usenix
.' THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Pragh: Locality-preserving Graph Traversal
with Split Live Migration
Xiating Xie, Xingda Wei, Rong Chen, and Haibo Chen, Shanghai Jiao Tong University

https://www.usenix.org/conference/atc19/presentation/xie

This paper is included in the Proceedings of the

2019 USENIX Annual Technical Conference.
July 10-12, 2019 « Renton, WA, USA
ISBN 978-1-939133-03-8

Open access to the Proceedings of the
2019 USENIX Annual Technical Conference
is sponsored by USENIX.




Pragh: Locality-preserving Graph Traversal with Split Live Migration

Xiating Xie, Xingda Wei, Rong Chen, Haibo Chen
Shanghai Key Laboratory of Scalable Computing and Systems
Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

Contacts: rongchen@sjtu.edu.cn

Abstract

Many real-world data like social, transportation, biology, and
communication data can be efficiently modeled as a graph.
Hence, graph traversal such as multi-hop or graph-walking
queries has been key operations atop graph stores. However,
since different graph traversals may touch different sets of
data, it is hard or even impossible to have a one-size-fits-
all graph partitioning algorithm that preserves access local-
ity for various graph traversal workloads. Meanwhile, prior
shard-based migration faces a dilemma such that coarse-
grained migration may incur more migration overhead over
increased locality benefits, while fine-grained migration usu-
ally requires excessive metadata and incurs non-trivial main-
tenance cost.

This paper proposes Pragh, an efficient locality-preserving
live graph migration scheme for graph store in the form of
key-value pairs. The key idea of Pragh is a split migration
model which only migrates values physically while retains
keys in the initial location. This allows fine-grained migra-
tion while avoiding the need to maintain excessive metadata.
Pragh integrates an RDMA-friendly location cache from
DrTM-KV to provide fully-localized accesses to migrated
data and further makes a novel reuse of the cache replace-
ment policy for lightweight monitoring. Pragh further sup-
ports evolving graphs through a check-and-forward mecha-
nism to resolve the conflict between updates and migration of
graph data. Evaluations on an 8-node RDMA-capable clus-
ter using a representative graph traversal benchmark show
that Pragh can increase the throughput by up to 19x and de-
crease the median latency by up to 94%, thanks to split live
migration that eliminates 97% remote accesses. A port of
split live migration to Wukong with up to 2.53 x throughput
improvement further confirms the effectiveness and general-
ity of Pragh.

1 Introduction

Graph data ubiquitously exist in a wide range of applica-
tion domains, including social networks, road maps, biologi-
cal networks, communication networks, electronic payment,

semantic webs, just to name a few examples [47]. Graph
traversal (aka multi-hop or graph-walking) queries have
been prevalent and important operations atop graph store
to support emerging applications like fraud detection in e-
commerce transaction [45], user profiling in social network-
ing [11, 18, 6], query answering in knowledge base [52, 63],
and urban monitoring in smart city [64].

With the increasing scale of data volume and the grow-
ing number of concurrent operations, running graph traver-
sal workloads over distributed graph store becomes essen-
tial. Graph traversal workloads are severely sensitive to the
access locality, while it is notoriously difficult to partition
graph with good locality. For example, the difference of
median latency for two-hop query (like friends-of-friends
(FoF) [18]) over a Graph500 dataset (RMAT26) [12] is about
30x (0.75ms vs. 22.5ms) between a single machine and an
8-node cluster. Further, preserving locality is even more chal-
lenging where workloads and datasets may evolve, while it
is common for many production applications [7, 16, 42, 33].

We argue that live migration of graph data is a necessary
mechanism for preserving access locality in graph traver-
sals, because existing alternatives have several limitations in
many scenarios. First, locality-aware graph partitioning al-
gorithms may improve the performance of a specific dataset
and workload [27, 13]. However, one partition scheme can-
not fit all [62]. Further, a proper graph partitioning scheme
for a certain workload may be ineffective and even harmful
to another graph traversal workload. Second, replicating data
to multiple or all machines allows more (fast) localized read
accesses, but also leads to excessive memory overhead as the
increase of machines and heavy synchronization cost among
replicas for write operations.

Hence, live migration becomes a compelling approach to
preserve locality, which has been widely investigated in the
database and distributed systems community over the last
decade. Unfortunately, the unique characteristics of graph
data and traversal operations significantly weaken the ben-
efits of live migration using a shard-based approach, even
which is adopted by almost all existing systems. For example,
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Fig. 1. A sample graph (G), key-value store over 2 machines, and
three two-hop queries (Qy).

using a typical shard-based live migration [25, 60] with an
optimal migration plan on above two-hop query experiment
will just decrease 29% (22.5ms vs. 15.9ms) median latency,
still far from the performance of ideal setting (pure localized
access). This is because the majority of the migrated data in
a shard would likely have different location preferences. On
the other hand, decreasing the size of the shard (fine-grained)
would incur high memory and CPU overhead due to storing
and maintaining excessive metadata (a location mapping for
every shard).

In this paper, we present Pragh, an efficient locality-
preserving live migration scheme for distributed in-memory
graph store. The key idea of Pragh is a new migration scheme
called split live migration, which separates the migration of
keys and values. Only the value would be migrated physi-
cally, while the key would always be stationary at its initial
location. This allows fine-grained migration (vertex granular-
ity) while avoiding the need to maintain excessive metadata.

Pragh is made efficient and cost-effective with several
key design choices. First, to migrate well-selected vertices
(scattered over the entire store) efficiently, Pragh proposes
a unilateral migration protocol such that the target machine
can migrate vertices alone by carefully leveraging one-sided
RDMA primitives, while the traversal workloads can concur-
rently execute on the store. Second, Pragh integrates split live
migration with location-based caching [61] to provide fully-
localized accesses to migrated data. This eliminates the re-
striction from the stationary key and unleashes the full power
of split migration. Third, to support the evolving graph with
live migration, Pragh designs a check-and-forward mecha-
nism to resolve the conflict between updating and migrating
data. Finally, fine-grained monitoring both local and remote
accesses to every vertex may incur non-trivial memory and
CPU overhead to traversal workloads. Pragh makes a novel
reuse of the cache replacement policy to concentrate on track-
ing remote data accessed frequently. Pragh further provides
two optional mechanisms (eager and deferred) for local ac-
cess tracking to balance the accuracy and the timeliness of
migration.

We have implemented Pragh by extending DrTM-KV [61],
a state-of-the-art RDMA-enable key-value store, to store
graph data and support split live migration. To demonstrate

Table 1: A detail analysis of shard-based live migration.
Shard-based

Ideal
Before After
Throughput (K ops/sec) 3,248 123 171
Median/50"" Latency (msec) 0.75 22.5 15.9
Tail/99"" Latency (msec) 4.2 76.6 59.2
Remote Access Rate (%) 0 86.2 64.4
Data Migration Rate (%) - - 85.6

the effectiveness and efficiency of Pragh, we have conducted
a set of experiments using a state-of-the-art graph traversal
benchmark on an 8-node RDMA-capable cluster. The exper-
imental results show that Pragh can increase the throughput
by up to 19x and decrease the median latency by up to 94%
through live migration, as the rate of remote accessing re-
duces from 86.2% to 2.0%. We have also integrated split
live migration to Wukong [52], a state-of-the-art distributed
graph store that leverages RDMA-based graph exploration
(graph traversals in parallel) to provide highly concurrent
and low-latency queries. An evaluation using original con-
current workload benchmark [52] shows that the throughput
increases by up to 2.53 x due to using split live migration.

2 Background and Motivation

2.1 Graph Store and Traversal Workload

The graph-structured store (aka graph store) becomes more
and more prevalent in an increasing number of applica-
tions [47] for modeling the relationships among connected
data. Due to fast lookup and good scalability, distributed
key-value stores are widely used by existing graph sys-
tems [52, 64, 57, 22, 31, 24, 51, 63, 54] as the underlying
storage layer to support graph traversal operations efficiently,
which play a vital role for many emerging and crucial appli-
cations [45, 11, 18, 63, 52].

A natural way to build a graph model on top of the key-
value store is to simply use the vertex as the key and the
adjacency list as the value [51]. Further, separate key and
value memory regions are used to support variable-sized key-
value pairs [39, 61, 52]. Specifically, the key region is a fix-
sized hash table, where each entry stores a key and an ad-
dress (i.e., offset and size) of the value region. The value
region stores variable-sized values consecutively. As shown
in Fig. 1, a sample graph (G) is stored into a key-value store
over two machines. Various graph traversal operations (like
FoF, multi-hop query, and random walking) can be imple-
mented by iteratively accessing key and value pairs. For ex-
ample, the two-hop query on vertex 1 (Qy(1)) will first re-
trieve neighbors of the start point (vertex 1) by hashing it as
the key and accessing its value (vertex 7 and 8). The next
hop will use the value in this hop as the keys (hash(7) and
hash(8)) to retrieve their neighbors (vertex 2 and 5) recur-
sively. The accesses over key and value may be either local
or remote according to the partitioning scheme.
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2.2 Poor Locality and Partitioning

For distributed in-memory stores, the locality of data access-
ing is quite important because accessing local memory is
still more than 20x faster than accessing remote memory
across networks, even using high-speed networks [22]. Un-
fortunately, the traversal on distributed graph data is notori-
ously slow due to poor data locality. Prior work shows that
assigning vertices to N machines randomly will lead to the
expected fraction of remote accesses reaching 1 — % [27].

To illustrate the performance impact of locality for graph
store, we conducted a motivating experiment using two-
hop queries (like FoF [18]) over Graph500 dataset [12]
(RMAT?26) on an 8-node RDMA-capable cluster. The graph
is partitioned into 8 machines randomly (hash-based), and
a set of vertices randomly sampled with a Zipf distribution
(6=0.99) is used to run two-hop queries which access fixed
100 friends of 100 friends. As shown in Tab. 1, the distributed
setting using 8 machines only achieves less than 4% through-
put (123K vs. 3,248K) and about 30x median (50" per-
centile) latency (22.5ms vs. 0.75ms) of the ideal setting since
the rate of remote accessing reaches up to 86.2%."

Therefore, designing locality-aware graph partitioning al-
gorithms has been an active area of research for a decade [27,
13], especially for graph analytics systems. However, one
partition scheme cannot fit all [62]. It is hard or even impos-
sible to handle dynamic workloads or evolving graphs only
relying on static partition-based approaches. One example is
shown in Fig. 1 such that Q,(1) and Q,(4) contends for the
same vertices (8 and 2). The queries may arrive at different
times, which causes false contention. Actually, prior work
on production applications has shown that workloads change
rapidly over time [7, 16, 42, 33].

2.3 Live Migration

Live migration (aka dynamic migration) is a compelling ap-
proach for handling dynamic workloads and has been widely
investigated in the database and distributed systems commu-
nities [20, 21, 26, 25, 35, 60, 5]. Generally, a centralized coor-
dinator will make the migration plan according to the statis-
tics (e.g., access frequency) collected by the monitor on each
machine. The migration threads on the source and/or target
machines will implement the plan by migrating key-value
pairs in a synchronous way (see Fig. 2(b)). Since the posi-
tion of vertices may change after migration, additional meta-
data (POS) will be accessed to look up the latest positions
of the key-value pairs before accessing them (see Fig. 2(a)).
The metadata should be updated by the coordinator during
live migration and usually is consistently cached at each ma-
chine to avoid remote lookup for every accesses.

!The ideal result is gained by running the benchmark on a single machine
(fully local accessing). The throughput is further magnified 8 x (the number
of machines).

w/ META BEFORE AFTER
get(key) § Mo % g Mo %
P(key) key)
G
H(key) i key)
- [key
| addr 3
<--valljle-- 1 1-0 Send MSG
(2 i (b) <«— Local Read

Fig. 2. (a) The sequence of an access on (kv-based) graph store
and (b) a comparison of accesses before and after live migration.

Shard-based migration. A ubiquitous approach in live mi-
gration is to group the data into shards (partitions) by key
ranges or key hashing [49, 53, 4, 35, 5]. Shards serve as the
unit of migration for load balancing and locality-aware opti-
mization. Prior work mainly focuses on relational workloads
(e.g., TPC-C) or simple CRUD (Create, Read, Update, and
Delete) workloads (e.g., YCSB [15]). Compared to travers-
ing graph data, such workloads with datasets usually have
high access locality (e.g., accessing 1% remote key in TPC-
C). Consequently, leveraging shard-based migration on the
graph store is ineffective and may be harmful, due to the fol-
lowing reasons:

First, migrating data at shard granularity will significantly
weaken the benefits of data migration. Due to lacks of data
locality, after migrating a shard, the majority of the migrated
data in the shard would likely not be accessed by the work-
load at the target machine. Meanwhile, it will also increase
the number of remote accesses at the source machine. Based
on the above motivating experiment, we partition graph data
into one hundred shards per machine (about 70K keys per
shard), similar to prior work [11, 5]. All of the local and re-
mote accesses to every shard are monitored and aggregated
to make an optimal migration plan. As shown in Tab. 1,
the rate of remote accessing only decrease from 86.2% to
64.4% even after migrating more than 85.6% of graph data
(about 20GB). As a result, the throughput only increases 39%
(123K vs. 171K) and the median latency also just decreases
29% (22.5ms vs. 15.9ms), still far from the performance of
an ideal setting.

Second, though decreasing the size of shard could enhance
the effectiveness of migration, it still faces the same draw-
backs of static graph partitioning approaches when handling
dynamic workloads, unless vertices (key-value pairs) serve
as the unit of migration. For example, two irrelevant queries
may contend the same shard even assigning two vertices to
one shard by key ranges, like vertex 2 and 4 for Q,(1) and
Q,(6) in Fig. 1. More importantly, the amount of metadata
(POS) needed to manage the shards would incur extremely
high memory pressure. For example, the metadata for the
motivating experiment will consume about 3GB memory on
each machine to support vertex granularity migration. Each
machine has to cache the entire metadata since the workload
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may access any vertex of the graph. Consequently, the size of
metadata may exceed the size of graph data when the graph
scales.

3 Approach and Overview

Our approach: split live migration. We propose a new
migration approach, named split live migration, that enables
live migration at the minimum level of granularity (i.e., key-
value pair). A landmark difference compared to prior ap-
proaches is that split live migration has no need of metadata
at all. This is the greatest advantage but also the biggest chal-
lenges for live migration.

The key principle of split migration is to separate the mi-
gration of keys and values. The key will always be stationary
at its initial location, which can be found without metadata
(e.g., key hashing). The value will be migratory on demand
to improve locality or rebalance the load. Our design natu-
rally tackles the issue of memory pressure by avoiding meta-
data due to the stationary key. Further, allowing fine-grained
migration (even a single value) would maximize the effec-
tiveness of data migration for graph store. However, there
are still many challenges before making split live migration
come true.

Opportunity: RDMA. Remote Direct Memory Access
(RDMA) is a networking feature to provide cross-machine
accesses with high speed, low latency, and kernel bypassing.
The one-sided RDMA primitive (e.g., READ, WRITE, and CAS)
allows one machine to directly access the memory of another
machine without involving the host CPU. Much prior work
has demonstrated the benefit of using RDMA for in-memory
key-value stores [39, 22, 32, 61]. Generally, the GeT/Put
(read/write) operation first uses RDMA READs to look up the
location (address) of the value by hashing the given key, and
then use RDMA READ/WRITE to retrieve/update the value (see
the left part of Fig. 4(b)). We observe that one-sided RDMA
primitives decouple the accesses of keys and values, which
make it easy and efficient to separate keys and values in phys-
ical. It opens a new opportunity to split live migration.

Challenges and solutions. First, split live migration uses
the key-value pair as the unit of migration, such that the key-
value pairs which will be migrated are scattered over the en-
tire graph store. Therefore, directly using existing protocols
designed for shard-based migration may be inefficient. We
propose a unilateral (target-only) migration protocol that the
target machine can do it alone and efficiently by carefully
leveraging one-sided RDMA primitives (§4.1).

Second, the basic split migration only migrates the values
of key-value pairs, which can at most eliminate about half of
the remote accesses. This is because the read access to the
key of key-value pair (look up the location of the value) will
still be remote. We address this challenge by integrating split
migration with RDMA-friendly location-based caching [61]
to provide fully-localized access to migrated data (§4.2).

Machine 1

worker .

1
§ e § threads

migrafion
threads

ERuR

key/value ops

get/put

b+ Network 44

key-value
store

e key-value monitor
EE’ store [tat) \

B .
§ coordinator

Fig. 3. The architecture of Pragh.

Third, the split of key and value after performing mi-
gration presents a new challenge to the support of evolv-
ing graphs, especially for the target-only protocol. We use
a check-and-forward mechanism to resolve the conflict be-
tween data updating and data migrating tasks (§4.3).

Finally, to maximize the effectiveness of data migration,
both local and remote accesses to every key-value pair
should be tracked to generate an optimal migration plan. It
may incur non-trivial memory and CPU overhead to traversal
workloads. We design a lightweight, memory-saving moni-
tor, which reuses the location cache to track frequent remote
accesses and provides two optional mechanisms for local ac-
cess tracking to balance the accuracy and the timeliness of
live migration (§4.4).

Architecture. As shown in Fig. 3, Pragh is a distributed
in-memory graph store with split live migration. It follows
a decentralized architecture to deploy servers on a cluster of
machines connected with a high-speed, low-latency RDMA
network. Each server is composed of three components: task
engines, a storage layer, and a migration toolkit. The task en-
gine binds a worker thread on each core with a task queue
to continuously execute operations (e.g., GET and Put) from
clients or other servers. The storage layer adopts an RDMA-
enabled key-value store over distributed hashtable to support
a partitioned global address space. The migration toolkit en-
ables a monitor to collect statistics of graph store and runs
migration threads to perform live migration. Pragh scales by
partitioning graph data randomly (hash-based) into multiple
servers. Each server stores a partition of the graph, which is
shared by all of the workers and migration threads on the
same machine.

Execution flow. Pragh is designed to handle concurrent op-
erations on graph data with low-latency and high-throughput.
The key advantage of Pragh over previous systems is capa-
ble of physically migrating data to improve locality in a split
way, which can promptly and significantly enhance perfor-
mance for dynamic workloads.

Similar to prior work [53, 60, 35], a centralized coordina-
tor will make migration plan according to the statistics (e.g.,
access frequency) collected by the monitor on each server
and migration policies. The details — how to make a proper
policy and how to find an optimal plan — are beyond the
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Fig. 4. (a) The sequence of an access on (kv-based) graph store
without meta-data and (b) a comparison of accesses before and
after split live migration.

scope of this paper and are part of our future work. Currently,
Pragh uses a simple threshold-based policy to generate mi-
gration plans. On each server, the monitor will track the ac-
cesses of worker threads to the key-value store in the back-
ground and report to the coordinator periodically (e.g., 10s)
or instantly (e.g., when exceeding 100 times per second). The
coordinator will compare the statistics from the applicant and
the machine hosting the vertex at present, and approve the mi-
gration if the profit is more than a threshold (e.g., 50% more
accesses per second). After that, the migration threads will
migrate the key-value pairs according to the plan from the co-
ordinator, while the worker threads will continue to execute
queries by accessing the same key-value store concurrently.
Note that the centralized coordinator is just used to collect a
few statistics from servers and approve migrations by simply
comparing the statistics. Further, the fine-grained approach
commonly only needs to migrate much fewer vertices (e.g.,
0.13% in §6.1). Hence, the coordinator may hardly become
a bottleneck in a medium-sized cluster.

4 Split Live Migration

Pragh uses an RDMA-enabled key-value store over dis-
tributed hashtable to store graph data physically. For brevity,
Pragh supposes that each vertex has a unique ID (vid) and
use it as the key. The hash value of the key (H(key)) can
be used to identify the host machine (mid) and the location
in the key region (off). As shown in Fig. 4(a), to get neigh-
bors of a given vertex, the worker thread first uses H(key)
to look up the address of its value and then retrieves the
value (a list of IDs of neighbors). For remote key-value pairs,
RDMA READs are used to access keys and values (see the left
part of Fig. 4(b)), which are at least 20x slower than local
reads. Hence, Pragh uses split live migration to eliminate
such remote accesses.

4.1 Basic Split Migration

We start from the basic migration protocol, assuming that
there only exist traversal workloads (i.e., GET operations) in
the graph store. Since the key is always stationary in the split
migration, Pragh will only move the value to the target ma-
chine. This could improve locality by avoiding remote ac-
cesses to the values (see the right part of Fig. 4(b)).

52 34 o RDMA_WRITE (addr)

Remote 5463
“Aadr I 1D [size| offset/34 Reclaim
Li/7 22 " Table
Local
[EIEE

Addr E size/29 | offset/34
Type/1 '

Migration ;
Value é] thread § RDMA_FAS(addr‘,new-addr‘)
new-addr=ALLOC(addr) o_gj RDMA_WRITE(@)
0 ‘\A O--seez I i
O RDMA Read VAL ﬂ‘_g """""" -
— RDMA wiite value=RDMA_READ(addr)

e—» RDMA CAS E Mo i @ M1

Fig. 5. The execution flow of basic split migration.

Address layout. To avoid the influence between accessing
and migrating key-value pairs, the address (within the key)
should be changed from local to remote in a lock-free way
(e.g., compare-and-swap (CAS)). Therefore, both the local
and remote location of value should use a 64-bit address uni-
formly, which can be modified atomically using both local
and RDMA atomic instructions.”

Considering the machine ID should be added into the ad-
dress, a simple layout may severely restrict the scope of ad-
dress space. Pragh adopts a differentiated layout for local and
remote addresses. As shown in the top left corner of Fig. 5,
The most significant bit is used to present the type of address,
local (0) or remote (1). For local addresses, the rest of the bits
are used to store 29-bit value size and 34-bit offset within the
value region. Thus, the size of a single value and value region
on a single machine can reach 4GB and 128GB respectively
(assuming 8-byte granularity and alignment). For remote ad-
dresses, the value offset still occupy 34 bits to present the
entire remote value region, while the value size reduces to
22 bits for hosting 7-bit machine ID. Thus, the graph store
can scale up to 128 machines, while the size of the maxi-
mum value that can be migrated is limited to 32MB. The
observation is that the system will prefer to migrate the work-
loads rather than very large key-value pairs [52, 57]. Further,
a large key-value pair can be split into multiple ones (ver-
tex decomposition [52, 57]), and each one can be migrated
separately.

Unilateral migration protocol. Similar to traditional
shard-based migration systems, the split live migration also
could be implemented by the collaboration of migration
threads on source and target machines. However, the key-
value pairs which will be migrated, are scattered over the
entire graph store due to lacks of locality. It means that mi-
grating multiple key-value pairs may incur a prolonged in-
terruption to the concurrent graph accessing and/or lengthy
migration delay since multiple addresses (within separated
keys) should be modified by atomic operations (e.g., CAS).
Pragh proposes a unilateral (target-only) migration proto-
col based on one-sided RDMA primitives. It only uses the

Note that RDMA primitives guarantee atomic 64-bit transfer [9], and RDMA
READ/WRITE operations are also cache coherent with local accesses [22, 61].
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MIGRATE (key)
1 retry:
2 kmid = H(key).mid
3 addr = Lookup(kmid, key)
@4 buf = ALLoc(addr.sz)
5 new_addr = {1, local_mid, addr.sz, buf }
@6 RoMA_READ(addr.mid, buf, addr.off, addr.sz)
©7 if !RomA_CAs(kmid, H(key).off, addr, new_addr)
8 | goto retry » conflict w/ PUT
9 zero = 0 » invalidate value
@ 10 RDMA_WRITE(addr.mid, addr.off, zero, 8)
© 11 RDMA_WRITE(addr.mid, reclaim, addr, 8) »> reclaim

3

> e.g., key % machines

Fig. 6. Pseudo-code of MIGRATE operation.

migration thread on the target machine to migrate the key-
value pair instantly, while the worker threads on every ma-
chine can still access the key-value pair concurrently. Fig. 5
illustrates three steps of the migration protocol (a detail
pseudo-code is shown in Fig. 6). First, the migration thread
on the target machine will allocate memory space in local
value region (new_addr) to host migrated value (), accord-
ing to the size in the original address. Second, the migra-
tion thread will retrieve the value using one RDMA READ from
the original address to the new address (). Finally, one
RDMA CAS is used to replace the original (local) address with
the new (remote) address (©).

Invalidation and reclaim. Unilateral migration protocol
will incur two new problems. First, the memory of migrated
value in the source machine should be invalidated. How-
ever, some worker threads may still have the original address
of the migrated value and will access it in the future. To
solve it, Pragh proposes a passive invalidation mechanism.
The migration thread will invalidate the original memory
of migrated value by zeroing (RDMA WRITE) the size within
the value (@). Before using the retrieved value, the worker
thread should check whether the size within the value and ad-
dress are equal. If not, the address should be regained. Note
that the worker thread can safely read the value from the
original memory before invalidation even it has just been mi-
grated (©).

Second, the memory of migrated value on the source ma-
chine should be reclaimed. However, it is hard or even im-
possible for the migration thread on the target machine to
solely free the memory. Therefore, Pragh uses a lease-based
mechanism to reclaim the memory of migrated values in
the background by a garbage collection (GC) thread on the
source machine.* The migration thread will actively write
(RDMA WRITE) the original address to the reclaim table> of the
source machine, at the end of live migration (). The GC
thread on each machine will periodically check the reclaim
table to free the expired memory, which has been migrated

3RDMA provides fences between different requests [38], and Pragh uses
them before invalidating and reclaiming the memory (Line 10 and 11).

4Pragh uses the precision time protocol (PTP) [1] to implement lease.

SWe implement the reclaim table like the circular buffer [22].
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Fig. 7. (a) The sequence of an access on (kv-based) graph store
with location cache and (b) a comparison of accesses before and
after split live migration with location cache (for remote kv pair).

before a pre-agreed lease (e.g., 60s). All the worker threads
comply with the convention that the value address obtained
before a lease duration should not be used, since it may have
been freed and reused. The performance impact could be triv-
ial by using a long-term lease.

4.2 Fully-localized Split Migration

The basic split migration only avoids remote accesses to the
values, which limits the effects of migration since only at
most half of remote accesses can be eliminated.

Observation: location cache. Prior work [61, 23, 59] pro-
poses location-based caching for RDMA-friendly key-value
stores, which aims at avoiding remote accesses to the keys.
Different to caching the content (value) of key-value pairs,
the location cache (L$) only stores the location (address) of
key-value pairs, which is very space-efficient and effective
(see the left part of Fig. 7). We observe that location cache is
a perfect counterpart to split migration. They focus on two
different halves of the access to the remote key-value pair,
and the candidates of them are also well matched, namely
remote key-value pairs frequently accessed. Finally, a small
cache has negligible memory overhead (e.g., 128MB) and
lookup cost, yet it is sufficient to achieve fully-localized ac-
cesses for most workloads [46, 61].

Integration with location cache. Pragh extends the graph
store with location cache (L$) and integrates it with split live
migration to enable fully localized accesses after migration.
Fig. 8 illustrates the pseudo-code of GeT operation with the
integration of location cache and split live migration. When
accessing a remote key-value pair (Line 9), the worker thread
will first check location cache (Line 21) and fill the cache (if
missed) with the address of the value (Line 25) obtained by
the remote access to the key (Line 24). Given the address, the
worker thread will retrieve the value using one RDMA READ
(Line 14).

If the worker threads access the key-value pair frequently
enough, the value will be migrated to the local using the basic
migration protocol. After that, the address stored in location
cache will be updated by the new address, which points to the
local value region. Therefore, the accesses to the key-value
pair will be fully localized (Line 10-12), as shown in the right
part of Fig. 7. In contrast, the local key-value pair could also
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GET(key, buf)

+1 retry:

2 kmid = H(key).mid

3 addr = Lookup(kmid, key)
4  if kmid == local_mid

» e.g., key % machines

» Local key

+5 if addr.type == » Local value

6 | MemcpY(buf, vals[addr.off], addr.sz)
+7 else > remote value (migrated)
+8 | RDMA_READ(addr.mid, buf, addr.off, addr.sz)

9 else > remote key
+10 if addr.type == > migrated
+11 && addr.mid == local_mid » Local value
+12 MEMCPY (buf, vals[addr.off], addr.sz)
+13 else > remote value

14 | ROMA_READ(addr.mid, buf, addr.off, addr.sz)
+15 if CHEcK(addr, buf)
+16 if kmid != local_mid
+17 | cache.DELETE(key) > invalidate
+18 goto retry

LookupP (kmid, key)

19 if (kmid == local_mid) » Local key
20 | return keys[H(key).off]

x21 if cache.FIND(key)

+22 && !EXPIRED(cache.GET(key).lease)

x23 return cache.GET(key).addr » cache hit
24 RDMA_READ(kmid, addr, H(key).off, 8)
x25 cache.INSERT(key, addr)

+26 cache.GET(key).lease = Now()

27 return addr

> fill cache

Fig. 8. Pseudo-code of GET operation with location cache. The
code lines with “x” and “+” stand for additional instructions to
integrate with location cache and split live migration, respectively.

be migrated to other machines, thus the type of address will
be used to decide how to retrieve the value (Line 5-8).
Finally, the address stored in the location cache should
also follow the convention of the invalidation and the reclaim
mechanisms. First, if the retrieved value is invalid (Line 15),
the worker thread has to delete the address in location cache
for the remote key-value pair (Line 16-17), and needs to retry
(Line 18). Second, the cached address must expire after a
lease duration (e.g., 60s) from the last cache time (Line 22
and 26). Note that the duration of the (cache) lease should be
equal or smaller than that of the (reclaim) lease (§4.1).

4.3 Full-fledged Split Migration

The basic migration protocol only considers traversal work-
loads (i.e., GET operations) concurrently execute in the graph
store. Pragh extends it with a check-and-forward mecha-
nism to support the evolving graph (i.e., Pur operations).
For brevity, suppose that graph store has provided some
mechanisms (e.g., snapshot read [52, 64]) to run traversal
workloads over evolving graphs correctly.® Therefore, Pragh
only tackles the conflict between split live migration and the
change of graph. More specifically, Pragh only needs to con-

Pragh assumes the Put operation will use atomic in-place updates on the
key to ensure consistency, which is common in prior work [52, 64].

PuUT(key, val)

+1 retry:

2 kmid = H(key).mid

3 addr = LOOKUP(kmid, key)

+4  if addr.mid != local_mid > migrated
+5 SEND(addr.mid, key, val) > forward PUT op
+6 return false

7 new_addr = WRITE_VALUE(addr, val)

8 if IRDMA_CAs(kmid, H(key).off, addr, new_addr)

9 | goto retry » conflict w/ put or migrate
10 zero = © » invalidate value
11 Memcpy(vals[addr.off], zero, 8)
12 MEMCPY(reclaim, addr, 8)

13 return true

> reclaim

Fig. 9. Pseudo-code of Put operation. The code lines with “+”
stand for additional instructions to support split live migration.

sider the concurrent update to edges (i.e., change the value
of a key-value pair).

We observe that both MicraTeE and Put operations will
change the address within the key atomically to mark the
success of processing (Line 7 in Fig. 6 and Line 8 in Fig. 9).”
Moreover, Put operation will always be assigned to the ma-
chine hosting the key at first. So for key-value pairs migrated,
a better choice is to forward the Put operation to the machine
hosting the value upon conflicts, which also ensures consis-
tency and reclaims the memory. Consequently, Pragh adopts
different strategies for MigraTE and Put operations when de-
tecting the conflict over the address; M1GraTE Operation will
be retried (Line 8 in Fig. 6), while Put operation will forward
itself (Line 5 in Fig. 9), if it conflicts with some MiGraTE
operation and then is retried (Line 9 in Fig. 9). Note that
PuTt operation will always update the address in the machine
hosting the key using RDMA CAS, even though Put operation
is forwarded.

4.4 Lightweight Monitoring

To generate a proper migration plan, the coordinator should
collect the statistics of both local and remote accesses to ev-
ery key-value pair. A (much) higher remote access number
from a certain machine to a key-value pair in the most re-
cent interval (e.g., 10s) indicates that migrating the key-value
pair to that machine may improve locality (fewer remote ac-
cesses). It has been a great challenge to track the accesses at
the granularity of key-value pairs.® Even worse, the remote
accesses using RDMA READ contributes much more extra bur-
dens (both memory and CPU overhead) to the monitor, since
each machine has to track the accesses to remote key-value
pairs (except local key-value pairs).

Pragh designs a lightweight, memory-saving monitor for
split live migration by tracking local and remote accesses
separately. For remote accesses, worker threads may access

7Suppose that Put operation will change the size or the offset of the address
(or both), namely addr is not equal to new_addr.

8Relational database can leverage table schema to reduce the number of
tuples should be tracked, by grouping co-accessed tuples into blocks [53,
25, 50, 60]. Unfortunately, graph store is generally schema-less.
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any key-value pairs, while the monitor may (very likely) only
care about remote key-value pairs accessed frequently. This
observation also matches the intention of the location cache.
Hence, Pragh reuses the cache to track (partial) remote ac-
cesses(remote key). The monitor relies on the replacement
policy of cache to recognize the key-value pairs (worth track-
ing) freely. Note that the accesses for the values migrated to
local will still be tracked through the cache.

For local accesses, reserving space for every key and track-
ing every access might be not worth, especially for a very
large store. This is because only a small fraction of key-value
pairs should be migrated for a while. For example, migrating
less than 0.2% of key-value pairs is sufficient for the motivat-
ing experiment (§6.1). Therefore, Pragh allows to skip track-
ing local accesses to the key-value pairs and provides two
optional mechanisms to balance the timeliness and the accu-
racy of split live migration. Note that the monitor on each
machine will report to the coordinator when remote accesses
to a key-value pair exceed a threshold.

Eager migration: The coordinator will eagerly approve the
migration of the key-value pair. After migration, the ma-
chine hosting the key will track the (remote) accesses to the
key-value pair using a separate table, and then may migrate
it back in future if it accesses the key-value pair more fre-
quently.’

Deferred migration: The coordinator will notify the machine
hosting the key to track the (local) accesses to the key-value
pair using a separate table. After a migration interval, the
coordinator will decide whether to migrate the key-value pair
according to the statistics from all of the machines.

4.5 Discussion

Even though the current design of split live migration highly
relies on RDMA, we believe that it can still benefit graph
traversal workloads without RDMA, including no need for
metadata and vertex granularity migration. However, after
migrating the value to local, the cost to retrieve the address
would be almost the same as the cost to retrieve the value
directly. Hence, location cache must be deployed even with-
out RDMA. On the other hand, the lack of RDMA would
also need to rethink the implementation of migration proto-
col. Our future work may extend Pragh to support commod-
ity networks without RDMA.

S Implementation

Fault tolerance. Pragh supposes distributed in-memory
graph store has provided durability and/or availability by us-
ing specific mechanisms like checkpointing or replication.
Pragh only needs to consider the interrupted migration tasks
and the recovery of crashed machines, because split live mi-
gration only changes the location of key-value pairs rather

Pragh relies on the coordinator to prevent the “ping-pong” of migrations,
which prefers not to migrate the vertex competed by multiple machines.

than the content of key-value pairs.

Interrupted migration tasks: If the crashed machine is the
source of migration, there is nothing to do since the key-
value pair will be recovered on the crashed machine later.
If the crashed machine is the target of migration, a corner
case that the interruption occurs after replacing address (&
in Fig. 5) but before reclaiming memory (® in Fig. 5) will
cause a little memory leakage, which can be detected and re-
claimed by scanning the entire value memory region in back-
ground.

System recovery: Pragh relies on the mechanism provided by
graph store to detect machine failures, like Zookeeper [30].
It will notify surviving machines to assist the recovery of
crashed machines, which needs to handle two kinds of key-
value pairs. First, the key-value pairs hosted by a crashed
machine will be reloaded by the substitute of the crashed
machine. Before that, all surviving machines will flush ad-
dresses in location cache which point to the key-value pairs
hosted by crashed machines (i.e., H(key) .mid) whether they
have been migrated or not, and reclaim the memory of
values migrated from crashed machines. Second, the key-
value pairs, hosted by a surviving machine but migrated to a
crashed machine, will be reloaded by the surviving machine.
Before that, all surviving machines will also flush addresses
in location cache which point to the key-value pairs migrated
to the crashed machines (i.e., addr.mid). The coordinator
will record the latest target machines of values migrated per-
sistently before approving the migration, which could help
surviving machines reload vertices precisely. Moreover, all
workloads running on surviving machines involving crash
machines will be aborted and suspended until recovery is
complete. Finally, the coordinator in Pragh is stateless and
easy to recover. The coordinator failure will not influence
the execution of worker threads and only pause launching
new migration tasks and recovering crashed machines. The
migration thread can continue to complete the outstanding
migrations.

Optimizations. Pragh adopts a unilateral migration proto-
col (see §4.1) to migrate one key-value pair (vertex) at a
time, which requires at most five one-sided RDMA opera-
tions: two READs to lookup and retrieve the value, one CAS to
change the address atomically, and two WRITESs to invalidate
and reclaim the original memory. Though this approach can
provide instant response to migration demands and fully by-
pass the CPU and kernel of source machine, the throughput
of migration may be bottlenecked by the network due to too
many RDMA operations with small payloads.

To remedy it, Pragh enables three optimizations to further
accelerate split migration. First, in most cases, the migrated
key-value pair is frequently accessed by the target machine;
thus, its address (very likely) has been already cached in the
location cache. It means that the migration thread can skip
the first RDMA READ to look up the address. Second, Pragh will
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Fig. 10. A comparison of migration schemes on the traversal benchmark with a skewed workload (a Zipf distribution with 6 = 0.99).

migrate multiple key-value pairs concurrently in a pipelined
fashion to better utilize network bandwidth. Each RDMA
operation to migrate one key-value pair is implemented as
one stage, and Pragh schedules these stages without waiting
for the request completion. Finally, since the memory inval-
idation and reclaim are not on the critical path to migrate
one key-value pair'®, Pragh enables passive ACK [59] to
acknowledge the completion of such two RDMA WRITES pas-
sively, which further reduces the network bandwidth. As a
result, a single migration thread is sufficient to migrate more
than one million vertices per second (§6).

Load balance. Though Pragh mainly focuses on using live
migration to improve the locality of graph traversal work-
loads, it also can be used to rebalance load across machines,
similar to prior work [53, 60, 35]. Basically, it all depends
on the migration plan generated by the coordinator. Gener-
ally, the traversal workload will be sent to the machine host-
ing the initial vertex and run to completion. The remote key-
value pairs will be retrieved by RDMA operations. Therefore,
the coordinator should recognize such hotspots and generate
proper plans to scatter them over all of the machines using
live migration, like Pragh. Meanwhile, different goals also
need different migration policies and statistics. It is orthogo-
nal to the design of Pragh and beyond the scope of this paper.

6 Evaluations

Hardware configuration. All evaluations were conducted
on a rack-scale cluster with 8 nodes. Each node has two 12-
core Intel Xeon E5-2650 v4 processors and 128GB DRAM.
Each node is equipped with two ConnectX-4 MCX455A

10Ty ensure consistency, the (original) memory invalidation must be com-
pleted before the next Put operation on (new) memory starts, which is
easy to implement with the check-and-forward mechanism (§4.3).

100Gbps InfiniBand NIC via PCIe 3.0 x16 connected to a
Mellanox SB7890 100Gbps IB Switch, and an Intel X540
10GbE NIC connected to a Forcel0 S4810P 10GbE Switch.
In all experiments, we reserve four cores on each CPU to
generate requests to avoid the impact of networking between
clients and servers as done in prior work [56, 58, 61, 14, 60,
52]. All experimental results are the average of five runs.

Traversal benchmark. Inspired by YCSB [15], we build
a simple benchmark to evaluate the effectiveness of dif-
ferent migration approaches for graph traversal workloads.
The traversal benchmark uses a synthetic graph provided by
Graph500 [12]. In this paper, the graph with 226 vertices and
230 edges (RMAT26) is used as default dataset since we need
to run the benchmark on a single machine to gain the per-
formance of ideal setting (pure localized access). Note that
the experimental results on larger graphs (e.g., RMAT29) are
similar. The traversal benchmark consists of 95% two-hop
queries (Get) and 5% edge updates/inserts (Put), similar to
YCSB-B (read-heavy) [15]. Note that the majority of many
traversal workloads [11] are two-hop queries, and it is easy to
compose other complicated queries like SPARQL query [52].
The starting vertices of two-hop queries are chosen accord-
ing to a Zipf distribution with 8 = 0.99. The scope of start-
ing vertices and the number of neighboring vertices retrieved
could be configured. The default values are 2'° and 100, re-
spectively. We will compare the performance impact with dif-
ferent settings in separate experiments.

Comparing targets. The following five results are pro-
vided in the evaluation of the traversal benchmark. Orig in-
dicates the performance of running the benchmark over the
graph data partitioned randomly and without data migration.
Ideal is the result gained by running the benchmark on a sin-
gle machine. Specifically, throughput is simply magnified by
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Fig. 11. A comparison of migration benefits for different ap-
proaches with the increase of scopes of starting vertices.

the number of machines (i.e., 8 x). Shard-based represents
the performance of a shard-based migration approach, which
deploys one hundred shards at each machine, similar to prior
work [11, 5]. Note that we always generate optimal migra-
tion plans for shard-based migration by tracking every access
but do not consider the tracking cost. Split/Cache and Split
are the performance of Pragh using split live migration with
and without location cache. The size of the location cache is
128MB. The migration plan is built by the statistics collected
by our lightweight monitor. The default interval is set to 10
seconds.

6.1 Migration Benefits

To study the benefits of migration approaches, we run the
traversal benchmark using different migration schemes and
compare to the result of the original and ideal settings. As
shown in Fig. 10, the original throughput and latency are
about 26 x slower than the ideal results (123K vs. 3,248K)
since about 86.2% accesses to the key-value store are re-
mote. Shard-based approach can only increase the through-
put by 39% (123K vs. 171K) and decrease the median (50"
percentile) latency by 29% (22.5ms vs. 15.9ms) as it just re-
moves about 25% remote accesses. Pragh can almost double
the throughput and reduce the latency by half, thanks to the
basic split migration, which removes nearly all remote ac-
cesses to the values. Using location cache can remove almost
all of the remote accesses to the keys, as the cache hit rate is
about 99%. Note that the performance of enabling basic split
migration or location cache alone are similar, because both
of them still need one RDMA READ to retrieve the remote key
or value separately.

When combining two techniques, the throughput of Split/-
Cache can reach 2,352K queries per second (19 x compare to
Orig). It has achieved close to 72% of ideal performance. The
remaining 2.0% of remote accesses is due to the competition
on vertices shared by multiple queries running on different
machines. Note that traditional migration scheme is hard to
integrate with location cache, since they will migrate both
keys and values physically and make location cache useless.

Migration time and network traffic. Both split migration
and shard-based migration can complete migration in sec-
onds since we optimize the data transmissions in both meth-
ods. For shard-based migration, we migrate the shards in
block granularity to fully utilize network bandwidth. How-
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Fig. 12. The CDF graph of latency for Put operations.

ever, split migration is still faster even using more net-
work round-trips for one key. This is because fine-grained
migration migrates much less data than coarse-grained,
shard-based migration. For this experiment, only 78,242
keys (0.13% of the total vertices) are migrated in split migra-
tion, where 782MB data is migrated in total. For comparison,
85.6% of shards (685 out of 800) are migrated in shard-based
migration with a total size of 20GB key-value to transfer.

Scope of starting vertices. Generally, the query will start
from a certain type of vertices (e.g., users or tweets in social
networks), and the size of the subset of vertices may be var-
ious. Fig. 11 further presents the impact of using different
scopes of starting vertices in the traversal benchmark from
210 to 22, The speedup after migration decreases with the
increase of scope steadily due to the increase of contention
on key-value pairs accessed by multiple queries. It will also
result in the rise of remote accesses (see Fig. 11(b)).

Impact on Put operations. To reveal the impact of check-
and-forward mechanism in Pragh on the latency of Put oper-
ations, we use an update-heavy traversal benchmark, which
consists of 50% two-hop queries (Get) and 50% edge up-
dates/inserts (Put), similar to YCSB-A [15]. Fig. 12(a)
shows the CDF graph of latency for Put operations with and
without split live migration. After migration, the latency of
99.9% PuTt operations decreases significantly, thanks to the
decline of waiting time in the queue. Moreover, as shown in
Fig. 12(b), the check-and-forward mechanism will just im-
pact the 99.9" percentile latency, since about 0.11% PuT op-
erations updates migrated key-value pairs and is forwarded
to another machine. Note that Pragh only migrates 0.13% of
total key-value pairs. The increase of latency is mainly con-
tributed by the extra cost for forwarding the operation, wait-
ing in the queue, and re-executing the operation.

Uniform workload. We also evaluate the traversal bench-
mark with a uniform workload. Shard-based approach can
hardly gain benefits and only increases the throughput by
8% (126K vs. 136K) after migration, as the remote access
rate just drops from 85% to 82%. In contrast, the basic split
migration eliminates over 43% of remote accesses and in-
creases the throughput by 84% (126K vs. 232K). By using lo-
cation cache, the throughput of Split/Cache can reach 1,521K
queries per second (12x compared to Orig). The remote ac-
cess rate reduces to 5%.
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6.2 Migration Speed

To evaluate the capability of unilateral migration protocol,
we conduct an experiment to migrate values from a remote
machine to local with full speed. Fig. 13 shows the through-
put of migration and network bandwidth consumed with
the increase of payload (i.e., value) size. A single thread is
enough to migrate values for millions of vertices per second
with less than 4KB payloads. Using parallel migration with
24 threads can further increase the throughput of moving val-
ues to more than 10 million per second. Further, using mul-
tiple RDMA primitives to migrate a single value will not be
limited by network. It should be noted that split live migra-
tion will only use the CPU of the target machine.
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Fig. 14. The throughput timeline for split live migration (w/
Cache) using eager or deferred mechanism.

6.3 Eager Migration vs. Deferred Migration

Pragh provides two optional migration mechanisms, eager
and deferred, to balance the accuracy and the timeliness of
live migration. Fig. 14 compares these two mechanisms us-
ing the traversal benchmark. The monitor on each machine
tracks remote accesses and reports the statistics to the coordi-
nator periodically. After receiving statistics at 0 second, the
coordinator adopts different mechanisms to notify migration
threads. For eager migration, all of the migration threads will
start migration directly, and the throughout reflects the bene-
fits immediately, increasing from 239K to 2,142K. However,
since the migration plan may not be optimal, the second mi-
gration happens at the next interval (after about 10s). The
throughput further increases to 2,362K. For deferred migra-
tion, the coordinator will only ask monitors to track the local
accesses on the potential key-value pairs for migration at 0
second, and do the migration with an optimal plan at the next
interval. The throughput will directly increase from 239K to
about 2,362K.
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Fig. 15. The throughput timeline for dynamic workloads using
shard-based or split live migration.

6.4 Dynamic Workloads

To study the effectiveness of split live migration in the face
of dynamic workloads, we change workloads every 10 min-
utes by using non-overlapping scopes of starting vertices. As
shown in Fig. 15, the performance notably drops every time
the workloads change, because the location of vertex mi-
grated for the current workload is very likely not suitable for
the next workload. Shard-based migration can only provide
very limited performance improvement as expected. Split
migration with location cache can recover the performance
after migration. Note that Pragh uses instant migration in
this case, which is hard to implement in traditional migra-
tion approaches. When the monitor detects the frequency of
accesses to some remote key-value pair exceeding a thresh-
old (100 times per second), it will instantly report to the
coordinator. Further, the migration on every machine can
move values at any time, and there is no need to synchronize
with other machines. Therefore, the performance is recov-
ered gradually in about 5 seconds. Note that using a more
aggressive policy could further reduce the time spent in re-
covery.

6.5 Application: RDF Graph and SPARQL Query

Wukong+M. To demonstrate the generality of Pragh, we
have integrated split live migration with Wukong [52], called
Wukong+M. Wukong is a state-of-the-art distributed graph
store that leverages RDMA-based graph exploration to pro-
vide highly concurrent and low-latency SPARQL queries
over large RDF graph datasets. RDF (Resource Description
Framework) is a standard data model for the Semantic Web,
recommended by W3C [2], which presents linked data as a
set of (subject, predicate,ob ject) triples forming a directed
and labeled graph. SPARQL is the standard query language
for RDF datasets, which can be supported by using graph
exploration (i.e., graph traversals in parallel). We also im-
plement an RDMA-friendly location cache on Wukong+M,
similar to DrTM-KV [61].

Benchmark and workload. We use the Lehigh University
Benchmark (LUBM) [3] which is widely used to evaluate the
performance of RDF query systems [63, 36, 28, 52, 64, 37].
More specifically, we use LUBM-10240 dataset where each
machine deploys about 32GB memory. We use the query set
published in Atre et al. [8] and a mixed workload consist-
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Fig. 16. The comparison of (a) throughput and (b) remote access
rate using a mixed workload for Wukong with various settings.

ing of 6 classes as the same in the original paper [52]. The
workload is skewed such that the starting vertices are chosen
following a Zipf distribution (6 = 0.99) over all vertices.

Performance. As shown in Fig. 16, Wukong+M (+Split)
with location cache (w/ Cache) can outperform all other
counterparts by up to 2.53 x, thanks to split live migration
that eliminates about 88% remote accesses (from 86% to
10%). Shard-based live migration (+Shard) only improves
the mixed query throughput by about 5%, since it is hard
to balance requirements for keys in each shard. The basic
split migration (+Split) outperforms shard-based migration
by 1.52x (407K ops/s vs. 267K ops/s) due to allowing fine-
grained migration. After enabling location cache (+Split w/
Cache), the throughput further increases by 1.58 x (642K op-
s/s vs. 407K ops/s).

7 Related Work

Live migration on relational stores. There have been
many efforts to provide live migration features for distributed
relational databases, considering different low-level archi-
tectures, such as shared-storage [20, 21, 26, 48, 19, 10] or
partitioned database [53, 25, 60, 35]. They mainly focus
on migrating shards efficiently across machines for balanc-
ing load and reducing latency. There are two main types
of approaches: pre-copy based [20, 21, 60] and post-copy
based [26, 25, 35].

To the best of our knowledge, almost all such systems
adopt shard-based mechanisms (e.g., range or hash partition-
ing [17, 43]) and the changes of the ownership of shard are
necessary when migration. Hence, they must maintain the
state of shards explicitly by using internal global data struc-
tures or external location services [55, 4, 5]. Differently, split
live migration fixes the (logical) location of data to avoid the
maintenance overhead, which makes it different from all of
the previous approaches.

The inherent drawback of one-off sharding has driven a
few recent efforts to support dynamic sharding [25], auto
sharding [4] and application-specific sharding [5] techniques.
However, when shards still serve as the unit of migration, it is
hard to balance the effectiveness (granularity) and efficiency
(CPU and memory) for large-scale graph data with dynamic
workloads due to lacks of locality.

Live migration on graph stores. The increasing impor-
tance of graph data models has stimulated a few recent

designs of vertex migration or graph re-partitioning tech-
niques targeting graph systems [44, 62, 34, 41, 65], since
it is hard or even impossible to handle dynamic workloads
or evolving graphs only relying on static partition-based ap-
proaches [27, 13]. The most related work is Mizan [34], a dis-
tributed graph processing system that leverages fine-grained
vertex migration to improve load balance for iterative ana-
lytics workloads (e.g., PageRank and DMST [34]) over a
static graph. Further, vertex migration can only happen when
all worker threads reach a synchronization barrier (stop-the-
world), and all selected vertices in one machine can only be
migrated to a pairwise machine (non-flexible). By contrast,
Pragh uses live migration to preserve locality for concurrent
and dynamic traversal operations over evolving graphs. Thus,
it makes many fine-grained migrations on demand, and ver-
tices can be migrated to any machines flexibly.

Most graph re-partitioning approaches [44, 62, 65] need to
maintain global metadata to map vertices to partitions, and
use multiple phases to iteratively migrate vertices for reduc-
ing the communication cost. Therefore, these design choices
make them slow to react to changes of workloads and other
real-time events. Pragh can provide instant response to mi-
gration demands using lightweight monitoring and unilateral
migration protocol.

Further, data replication has been used to improve the lo-
cality of traversal workloads over graph stores [29, 62, 40]
by duplicating vertices on multiple machines. However, it
will consume more memory and complicate the design of
graph store in the face of evolving graphs. It should be noted
that data replication is orthogonal to live migration, and inte-
grating split live migration with fine-grained vertex replica-
tion [27, 13] is part of our future work.

8 Conclusion

This paper presents Pragh, an efficient locality-preserving
live migration scheme for graph store. The key idea of Pragh
is split live migration, which allows fine-grained migration
while avoiding the need to maintain excessive metadata. Sev-
eral key designs like the unilateral migration protocol, the
integration of location-based caching, and the check-and-
forward mechanism for evolving graphs made Pragh fast and
full-fledged. Evaluations using both a graph traversal bench-
mark and SPARQL workloads confirmed the effectiveness
and generality of Pragh.
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