “prepare” phase. However, the
total startup latencies differ because the loading time is longer
when the handler actually imports the packages. Besides,
larger function packages endure longer startup latency due
to larger data transmission size in the “prepare” phase. There
are existing researches pointing out the package-import over-
head [44] and suggesting optimizations with locally-prepared
packages and cached execution environment. However, many
existing serverless platforms (including AWS Lambda and
OpenWhisk) expect the application developers to pack the
dependencies in the function package and do not handle the
dependencies on the platform side, so serverless application
developers should still be careful about the function size and
dependencies really needed.

Implication VIII
Functions with larger code sizes suffer from longer

startup latency due to larger data transmission and pack-
age import overhead. Serverless application developers
should optimize the function codes to import the minimal
needed packages and pack only necessary dependencies.
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Figure 10: Startup latency with different container concurrency.
“OpenWhisk-40” denotes the tests on OpenWhisk with con-
tainer concurrency of 40.

TestCase9: Concurrent startup. To analyze how the auto-
scale property of serverless computing impacts serverless
startup, we evaluate the startup latency of the Java-Hello
and C-Hello function in ServerlessBench on OpenWhisk and
Fn. For each function, we send 40 requests simultaneously
with 40 clients. We compare the distribution of startup laten-
cies with the maximum concurrent container number limit in
OpenWhisk configured to be 1 and 40. Fn does not have a
hard limit in the maximum concurrent container number on
a single node, but in our tests, the actual concurrency of Fn
containers is 30–40.

Figure 10 presents the cumulative distribution function
(CDF) of startup latency of the Java-Hello and C-Hello func-
tions, with different container concurrency. The C-Hello func-
tion with only one container on OpenWhisk runs much slower
than other cases because of the queueing delay in the message
queue (the Java-Hello function does not suffer from this sig-
nificant delay because the Java-Hello function executes faster
than the C-Hello function, thus shortens the wait time). We
observe drastically increased startup latency and significantly
longer tail at higher container concurrency on OpenWhisk.
For example, the p99 latency of the Java function is 191ms
for one concurrent container and 415ms for 40 concurrent
containers. Compared to OpenWhisk, Fn has a significantly
shorter tail. The main reason for the difference in tail latency
lies in the framework components: OpenWhisk employs sev-
eral complex building blocks to support the functioning of
the framework (e.g., CouchDB to maintain the system states,
Kafka for message passing, and ZooKeeper to manage the
Kafka cluster); while Fn does not integrate the complex com-
ponents in itself. This implies that the serverless platform
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designers should pay attention to each supporting compo-
nent’s scalability in the serverless framework to preserve the
auto-scaling promise for serverless users.
Implication IX

The design of supporting components for serverless plat-
forms (such as load balancer and message queue) can
affect the scalability of serverless computing.

6 STATELESS EXECUTION
With the consensus that “stateless” is one of the build-in
natures of serverless computing, we study the implications re-
lated to the states in this section. In the paper, we classify the
states into two categories: explicit states and implicit states.
The explicit states are the data explicitly used and managed by
serverless functions, while the implicit states are the data used
by the language runtime (e.g., cached data and codes, JIT pro-
files). As many state-of-the-art cloud applications are stateful,
many recent works discuss and propose stateful serverless
designs [19, 24, 49, 50]. The design of a serverless state man-
agement system must highlight two key factors: 1) states
being durable beyond function life cycles; 2) state passing
being efficient enough. Most researches adopt a two-layer
design with a high-efficiency local data passing mechanism
(using local cache [24, 50], local key-value store [19], or
shared memory [49]) along with a scalable and durable global
object storage.

While the platforms have put effort into supporting stateful
property in serverless computing to expand serverless use
cases, they usually drop the implicit states which do not af-
fect the correctness of execution. Nevertheless, the implicit
states might contain useful information that can help improve
performance. For example, JVMs typically employ Just-in-
Time (JIT) Compiling to improve application performance
over time. A long-running application can accumulate the
profile information throughout the execution, and leverage
it to generate code cache for performance improvement, but
scaling out requests into stateless function instances loses the
information.
TestCase10: Stateless costs. To explore the effect of the im-
plicit states on serverless computing, we use the ImageResize
function in ServerlessBench to compare the execution time
when the requests share the implicit states or not. We employ
open-source platforms in this test to control the state-reusing
behavior. First, we simulate a long-running scenario by in-
voking the ImageResize function one by one (up to 2000
requests). The warm start mechanism preserves all states
across requests by serving each request in the same function
container. Figure 11 (a) shows the execution time of each
sequentially executed ImageResize function on OpenWhisk
and Fn. The result on OpenWhisk reveals three significant
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Figure 11: ImageResize application execution with or without
state sharing across requests.

latency decreases: the first decrease from 90ms to 6ms after
five function invocations, and the second from 6ms to 4ms
at the 210th invocation, and to 3ms at the 478th invocation.
The latency decrease at the beginning comes from the lazy
initialization mechanisms in JVM, e.g., dynamic class load-
ing, in which case the classes loaded in the prior executions
save the class loading time for the subsequent executions. JIT
Compilation leads to the following two significant latency
decreases. Fn’s result also indicates that the execution time
decreases significantly after the first request, suggesting the
performance degradation caused by lost system states.

We then compare the execution time of the same function
without state-sharing on OpenWhisk. The left of Figure 11
(b) presents the distribution of the function execution times
with state-sharing in OpenWhisk (corresponding to the left
of Figure 11 (a), repeated four times). The results show that
most executions finish in less than 5ms. For the non-sharing
scenario, we send 2000 concurrent requests to OpenWhisk
and collect execution times for each of them. We configure the
maximum concurrent container number limit of OpenWhisk
to 80. We repeat the test 4 times and present the execution
time distribution of the 8000 requests in the right of Figure 11
(b). Compared with the distribution in the state-sharing case
(the left of Figure 11 (b)), we observe longer execution time
in the non-sharing scenario, i.e., >7ms for most requests.

To conclude, the stateless nature in serverless computing in-
troduces extra latency with both the transfer of explicit states
and the loss of implicit states. While the application develop-
ers have to manage the explicit states to ensure correctness,
the serverless platform controls the implicit states (e.g., JIT
profiles), which could be leveraged for optimizations.
Implication X

Serverless platforms could share the implicit states, e.g.,
cache or JIT profile, among instances of a function to im-
prove the execution performance.
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Figure 12: Performance comparison when DB-cache applica-
tion co-running with memory-intensive workload. (a) DB-cache
throughput under different memory pressure. (b) Memory
bandwidth utilization under different memory pressure. The se-
ries with the “No-contention” label shows the ideal case, i.e., DB-
cache instances running without memory-intensive workloads.
Other series show results when DB-cache instances co-run with
different-pressured memory-intensive workload.

7 PERFORMANCE ISOLATION
Co-locating serverless functions with different resource needs
(e.g., memory-intensive) is a common practice for resource
efficiency [33]. In some cases, cloud providers co-locate the
serverless functions with long-running analytics workloads
on the same machine. While resource sharing happens in
various co-location scenarios, the datacenter operators should
carefully assess the performance isolation to preclude the
possibility that other workloads break the SLAs of serverless
applications.

This section explores the performance isolation issue in a
private serverless platform (Ant Financial), which has been ex-
tensively co-locating the workloads to improve the resource
utilization. We deploy a Redis-like cache-based serverless
database application, DB-cache, with CPU-intensive and
memory-intensive workloads, and examine sharing and iso-
lation implications for each resource. Specifically, we bind
eight DB-cache instances on 8 CPU cores on the same CPU
socket (16 virtual CPUs with SMT enabled). We bind eight
function invokers (responsible for sending serverless requests
and collecting the responses) to cores on another CPU socket.
We use an Alu application (CPU-intensive workload) and a
MemBandwidth application (memory-intensive workload) to
explore the CPU-related and memory-related implications,
respectively. Running both the invokers and serverless func-
tions on the same machine rules out the uncertain latency
added by network transmission.
TestCase11: Memory bandwidth contention. To evaluate the
performance isolation on memory bandwidth, we co-locate
DB-cache application with a memory-intensive workload
(MemBandwidth application). We construct cases with differ-
ent memory bandwidth pressures by configuring the thread
number of the MemBandwidth application to 1, 2, 4, and
8 (denoted by the ending “x” in “Px” labels in Figure 12).

The more threads running by the MemBandwidth application,
the higher memory bandwidth pressure it generates. Eight
function invokers each sends a million SET requests to a DB-
cache instance with 50 parallel connections. Figure 12 (a)
shows the DB-cache throughput when co-running with the
MemBandwidth application set to different thread numbers.
The results show that memory-intensive workloads could se-
verely degrade the performance of serverless applications
(17% throughput loss in the “P8” case compared to the “No-
contention” case). However, when the thread number of Mem-
Bandwidth application is 1 or 2 (the “P1” and “P2” cases in
Figure 12), the performance of the DB-cache application is
not severely affected. Figure 12 (b) suggests that in the “P1”
and “P2” cases, the total memory bandwidth need is still
modest, and the bandwidth consumption of the DB-cache
application does not reduce. This indicates that properly en-
forcing bandwidth limit on the memory-intensive workloads
on the same node can preserve the performance of serverless
applications.
Implication XI

A serverless function will contend with others for mem-
ory bandwidth, which implies the platform should provide
an essential isolation mechanism to guarantee sufficient
bandwidth budgets.
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Figure 13: Performance comparison when DB-cache applica-
tion co-running with CPU-intensive workload.

TestCase12: CPU contention. CPU sharing among applica-
tions is a default behavior handled by the system scheduler.
Modern schedulers such as Complete Fair Scheduler (CFS)
in Linux [27] have been providing priority differentiation and
enforcement mechanisms since long ago, e.g., by setting CPU
shares in the CPU control group. However, schedulers cannot
guarantee that performance will not degrade when latency-
sensitive serverless applications co-run with CPU-intensive
workloads.

We conduct a comparative experiment to evaluate the per-
formance of the DB-cache application in cases with or with-
out CPU-intensive workload. A 16-threaded CPU-intensive
workload (the Alu application) runs on the same CPU cores
as the DB-cache application. To analyze the existing prior-
ity enforcement mechanism, we set the CPU shares of the
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Alu application to 2, while the CPU shares for the DB-cache
application remains the default value (1024). Each function in-
voker sends a million LRANGE_600 requests to a DB-cache
instance with 50 parallel connections. We calculate the aver-
age processing latencies of the eight DB-cache instances in
each second. Figure 13 shows 109% higher latency when the
DB-cache instances co-run with the Alu application.

Analyzing the system resource utilization, we find that the
Alu application by itself causes nearly 100% CPU utilization
on all 16 virtual CPUs. While the CPU shares parameter
prioritizes the DB-cache threads over the Alu threads on the
same virtual CPU, the intense CPU usage from the sibling
hyperthread still limits the physical computation resource
available to DB-cache, thus degrading the performance of the
DB-cache application.
Implication XII

Linux CPU Shares is insufficient. A more comprehensive
system-level mechanism should accompany to maintain
the performance of serverless functions, such as enforcing
hardware thread priority across sibling virtual CPUs.

8 OPTIMIZATION CASE STUDY
The implications found with ServerlessBench can guide the
design of serverless platforms and serverless applications. In
this section, we briefly introduce a startup optimization work
inspired by Implication VII, Catalyzer [28].

Catalyzer is a customized serverless sandbox design pro-
viding both strong isolation and extremely fast function
startup. Instead of booting from scratch, Catalyzer achieves
initialization-less by restoring from well-formed checkpoint
images or forking from running template sandbox instances.
Fundamentally, it removes the initialization cost by reusing
state, which enables general optimizations for diverse server-
less functions.
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Figure 14: Startup latency with Catalyzer on gVisor.

We evaluate the startup latency with Catalyzer on gVisor
to show the effectiveness. Figure 14 shows the startup laten-
cies with different languages on Catalyzer (forking from tem-
plate sandboxes), ranging from 0.9ms to 2.4ms. Comparing
to results in Figure 8, Catalyzer brings orders-of-magnitude
speedup on function startup.

9 RELATED WORK
DeathstarBench [32] is a benchmark suite for large-scale ap-
plications with tens of microservices. It constructs several
microservice applications (e.g., social networks) to reveal the
implications of microservices, e.g., network contention and
QoS violations. CloudSuite [29] and DCBench [35] explore
the architecture implications of scale-out cloud workloads,
e.g., the organization of instruction and memory systems.
These benchmark suites fail to identify performance bottle-
necks of serverless platforms, which should provide high
scalability as well as low latency.

In serverless-specific field, Microsoft researchers charac-
terize the serverless workloads on Azure Functions [46].
FunctionBench [37] and SPEC-RG Vision [51] propose
serverless benchmark designs to reflect various aspects of
serverless computing. Previous works also evaluate and com-
pare how serverless applications behave on different plat-
forms [23, 30, 39]. These works focus more on the server-
less workloads and the performance differences between
platforms instead of analyzing the underlying implications
on serverless computing. Wang et al. [53] reverse-engineer
the architectures adopted by popular serverless providers
with architectural-specific measurements on these platforms.
Shahrad et al. [45] uncover architectural and microarchitec-
tural impacts on serverless computing with evaluations on
OpenWhisk. Our work distinguishes by three key factors.
First, we introduce a set of serverless benchmarks to analyze
performance metrics that are unique and significant in server-
less platforms. Second, we conclude serverless implications
that can inspire the designing and using of serverless systems.
Third, we evaluate on different categories of serverless plat-
forms (open-source, commercial and private cloud) with both
white-box and black-box analysis.

10 CONCLUSION
This paper proposes ServerlessBench, an open-source bench-
mark suite for cloud platform providing serverless computing
services. We have leveraged the benchmark suite to explore
12 new implications on existing platforms, which are the basis
for serverless system designers to optimize the platforms and
for application developers to refine their serverless applica-
tions.
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