
8

The Concurrent Learned Indexes for Multicore Data Storage

ZHAOGUO WANG, HAIBO CHEN, YOUYUN WANG, CHUZHE TANG, and HUAN
WANG, Shanghai Jiao Tong University, China, Shanghai AI Laboratory, China, and Ministry of Educa-
tion of the People’s Republic of China, China

We present XIndex, which is a concurrent index library and designed for fast queries. It includes a concurrent
ordered index (XIndex-R) and a concurrent hash index (XIndex-H). Similar to a recent proposal of the learned
index, the indexes in XIndex use learned models to optimize index efficiency. Compared with the learned
index, for the ordered index, XIndex-R is able to handle concurrent writes effectively and adapts its structure
according to runtime workload characteristics. For the hash index, XIndex-H is able to avoid the resize
operation blocking concurrent writes. Furthermore, the indexes in XIndex can index string keys much more
efficiently than the learned index. We demonstrate the advantages of XIndex with YCSB, TPC-C (KV), which
is a TPC-C-inspired benchmark for key-value stores, and micro-benchmarks. Compared with ordered indexes
of Masstree and Wormhole, XIndex-R achieves up to 3.2× and 4.4× performance improvement on a 24-core
machine. Compared with hash indexes of Intel TBB HashMap, XIndex-H achieves up to 3.1× speedup. The
performance further improves by 91% after adding the optimizations on indexing string keys. The library is
open-sourced1.

CCS Concepts: • Information systems → Data structures; • Theory of computation → Concurrent
algorithms.

Additional Key Words and Phrases: learned index structures, concurrent data structures

ACM Reference Format:
Zhaoguo Wang, Haibo Chen, Youyun Wang, Chuzhe Tang, and Huan Wang. 2022. The Concurrent Learned
Indexes for Multicore Data Storage. ACM Trans. Storage 18, 8, Article 8 (February 2022), 36 pages. https:
//doi.org/10.1145/3478289

1 INTRODUCTION
The pioneering study on the learned index [35] opens up a new perspective on how machine
learning (ML) can re-sculpt the decades-old system component, indexing structure. The key idea of
the learned index is to use learned models to approximate indexes. It trains the model with records’
keys and their positions, then uses the model to predict the position with the given key. The learned
index shows the cases of learning both ordered index and hash index.2

To deliver high lookup performance, the learned index uses simple learned models such as linear
models or single-layer neural networks. To accommodate to the limited capacity of simple models
(i.e., the inability to well fit complex functions), the learned index adds extra requirements on the
data layout. For instance, to learn an ordered index, it requires the data to be both ordered and
1https://ipads.se.sjtu.edu.cn:1312/opensource/xindex.git
2We refer to the ML-based ordered index and hash index proposed in [35] as the learned range index and the learned hash
index seperately.

Authors’ address: Zhaoguo Wang; Haibo Chen, haibochen@sjtu.edu.cn; Youyun Wang; Chuzhe Tang; Huan Wang, Shanghai
Jiao Tong University, Institute of Parallel and Distributed Systems, 800 Dongchuan Road, Minhang District, Shanghai, 200240,
China , Shanghai AI Laboratory, Shanghai, China , Ministry of Education of the People’s Republic of China, Engineering
Research Center for Domain-specific Operating Systems, Shanghai, China.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version
of Record was published in ACM Transactions on Storage, https://doi.org/10.1145/3478289.

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

https://doi.org/10.1145/3478289
https://doi.org/10.1145/3478289
https://ipads.se.sjtu.edu.cn:1312/opensource/xindex.git
https://doi.org/10.1145/3478289

8:2 Zhaoguo Wang, Haibo Chen, Youyun Wang, Chuzhe Tang, and Huan Wang

contiguous, so the key-position mapping is easier to learn. Using simple learned models, the learned
range index performs 1.5-3× better than B-tree.

However, the current study of the learned index is still preliminary and lacks practicability in a
broad class of real-world scenarios (Section 2.2). First, the learned range index does not support any
modifications, including inserts, updates, or removes. It also assumes the workload has a relative
static query distribution3 — it assumes all data are uniformly accessed. Second, the learned hash
index has to block all update requests during resizing to avoid losing concurrent updates. Last,
when indexing string keys, both the learned range index and the learned hash index suffer large
performance degradation compared with indexing integer keys.
In this paper, we present XIndex, a concurrent index library inspired by the learned index. It

includes two basic indexes: XIndex for range indexes (XIndex-R) and XIndex for hash indexes
(XIndex-H). XIndex-R leverages learned models to speed up the lookup. It can handle concurrent
writes efficiently with good scalability. Moreover, it is designed to adapt its structure determin-
istically at runtime and decouple its efficiency from runtime workload characteristics. XIndex-H
leverages learned models to reduce the hash conflict ratio comparing with traditional hash ta-
bles. It can concurrently process update requests during resizing. Besides, XIndex also integrates
methodologies that can index string keys with better performance than any existing system. Data
in XIndex is kept in memory for fast queries and updates, and persistence is achieved by logging
and checkpointing. Specifically, this paper makes the following contributions:
A scalable and concurrent learned range index, XIndex-R. Compared with the learned

range index, XIndex-R is able to efficiently handle concurrent writes without affecting the query
performance by leveraging fine-grained synchronization [8–10, 45] and a new compaction scheme,
Two-Phase Compaction. Furthermore, XIndex-R adapts its structure according to runtime workload
characteristics to support dynamic workload.We demonstrate the advantages of XIndex-R with both
YCSB and TPC-C (KV), a TPC-C-inspired benchmark for key-value stores. XIndex-R achieves up to
3.2× and 4.4× performance improvement comparing with Masstree and Wormhole, respectively,
on a 24-core machine.
A non-blocking learned hash index, XIndex-H. Compared with the learned hash index,

XIndex-H introduces non-blocking writes by performing the resize operation asynchronously
combined with Two-Phase Compaction. We demonstrate the advantages of XIndex-H with micro-
benchmarks. XIndex-H achieves up to 3.1× performance improvement compared with Intel TBB
HashMap [51].

A technique that can index string keys efficiently. Inspired by existing string key indexes [4,
6, 38, 45], XIndex takes advantage of common prefixes to reduce lookup latency. Specifically, it
greedily clusters keys with common prefixes into groups. Then, in each group, it uses the unique
part of each key, the partial key, to train the model and index the data. Experimental results show
that with these design choices, XIndex has up to 91% better performance over other state-of-the-art
index structures when indexing string keys.

The rest of the paper is organized as follows: Section 2 describes the background and motivation;
Section 3 gives the design of XIndex-R, including the support for string keys; Section 4 provides the
design of XIndex-H; Section 5 presents the design for persistence; Section 6 shows the evaluation
results; Section 7 summarizes related works; Section 8 concludes this paper.

2 BACKGROUND ANDMOTIVATION

3The query distribution describes the access frequencies of keys among queries within a specific workload. By contrast,
data distribution describes the keys and their lookup positions within a dataset.

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

The Concurrent Learned Indexes for Multicore Data Storage 8:3

2.1 The Learned Index
The learned index proposed by [35] views indexes as functions to be learned that map keys to data
positions. For common index types, including range indexes and hash indexes, these functions can
be easily obtained by transforming the cumulative distribution function (CDF). For example, for
fixed-length key-value pairs sorted by keys and stored in a continuous array, the index function is
effectively the CDF of the key distribution multiplied by the total number of records. The core idea
behind the learned index is to approximate CDFs with ML models such as deep neural networks
(Section 2.1.1), and use the learned CDFs to enhance and even replace these traditional indexes
(Sections 2.1.2 and 2.1.3).

2.1.1 Learning CDFs with the Recursive Model Index. To build learned indexes, we need first to learn
the CDF of the data indexed. Using a single MLmodel to learn the entire CDF falls short in prediction
accuracy due to the complexity of CDFs. To improve the prediction accuracy while keeping the
model efficient to execute, [35] propose a staged model architecture, termed the Recursive Model
Index (RMI).
An RMI contains multiple stages of models, which resemble the multi-level structure of B-tree.

In an RMI, one model (an analogy for B-tree nodes) is located at the first stage (an analogy for
B-tree levels), and each subsequent stage contains more models increasingly. To predict a CDF
value for a given key, the key is first used as input to activate the model at the first stage. The model
outputs an index number for finding a next-stage model to be activated. This process repeats until
the model at the last stage is activated. The final model produces the predicted CDF value of the
given key. The idea behind this architecture is to distribute regions of the complete CDF function
to different models, so that each model can learn from a much smaller training set and yield better
accuracy. Since upper-level models decide how keys should be distributed to lower-level models,
an RMI is trained stage by stage starting from the first stage. The true CDF values are used as labels
in the training set, and the next-model index number is obtained by multiplying CDF values with
the number of models at the next stage.

RMI has a rigid architecture that is configurable only through a few parameters: the number of
stages, the number of models at each stage, and the type of models. Unlike the proposal of Data
Alchemist [30] that envisions an automatic approach for synthesizing new data structures from
basic design elements [29, 31], RMI is, in essence, a new data structure that builds upon ML models.

2.1.2 The Learned Range Index. In the learned range index, records are sorted by keys and stored
in a continuous in-memory array. Learned CDFs are used to predict record positions in sorted data
arrays. Given the CDF 𝐹 , the position of a record is ⌊𝐹 (key) × 𝑁 ⌋, where 𝑁 is the total number of
records. However, learned CDFs have errors. In order to provide the correctness guarantee, the
learned range index stores the maximal and minimal prediction errors of the model. After training
the model, the learned range index calculates the errors by taking the difference between the actual
and predicted positions of each key and stores the maximum and minimum. For a record with
key k, its position must fall in [pred(𝑘) + errmin, pred(𝑘) + errmax], where pred(𝑘) is the predicted
position. Therefore, to lookup a record, the learned range index uses binary search within such
range. We refer to the logarithmic span of the binary search range, log2 (max_err −min_err + 1),
as the error bound.

2.1.3 The Learned Hash Index. The learned hash index is a separate chaining hash index with
linked lists. Instead of maximizing the randomness of the hash function, the learned hash index
places records according to the learned CDFs to minimize conflicts. Given the CDF 𝐹 , a learned
hash function ℎ can be expressed as 𝐹 (key) ×𝑀 , where𝑀 is the size of the bucket array. If the CDF

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

8:4 Zhaoguo Wang, Haibo Chen, Youyun Wang, Chuzhe Tang, and Huan Wang

 0

 1

 2

 3

100 1k 10k 100k 1M 10M 100M 1G

Dataset Size

stx::Btree

3
9
.3

2
2
.7

1
1
.8

7
.5

4
.8

2
.5

1
.5

0
.6

Learned

Fig. 1. The learned range index throughput normalized to stx::Btree. The numbers are stx::Btree’s absolute
throughputs in MOPS. The learned range index uses 10k models in 2-staged RMI where both stages use linear
models. stx::Btree uses the default fanout, 16.

is perfectly learned, no conflict exists, and each key is hashed to positions in sorted order. However,
learned CDFs have errors. Conflicting records are stored in the linked lists associated with buckets.

2.1.4 Advantages of the Learned Index. To demonstrate their advantages, we evaluate both the
learned range index and the learned hash index. For the learned range index, we evaluated different
dataset sizes under a normal distribution and compared it against stx::Btree [3], an open-sourced
B-tree (Figure 1). The learned range index can outperform stx::Btree with large datasets (≥ 10k)
due to small binary search costs, while with small datasets, its performance is limited by the model
computation cost. For example, when the dataset size is 100, the learned range index spends much
time on model computation (20 ns out of 42 ns). In contrast, stx::Btree only needs 25 ns to traverse
two nodes for each query. When the dataset size increases, the learned range index’s binary search
cost increases much slower than stx::Btree’s query time and its model computation cost is constant.
For example, when dataset size increases from 1M to 10M, the learned range index’s binary search
time only grows 37% (68 ns to 94 ns) and the error bound increases from 4.7 to 6.6. However,
stx::Btree’s query time increases by 92% (207 ns to 399ns). Therefore, the learned range index has
better performance than stx::Btree with larger datasets. For the learned hash index, we evaluated
with linear (Table 3) dataset and compared it against std::unordered_map, the hash map in C++
Standard Library. The learned hash index can efficiently reduce the conflict rate by 50× (from 35%
to 0.7%). As a result, for 8-byte value, the learned hash index can reduce the memory footprint by
26% (3.7GB v.s. 5.0GB).
The performance advantage of the learned index is tightly coupled with the data distribution

and the type of learning models. Together they decide the accuracy of learned CDFs and model
computation cost.When fast and small models can fit the distributionwith high accuracy, the learned
indexes can enjoy a significant reduction in search space and I/Os with little model computation
cost, with little memory overhead for storing models. Otherwise, the accuracy can be low even
with large and costly models. Such characteristics differ from classic optimization techniques such
as Bloom filter [5, 7, 22, 52], which uses additional bit arrays marked by elements’ hash values, and
fractional cascading [11, 12], which uses additional pointers to shorten subsequent lookup ranges.
In these techniques, the performance gain and space overhead are less related to the underlying
data distribution and can be probabilistically estimated. More similar to the learned index are the
trie index [24] and its variants [4, 27, 61] as they leverage the data distribution through delicate
encoding to save space and search time. In contrast, the learned index uses ML models to capture
the data distribution. However, the precise relationship between the data distribution and model
accuracy for different model types is yet unknown and requires further research.

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

The Concurrent Learned Indexes for Multicore Data Storage 8:5

Data	Array

Delta	Index

New	Data	Arrayr1

copied

r1 ···

op1:	in-place	update	r1
op2:	copy	all	records	from
data	array	&	delta	index

after	r1	is	copied

Data	Array

Delta	Index

r1'
r1 ···

New	Data	Array

in-place
update	is	lost

1 2

3

Fig. 2. Consistency issue with concurrent operations.

2.2 The Issues
Despite the performance advantage of the learned index, there are several issues that limit its
practicability.

2.2.1 Handling Updates. The learned range index does not provide an efficient method to handle
writes, especially under concurrent scenarios. Based on the current design, an intuitive solution
is to buffer all writes in a delta index, then periodically compact it with the learned range index.
The compaction includes merging the data into a new sorted data array and retraining the models.
Though straightforward, this method suffers from severe slowdown for queries. One reason is that
each request has to first go through the delta index before looking up the learned range index.
When building a learned range index with 200M records and using Masstree as the delta index,
with a workload of 10% writes, the query latency increases from 530ns to 1557ns due to the cost of
searching Masstree. Another reason is that concurrent requests are blocked by the compaction,
which is time-consuming. It takes up to 30 seconds to compact a delta index of 100k records with
the learned range index with 200M records.
A possible improvement for the above method is performing updates in-place with a non-

blocking compaction scheme. When we perform updates to existing records in-place, then only
newly inserted records are in the delta index. Thus, a query can only lookup the delta index
when it fails to find a matching record in the learned range index. Meanwhile, to avoid blocking
query requests, we can compact the data asynchronously with background threads. However, the
correctness issue arises if we simply use these two methods together — the effect of updates might
be lost due to the data race with background compaction. Let us consider this example (Figure 2),
where operation op1 updates record r1 in-place and operation op2 concurrently merges the delta
index with the learned range index into a new data array. With the following interleaving, op1’s
update to r1 will be lost due to the concurrent compaction: 1) op2 starts the compaction and copies
r1 to the new array; 2) op1 updates r1 in the old array; 3) op2 finishes the compaction, updates the
data array, and retrains the model.

2.2.2 Dependence on Workload Characteristics. The learned range index’s performance is tied
closely to workload characteristics, including both data and query distributions. This is because
the lookup efficiency depends on the error bounds of specific leaf stage models activated for the
queries. Meanwhile, the error bounds of different models vary. As a result, the learned range index
can have worse performance than B-tree with certain workloads. Table 1 shows the performance
of the learned range index and stx::Btree under both uniform and skewed query distributions on
the osm dataset (details in Section 6). Under the uniform query distribution, all keys have the same
chance to be accessed. Under the skewed query distribution, 95% queries access 5% hot records, and
the hot records of each workload reside in different ranges. “Skewed 1” chooses hot keys from the

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

8:6 Zhaoguo Wang, Haibo Chen, Youyun Wang, Chuzhe Tang, and Huan Wang

Systems Workloads

Skewed 1 Skewed 2 Skewed 3 Uniform

stx::Btree 1.84 1.86 1.83 1.16
learned index 1.57 3.71 1.41 2.38
Error bound 15.71 5.87 19.52 6.95

Table 1. Performance of stx::Btree and the learned index under different query distributions on the OSM
dataset. Throughputs are shown in MOPS. Error bound refers to the average error bound weighted by models’
access frequencies.

94th to 99th percentiles of the sorted data array. “Skewed 2” chooses from the 35th to 40th, while
“Skewed 3” chooses from the 95th to 100th.

The learned range index has better performance than stx::Btree under the workloads of “Skewed
2” and “Uniform,” but is outperformed under “Skewed 1” and “Skewed 3.” This is because under
workload “Skewed 1” and “Skewed 3,” the learned range index has much higher average error
bounds on the frequently accessed records, which hinders the query performance. The underlying
cause is that the learned range index only minimizes each model’s error individually, lacking the
consideration for model accuracy differences. Similar results can be observed in other workloads as
well (Section 6.2.3).

2.2.3 Supporting String Keys. When indexing string keys, The learned index suffers large perfor-
mance degradation compared with indexing integer keys. The performance [35] is even worse
(0.78×) than traditional index structure such as B-tree. Several challenges arise for model-based
indexes under string keys. First, the model computation cost increases dramatically along with
the key length. For instance, the linear model’s computation time increases from 16 ns to 400 ns
when the key length grows from 8 bytes to 128 bytes. Second, the model errors increase with the
increasing of key length. With the random dataset, the error bound of a linear model increases
from 24 to 67 when the key length increases from 8 bytes to 128 bytes. Although using complicated
models such as neural networks can reduce the errors, this method has high inference and training
costs because of the complexity. Third, it also takes a cost to perform the search on string keys.
This is because the comparison cost of two keys is proportional to the key length. With the above
example, it takes 1370 ns for the 128-byte key while only 590 ns for the 8-byte key.

2.2.4 Resizing the Learned Hash Index. The learned hash index has to block all update requests
during resizing, which significantly degrades its performance. To resize the index, the learned hash
index retrains the model with current data and then rehashes the data using the new model into a
new bucket array. To avoid losing concurrent updates due to data races, the learned hash index
needs to block all updates during resizing. To evaluate blocking cost, we resize a learned hash index
for linear dataset from 100M buckets to 150M buckets. The total blocking time is 160s. 33% of the
cost comes from model training, while 67% comes from the rehashing.

3 XINDEX FOR RANGE INDEXES
XIndex-R adopts a two-layer architecture design (Figure 3). The top layer contains a root node which
indexes all group nodes in the bottom layer. The data is divided into groups by range partitioning.
The root node uses a learned RMI model to index the groups. Each group node uses learned linear
models to index its data. For writes, XIndex-R performs updates in-place on existing records, and
associates each group with a delta index to buffer insertions.

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

The Concurrent Learned Indexes for Multicore Data Storage 8:7

ro
ot
		n
od
e

gr
ou
p	
no
de
s

RMI	Model

Group	Pointers

Group2Data	Array
Delta	Index

Linear	Models
Groupn···

Fig. 3. The architecture of XIndex-R.

Data	Array

Delta	Index

New	Data	Arrayr1'
p1 ···

concurrent	operations
modify	record

merge	phase:	create	new
data	array	with	pointers

RCU	barrier

r1' ···

New	Data	Array

modification
is	kept

Data	Array

Delta	Index

all	values
are	pointers

copy	phase:	copy	values
from	the	pointers

r1'

Fig. 4. Two-Phase Compaction prevents concurrent
operations being lost.

XIndex-R introduces a new compaction scheme, Two-Phase Compaction (Section 3.1.3), to
compact the delta index conditionally. The compaction is performed one group at a time in the
background and does not block any concurrent operations. The compaction has two phases: the
merge phase and the copy phase. In the merge phase, XIndex-R merges the current data array and
delta index into a new data array. Instead of directly copying the data, XIndex-R maintains data
references in the new data array. Each reference points to records being compacted, residing in
either the old data array or the delta index. After ensuring no accesses on the old data array through
an RCU barrier, XIndex-R performs the copy phase. It replaces each reference in the new data array
with the real value. Considering the previous example (Figure 2) with Two-Phase Compaction in
Figure 4, after the merge phase, the new data array contains references (e.g., 𝑝1) to each record
(e.g., 𝑟1). If there is a concurrent writer which updates 𝑟1 to 𝑟 ′1, the writer can safely proceed as the
record is already referenced in the new data array. After an RCU barrier, no thread will access the
old data array anymore. XIndex-R replaces 𝑝1 with 𝑟 ′1 in the copy phase.

XIndex-R is able to adjust its structure according to runtime workload characteristics (Section 3.3).
At runtime, if some group incurs high prediction error, XIndex-R adds more linear models in that
group with “model split” to improve the inference accuracy. If a group has too many models or its
delta index is too large, XIndex-R performs group split — replacing the group with two new groups,
each containing the half data of the old group. XIndex-R also performs model merge and group
merge, if the merging does not affect the prediction accuracy. Furthermore, if there are too many
groups, XIndex-R retrains the RMI model of the root node and may adjust its structure to improve
the accuracy.

3.1 The Basic Algorithm
3.1.1 The Data Structure. XIndex-R maintains three basic structures — record_t, root_t, and group_t,
for the record, the root node, and the group node, respectively (Algorithm 1).
The record_t is the basic representation of the data. It includes the key (key), the record data

(val), and some metadata. The is_ptr flag indicates whether val is the actual value or a memory
reference. The removed flag is set when a record is logically removed. The lock and version are
concurrency control information, which ensures execution exclusiveness of concurrent operations.

The root_t contains the groups’ information and an RMI model. The group information includes
each group’s address (groups), their smallest keys (pivots), and the total number of groups (group_n).
The RMI model (rmi) is used to predict the group with a given key. It is trained with elements in
pivots and their indexes, {(pivots[𝑖], 𝑖) | 𝑖 = 0, . . . , group_n − 1}. In the current design, XIndex-R
uses a two-stage RMI architecture solely consisting of linear models. The number of models in its
second stage is adjustable at runtime (Section 3.3).

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

8:8 Zhaoguo Wang, Haibo Chen, Youyun Wang, Chuzhe Tang, and Huan Wang

Algorithm 1: The structure of XIndex-R.

1 struct root_t:
2 rmi_t rmi;
3 uint32_t group_n;
4 key_t pivots[];
5 group_t* groups[];

6 struct record_t:
7 key_t key;
8 val_t val;
9 uint64_t /* composite 8 bytes */

10 is_ptr : 1 bit, removed : 1 bit
11 lock : 1 bit, version : 61 bits;

12 struct group_t:
13 key_t pivot;
14 bool_t buf_frozen;
15 uint16_t model_n;
16 uint32_t array_size;
17 model_t models[MAX_MODEL_N];
18 record_t data_array[];
19 buffer_t* buf ;
20 buffer_t* tmp_buf ;
21 group_t* next;

Algorithm 2: Get and put operations in XIndex-R.

1 get(key):
2 group← get_group(root, key)
3 pos← get_position(group, key)
4 val← EMPTY
5 if pos ≠ EMPTY then
6 val← read_record(group.data_array[pos])
7 if val = EMPTY then
8 val← get_from_buffer(group.buf , key)
9 if val = EMPTY ∧ group.tmp_buf ≠ NULL then

10 val← get_from_buffer(group.tmp_buf , key)
11 return val

12 put(key, val):
13 retry:

14 group← get_group(key)
15 pos← get_position(group, key)
16 if pos ≠ EMPTY ∧

update_record(group.data_array[pos], val) then
17 return
18 if group.buf _frozen = FALSE then
19 upsert_to_buffer(group.buf , key, val)
20 else
21 if update_in_buffer(group.buf , key, val) then
22 return
23 if group.tmp_buf = NULL then
24 goto retry
25 upsert_to_buffer(group.tmp_buf , key, val)

The group_t has three basic components: the data, the models, and the delta index. For the data,
all records indexed by the group is continuously stored in data_array. Each group uses at least
one linear model to index the record in data_array, and the models are maintained in models. The
model_t includes parameters of the linear model and the smallest key of the model’s belonging
data range. The buf is the delta index, which buffers all insertions. During compaction, buf_frozen
is set to be true and buf is frozen. The tmp_buf serves as a temporary delta index, which buffers
all insertions temporarily during the compaction. The next pointer is used by group split operation
(Section 3.1.4). For optimization purposes, the group_t maintains its smallest key in a separate
variable, pivot.

3.1.2 Basic Operations. XIndex-R provides basic index interfaces — get, put, remove, and scan
(Algorithm 2). All operations first use the root to find the corresponding group (Lines 2 and 14),
then look up the position of the requested record in data_array with the given key (Lines 3 and 15).
After then, their procedures diverge.

To find the corresponding group (get_group), XIndex-R first predicts a group number with the
RMI model in the root node (root.rmi). Then, it corrects the group number with binary search
the root.pivots within an error-bounded range. After finding a candidate group, it needs to check

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

The Concurrent Learned Indexes for Multicore Data Storage 8:9

Algorithm 3: Two-Phase Compaction

1 compact(group):
/* phase 1 */

2 group.buf _frozen← TRUE
3 rcu_barrier()
4 group.tmp_buf ← allocate new delta index
5 new_group← allocate a new group
6 new_group.data_array← merge(

group.data_array, group.buf)
7 new_group.buf ← group.tmp_buf
8 train new_group’s models with its data_array

9 init new_group’s other fields
10 old_group← group
11 atomic_update_reference(group, new_group)
12 rcu_barrier()

/* phase 2 */
13 foreach record in new_group.data_array do
14 replace_pointer(record)
15 rcu_barrier()
16 reclaim old_group’s memory

the group’s next pointer further. If the pointer is not NULL, it follows the pointer to find the
corresponding group by comparing group.pivot with the target key. Checking the next is necessary,
this is because some newly created group may be linked to a group’s next, and not indexed by the
root yet (Section 3.1.4).

After finding the group group, XIndex-R tries to look up the record within its data_array. It first
finds the correct linear model for the prediction. It scans the group.models and uses the first model
whose smallest key is not larger than the target key. Then, it uses the model to predict a position in
the group.data_array. Last, it corrects the position with binary search in a range bounded by the
model’s error.

After looking up data_array, the procedures diverge. For get, if XIndex-R finds a record matching
the requested key (Line 5) in data_array, then it tries to read a consistent value with helper function
read_record (Line 6). An EMPTY result indicates a logically removed record. In this case, the get
proceeds to search buf (Line 7-8), then search the temporary delta index if tmp_buf is not NULL
(Line 9-10). A get request returns as soon as a non-EMPTY result is fetched, otherwise it returns
EMPTY.

For put and remove, similar to get, if a matching record is found inside data_array, XIndex-R first
tries to update/remove the record in-place (Line 16). If XIndex-R cannot perform update/remove
in-place, then it proceeds to perform an upsert on buf (Line 19) and optionally tmp_buf (Line 25)
only if the frozen_buf flag is true (Line 18). The upsert operation updates the record in-place if a
previous version exists, and otherwise inserts a new record. For scan, XIndex-R first locates the
smallest record that is ≥ requested key, and then consistently reads n consecutive records.

We elaborate on the details of put, remove, and helper functions in conjunction with concurrent
background operations in Section 3.2 since most subtleties stem from consistency consideration.

3.1.3 Compaction. XIndex-R uses dedicated non-stop background threads to compact data arrays
with delta indexes4. Compaction is performed one group at a time to isolate the performance impact
to other groups. To ensure consistency in face of concurrent operations (Section 2.2), XIndex-R
divides the compaction into two phases, merge phase and copy phase (Algorithm 3).
In the merge phase, XIndex-R merges a group’s data_array and buf into a new sorted array

where values are pointers to existing records. XIndex-R first sets the old group’s buf_frozen flag
to stop newly issued puts inserting to buf (Line 2). Then XIndex-R initializes tmp_buf to buffer
insertions during compaction (Line 4). Afterward, it creates a new group (Line 5) and merges the
old group’s data_array and buf into the new group’s data_array (Line 6). In new_group.data_array,
4This might lead to data arrays being compacted with relatively small delta indexes. In this case, compaction is still performed
as it helps keep the delta index consistently small, which is beneficial for lookup performance.

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

8:10 Zhaoguo Wang, Haibo Chen, Youyun Wang, Chuzhe Tang, and Huan Wang

Algorithm 4: The group split operation in XIndex-R.

1 split(group):
/* step 1 */

2 g′𝑎 , g′𝑏 ← allocate 2 new group
3 g′𝑎 .{data_array, buf }← group.{data_array, buf }
4 g′

𝑏
..{data_array, buf }← group.{data_array, buf }

5 g′𝑎 .pivot← group.pivot
6 g′

𝑏
.pivot← group.data_array[group.array_size / 2]

7 g′𝑎 .next← g′
𝑏

8 init other fields of g′𝑎 and g′
𝑏

9 old_group← group
10 atomic_update_reference(group, g′𝑎)
11 {g′𝑎 , g′𝑏 }.buf_frozen← TRUE
12 rcu_barrier()
13 {g′𝑎 , g′𝑏 }.tmp_buf ← allocate new delta indexes

/* step 2.1, merge phase */

14 g𝑎 , g𝑏 ← allocate 2 new groups
15 tmp_array← merge(old_group.data_array,

old_group.buf)
16 {g𝑎 , g𝑏 }.data_array← split(tmp_array, g′

𝑏
.pivot)

17 {g𝑎 , g𝑏 }.buf ← {g′𝑎 , g′𝑏 }.tmp_buf
18 train {g𝑎 , g𝑏 }’s models with {g𝑎 , g𝑏 }.data_array
19 {g𝑎 , g𝑏 }.pivot← {g′𝑎 , g′𝑏 }.pivot
20 g𝑎 .next← g𝑏
21 init g𝑎 ’s and g𝑏 ’s other fields
22 atomic_update_reference(group, g𝑎)
23 rcu_barrier()

/* step 2.2, copy phase */
24 foreach record in {g𝑎 , g𝑏 }.data_array do
25 replace_pointer(record)
26 rcu_barrier()
27 reclaim {old_group, g′𝑎 , g′𝑏 }’s memory

the value of each record is the reference to the corresponding record in either group.data_array or
group.buf, and the is_ptr flag of each record is set to be TRUE. During merging, XIndex-R skips the
logically removed records. The old group’s tmp_buf is reused as the new group’s buf (Line 7). After
training linear models (Line 8) and initializing the remaining metadata of the new group (Line 9),
XIndex-R atomically replaces the old group with the new one by changing the group reference in
root’s groups (Line 11).

In the copy phase, XIndex-R replaces each reference in the new group’s data_array with the latest
record value (Line 14). The replacement is performed atomically with helper function replace_pointer
(Algorithm 5). XIndex-R uses rcu_barrier (Line 15) to wait for each worker to process one request,
so the old group will not be accessed after the barrier. Then it can safely reclaim the old group’s
memory resources (Line 16). To implement rcu_barrier, each worker thread is required to maintain
a version that gets incremented after finishing each operation. Invoking rcu_barrier causes the
background thread to scan through these version twice, checking that each has been incremented
which indicates concurrent operations active at the invocation time have finished.

Though the idea of compacting buffered writes in background commonly seen in LSM tree-based
systems is not new [1, 32, 44, 49, 54, 57, 59], our compaction scheme is fundamentally different from
theirs. Unlike LSM tree-based systems where compacted data is read-only, we allow concurrent
in-place updates during compaction, so that read operations do not need always to visit the delta
index (an analogy for smaller levels in LSM tree). This design decision creates challenges of ensuring
immediate visibility of committed puts and preserving them after compaction, which are addressed
by Two-Phase Compaction.

3.1.4 Structure Updates. XIndex-R adapts its structure to dynamic workloads at runtime (Sec-
tion 3.3) with model split/merge, group split/merge, and root update operations.
Model split and model merge. XIndex-R supports splitting and merging models within a group

to improve lookup efficiency. For model split, XIndex-R first clones the group node. Both group
nodes reference the same data_array and buf. Then, it increments the new node’s model_n, evenly
reassigns the group’s data to each model, and retrains all models. At last, XIndex-R atomically

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

The Concurrent Learned Indexes for Multicore Data Storage 8:11

Data Array

Delta Index

New Data Array 1

r1' p1 ···

concurrent operations
modify record

merge phase: create 2 new
data arrays with pointers

RCU barrier

r1' ···
New Data Array 1

modification
is kept

Data Array

Delta Index

copy phase: copy values
from the pointers

r2'r2'

p2 ···

New Data Array 2

all values
are pointers

r2' ···

New Data Array 2

r1'

(a) Group split.

New Data Array

p2 ···

concurrent operations
modify record

merge phase: create new
data array with pointers

RCU barrier

r2' ···

New Data Array

modification
is kept

all values
are pointers

copy phase: copy values
from the pointers

Data Array

Delta Index

r1'

Data Array

Delta Index

r2'
p1

Data Array

Delta Index

r1'

Data Array

Delta Index

r2'
r1'

(b) Group merge.

Fig. 5. Group split and group merge operations are performed similarly as Two-Phase Compaction.

updates the group reference in root’s groups to the new group. For model merge, it essentially
performs a reverse procedure of model split.

Group split. To avoid blocking other operations, XIndex-R uses two steps to split a group’s data
evenly into two groups (Algorithm 4). It uses a similar scheme as Two-Phase Compaction to
allow concurrent modification during performing group split, which is shown in Figure 5a. In
step 1, XIndex-R creates two logical groups. They share the data and delta index, but each has its
own temporary delta index. As a result, both groups can buffer the insertion in their temporary
delta indexes during the split. In detail, XIndex-R creates g′𝑎 and g′

𝑏
(Line 2). They share the same

data_array and buf with the old group (Line 3) but have different pivot keys (Line 5-6). XIndex-R
links g′

𝑏
to g′𝑎’s next field (Line 7) and replaces the old group with g′𝑎 in root’s groups (Line 10).

Last, XIndex-R sets the buf_frozen flag (Line 11) and allocates tmp_buf for g′𝑎 and g′
𝑏
(Line 13).

In step 2, XIndex-R physically divides the data into two groups. Similar to compaction, this step
has two phases. In the merge phase, XIndex-R first merges the old group’s data_array and buf
into tmp_array (Line 15). Then, it splits the tmp_array with the key of g′

𝑏
.pivot, and initializes two

new groups, g𝑎 and g𝑏 accordingly (Line 16). It also reuses the tmp_buf of g′𝑎 (g′
𝑏
) as the buf of g𝑎

(g𝑏)[Line 17]. In the copy phase, for each group, the references in data_array are replaced with
real values (Line 25). Last, XIndex-R links g𝑏 at g𝑎 .next (Line 20) and replaces g′𝑎 with g𝑎 in root’s
groups (Line 22).
Group merge. XIndex-R merges two consecutive groups’ data into one new group to reduce

the cost to lookup groups. As shown in Figure 5b, similar to group split, data is merged in two
phases. In the merge phase, both groups’ data_arrays and buf s are merged together while inserts
are buffered in a single shared tmp_buf. In the copy phase, the merged references are replaced with
concrete values. Finally, among the two consecutive groups in root’s groups, the former is replaced
with the new group and the latter is marked as NULL, which will be skipped by get_group. For
brevity, we omit the pseudocode for group merge.
Root update. XIndex-R flattens root’s groups to reduce pointer access cost, retrains, and condi-

tionally adjusts the RMI model to improve prediction accuracy. For root update, XIndex-R creates a
new root node with a flattened groups and retrains the RMI model. After a new root is initialized,
XIndex-R replaces the global root pointer atomically.

3.2 Handling Concurrency
XIndex-R achieves high scalability on the multicore platform using Two-Phase Compaction, along
with classic techniques such as fine-grained locking [4, 45, 58], optimistic concurrency control [8–
10, 45], and RCU [46]. We first discuss the coordination between writers that ensures execution
exclusiveness (Section 3.2.1), then discuss how readers can always fetch a consistent result with con-
current writers (Section 3.2.2). Afterward, we discuss the interleaving with concurrent background

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

8:12 Zhaoguo Wang, Haibo Chen, Youyun Wang, Chuzhe Tang, and Huan Wang

Algorithm 5: Helper functions.

1 read_record(rec):
2 while TRUE do
3 ver ← rec.ver
4 removed, is_ptr, val← rec.{removed, is_ptr, val}
5 if ¬rec.lock ∧ rec.version = ver then
6 if removed then
7 val← empty
8 else if is_ptr then
9 val← read_record(DEREF(val))

10 return val
11 update_record(rec, val):
12 lock(rec.lock)
13 succ← FALSE
14 if rec.is_ptr then
15 succ← update_record(DEREF(rec.val), val)

16 else if ¬rec.removed then
17 rec.val← val; succ← TRUE
18 rec.version++
19 unlock(rec.lock)
20 return succ

21 replace_pointer(rec):
22 lock(rec.lock)
23 ref.val← read_record(DEREF(rec.val))
24 if ref.val = empty then
25 rec.removed ← TRUE
26 rec.is_ptr ← FALSE
27 rec.version++
28 unlock(rec.lock)

operations (Section 3.2.3) and provide a proof sketch of the correctness condition (Section 3.2.4).
The formal proof can be found in the extended version5.

For brevity, we treat remove as a special put, which updates existing records’ removed flag.
We further omit group merge and root update in the discussion, as the reasoning resembles
compaction’s and group split’s. In XIndex-R, compaction and structure updates are performed by
dedicated background threads sharing no conflicts, thus avoiding concurrency issues due to their
interleavings.

3.2.1 Writer-Writer Coordination. XIndex-R ensures that conflicting writers, put/removes with
the same key, will execute exclusively with the per-record lock in data_array and the concurrent
delta index. All writers first try to update a matching record in data_array (Line 16, Algorithm 2),
and the per-record lock is acquired to prevent interleaving with concurrent writers (Line 12,
Algorithm 5). If updating data_array is not feasible, writers then operate on the delta index (Line 19,
Algorithm 2), protected by a single read-write lock in the basic version. We improve its scalability
with fine-grained concurrency control as an optimization (Section 3.5).

3.2.2 Writer-Reader Coordination. XIndex-R ensures readers can always fetch a consistent result
in the face of concurrent writers with locks and versions in data_array and the concurrent delta
index. A get first tries to read a value from data_array (Line 6, Algorithm 2). It snapshots the
version number before reading the value (Line 3, Algorithm 5). After the value is fetched (Line 4,
Algorithm 5), get validates if the lock is being held (to detect concurrent writer) and if the current
version number matches the snapshot (to detect inconsistent or stale result)[Line 5, Algorithm 5].
If the validation fails, the get repeats the procedure until a successful validation, so the result is
consistent and the latest. If reading from data_array is not feasible, it then tries to read from the
delta index (Line 8, Algorithm 2). This reader-retry synchronization method is introduced in [21],
and similar ideas are exploited in [36, 37]. The concurrent delta index with a single read-write lock
ensures the fetched result is consistent.

5https://ipads.se.sjtu.edu.cn/_media/publications/xindex_extended.pdf

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

https://ipads.se.sjtu.edu.cn/_media/publications/xindex_extended.pdf

The Concurrent Learned Indexes for Multicore Data Storage 8:13

3.2.3 Interleaving with Background Operations. With the presence of background operations,
XIndex-R ensures that the effects of writers are preserved and can always be correctly observed by
readers. Space constraints preclude a full discussion, but we mention two important conditions:
(1) no successful put will be lost, and (2) no duplicate records (records with the same key) will be
created6.
To ensure no lost put, the key is to perform data movement in two phases, the merge phase

and the copy phase, to preserve concurrent modifications. During the merge phase, all records
in the old group’s data_array and buf can be correctly referenced in the new group’s data_array.
This is because both the data_array and buf of the old group are read- and update-only, as the
buf_frozen flag forbids insertions (Line 2, Algorithm 3 and Line 11, Algorithm 4). In the copy phase,
those references can be atomically replaced with latest values by replace_pointer, since it uses
the per-record lock to coordinate with concurrent writers (Line 22, Algorithm 5). To ensure all
concurrent writers use the same lock, XIndex-R places rcu_barrier before the copy phase (Line 12,
Algorithm 3 and Line 23, Algorithm 4), which waits for each writer (and reader) to process one
request. Therefore, later conflicting puts will not reference the old group’s data_array. In addition,
concurrent inserts are preserved in the shared temporary delta index (Line 7, Algorithm 3 and
Line 17, Algorithm 4).

To ensure no duplicate records, XIndex-R avoids insertions to different delta indexes, namely buf
and tmp_buf. XIndex-R only initializes tmp_buf until all writers observe a frozen buf using the
rcu_barrier (Line 2-4, Algorithm 3 and Line 11-13, Algorithm 4). Therefore, whenever tmp_buf is
used to serve requests, the buf is sure to be read- and update-only.

3.2.4 Proof Sketch of Linearizability. The correctness condition of XIndex-R can be described as “a
get(k) must observe the latest committed put(k, v),” namely, linearizability [28]. XIndex-R formally
provides the correctness condition by ensuring the following inductive invariants. (𝐼1) If there is a
put(k, v) committed, then there is exactly one record with key k in XIndex-R; (𝐼2) If there is a record
with key k in XIndex-R, then its value equals the value of the last committed put(k, v); and (𝐼3) If
there is a record with key k in XIndex-R when a get commits, then the get returns the value of the
record.
For 𝐼1, in addition to no duplicate records guarantee we discussed in Section 3.2.3, XIndex-R

ensures that a new record will be created by put if no record currently exists yet. This is obvious
as such put will invoke insert_buffer (Lines 19 and 25, Algorithm 2), and the concurrent delta
index will handle the record creation. For 𝐼2, the key is to ensure that no put will be lost, as
we discussed in Section 3.2.3. For 𝐼3, the key is to let get and put have the same lookup order
(data_array→buf→tmp_buf). Since only the last place (buf when tmp_buf is null, otherwise
tmp_buf) is insertable, a get returning an empty result only indicates that the put that creates the
record has not yet finished. Therefore, a get can fetch the value correctly.

3.3 Adjusting XIndex-R at Runtime
To reduce the performance variation, XIndex-R adjusts its structure according to runtime workload
characteristics. The basic idea is to keep both error bound and delta index size small with structure
update operations (model split/merge, group split/merge, and root update). Several background
threads periodically check error bound and delta index size of each group and perform corresponding
operations accordingly (Table 2 and Figure 6).
First, XIndex-R leverages model split to lower the error bound and model merge to reduce the

cost of traversing a group’s models array. Specifically, when a model’s error bound is greater than
6Duplicate records do not directly violate correctness, as long as XIndex-R enforces a freshness ordering, data_array ≽ buf
≽ tmp_buf, where data_array has the latest version. However, doing so requires non-trivial efforts.

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

8:14 Zhaoguo Wang, Haibo Chen, Youyun Wang, Chuzhe Tang, and Huan Wang

R: Root, G: Group, M: Model

R

···
M2

M1

M2

M1

G1’

R

···
M1 M1

G1’

R

···
M2

M1

c.Group Split

R

···

G1

M1

a.Model Split

b.Model Merge

R'

···
M1 M1

f.Root Update

d.Group Split

e.Group Merge

b.Model Merge

a.Model Split

G1 G1 G1 G1Gn Gn Gn Gn G2 Gn+1

Fig. 6. Dynamic adjustment procedure illustration.

Operations Trigger Condition

a. Model Split Error bound > 𝑒 and the number of models < 𝑚

b. Model Merge Error bound ≤ 𝑒 × 𝑓 and the number of models > 1
c. Group Split Error bound > 𝑒 and the number of models =𝑚

d. Group Split Buffer size > 𝑠

e. Group Merge The number of models = 1 and error bound ≤ 𝑒 × 𝑓 and buf ≤ 𝑠 × 𝑓

f. Root Update When groups are created and/or removed
Table 2. Conditions for structure update operations.

the error bound threshold (𝑒 , specified by the user) and the model number of the corresponding
group is less than the model number threshold (𝑚, specified by the user), XIndex-R will do model
split (Figure 6-a). When a model’s error bound is less than or equal to 𝑒 × 𝑓 and the model number
of the corresponding group is greater than one, XIndex-R will perform model merge (Figure 6-b).
𝑓 ∈ (0, 1) is a tolerance factor specified by the user.
When a model’s error bound is greater than 𝑒 , but the model number of the corresponding group

equals𝑚, XIndex-R will perform group split (Figure 6-c). Besides, if a group’s delta index size is
greater than the delta index size threshold (𝑠 , specified by the user), XIndex-R will also split the
group (Figure 6-d). To reduce the cost of locating a group in the root, XIndex-R performs group
merge (Figure 6-e) when the following conditions hold — for two neighboring groups, 1) they both
only have one model and the model’s error bounds are less than or equal to 𝑒 × 𝑓 ; and 2) their delta
index sizes are both less than or equal to 𝑠 × 𝑓 .
XIndex-R periodically updates the root to reduce the access cost. Specifically, XIndex-R first

checks all groups and perform model split/merge and group split/merge accordingly. If there is any
group created or removed, XIndex-R then performs root update (Figure 6-f). During root update, if
the average error bound is greater than 𝑒 , XIndex-R will increase the number of 2nd stage models
of root’s 2-stage RMI7. If the average error bound is less than or equal to 𝑒 × 𝑓 , XIndex-R reduces
models.

3.4 Supporting String Keys
To solve the performance issue under string keys, XIndex-R adopts three important design choices
tailored for string keys. First, XIndex-R uses partial keys to reduce both model computation and
comparison costs (Section 3.4.1). The partial keys are order-preserving substrings of original keys
that uniquely identify each record within a group. An efficient algorithm is used to compute partial
keys. Second, XIndex-R leverages a greedy grouping strategy to adaptively partition keys into
7The number of models stops increasing when it reaches a given limit.

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

The Concurrent Learned Indexes for Multicore Data Storage 8:15

Algorithm 6: Computing partial keys.

1 partial_key(keys):
2 pl← cpl(0, keys[0], keys[0].len, keys[1],

keys[1].len)
3 max_prefix ← pl
4 for i← 2 to keys.size do
5 pl← cpl(0, keys[i-1], pl, keys[i], keys[i].len)
6 l← cpl(pl, keys[i-1], keys[i-1].len, keys[i],

keys[i].len)
7 max_prefix ← max(max_prefix, pl + l)

8 end for
9 el← max_prefix - pl

10 return pl, el

11 cpl(s, k1, len1, k2, len2): /* common prefix length */
12 for i← s to min(len1, len2) do
13 if k1[i] ≠ k2[i] then
14 return i - s
15 end for
16 return min(len1, len2) - s

different groups (Section 3.4.2). After partitioning, each group contains a maximal number of
keys, which keeps the group’s model error and partial key length under specified thresholds. This
partition scheme improves XIndex-R by reducing the number of groups and hence the indexing
burden of the root. Third, XIndex-R uses piecewise linear models instead of an RMI model in
the root node to index groups (Section 3.4.3). Using piecewise linear models helps XIndex-R gain
control on indexing the key range of each model. As a result, partial keys and greedy grouping
strategy can be reused for the root.

3.4.1 Partial Keys. In each group, XIndex-R extracts partial keys for model computation and
comparisons. Informally, partial keys are the shortest fixed-length substrings of the keys within the
group, which (1) have stripped off common prefixes, and (2) remain distinguishable from each other
with respect to their original ordering. Specifically, for any key in a group, denoted as 𝑘 , the partial
key is 𝑘[pl:pl + el], which is an el-length substring, starting at the zero-based index pl. The pl is
the longest common prefix length among keys in the group, and the el is the effective key length
defined below. The effective key length is the shortest prefix length among the stripped keys, keys
with first pl characters removed, that still maintains uniqueness within one group.

Algorithm 6 summarizes the procedure for identifying the partial key of a sorted key array. Given
a sorted key array, XIndex-R first initializes the prefix length as the common prefix length of the first
two keys, using the helper function common_prefix_len (Line 2). common_prefix_len returns the
common prefix length of the substrings of input keys k1 and k2, starting at 𝑠 (Line 1-16). Afterward,
XIndex-R iterates over the sorted key array with a for loop to calculate the longest common prefix
of all the keys, pl, and the longest common prefix length of two adjacent keys, max_prefix. Within
a loop, let k be the key being examined, XIndex-R updates pl to be the prefix length between the
existing common prefix among already examined keys and 𝑘 (Line 5). max_prefix is updated to
be the common prefix length between the current key and its previous key, pl + l, if this value is
larger than the previous one (Line 6-7). Finally, the effective length is calculated bymax_prefix − pl
(Line 9).

XIndex-R benefits from partial keys in two ways. First, partial keys improve the efficiency of
both model computation and model training: XIndex-R directly tokenizes partial keys into feature
vectors, resulting in shorter feature length and hence reduced arithmetic computation. Second,
the binary search overhead is reduced as well. XIndex-R uses the partial key for key comparison
because of the uniqueness and order preservation of each partial key. Hence, the comparison cost
is, to a great extent, diminished.

Other systems have also exploited the idea of indexing using substrings of keys. [6] uses a similar
partial key design to reduce the comparison cost of B-tree. However, its partial keys are computed

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

8:16 Zhaoguo Wang, Haibo Chen, Youyun Wang, Chuzhe Tang, and Huan Wang

Algorithm 7: The greedy grouping strategy.

1 greedy_grouping(keys, et, pt, fs, bs): /* fs > bs */
2 𝑔𝑟𝑜𝑢𝑝𝑠 ← EMPTY
3 while 𝑖 < 𝑘𝑒𝑦𝑠.size do
4 cur_grp← EMPTY; err ← 0; par_len← 0
5 while err < et and par_len < pt do
6 records← retrieve next fs records
7 𝑖 ← 𝑖 + fs
8 add records to cur_grp
9 train models on cur_grp

10 err ← average_error(cur_grp)
11 par_len← partial_key(cur_grp.key_array)

12 end while
13 while err > et or par_len > pt do
14 𝑖 ← 𝑖 − bs
15 remove last bs records from cur_grp
16 train model on cur_grp
17 err ← average_error(cur_grp)
18 par_len← partial_key(cur_grp.key_array)
19 end while
20 add cur_grp to 𝑔𝑟𝑜𝑢𝑝𝑠
21 end while
22 return 𝑔𝑟𝑜𝑢𝑝𝑠

and stored for each consecutive key pairs, while we only compute and store two parameters, pl and
el, for each group, which usually serves hundreds to thousands of keys. Furthermore, we adjust
the grouping with heuristics to fully utilize the computed partial key information (Section 3.4.2).
Meanwhile, storage systems commonly use fixed-length prefixes of keys for indexing to save space
and reduce I/O cost [39, 50].

3.4.2 A Greedy Grouping Strategy. XIndex-R greedily range-partitions data into different groups
to ensure that the partial key length and model errors are under specified thresholds. Algorithm 7
depicts this greedy strategy of grouping data in XIndex-R. User-specified parameters are used to
fine-tune XIndex-R: the error threshold et, the partial key length threshold pt, the forward step
size fs, and the backward step size bs. XIndex-R iterates over all the records. During the iteration,
it determines whether to add fs records into the current group or remove bs records from the
current group according to the two thresholds, et and pt. Specifically, each time XIndex-R moves
forwards, it first adds the next fs records to the current group (Line 6-8). Then XIndex-R trains a
linear model on the current group to get the average error (Line 9-10) and uses Algorithm 6 to
compute the length of the partial key (Line 11). It continues to move forwards as long as both the
model error and partial key length are smaller than their respective thresholds. The last forward
step can cause the violation of thresholds; therefore XIndex-R uses backward steps for alleviation.
For each backward step, XIndex-R removes the most recently added bs records from the current
group (Line 15). It repeats backward steps until both the model error restriction and partial key
length restriction are restored (Line 13).

3.4.3 Using Piecewise Linear Model in the Root. XIndex-R uses piecewise linear models in the
root node to index groups. Piecewise linear models are a series of linear models. Each model is
responsible for serving requests of non-overlapping key ranges. At training time, these linear
models are trained using group pivots. XIndex-R exploits the same greedy grouping algorithm to
determine assignment of group pivots to each model, which in turn determines the key range of
each model. Then it applies the partial key in each model. At inference time, XIndex-R uses binary
search to find responsible linear models for requests.
XIndex-R chooses piecewise linear models instead of the RMI model for two reasons. First, in

RMI, two pivots distant with each other can be assigned to the same leaf model, which results in a
large span in the key range of the leaf model. The larger span the key range has, the less chance
XIndex-R has to remove common prefix for the model, and hence less performance improvement
from partial keys. Second, in practice, multiple stages of linear models in RMI causes a significant

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

The Concurrent Learned Indexes for Multicore Data Storage 8:17

increase in computational overhead for string keys. This increase cancels off the benefits of reduced
model error brought by RMI, leading to no improvement for the overall performance. For a specific
case, after adding another layer, binary search time is reduced from 1291 ns to 1091 ns, but the
inference time increases from 227 ns to 616 ns.

3.5 Optimizations
3.5.1 A Scalable Delta Index. In the basic version, XIndex-R uses stx::Btree protected by a global
read-write lock as its delta index. This limits the scalability when concurrent threads perform
operations (e.g., get and put) on the same group. We did not adopt the designs of existing concurrent
index structures such as Bayer and Schkolnick’s B-tree [2], Foster B-tree [26], and Masstree [45]
due to performance consideration. Bayer and Schkolnick’s B-tree and Foster B-tree use fine-grained
read-write locks to protect each node, introducing performance overhead on index lookup. For
the Masstree, it employs additional mechanisms to support multiple variable length values for
each key, which incurs performance penalty. Moreover, the epoch-based memory reclamation in
Masstree leads to high tail latency. Thus, we implement a more light-weight and scalable structure
as the delta index: it uses optimistic concurrency control to protect read accesses on each node, and
fine-grained locks for write. It doesn’t physically remove deleted nodes from the structure. Instead,
it reclaims the memory of the entire structure after the compaction.

3.5.2 Fast Sequential Insertions. Sequential insertion is a common pattern in real-world workloads,
such as periodically checkpointing. For such cases, the user can provide hints to XIndex-R so that
XIndex-R can pre-allocate space to allow appending records directly to data_array and conditionally
retrain models. Specifically, each group maintains an additional capacity field and a per-group lock.
Only when XIndex-R detects the sequential insertion pattern, will it use the lock to coordinate
concurrent sequential insertions. Otherwise, the lock is not used, so the scalability of XIndex-R is
intact. Since many sequential insertion workloads have relatively static data distribution, XIndex-R
only retrains models when the current model cannot generalize to newly appended data, namely,
when the error bound exceeds the threshold.

3.5.3 Model Inference with SIMD. To accelerate model inference, XIndex-R exploits SIMD instruc-
tions to perform model computation. Specifically, XIndex-R uses _mm256_fmadd_pd in FMA to
perform the fused multiply-add operation of every four 8-byte floating-point numbers in one
instruction. XIndex-R will fall back to the conventional way — one multiplication at a time — for
dot product when the feature length is less than four.

4 XINDEX FOR HASH INDEXES

ro
ot
		n
od
e

gr
ou
p	
no
de
s

Model

Group	Pointers

Group2

Model

Bucket	Array Groupn

...

...

...

Fig. 7. The architecture of XIndex-H.

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

8:18 Zhaoguo Wang, Haibo Chen, Youyun Wang, Chuzhe Tang, and Huan Wang

Algorithm 8: The structure of XIndex-H.

1 struct root_t:
2 model_t root_model;
3 uint32_t group_n;
4 group_t* groups[];

5 struct group_t:
6 bool_t frozen;
7 uint32_t bucket_num;
8 model_t model;
9 bucket_t bucket_arr[];

10 group_t* tmp_group;

11 struct bucket_t:
12 chain_t* chain;
13 key_t key;
14 val_t val;
15 uint64_t /* composite 8 bytes */
16 uninitialized : 1 bit
17 is_ptr : 1 bit, removed : 1 bit
18 lock : 1 bit, version : 60 bits;

To improve the efficiency of the learned hash index, we propose the design of XIndex-H. Figure 7
gives the architecture of XIndex-H. XIndex-H adopts a two-layer design, which is similar to XIndex-
R. The top layer contains a single root node that uses an ML model to hash keys into different
groups in the bottom layer. Each group contains a bucket array, and each bucket has a linked list to
solve the hash conflicts. The groups hash keys into their buckets with linear models. Each group is
resized independently by background threads.

XIndex-H realizes non-blocking resize operations with Two-Phase Compaction. However, com-
pared with XIndex-R, there is no “temporary delta index” in XIndex-H. Instead, during resizing,
XIndex-H directly routes insertions to the new group. XIndex-H also incorporates the designs
for string key support in XIndex-R, such as the partial key design (section 3.4.1) and the SIMD
optimization (section 3.5.3).

4.1 The Basic Algorithm
4.1.1 The Data Structure. Algorithm 8 shows the layout of XIndex-H. The root node (root_t)
includes a group pointer array groups and a linear model root_model. The root_model learns the
CDF of the key distribution and serves as the hash function to route data into different groups.
Each group node (group_t) contains a bucket array bucket_arr, a linear model model, a frozen flag,
and a pointer for the temporary group tmp_group. The model hashes data into different buckets in
the group. The frozen flag and the tmp_group pointer are for the non-blocking resize operation.
Every bucket (bucket_t) in the bucket array contains the basic record data (key, value), the compact
8-byte metadata (is_ptr, removed, uninitialized, lock, version), and a pointer to its chain (chain). The
uninitialized flag is set to true when the bucket array is allocated, which indicates a new record can
be inserted into the bucket. The chain (chain_t) is used to store conflicting data.

4.1.2 Get and Put Operations. Algorithm 9 shows the pseudocode of get and put in XIndex-H. Both
of them need to locate the corresponding group and bucket through locate_group and locate_bucket.
The locate_group uses root_model as a hash function to decide the group that serves the request,
while locate_bucket calculates the bucket for the key using the group’s model.

After locating the bucket, the get operation uses get_from_bucket and get_from_chain to fetch
the data from the bucket and its chain (Line 4-6). The get_from_bucket function works similarly as
read_record (algorithm 5), except that it (1) additionally verifies that the stored key matches the
given key, and (2) returns EMPTY if the bucket is marked uninitialized. If the target is not found, it
will further check the tmp_group’s bucket and chain (Line 7-11).

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

The Concurrent Learned Indexes for Multicore Data Storage 8:19

Algorithm 9: Get and put operations in XIndex-H.

1 get(key) :
2 group← locate_group(root, key)
3 bucket← locate_bucket(group, key)
4 val← get_from_bucket(bucket, key)
5 if val = EMPTY then
6 val← get_from_chain(bucket.chain, key)
7 if val = EMPTY ∧ tmp_group ≠ NULL then
8 bucket← locate_bucket(tmp_group, key)
9 val← get_from_bucket(bucket, key)

10 if val = EMPTY then
11 val← get_from_chain(bucket.chain, key)
12 return val

13 put(key, val):
14 retry:

15 group← locate_group(root, key)
16 bucket← locate_bucket(group, key)
17 if group.frozen = FALSE then
18 if ¬ upsert_to_bucket(bucket, key, val) then
19 upsert_to_chain(bucket.chain, key, val)
20 else
21 if update_bucket(bucket, key, val) ∨

update_chain(bucket.chain, key, val) then
22 return
23 if tmp_group = NULL then
24 goto retry
25 bucket← locate_bucket(tmp_group, key)
26 if ¬ upsert_to_bucket(bucket, key, val) then
27 upsert_to_chain(bucket.chain, key, val)

For the put operation, XIndex-H checks the frozen flag after locating the target bucket (Line 17).
This flag indicates whether some background threads are trying to resize the hash table. If not,
XIndex-H will directly upsert the record to the bucket or its chain (Lines 18 and 19). An upsert
operation updates the record in-place if a previous version exists, and otherwise inserts a new
record. The upsert_to_bucket function works similarly as update_record (algorithm 5), except that it
(1) additionally verifies that the stored key matches the given key before update, and (2) only inserts
a new record if the bucket is marked uninitialized. If frozen is true, the put operation only performs
an in-place update to the bucket or its chain (Line 21). If the in-place update fails, indicating that a
previous version of the record does not exist, it then inserts the record into tmp_group (Line 23-27).

4.1.3 The Resizing. XIndex-H performs the resize operation asynchronously to avoid blocking get
and put operations. Several background threads periodically check the load factor of each group
and perform the resize if necessary. To resize a group, XIndex-H increases the bucket array size
when the load factor is larger than a given threshold upper_lf, and shrinks the array size if the load
factor is smaller than another threshold lower_lf.
To avoid blocking the concurrent updates, XIndex-H leverages the Two-Phase Compaction to

resize the hash table in the background. Algorithm 10 gives the resize algorithm in detail. Resizing a
given group includes two phases. In the first phase, it creates a new group with all existing records.
However, each record’s value is the pointer instead of real content, which points to the content
in the old group. In detail, XIndex-H first retrieves all keys to train a new model (Line 2). The
model is trained at the beginning because rehashing data into the new group depends on the new
model, whereas XIndex-R trains the new model after the new group’s data is ready in order to
calculate the precise error bounds. Then, it enables the frozen flag to stop inserting new data into
the old group (Line 3 in Algorithm 10, Line 17 in Algorithm 9). However, the old group can still
serve read and in-place update requests (Line 21 in Algorithm 9). After an RCU barrier, XIndex-H
allocates a new group with a bucket array of proper size (Lines 5 and 6). The new group also uses
the previously trained model (Line 7). Afterward, XIndex-H links the new group to the old group
via its tmp_group pointer. All new insertions will be routed to the tmp_group. XIndex-H then starts
to migrate the data from the old group to the new group. Instead of having the real content, the
new group maintains references of record values in the old group. After initializing the new group
with all existing records, XIndex-H atomically replaces the old group with the new group (Line 13).

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

8:20 Zhaoguo Wang, Haibo Chen, Youyun Wang, Chuzhe Tang, and Huan Wang

Algorithm 10: XIndex-H resizes with Two-Phase Compaction.

1 resize(group, sz):
/* phase 1 */

2 model← train a model with group’s keys
3 group.frozen← TRUE
4 rcu_barrier()
5 new_group← allocate a new group
6 new_group.bucket_arr ← allocate sz buckets
7 new_group.model← model
8 init new_group’s other fields
9 group.tmp_group← new_group

10 foreach record r in group do
11 insert <r .key, r .addr> into new_group
12 old_group← group
13 atomic_update_reference(group, new_group)
14 rcu_barrier()

/* phase 2 */
15 foreach record r in new_group do
16 replace_pointer(r)
17 rcu_barrier()
18 reclaim old_group’s memory

In the second phase, XIndex-H replaces all value pointers in the new group with concrete values
(Lines 15 and 16). The barrier at the start of the 2nd phase ensures that all workers access the data
through the reference of the new group. Value references are replaced with real value content one
by one, protected by fine-grained locks. In the end, XIndex-H safely reclaims the old group with
the help of RCU (Line 18).
It should be noted that this two-phase resizing mechanism is general and applicable to other

hash indexes, as evidenced in [13]. Nevertheless, it can be more beneficial in the context of the
learned hash index as its additional model retraining prolongs the resize process (Section 2.2.4),
making non-blocking resize more attractive.

4.2 Handling Concurrency
XIndex-H combines Two-Phase Compaction with fine-grained locking and optimistic concurrency
control to handle concurrency correctly and efficiently. First, it uses fine-grained locks to coordinate
writers (Section 4.2.1). Second, it leverages optimistic concurrency control [8–10, 45] to guarantee
the consistent result of readers (Section 4.2.2). Moreover, Two-Phase Compaction ensures writers
and readers’ correctness when interleaving with background resize operations (Section 4.2.3). The
proof sketch is provided in Section 4.2.4.

4.2.1 Writer-Writer Coordination. Put requests that operate on the same key will be protected by
per-bucket lock in the bucket array, and XIndex-H uses a concurrent linked list for each bucket’s
chain. All writers will first try to acquire the corresponding bucket lock via the update_bucket and
upsert_bucket function. If XIndex-H fails to update or insert into the bucket, writers operate on the
bucket’s chain. The chain itself is a concurrent data structure, which ensures the correctness under
concurrent writers.

4.2.2 Writer-Reader Coordination. The optimistic concurrency control, based on versions and
locks, guarantees that readers can always fetch a consistent result regardless of concurrent writers.
A get request first tries to read the target record from the bucket through the helper function
get_from_bucket, which is similar to read_record. It preserves the current version number first and
then copies the bucket content to its local memory. On validation, the reader ensures the consistency
of the result by checking the lock and version. Only when the lock is free and the version remains
consistent with its local copy will the reader consider the result consistent. Otherwise, it will retry.
If the target record does not exist in the bucket, the get will proceed to read from the chain. The
concurrent chain ensures the consistent results of get requests in the face of concurrent puts.

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

The Concurrent Learned Indexes for Multicore Data Storage 8:21

4.2.3 Interleaving with Resize Operations. During resizing, Two-Phase Compaction ensures that (1)
the effects of the latest write are correctly preserved, and (2) readers can always fetch the preserved
records.
Similar to XIndex-R, XIndex-H achieves the first one by ensuring the following conditions: no

successful put will be lost, and no duplicate record will be created. No lost put is ensured through
the use of references during record movement. In the first phase of resizing, the old group is
read- and update-only by setting the frozen flag (Line 3). The new group contains all the records’
references (Line 11), which means the effect of a put request is visible to both the old group (by
direct accessing) and the new group (through references). In the second phase, these references
are atomically replaced with real values by replace_pointer (Line 16). The rcu_barrier before the
second phase (Line 14) guarantees that all writers will only operate on the new group at the time of
replacing pointers. The writer-writer coordination (Section 4.2.1) can correctly preserve the effects
of concurrent writers on the same group. To ensure no duplicate record, the key is to initialize
tmp_group after setting frozen flag and waiting for the first additional rcu_barrier (Line 4). After
observing the frozen flag, all writers that need to insert new records will retry until the tmp_group
is initialized (Line 24), which means no two writers will insert into the old group and the new
group at the same time.

For readers, they can always fetch the target record from either the old or the new group during
resizing. If it reads from the old group, the tmp_group pointer ensures that the inserted records are
visible. If it reads from the new group, the references in the bucket array help the reader to get the
latest value via the ger_from_bucket helper function.

4.2.4 Proof Sketch of Linearizability. XIndex-H is a linearizable data structure, which means “a
get (key) must observe the latest committed put(key,val).” To provide correctness, XIndex-H follows
the same three invariants as in XIndex-R: (𝐼1) If there is a put(k, v) committed, then there is exactly
one record with key k in XIndex-H; (𝐼2) If there is a record with key k in XIndex-H, then its value
equals the value of the last committed put(k, v); and (𝐼3) If there is a record with key k in XIndex-H
when a get commits, then the get returns the value of the record.

The carefully crafted initialization of tmp_group ensures no duplicate record (Section 4.2.3), thus
further guarantees the exactly-one-record semantics (𝐼1). The no lost put property elaborated in
Section 4.2.3 directly provides 𝐼2. For 𝐼3, in addition to the property that readers can always fetch
the preserved records during resizing mentioned in Section 4.2.3, XIndex-H also ensures that get
and put have the same lookup order (bucket_arr → chain→ tmp_group). Since only the last place
is insertable at the same time (bucket when bucket is uninitialized; chain when bucket contains a
conflicting record and tmp_group is null; otherwise tmp_group), a get will not return EMPTY if
another writer has successfully inserted a record with the same key.

5 PERSISTENCE AND CRASH RECOVERY
To persist data and recover from unexpected crashes, XIndex logs operations to persistent stor-
age and periodically creates checkpoints to speed up recovery. Our design is similar to those of
Masstree [45], Silo [56], and SiloR [62]. To avoid blocking, logs are flushed asynchronously, and
checkpoints are created in parallel with put operations. This design avoids blocking, as seen in the
write-ahead logging approach [47].

Each worker thread is associated with a log buffer and a log file. A background logging thread, co-
located with the worker thread, periodically flushes log entries from the buffer to the file. Specifically,
each worker thread puts its log buffer an entry containing a key, a value, and a timestamp before
finishing the put operation. Timestamps are taken after put’s linearization point, which is the
release of the record lock (Line 19) when modifying the sorted array. Logging threads periodically

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

8:22 Zhaoguo Wang, Haibo Chen, Youyun Wang, Chuzhe Tang, and Huan Wang

wake up and flush buffered log entries in chronological order to log files. Checksums are used to
guard against crashes during flushing. To reduce logging overhead, log files can be distributed on
different disks, SSDs, or non-volatile memory.
Checkpoints are created by scanning all group nodes by background checkpoint threads. For

XIndex-R, the scan is performed by the existing scan interface. For XIndex-H, we use a similar
procedure that iterates group nodes one by one, reading all records in the bucket array. Two
timestamps, tbegin and tend, are recorded before and after the scan, respectively. An RCU barrier is
used before taking tend to ensure all committed puts whose values are scanned have log timestamps
smaller than tend. The scanned records and these timestamps are saved to persistent storage.

To reconstruct XIndex, we first compute the largest safe timestamp tsafe, i.e., a timestamp before
which all committed puts are guaranteed to be persisted. tsafe is computed by taking the minimum
among the timestamps of each log file’s last entry. Then, we find the latest safe checkpoint, i.e., a
checkpoint that does not contains values committed after tsafe. This checkpoint is the one with the
largest tend that is smaller than tsafe. Finally, we chronologically replay log entries created between
the checkpoint’s tbegin and tsafe, since all puts committed before are guaranteed to be visible to
the scan (Sections 3.2.4 and 4.2.4). Additionally, we can maintain the version (Algorithm 1) of each
record in the log entry, so that we can skip log entries with version smaller than the one in the
checkpoint. After replaying these log entries, a snapshot at tsafe of the previous XIndex instance is
restored.

6 EVALUATION
We evaluate XIndex with complex workloads as well as micro-benchmarks of different characteris-
tics and compare it against state-of-the-art systems.

6.1 Setup
6.1.1 Benchmarks. We evaluated XIndex-R with complex workloads, including TPC-C (KV), YCSB,
and micro-benchmarks (Section 6.2). TPC-C (KV) is a TPC-C-inspired benchmark for key-value
stores. Same as [56], it uses different XIndex-R instances to represent different TPC-C tables and uses
get, put, and remove to simulate TPC-C operations. Since XIndex-R does not support transactions,
to avoid transaction aborts due to conflicts, we eliminate conflicts by manipulating each thread to
execute remote transactions on one of their local warehouses. We assign eight distinct warehouses
to each thread as their local warehouses for evaluation. TPC-C (KV) benchmark can evaluate index
systems under data and query distribution of real-world database workload while not requiring
transaction support. YCSB includes six representative workloads (A-F) with different access patterns:
update heavy (A), read mostly (B), read-only (C), read latest (D), short ranges (E) and, read-modify-
write (F). For YCSB, besides its default data distribution, we also evaluate with a real-world dataset
OpenStreetMap [16]. For microbenchmarks, we evaluate the performance under workloads with
fixed read-write ratios (Section 6.2.2), under dynamic workloads (Section 6.2.3) and string keys
(Section 6.2.4). We also analyze different factors that affect the performance in Section 6.2.5.

For XIndex-H, we tested it under read-only workloads (Section 6.3.1), and read-write workloads
(Section 6.3.2) with different insert ratio to see the effectiveness of non-blocking resizing.

6.1.2 Datasets. All datasets used are listed in Table 3. For integer dataset, we use 8-byte keys
generated from different distribution (linear, normal and lognormal) and also a real-world dataset
(osm [16]). For string dataset, one is a synthetic random dataset (random), the other is a real-world
URL dataset (quote). The maximum key length of quote is 128 bytes, and for URLs with length
𝑛 < 128, we set 𝑥𝑖 = 0 for 𝑖 > 𝑛. Unless otherwise noted, the default dataset size is 200M and the
value size is 8 bytes.

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

The Concurrent Learned Indexes for Multicore Data Storage 8:23

Name Type Description

linear integer Linear dataset with added noises
normal integer Normal distribution (` = 0, 𝜎 = 1), scaled to [0, 1 × 1012]
lognormal integer Lognormal distribution (` = 0, 𝜎 = 2), scaled to [0, 1 × 1012]
osm integer Longitude values of OpenStreetMap locations scaled to [0, 3.6 × 109]
random string Randomly generated byte strings, denote as “r[key length]-[dataset size]”
quote string 92 M URLs of quotes from Memetracker [40]. Average length is 62 bytes.

Table 3. Datasets. For the linear dataset, we first generate keys {𝑖 × 𝐴 | 𝑖 = 1, 2, . . . }, then add a uniform
random bias ranging in [−𝐴/2, 𝐴/2] for each key, where 𝐴 = 1 × 1014/dataset_size.

0.5

1

1.5

2

2.5

3

 1 4 8 12 16 20 24

T
h
ro

u
g
h
p
u
t
(1

0
6
 o

p
s
/s

)

Number of Threads

XIndex-R
LI+∆

Masstree

Fig. 8. TPC-C (KV) throughput.

0

40

80

120

160

A B C D E F
YCSB Workloads (Origin Keys)

XIndex-R

5
.7

2

LI+∆

1
.9

2

Wormhole

1
.5

1

Masstree

4
.0

6

0

10

20

30

40

A B C D E F

T
h

ro
u

g
h

p
u

t
(1

0
6
 o

p
s
/s

)

YCSB Workloads (OSM Keys)

4
.7

7
1

.1
1

1
.9

7
1

.5
4

Fig. 9. YCSB throughput.

6.1.3 Counterparts. We compared XIndex-R with stx::Btree, Masstree, Wormhole, the learned
index, “LI+Δ”, and Alex. stx::Btree [3] is an efficient, but thread-unsafe B-tree implementation.
Masstree [45] is a concurrent index structure that hybrids B-tree and Trie. When the key size is 8
bytes, Masstree can be regarded as a scalable concurrent B-tree. Wormhole [58] is a concurrent
hybrid index structure that replaces B-tree’s inner nodes with a hash-table encoded Trie. The learned
index is the original learned index [35]. “LI+Δ” is the learned index attached with a Masstree as
delta index, which buffers all writes. Alex [20] is a learned index that supports writes and can
dynamically adjust itself to data distribution changes. Since it does not support concurrent accesses,
we only compare it in dynamic workloads.

For XIndex-H, we compared it with the learned hash index, std::unordered_map, TBB::HashMap
and “LH+Block”. The learned hash index is the original learned hash index [35]. The std::unordered_map
is a single-thread hash map implementation in C++ Standard Library. TBB::HashMap is a chaining-
based concurrent unordered hash map provided by Intel Threading Building Blocks [51] library.
“LH+Block” performs resizing by foreground threads and blocks all write requests while resizing.

6.1.4 Configurations and the Test Bed. We implement XIndex in C++, and configure 1 out of
12 threads as dedicated background threads. Background thread(s) repeatedly, with one second
interval between runs, check all groups and the root to perform compaction and structure update
(for XIndex-R) or resizing (for XIndex-H) accordingly. For XIndex-R, the error bound threshold (𝑒)
is 32, the delta index size threshold (𝑠) is 256, the tolerance factor (𝑓) is 1

4 , and the model number
threshold (𝑚) is 4. For string key support, the grouping error threshold 𝑒𝑡 and the partial key length
threshold 𝑝𝑙 are set to 50, 4 for random dataset and 500, 40 for quote. When persistence support is
enabled, a checkpoint is created every 30s. The per-thread log buffer is flushed to storage every
200ms for safety. For XIndex-H, the thresholds for resizing, upper_lf and lower_lf is set to 1.5 and

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

8:24 Zhaoguo Wang, Haibo Chen, Youyun Wang, Chuzhe Tang, and Huan Wang

0

1

2
(T= 1)

R
e

a
d

 L

a
te

n
c
y
 (

µ
s
)

XIndex-R LI+∆ Wormhole Masstree

0

0.5

1

1.5
(T= 1)

0

10

20

30

10 20 30 40 50

(T= 24)

T
h

ro
u

g
h

p
u

t
(1

0
6
 o

p
s
/s

)

Write Ratio (%)

Fig. 10. Read-write throughput and read latency
with the normal dataset. T indicates the number of
threads.

0

5

10

15

20

25

30

 1 4 8 12 16 20 24

T
h
ro

u
g
h
p
u
t
(1

0
6
 o

p
s
/s

)

Number of Threads

XIndex-R
LI+∆

Wormhole
Masstree

Fig. 11. Read-write throughput.

 1

 2

 4

 8

 16

 32

p90 p99 p999 p9999R
e

a
d

 L
a

te
n

c
y
 (

m
s
)

Write Ratio=10%

XIndex-R LI+∆ Wormhole Masstree

p90 p99 p999 p9999

Write Ratio=20%

p90 p99 p999 p9999

Write Ratio=30%

p90 p99 p999 p9999

Write Ratio=40%

p90 p99 p999 p9999

Write Ratio=50%

Fig. 12. Tail read latency under various write ratios with the normal dataset.

0.5, respectively. For the learned index, we test different configurations and pick the best one —
250k models in the 2nd stage.8 For “LI+Δ”, we use the same background threads as XIndex-R for
compaction. For other indexes, we directly run their source code with the default setting. For each
experiment, we first warmup all the systems and present steady-state results. The experiments run
on a server with two 12-core Intel Xeon E5-2650 v4 CPUs, 128 GiB DDR4 memory, and one 300 GB
SCSI hard drive (DELL PERC H330 Mini). The hyperthreading is disabled during evaluation.

6.2 XIndex for Range Index
6.2.1 Performance Overview.

TPC-C (KV). Figure 8 shows the performance comparison with different numbers of threads.
Wormhole is excluded because the Wormhole implementation we use does not support multiple
tables, while TPC-C (KV) requires them. XIndex-R outperforms Masstree by up to 67% with 24
threads. First, the data generated in TPC-C (KV) are multidimensional linear mappings. Therefore,
the learned models can obtain a good approximation. Second, 63% of the write operations update
existing records. Thus they can be efficiently executed in-place. Lastly, 34% of the write operations
perform sequential insertion, which can be improved by the optimization (Section 3.5).

YCSB. We use both the default data distribution as well as the osm dataset, and 24 threads for the
experiment. The results are shown in Figure 9. For workload A, XIndex-R can achieve up to 3.2×
and 4.4× performance improvement comparing with Masstree and Wormhole, respectively. For
workload B, E, and F, XIndex-R also demonstrates superior performance advantage. This is because
these workloads are read- and update-intensive. For workload C, which is read-only, XIndex-R
is worse than “LI+Δ” by 19% because XIndex-R has model computation cost both in the root and
8The candidates’ model number ranges from 50k to 500k (step is 50k).

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

The Concurrent Learned Indexes for Multicore Data Storage 8:25

0

10

20

30

40

50

 3 5 10 15 20

Lognormal Distribution

R
e
a
d
 T

h
ro

u
g
h
p
u
t
(1

0
6
 o

p
s
/s

)

Hotspot Ratio (%)

0

10

20

30

40

50

 3 5 10 15 20

Normal Distribution

Hotspot Ratio (%)

XIndex-R
learned index
Wormhole
Masstree
stx::Btree

Fig. 13. 24-thread read throughput in skewed query
distribution.

0

1

2

0 30 60 90 120 150 180 210

T
h
ro

u
g
h
p
u
t
(1

0
6
 o

p
s
/s

)

XIndex-R
Baseline

0 30 60 90 120 150 180 210
0

2

4

6

T
im

e
s
 o

f
X

In
d
e
x
’s

 g

ro
u
p
 s

p
lit

 &
 m

e
rg

e
 (

1
0

3
)

Time Duration (s)

Times of XIndex’s Split
Times of XIndex’s Merge

Fig. 14. Read-write throughput and group
split/merge frequency when shifting data distribu-
tion from normal to linear.

groups. For workload D, XIndex-R performance is worse than the other systems by up to 30%.
The reason is that workload D tends to read recently inserted records that might not have been
compacted, which brings overheads for read operations. With the osm dataset, the results are
similar. However, because of the complex real-world data distribution, the advantage of XIndex-R
is reduced.

6.2.2 Performance with Writes. To further evaluate the performance of writes, we configure work-
loads with different read-write ratios. The ratio among different type of writes are constant (1:1:2
for insert, remove, and update) to keep the dataset size stable.

Scalability. Figure 11 shows the scalability with 10% writes using the normal dataset. Overall,
XIndex-R achieves the best performance among all systems. With 24 threads, XIndex-R scales to
17.6× of its single-thread performance, which is 30% higher than Wormhole. “LI+Δ” has the worst
performance because of its inefficient compaction, which severely degrades the read performance.

Varying write ratios. Figure 10 shows both throughputs and median latency with different write
ratios with a single thread and 24 threads. XIndex-R has the best performance for all the listed
write ratios, though the advantage tends to diminish with larger write ratios. For latency, XIndex-R
achieves the lowest median latency as most requests (80%) can be served without accessing delta
indexes. Tail latency is shown in Figure 12. In all write ratios, XIndex-R exhibits best read latency
at the 90th and 99th percentile. However, as writes become dominant, more reads are likely to
content with writes and background compaction, which causes p999 and p9999 read latency to
increase. Nevertheless, XIndex-R always outperforms “LI+Δ.”

6.2.3 Performance with Dynamic Workloads.

Query distribution. For dynamic workload, we first evaluate the performance when the query
distribution is non-uniform. To control the skewness, we make the workload’s 90% queries access
hotspot of different sizes (the hotspot ratio). All hotspots are ranges that start from the same key
but end differently. The smaller the hotspot is, the more skewed the query distribution is. Figure 13
shows the throughput with different skewness levels under the normal and lognormal datasets. All
systems except for the learned range index see a performance improvement when the skewness
level rises since the skewed query distribution brings a more friendly memory access locality.
However, due to the learned range index’s large error bound in the hotspot, the learned range
index can perform even worse than stx::Btree and Wormhole. For the lognormal dataset, when the
hotspot ratio decreases under 5%, the increase of hot models’ error bounds slows down, thus we
can observe a slight performance improvement of the learned range index due to improved locality.

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

8:26 Zhaoguo Wang, Haibo Chen, Youyun Wang, Chuzhe Tang, and Huan Wang

0

1

2

3

4

 20 40 60 80 100 120 140 160 180T
h
ro

u
g
h
p
u
t
(M

o
p
s
)

Time Duration (s)

XIndex-R
ALEX

(a) From normal to lognormal.

0

1

2

3

4

 20 40 60 80 100 120 140 160 180T
h
ro

u
g
h
p
u
t
(M

o
p
s
)

Time Duration (s)

XIndex-R
ALEX

(b) From linear to normal.

Fig. 15. Read-write performance comparison under
different data distribution shifts.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

r64-100m r64-200m r128-100m quote

T
h
ro

u
g
h
p
u
t
(M

o
p
s
)

Dataset

XIndex-R
XIndex-NoStr

Wormhole
Masstree

Fig. 16. Read-only single-thread performance with
different string datasets.

Data distribution. We then evaluate XIndex-R under data distribution shifts. There are three
stages in data distribution shift. First, we initialize each system with 50M records of one distribution
and run a workload with a read-write ratio of 90:10. Then, we start shifting the data distribution by
removing all existing keys while inserting 50M keys of another distribution. In this stage, the write
ratio is 100% (half inserts and half removes). Finally, after keys of the new distribution are inserted,
and old ones are removed, we resume the read-write workload (90:10) under the new dataset.

We first evaluate the performance of XIndex-Rwith andwithout group split/merge to demonstrate
the effectiveness of the group split/merge under dynamic workloads. Figure 14 shows XIndex-R’s
throughput and the number of group split/merge. We use one worker thread and one background
thread. XIndex-R without group split/merge is denoted as Baseline. Both XIndex-R and Baseline
have similar performance in the first stage (0-20s). At the 20th second, they enter the second stage.
Both throughputs begin to degrade due to the increase of the write ratio and the data distribution
changes. While for XIndex-R, background threads begin to perform group split to reduce groups’
error and delta index size, so we can see the throughput starts to increase at the 30th second.
XIndex-R and Baseline enter the third stage at the 120th second and the 170th second, respectively.
XIndex-R’s background thread detects that both the delta index size and the error bound of groups
are small after the shifting, so it invokes lots of group merge operations to reduce the number
of groups. Overall, XIndex-R shows up to 140% performance improvement during and after the
change of data distribution.
We then compare XIndex-R with ALEX, a non-concurrent updatable learned index that can

adjust to data distribution changes. Overall, we find that XIndex-R exhibits better robustness than
ALEX as it achieves similar throughput under various workloads, though ALEX can faster than
XIndex in certain workloads. Figure 15 shows two workloads where XIndex-R’s performance is
stable while ALEX’s varies significantly. In Figure 15a, when the data distribution begins to change
(at the 60th second), the performance of ALEX degrades significantly (throughput drops from 2.2M
to less than 100K), while XIndex-R can sustain around half of its previous throughput. This is
because ALEX’s RMI design allows unlimited stage depth, which can severely degrade lookup
performance in the case of significant data distribution changes. Meanwhile, XIndex-R always
has a two-stage architecture. It takes 75s to change its dataset, and ALEX takes more than 1400s.
In Figure 15b, where the data distribution change is less drastic, ALEX can finish sooner than
XIndex-R. Besides, in both workloads, ALEX is faster before the shift in data distribution for two
reasons. First, XIndex-R has overhead for supporting concurrency while ALEX does not. Second,

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

The Concurrent Learned Indexes for Multicore Data Storage 8:27

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 20 40 60 80 100 120 140

T
h
ro

u
g
h
p
u
t
(M

o
p
s
)

Key length (Byte)

XIndex-R
XIndex-NoStr
Wormhole
Masstree

Fig. 17. Read-only single-thread performance with
different string key length using random datasets.

 0

 0.2

 0.4

 0.6

 0.8

 1

90:10 80:20 70:30 60:40

T
h
ro

u
g
h
p
u
t
(M

o
p
s
)

Read-write ratio

XIndex-R
XIndex-NoStr

Wormhole
Masstree

Fig. 18. Read-write single-thread performance with
different read-write ratios using R128-100M string
dataset.

ALEX uses an improved RMI designed while XIndex-R uses the original proposal9. It should be
noted that in Figure 15a, XIndex-R’s performance is not immediately recovered as background
structure updates are still ongoing, and a trend of increasing throughout can be observed.

6.2.4 Performance with String Keys. We integrate the mechanisms for string keys (Section 3.4
and Section 3.5.3) into XIndex-R. Then we evaluate the performance of XIndex-R under string
keys using read-only and read-write-mixed workloads. XIndex-R without string key support
is denoted as XIndex-NoStr. Our current implementation does not support enabling runtime
adjustment (Section 3.3) with the greedy grouping strategy (Section 3.4.2). Thus we disabled the
runtime adjustment for these workloads. However, since there is no change in both data and query
distribution, enabling runtime adjustment should not greatly affect the results.

String read-only. We first measure the single-thread throughputs of XIndex-R with read-only
workloads using different datasets. As shown in Figure 16, XIndex-R achieves the best performance
among all the indexes under random datasets but has fewer performance advantages under quote
dataset. XIndex-R outperforms XIndex-NoStr, Masstree and Wormhole by up to 88%, 91% and
43% respectively under random datasets. Under quote dataset, XIndex-R still shows relatively
good performance compared with XIndex-NoStr (1.5×) and Masstree (1.3×). However, XIndex-R’s
performance is worse than Wormhole by 25%. This is because quote dataset has more complex data
distribution, leading to larger errors — 4.5× larger than the average error of random datasets. Also,
the partial key length is 39 bytes for quote dataset, which is nearly 10× larger than that of random
datasets.

Various key length. We then evaluate XIndex-R with various key lengths. Figure 17 shows the
results under 100M random dataset, with key length ranging from 8 bytes to 128 bytes. XIndex-R
shows considerable performance advantages for all key lengths. Its performance shows similar
scalability in key length as Masstree and Wormhole. XIndex-NoStr only achieves good performance
with short keys but suffers large performance degradation when keys are larger than 8 bytes:
the throughout with 128-byte keys is only 30% of that with 8-byte keys. Compared with XIndex-
NoStr, with 128-byte keys, XIndex-R still maintains 62% of its 8-byte throughout and outperforms
XIndex-NoStr by 91%.

String read-write. We then investigate the performance under read-write workloads with different
read-write ratios. We experiment with random dataset of 100M 128-byte keys. The write requests
include in-place updates, inserts, and deletes, with a ratio of 2:1:1. As shown in Figure 18, XIndex-R
9The improved RMI can be used as a drop-in replacement for the model for both the group nodes and the root node.

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

8:28 Zhaoguo Wang, Haibo Chen, Youyun Wang, Chuzhe Tang, and Huan Wang

0

2

4

6

8

10

12

14

16

18

 1 4 8 12 16 20 24

T
h
ro

u
g
h
p
u
t
(M

o
p
s
)

Number of Threads

XIndex-R
XIndex-NoStr
Wormhole
Masstree

Fig. 19. Read-write performance scalability using
R128-100M string dataset. The worklaod has a read-
write ratio of 9:1.

0

5

10

15

20

 1 4 8 12 16 20 24

T
h
ro

u
g
h
p
u
t
(M

o
p
s
)

Number of Threads

XIndex-R
XIndex-NoStr
Wormhole
Masstree

Fig. 20. Read-write performance scalability using
R128-100M string dataset. The worklaod has a read-
write ratio of 9:1 and all writes are in-place updates.

 0

 0.5

 1

 1.5

 2

r128-100m quote

N
o

rm
a

liz
e

d
 t

h
ro

u
g

h
p

u
t

Dataset

XIndex-NoStr
+Partial Key

+Grouping

+Root Model
+SIMD

Fig. 21. Performance breakdown under string keys.

0

5

10

15

20

 1 4 8 12 16 20 24

T
h
ro

u
g
h
p
u
t
(1

0
6
 o

p
s
/s

)

Number of Threads

XIndex-R
XIndex-R-persist

Fig. 22. Throughput of XIndex-R with and without
persistence. The read-write ratio is 5:5.

maintains relatively good performance under read-write workloads. When there are 10% writes,
XIndex-R has 89% better performance than XIndex-NoStr. When there are 40% writes, XIndex-R
still has comparable performance as Wormhole, while being 45% better than XIndex-NoStr and 21%
better than Masstree.

Figure 19 shows the scalability in threads under a workload with a 90:10 read-write ratio. XIndex-
R shows up to 72% performance advantages compared with XIndex-NoStr. However, XIndex-R is
worse than Wormhole and Masstree under multi-thread read-write scenarios (19% and 13% worse
under 24-thread). This is mainly because the compaction process is not quick enough to merge
data in delta indexes. Despite the use of partial key, the model retraining is still time-consuming in
XIndex-R— 300 `s to train a linear model with 1400 keys. This leads to a large delta index size — up
to 650 on average under 24 threads.
We also evaluate the scalability of XIndex-R with the same read-write ratio, but all writes are

in-place updates. Figure 20 shows the results. XIndex-R exhibits good scalability in this workload
since there is no need to perform compactions. The 24-thread performance can achieve 21× of its
single-thread performance, which is 17% better than Wormhole.

Factor analysis. We then analyze the performance improvement brought by each design decision
for string keys. We start from XIndex-NoStr where none of the proposed techniques is used, and
then incrementally apply the partial key, the greedy grouping, piecewise linear models, and the
SIMD optimization. Figure 21 shows the throughputs of applying each of the techniques under
random and quote datasets. Throughputs are normalized to XIndex-NoStr.
We first apply the partial key in each group. With the partial key, XIndex-R improves 35% and

15% under random and quote datasets, respectively. For random dataset, the average key length for

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

The Concurrent Learned Indexes for Multicore Data Storage 8:29

0

10

20

30

 8 16 24 40 64 128

T
h

ro
u

g
h
p

u
t

(1
0

6
 o

p
s
/s

)

Value Size (Byte)

XIndex-R
LI+∆

Wormhole
Masstree

Fig. 23. Read-write throughput of various value
sizes.

10

20

30

40

50

 0 200 400 600 800 1000

Lognormal Distribution

R
e
a
d
 T

h
ro

u
g
h
p
u
t
(1

0
6
 o

p
s
/s

)

Dataset Size (M)

XIndex-R
learned index

Wormhole
Masstree
stx::Btree

Fig. 24. Read throughput of various dataset sizes.

model and comparison of all groups is significantly reduced from 128 bytes to 4 bytes. For quote
dataset, it is reduced from 128 bytes to 80 bytes, with an average prefix length of 14 bytes. Next,
we apply the greedy grouping strategy to range-partition data for group nodes. XIndex-R has an
improvement of 7% and 9% for the two datasets, respectively. The average partial key length for
groups further decreases to 39 bytes for quote dataset. Afterward, the use of piecewise linear models
in the root node reduces the root model inference time, bringing 24% and 7% overall improvement.
For random dataset, the root model inference time decreases from 640 ns to 70 ns. For quote, it
decreases from 640 ns to 354 ns, with a partial key length of 105 bytes for root models. Finally, we
adopt SIMD for model inference, which gives XIndex-R another improvement of 4% for random
and 9% for quote.

6.2.5 Other Factors.

Cost of Persistence. Figure 22 compares the performance of XIndex-R with and without persistence
support, i.e., background logging and checkpointing, using the normal dataset and a various number
of worker threads. Overall, persistence support does not incur significant performance penalties.
On average, persistent XIndex-R achieves 92% of the non-persistent version’s throughput. It takes
XIndex-R about 14 seconds to create a checkpoint of 200 million key-value pairs (3.2 GB of data in
total) for checkpointing. It takes 24 seconds to rebuild a XIndex-R instance from such a checkpoint
and log files, each containing 7 million log entries on average for recovery.

Value size. We evaluate the performance of XIndex-R with different value sizes under the normal
dataset with 24 threads. The read-write ratio is 90:10, and the value contains 8-128 random generated
bytes. The result is shown in Figure 23. With the increase of value size, the performance of all
systems is reduced due to the large memory consumption. Nevertheless, XIndex-R has the largest
performance drop. This is because the overhead of data copying during compaction (128B’s overhead
is 13.5× larger than 8B’s).

Dataset size. Figure 24 shows the performance of XIndex-R with different dataset sizes under
the lognormal dataset using 24 threads. As dataset size increases, both the learned range index
and XIndex-R show a large performance advantage over other systems. However, the performance
of the learned range index degrades significantly because its error grows as the size increases. In
contrast, XIndex-R adjusts its structure to maintain small model error bounds. Therefore, for large
dataset sizes, XIndex-R can achieve similar performance with the learned range index.

6.3 XIndex for Hash Index

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

8:30 Zhaoguo Wang, Haibo Chen, Youyun Wang, Chuzhe Tang, and Huan Wang

 0

 1

 2

 3

 4

 5

osm linear lognormal normal

T
h
ro

u
g
h
p
u
t
(M

o
p
s
)

Dataset

XIndex-H
LH+Block

TBB::HashMap

the learned hash
std::unorderedmap

Fig. 25. Single-thread read-only throughput of vari-
ous datasets.

 0

 0.5

 1

 1.5

 2

osm linear lognormal normal

T
h
ro

u
g
h
p
u
t
(M

o
p
s
)

Dataset

XIndex-H
LH+Block

TBB::HashMap

Fig. 26. Single-thread throughput under a workload
with a read-insert ratio of 90:10. All indexes are initial-
ized with 100M data, and are inserted with another
100M data.

6.3.1 Performance with Reads. We first evaluate the read-only performance of XIndex-H under
different datasets. The results are shown in Figure 25. XIndex-H’s performance ties closely to
the underlying datasets. It shows excellent performance when the model is well-learned and has
less performance advantage otherwise. Under linear dataset, XIndex-H can achieve up to 3.1×
and 2.2× performance advantage over TBB::HashMap and std::unordered_map, respectively. The
conflict rate is significantly reduced to 0.7% thanks to learned models. While the conflict rate of
std::unordered_map is up to 35%. Under the other datasets, the learned hash index does not show
much performance improvement compared with std::unordered_map because the model cannot
effectively reduce the conflict rate,10 which is about 35% among all systems. Since XIndex-H has an
additional cost for concurrency support, it performs slightly worse than the learned hash index
and std::unordered_map. However, XIndex-H still shows slightly better performance compared
with TBB::HashMap, which adopts the design of the split-ordered list [55]. The split-ordered list
requires more pointer chasing during lookup, and a minimum of one pointer access is still needed
even if there is no conflict. Furthermore, XIndex-H performs slightly worse than the learned hash
index and std::unordered_map because of the concurrency support.

6.3.2 Performance with Writes.

Varying datasets. Figure 26 shows the single-thread read-insert throughput under various datasets.
XIndex-H shows comparable performance compared with TBB::HashMap while achieving up-to
96% performance improvement compared with “LH+Block”. With the help of non-blocking resizing,
XIndex-H can continuously serve requests regardless of resizing. As a comparison, “LH+Block”
blocks foreground operations for up to 160s (52s for model training and 108s for rehashing data).
TBB::HashMap exhibits steady performance among different datasets because it adopts split-ordered
list [55] to amortize the cost of resizing.

Scalability. We also investigate the scalability of XIndex-H with different insert ratios. Figure 27
presents the evaluation results. XIndex-H exhibits good scalability under all insert ratios. Under
read-heavy workload (Figure 27a), XIndex-H can achieve 23× over its single-thread performance
under 24 threads. It still scales well under write-heavy workload (Figure 27c), outperforming
TBB::HashMap by 1.5× and “LH+Block” by 25× under 24 threads. While for TBB::HashMap, it
scales only for the read-heavy workload. “LH+Block” has extremely poor scalability because of the
blocking resizing.

10We didn’t managed to reproduce the conflict rate in [35]. We have emailed the authors but received no response.

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

The Concurrent Learned Indexes for Multicore Data Storage 8:31

0
5

10
15
20
25
30
35
40

 1 4 8 12 16 20 24

T
h
ro

u
g
h
p
u
t
(M

o
p
s
)

Number of Threads

XIndex-H
LH+Block
TBB::HashMap

(a) 10% insert.

0

5

10

15

20

25

 1 4 8 12 16 20 24

T
h
ro

u
g
h
p
u
t
(M

o
p
s
)

Number of Threads

XIndex-H
LH+Block
TBB::HashMap

(b) 50% insert.

0

5

10

15

20

 1 4 8 12 16 20 24

T
h
ro

u
g
h
p
u
t
(M

o
p
s
)

Number of Threads

XIndex-H
LH+Block
TBB::HashMap

(c) 90% insert.

Fig. 27. Scalability under linear dataset with different read-insert ratio.

7 RELATEDWORKS
There have been works extending or building systems upon the learned index for supporting writes
and dynamic workloads. ALEX [20] supports writes by reserving slots in a sorted array for inserting
new data. It allocates a new array and retrains the model synchronously when node fullness reaches
the specified upper limit. Compare with its design, XIndex can have worse performance since
it maintains standalone delta indexes. Since it might move a large nondeterministic portion of
keys during insert, fine-grained concurrency control is thus challenging to implement, and ALEX
does not support concurrent accesses. Furthermore, ALEX has a dynamic RMI structure that splits
nodes according to its cost model, resulting in varying depth among model nodes. This design
makes its adjustment in some cases more flexible than XIndex when data distribution changes.
However, the RMI depth is not bounded, which might significantly impact lookups, writes, and
structure adjustment, as confirmed by our evaluation AIDEL [42] handles insertions by attaching a
sorted list for each record in the sorted array. When the list is too long, it copies the data into a
new sorted array and retrains the model synchronously. Same as ALEX, AIDEL does not support
concurrency either, and operations are blocked during rearranging data and retraining models.
It introduces a greedy strategy to partition data for models inside RMI according to the specific
data distribution at bulk loading time. However, its structure is fixed during runtime even when
data distribution changes, while XIndex can continuously adjust its structure according to runtime
workloads. PGM-index [23] optimizes the structure with respect to given space-time trade-offs.
It recursively constructs the index structure and provides an optimal number of linear models.
Comparing with PGM-index, XIndex adjusts its structure at runtime, does not assume an already
known query distribution. SageDB [34] is a database that proposes to leverage the learned index
for data indexing as well as for speeding up sorting and join. Bourbon [17] is a key–value store
based on LSM-tree that leverages the learned index to improve efficiency for accessing SSTables.
FITing-Tree [25] indexes data with a hybrid of B-tree and piece-wise linear function, making it a
variant of the learned index. It supports insertions and provides strict error guarantees. Comparing
with FITing-Tree, XIndex is a fully-fledged concurrent index structure and adapts its structure
to both data and query distribution at runtime. For better build efficiency, Kipf et al. propose
RadixSpline [33], which employs a bottom-up build method that only needs a single pass over the
dataset. Flood [48] is a learned multi-dimensional index. It exploits ML methods to learn an optimal
layout that divides 𝑑-dimensional data space into a grid of contiguous cells and uses linear models
to speed up queries. LISA [43] is a learned index structure designed for disk-resident spatial data. It
leverages learned models to generate data layouts in the disk. Compared with these works, XIndex
is the only learned index structure that is optimized for string keys.

Classic concurrency techniques have long been used in concurrent data structures. Masstree [45]
is a trie-like concatenation of B-trees and uses fine-grained locking and optimistic concurrency
control to achieve high performance under multi-core scenarios. It carefully crafts its protocol to

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

8:32 Zhaoguo Wang, Haibo Chen, Youyun Wang, Chuzhe Tang, and Huan Wang

improve efficiency for reader-writer coordination. Wormhole [58] is a variant of B-tree that replaces
B-tree’s inner nodes with a hash-table encoded Trie. It uses per-node read-write locks to coordinate
accesses to leaf nodes and uses a combination of locking and the RCU mechanism to perform
internal node updates. Bonsai tree [14, 15] is a concurrent balanced tree. It allows reads to proceed
without locks in parallel with writes by using RCU mechanism, though a single write lock is still
required to coordinate writes. HOT [4] is a trie-based index structure which aims to reduce the
height of the trie. It uses per-node locks to coordinate writes and uses copy-on-write (COW) to allow
reads to proceed with no synchronization overhead. The Bw-Tree [19, 41] is a completely lock-free
B-tree and achieves its lock-freedom via COW and compare-and-swap (CAS) techniques. The
Intel Threading Building Blocks [51] provides a chaining-based concurrent hash map. It leverages
per-bucket lock to coordinate concurrent operations and exploits split-ordered list [55] to handle
resizing. Libcuckoo [51] is a concurrent cuckoo hash table that adopts an optimistic design to
minimize the locked critical section during writes. Clevel Hashing [13] is a lock-free concurrent level
hashing for persistent memory. It leverages atomic primitives to enable lock-free operations and
performs resizing in the background. Building upon existing works, XIndex leverages fine-grained
locking and optimistic concurrency control to coordinate to individual records and combines
Two-Phase Compaction with RCU mechanism to eliminate interference with queries and writes
due to background operations.
Dynamic data and query distributions are common in real-world workloads. While XIndex

strikes to reduce performance variation between records, many works distinguish hot and cold
data and further optimize the performance for hot data. Hybrid index structure [60] uses different
storage schemes for hot keys and cold keys. Storage systems such as H-Store [18], COLT [53] are
designed to detect the hotness and manage data accordingly in a self-tuning process.

8 CONCLUSION
In this paper, we introduced XIndex, a concurrent learned index library for both range index
(XIndex-R) and hash index (XIndex-H). XIndex exploits machine learning models for fast indexing.
It achieves high performance on the multicore platform via a combination of the innovative
Two-Phase Compaction and a number of classical concurrency techniques. Extensive evaluations
demonstrate that XIndex performs well for both integer key and string key workloads. For the range
index, XIndex-R has a performance advantage by up to 3.2× and 4.4×, compared with Masstree
and Wormhole, respectively. For the hash index, XIndex-H achieves up to 3.1× performance
improvement compared with Intel TBB HashMap. XIndex is publicly available at https://ipads.se.
sjtu.edu.cn:1312/opensource/xindex.git.

ACKNOWLEDGMENTS
This work is supported in part by the National Key Research and Development Program of China
under grand No. 2020AAA0108500, the National Natural Science Foundation of China under
grand No. No. 61902242, and the HighTech Support Program from Shanghai Committee of Science
and Technology under grand No. No. 20ZR1428100. Haibo Chen (haibochen@sjtu.edu.cn) is the
corresponding author.

REFERENCES
[1] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy Zwaenepoel, Huapeng Yuan, Aashray Arora, Karan Gupta, and

Pavan Konka. 2017. TRIAD: Creating Synergies Between Memory, Disk and Log in Log Structured Key-Value Stores.
In Proceedings of the 2017 USENIX Annual Technical Conference (Santa Clara, CA, USA) (USENIX ATC ’17), Dilma Da
Silva and Bryan Ford (Eds.). USENIX Association, 363–375. https://www.usenix.org/conference/atc17/technical-
sessions/presentation/balmau

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

https://ipads.se.sjtu.edu.cn:1312/opensource/xindex.git
https://ipads.se.sjtu.edu.cn:1312/opensource/xindex.git
https://www.usenix.org/conference/atc17/technical-sessions/presentation/balmau
https://www.usenix.org/conference/atc17/technical-sessions/presentation/balmau

The Concurrent Learned Indexes for Multicore Data Storage 8:33

[2] Rudolf Bayer and Mario Schkolnick. 1977. Concurrency of Operations on B-Trees. Acta Informatica 9 (1977), 1–21.
https://doi.org/10.1007/BF00263762

[3] Timo Bingmann. 2008. STX B+ Tree C++ Template Classes. http://panthema.net/2007/stx-btree
[4] Robert Binna, Eva Zangerle, Martin Pichl, Günther Specht, and Viktor Leis. 2018. HOT: A Height Optimized Trie

Index for Main-Memory Database Systems. In Proceedings of the 2018 International Conference on Management of
Data (Houston, TX, USA) (SIGMOD ’18). Association for Computing Machinery, New York, NY, USA, 521–534. https:
//doi.org/10.1145/3183713.3196896

[5] Burton H. Bloom. 1970. Space/Time Trade-Offs in Hash Coding with Allowable Errors. Commun. ACM 13, 7 (July
1970), 422–426. https://doi.org/10.1145/362686.362692

[6] Philip Bohannon, Peter Mcllroy, and Rajeev Rastogi. 2001. Main-Memory Index Structures with Fixed-Size Partial Keys.
In Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data (Santa Barbara, California,
USA) (SIGMOD ’01). Association for Computing Machinery, New York, NY, USA, 163–174. https://doi.org/10.1145/
375663.375681

[7] Flavio Bonomi, Michael Mitzenmacher, Rina Panigrahy, Sushil Singh, and George Varghese. 2006. An Improved
Construction for Counting Bloom Filters. In Algorithms – ESA 2006, Yossi Azar and Thomas Erlebach (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 684–695. https://doi.org/10.1007/11841036_61

[8] Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. 2010. A Practical Concurrent Binary Search Tree.
In Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (Bangalore,
India) (PPoPP ’10). Association for Computing Machinery, New York, NY, USA, 257–268. https://doi.org/10.1145/
1693453.1693488

[9] Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. 2010. A Practical Concurrent Binary Search
Tree. SIGPLAN Not. 45, 5 (Jan. 2010), 257–268. https://doi.org/10.1145/1837853.1693488

[10] Sang K. Cha, Sangyong Hwang, Kihong Kim, and Keunjoo Kwon. 2001. Cache-Conscious Concurrency Control of
Main-Memory Indexes on Shared-Memory Multiprocessor Systems. In Proceedings of the 27th International Conference
on Very Large Data Bases (VLDB ’01). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 181–190.

[11] Bernard Chazelle and Leonidas J. Guibas. 1986. Fractional Cascading: I. A Data Structuring Technique. Algorithmica 1,
2 (1986), 133–162. https://doi.org/10.1007/BF01840440

[12] Bernard Chazelle and Leonidas J. Guibas. 1986. Fractional Cascading: II. Applications. Algorithmica 1, 2 (1986), 163–191.
https://doi.org/10.1007/BF01840441

[13] Zhangyu Chen, Yu Huang, Bo Ding, and Pengfei Zuo. 2020. Lock-free Concurrent Level Hashing for Persistent Memory.
In Proceedigns of the 2020 USENIX Annual Technical Conference (USENIX ATC ’20), Ada Gavrilovska and Erez Zadok
(Eds.). USENIX Association, 799–812. https://www.usenix.org/conference/atc20/presentation/chen

[14] Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich. 2012. Scalable Address Spaces Using RCU Balanced
Trees. In Proceedings of the Seventeenth International Conference on Architectural Support for Programming Languages
and Operating Systems (London, England, UK) (ASPLOS XVII). Association for Computing Machinery, New York, NY,
USA, 199–210. https://doi.org/10.1145/2150976.2150998

[15] Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich. 2012. Scalable Address Spaces Using RCU Balanced
Trees. SIGPLAN Not. 47, 4 (March 2012), 199–210. https://doi.org/10.1145/2248487.2150998

[16] OpenStreetMap contributors. 2019. OpenStreetMap. https://aws.amazon.com/public-datasets/osm Accessed: 2019-4-24.
[17] Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan, Brian Kroth, Andrea C. Arpaci-Dusseau, and Remzi H.

Arpaci-Dusseau. 2020. From WiscKey to Bourbon: A Learned Index for Log-Structured Merge Trees. In Proceedings
of the 14th USENIX Symposium on Operating Systems Design and Implementation (Virtual Event) (OSDI ’20). USENIX
Association, 155–171. https://www.usenix.org/conference/osdi20/presentation/dai

[18] Justin DeBrabant, Andrew Pavlo, Stephen Tu, Michael Stonebraker, and Stan Zdonik. 2013. Anti-Caching: A New
Approach to Database Management System Architecture. Proc. VLDB Endow. 6, 14 (sep 2013), 1942–1953. https:
//doi.org/10.14778/2556549.2556575

[19] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal, Ryan Stonecipher, Nitin Verma, and
Mike Zwilling. 2013. Hekaton: SQL Server’s Memory-Optimized OLTP Engine. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data (New York, New York, USA) (SIGMOD ’13). Association for Computing
Machinery, New York, NY, USA, 1243–1254. https://doi.org/10.1145/2463676.2463710

[20] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li, Hantian Zhang, Badrish Chandramouli,
Johannes Gehrke, Donald Kossmann, David Lomet, and Tim Kraska. 2020. ALEX: An Updatable Adaptive Learned Index.
In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data (Portland, OR, USA) (SIGMOD
’20). Association for Computing Machinery, New York, NY, USA, 969–984. https://doi.org/10.1145/3318464.3389711

[21] William B. Easton. 1971. Process Synchronization without Long-Term Interlock. In Proceedings of the Third ACM
Symposium on Operating Systems Principles (Palo Alto, California, USA) (SOSP ’71). Association for Computing
Machinery, New York, NY, USA, 95–100. https://doi.org/10.1145/800212.806505

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

https://doi.org/10.1007/BF00263762
http://panthema.net/2007/stx-btree
https://doi.org/10.1145/3183713.3196896
https://doi.org/10.1145/3183713.3196896
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/375663.375681
https://doi.org/10.1145/375663.375681
https://doi.org/10.1007/11841036_61
https://doi.org/10.1145/1693453.1693488
https://doi.org/10.1145/1693453.1693488
https://doi.org/10.1145/1837853.1693488
https://doi.org/10.1007/BF01840440
https://doi.org/10.1007/BF01840441
https://www.usenix.org/conference/atc20/presentation/chen
https://doi.org/10.1145/2150976.2150998
https://doi.org/10.1145/2248487.2150998
https://aws.amazon.com/public-datasets/osm
https://www.usenix.org/conference/osdi20/presentation/dai
https://doi.org/10.14778/2556549.2556575
https://doi.org/10.14778/2556549.2556575
https://doi.org/10.1145/2463676.2463710
https://doi.org/10.1145/3318464.3389711
https://doi.org/10.1145/800212.806505

8:34 Zhaoguo Wang, Haibo Chen, Youyun Wang, Chuzhe Tang, and Huan Wang

[22] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. 1998. Summary Cache: A Scalable Wide-Area Web Cache
Sharing Protocol. In Proceedings of the ACM SIGCOMM ’98 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication (Vancouver, British Columbia, Canada) (SIGCOMM ’98). Association for
Computing Machinery, New York, NY, USA, 254–265. https://doi.org/10.1145/285237.285287

[23] Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-Index: A Fully-Dynamic Compressed Learned Index with
Provable Worst-Case Bounds. Proc. VLDB Endow. 13, 8 (apr 2020), 1162–1175. https://doi.org/10.14778/3389133.3389135

[24] Edward Fredkin. 1960. Trie Memory. Commun. ACM 3, 9 (Sept. 1960), 490–499. https://doi.org/10.1145/367390.367400
[25] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and Tim Kraska. 2019. FITing-Tree: A Data-

Aware Index Structure. In Proceedings of the 2019 International Conference on Management of Data (Amsterdam,
Netherlands) (SIGMOD ’19). Association for Computing Machinery, New York, NY, USA, 1189–1206. https://doi.org/
10.1145/3299869.3319860

[26] Goetz Graefe, Hideaki Kimura, and Harumi Kuno. 2012. Foster B-Trees. ACM Trans. Database Syst. 37, 3, Article 17
(Sept. 2012), 29 pages. https://doi.org/10.1145/2338626.2338630

[27] Roberto Grossi and Giuseppe Ottaviano. 2015. Fast Compressed Tries through Path Decompositions. ACM J. Exp.
Algorithmics 19, Article 3.4 (Jan. 2015), 20 pages. https://doi.org/10.1145/2656332

[28] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condition for Concurrent Objects. 12,
3 (jul 1990), 463–492. https://doi.org/10.1145/78969.78972

[29] Stratos Idreos, Kostas Zoumpatianos, Manos Athanassoulis, Niv Dayan, Brian Hentschel, Michael S. Kester, Demi Guo,
Lukas M. Maas, Wilson Qin, Abdul Wasay, and Yiyou Sun. 2018. The Periodic Table of Data Structures. IEEE Data Eng.
Bull. 41, 3 (2018), 64–75. http://sites.computer.org/debull/A18sept/p64.pdf

[30] Stratos Idreos, Kostas Zoumpatianos, Subarna Chatterjee, Wilson Qin, Abdul Wasay, Brian Hentschel, Mike S. Kester,
Niv Dayan, Demi Guo, Minseo Kang, and Yiyou Sun. 2019. Learning Data Structure Alchemy. IEEE Data Eng. Bull. 42,
2 (2019), 47–58. http://sites.computer.org/debull/A19june/p47.pdf

[31] Stratos Idreos, Kostas Zoumpatianos, Brian Hentschel, Michael S. Kester, and Demi Guo. 2018. The Data Calculator:
Data Structure Design and Cost Synthesis from First Principles and Learned Cost Models. In Proceedings of the 2018
International Conference on Management of Data (Houston, TX, USA) (SIGMOD ’18). Association for Computing
Machinery, New York, NY, USA, 535–550. https://doi.org/10.1145/3183713.3199671

[32] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2018.
Redesigning LSMs for Nonvolatile Memory with NoveLSM. In Proceedings of the 2018 USENIX Annual Technical
Conference (Boston, MA, USA) (USENIX ATC ’18), Haryadi S. Gunawi and Benjamin Reed (Eds.). USENIX Association,
993–1005. https://www.usenix.org/conference/atc18/presentation/kannan

[33] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper, Tim Kraska, and Thomas Neumann.
2020. RadixSpline: A Single-Pass Learned Index. In Proceedings of the Third International Workshop on Exploiting
Artificial Intelligence Techniques for Data Management (Portland, Oregon) (aiDM ’20). Association for Computing
Machinery, New York, NY, USA, Article 5, 5 pages. https://doi.org/10.1145/3401071.3401659

[34] Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H. Chi, Ani Kristo, Guillaume Leclerc, Samuel Madden, Hongzi
Mao, and Vikram Nathan. 2019. SageDB: A Learned Database System. In Proceedings of the 9th Biennial Conference on
Innovative Data Systems Research (Asilomar, CA, USA) (CIDR ’19). http://cidrdb.org/cidr2019/papers/p117-kraska-
cidr19.pdf

[35] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018. The Case for Learned Index Structures. In
Proceedings of the 2018 International Conference on Management of Data (Houston, TX, USA) (SIGMOD ’18). Association
for Computing Machinery, New York, NY, USA, 489–504. https://doi.org/10.1145/3183713.3196909

[36] H. T. Kung and John T. Robinson. 1981. On Optimistic Methods for Concurrency Control. ACM Trans. Database Syst. 6,
2 (June 1981), 213–226. https://doi.org/10.1145/319566.319567

[37] Leslie Lamport. 1977. Concurrent Reading and Writing. Commun. ACM 20, 11 (Nov. 1977), 806–811. https://doi.org/
10.1145/359863.359878

[38] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix tree: ARTful indexing for main-memory
databases. In Proceedings of the 2013 IEEE 29th International Conference on Data Engineering (ICDE ’13). IEEE Computer
Society, 38–49. https://doi.org/10.1109/ICDE.2013.6544812

[39] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel. 2019. KVell: The Design and Implementation
of a Fast Persistent Key-Value Store. In Proceedings of the 27th ACM Symposium on Operating Systems Principles
(Huntsville, Ontario, Canada) (SOSP ’19). Association for Computing Machinery, New York, NY, USA, 447–461.
https://doi.org/10.1145/3341301.3359628

[40] Jure Leskovec, Lars Backstrom, and Jon Kleinberg. 2009. Meme-Tracking and the Dynamics of the News Cycle. In
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Paris, France)
(KDD ’09). Association for Computing Machinery, New York, NY, USA, 497–506. https://doi.org/10.1145/1557019.
1557077

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

https://doi.org/10.1145/285237.285287
https://doi.org/10.14778/3389133.3389135
https://doi.org/10.1145/367390.367400
https://doi.org/10.1145/3299869.3319860
https://doi.org/10.1145/3299869.3319860
https://doi.org/10.1145/2338626.2338630
https://doi.org/10.1145/2656332
https://doi.org/10.1145/78969.78972
http://sites.computer.org/debull/A18sept/p64.pdf
http://sites.computer.org/debull/A19june/p47.pdf
https://doi.org/10.1145/3183713.3199671
https://www.usenix.org/conference/atc18/presentation/kannan
https://doi.org/10.1145/3401071.3401659
http://cidrdb.org/cidr2019/papers/p117-kraska-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p117-kraska-cidr19.pdf
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/319566.319567
https://doi.org/10.1145/359863.359878
https://doi.org/10.1145/359863.359878
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1145/3341301.3359628
https://doi.org/10.1145/1557019.1557077
https://doi.org/10.1145/1557019.1557077

The Concurrent Learned Indexes for Multicore Data Storage 8:35

[41] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-Tree: A B-tree for new hardware platforms.
In Proceedings of the 29th IEEE International Conference on Data Engineering (Brisbane, Australia) (ICDE ’13), Christian S.
Jensen, Christopher M. Jermaine, and Xiaofang Zhou (Eds.). IEEE Computer Society, 302–313. https://doi.org/10.1109/
ICDE.2013.6544834

[42] Pengfei Li, Yu Hua, Pengfei Zuo, and Jingnan Jia. 2019. A Scalable Learned Index Scheme in Storage Systems. CoRR
(2019). arXiv:1905.06256

[43] Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan. 2020. LISA: A Learned Index Structure for Spatial Data. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data (Portland, OR, USA) (SIGMOD
’20). Association for Computing Machinery, New York, NY, USA, 2119–2133. https://doi.org/10.1145/3318464.3389703

[44] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2016.
WiscKey: Separating Keys from Values in SSD-conscious Storage. In Proceedings of the 14th USENIX Conference on File
and Storage Technologies (Santa Clara, CA, USA) (FAST ’16), Angela Demke Brown and Florentina I. Popovici (Eds.).
USENIX Association, 133–148. https://www.usenix.org/conference/fast16/technical-sessions/presentation/lu

[45] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache Craftiness for Fast Multicore Key-Value Storage.
In Proceedings of the 7th ACM European Conference on Computer Systems (Bern, Switzerland) (EuroSys ’12). Association
for Computing Machinery, New York, NY, USA, 183–196. https://doi.org/10.1145/2168836.2168855

[46] Paul E. McKenney and John D. Slingwine. 1998. Read-Copy Update: Using Execution History to Solve Concurrency
Problems. In Parallel and Distributed Computing and Systems. Las Vegas, NV, 509–518.

[47] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz. 1992. ARIES: A Transaction Recovery
Method Supporting Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead Logging. ACM Trans. Database
Syst. 17, 1 (March 1992), 94–162. https://doi.org/10.1145/128765.128770

[48] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020. Learning Multi-Dimensional Indexes. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data (Portland, OR, USA) (SIGMOD
’20). Association for Computing Machinery, New York, NY, USA, 985–1000. https://doi.org/10.1145/3318464.3380579

[49] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. 1996. The Log-Structured Merge-Tree
(LSM-Tree). Acta Informatica 33, 4 (1996), 351–385. https://doi.org/10.1007/s002360050048

[50] Anastasios Papagiannis, Giorgos Saloustros, Pilar González-Férez, and Angelos Bilas. 2018. An Efficient Memory-
Mapped Key-Value Store for Flash Storage. In Proceedings of the ACM Symposium on Cloud Computing (Carlsbad,
CA, USA) (SoCC ’18). Association for Computing Machinery, New York, NY, USA, 490–502. https://doi.org/10.1145/
3267809.3267824

[51] Chuck Pheatt. 2008. Intel® threading building blocks. Journal of Computing Sciences in Colleges 23, 4 (2008), 298–298.
[52] Felix Putze, Peter Sanders, and Johannes Singler. 2007. Cache-, Hash- and Space-Efficient Bloom Filters. In Experimental

Algorithms (Rome, Italy) (Lecture Notes in Computer Science, Vol. 4525), Camil Demetrescu (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 108–121. https://doi.org/10.1007/978-3-540-72845-0_9

[53] Karl Schnaitter, Serge Abiteboul, TovaMilo, and Neoklis Polyzotis. 2007. On-Line Index Selection for ShiftingWorkloads.
In Proceedings of the 23rd International Conference on Data Engineering Workshops (Istanbul, Turkey) (ICDE ’07). IEEE
Computer Society, 459–468. https://doi.org/10.1109/ICDEW.2007.4401029

[54] Russell Sears and Raghu Ramakrishnan. 2012. BLSM: A General Purpose Log Structured Merge Tree. In Proceedings
of the 2012 ACM SIGMOD International Conference on Management of Data (Scottsdale, Arizona, USA) (SIGMOD ’12).
Association for Computing Machinery, New York, NY, USA, 217–228. https://doi.org/10.1145/2213836.2213862

[55] Ori Shalev and Nir Shavit. 2006. Split-Ordered Lists: Lock-Free Extensible Hash Tables. J. ACM 53, 3 (May 2006),
379–405. https://doi.org/10.1145/1147954.1147958

[56] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden. 2013. Speedy Transactions in
Multicore In-Memory Databases. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles
(Farminton, Pennsylvania) (SOSP ’13). Association for Computing Machinery, New York, NY, USA, 18–32. https:
//doi.org/10.1145/2517349.2522713

[57] Peng Wang, Guangyu Sun, Song Jiang, Jian Ouyang, Shiding Lin, Chen Zhang, and Jason Cong. 2014. An Efficient
Design and Implementation of LSM-Tree Based Key-Value Store on Open-Channel SSD. In Proceedings of the Ninth
European Conference on Computer Systems (Amsterdam, The Netherlands) (EuroSys ’14). Association for Computing
Machinery, New York, NY, USA, Article 16, 14 pages. https://doi.org/10.1145/2592798.2592804

[58] Xingbo Wu, Fan Ni, and Song Jiang. 2019. Wormhole: A Fast Ordered Index for In-Memory Data Management. In
Proceedings of the Fourteenth EuroSys Conference 2019 (Dresden, Germany) (EuroSys ’19). Association for Computing
Machinery, New York, NY, USA, Article 18, 16 pages. https://doi.org/10.1145/3302424.3303955

[59] Ting Yao, Yiwen Zhang, Jiguang Wan, Qiu Cui, Liu Tang, Hong Jiang, Changsheng Xie, and Xubin He. 2020. MatrixKV:
Reducing Write Stalls and Write Amplification in LSM-tree Based KV Stores with Matrix Container in NVM. In
Proceedings of the 2020 USENIX Annual Technical Conference (USENIX ATC ’20), Ada Gavrilovska and Erez Zadok (Eds.).
USENIX Association, 17–31. https://www.usenix.org/conference/atc20/presentation/yao

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

https://doi.org/10.1109/ICDE.2013.6544834
https://doi.org/10.1109/ICDE.2013.6544834
http://arxiv.org/abs/1905.06256
https://doi.org/10.1145/3318464.3389703
https://www.usenix.org/conference/fast16/technical-sessions/presentation/lu
https://doi.org/10.1145/2168836.2168855
https://doi.org/10.1145/128765.128770
https://doi.org/10.1145/3318464.3380579
https://doi.org/10.1007/s002360050048
https://doi.org/10.1145/3267809.3267824
https://doi.org/10.1145/3267809.3267824
https://doi.org/10.1007/978-3-540-72845-0_9
https://doi.org/10.1109/ICDEW.2007.4401029
https://doi.org/10.1145/2213836.2213862
https://doi.org/10.1145/1147954.1147958
https://doi.org/10.1145/2517349.2522713
https://doi.org/10.1145/2517349.2522713
https://doi.org/10.1145/2592798.2592804
https://doi.org/10.1145/3302424.3303955
https://www.usenix.org/conference/atc20/presentation/yao

8:36 Zhaoguo Wang, Haibo Chen, Youyun Wang, Chuzhe Tang, and Huan Wang

[60] Huanchen Zhang, David G. Andersen, Andrew Pavlo, Michael Kaminsky, Lin Ma, and Rui Shen. 2016. Reducing the
Storage Overhead of Main-Memory OLTP Databases with Hybrid Indexes. In Proceedings of the 2016 International Con-
ference on Management of Data (San Francisco, California, USA) (SIGMOD ’16). Association for Computing Machinery,
New York, NY, USA, 1567–1581. https://doi.org/10.1145/2882903.2915222

[61] Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G. Andersen, Michael Kaminsky, Kimberly Keeton, and Andrew
Pavlo. 2018. SuRF: Practical Range Query Filtering with Fast Succinct Tries. In Proceedings of the 2018 International
Conference on Management of Data (Houston, TX, USA) (SIGMOD ’18). Association for Computing Machinery, New
York, NY, USA, 323–336. https://doi.org/10.1145/3183713.3196931

[62] Wenting Zheng, Stephen Tu, Eddie Kohler, and Barbara Liskov. 2014. Fast Databases with Fast Durability and Recovery
Through Multicore Parallelism. In Proceedings of the 11th USENIX Symposium on Operating Systems Design and
Implementation (Broomfield, CO, USA) (OSDI ’14), Jason Flinn and Hank Levy (Eds.). USENIX Association, 465–477.
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/zheng_wenting

ACM Trans. Storage, Vol. 18, No. 8, Article 8. Publication date: February 2022.

https://doi.org/10.1145/2882903.2915222
https://doi.org/10.1145/3183713.3196931
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/zheng_wenting

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 The Learned Index
	2.2 The Issues

	3 XIndex for Range Indexes
	3.1 The Basic Algorithm
	3.2 Handling Concurrency
	3.3 Adjusting XIndex-R at Runtime
	3.4 Supporting String Keys
	3.5 Optimizations

	4 XIndex for Hash Indexes
	4.1 The Basic Algorithm
	4.2 Handling Concurrency

	5 Persistence and Crash Recovery
	6 Evaluation
	6.1 Setup
	6.2 XIndex for Range Index
	6.3 XIndex for Hash Index

	7 Related Works
	8 Conclusion
	Acknowledgments
	References

