
GCPersist: An Efficient GC-assisted Lazy Persistency
Framework for Resilient Java Applications on NVM

Mingyu Wu†‡, Haibo Chen†‡, Hao Zhu⋄, Binyu Zang†‡, Haibing Guan†‡

† Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University

‡ Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

⋄ National University of Defense Technology

Abstract

The emergence of non-volatile memory (NVM) has stim-

ulated broad interests in building efficient and persistent

systems and programming models. However, most prior

work is built atop an eager persistency model, which man-

dates applications to persist their data as soon as possi-

ble and thus causes considerable overhead. Besides, prior

work mainly focuses on native languages and overlooks the

interactions with the managed runtime system in a high-

level language. Such issues limit the scope of applications

on NVM, especially for resilient applications that already

have reliable but inefficient recovery mechanisms. This pa-

per proposes GCPersist, an easy-to-use NVM programming

framework atop a lazy persistency model to defer the per-

sistency of user data for better performance, with the as-

sistance of the garbage collection (GC) module in the man-

aged runtime. GCPersist further provides differentiated per-

sistencymodes to reduce the runtime overhead.We have im-

plemented GCPersist on the HotSpot JVM of OpenJDK and

the evaluation results on Intel Optane DC persistent mem-

ory devices show thatGCPersist performswell with resilient

applications (like Spark) by reducing the recovery time by

up to 3.26X while introducing only 1-6% runtime overhead

during normal execution.

CCS Concepts • Software and its engineering→ Run-

time environments; •Hardware→ Non-volatile mem-

ory;

This work is supported in part by the National Natural Science Foun-

dation of China (No. 61672345, 61925206, 61802416), the HighTech Sup-

port Program from Shanghai Committee of Science and Technology (No.

19511121100). Corresponding author: Binyu Zang (byzang@sjtu.edu.cn).

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for compo-

nents of this work owned by others than ACM must be honored. Abstract-

ing with credit is permitted. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific permission and/or

a fee. Request permissions from permissions@acm.org.

VEE ’20, March 17, 2020, Lausanne, Switzerland

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7554-2/20/03. . . $15.00

h�ps://doi.org/10.1145/3381052.3381318

Keywords Non-Volatile Memory, Lazy Persistency Model,

Java Virtual Machine, Garbage Collection

ACM Reference Format:

Mingyu Wu, Haibo Chen, Hao Zhu, Binyu Zang, Haibing

Guan. 2020. GCPersist: An Efficient GC-assisted Lazy Persis-

tency Framework for Resilient Java Applications on NVM. In

16th ACM SIGPLAN/SIGOPS International Conference on Vir-

tual Execution Environments (VEE ’20), March 17, 2020, Lau-

sanne, Switzerland. ACM, New York, NY, USA, 14 pages.

h�ps://doi.org/10.1145/3381052.3381318

1 Introduction

Non-volatile memories (NVM) promises to bring a revolu-

tion on the memory hierarchy due to its non-volatility, byte

addressability, and near-DRAM speed. The appealing char-

acteristics of NVM have attracted wide interest in building

programming models and systems to take full advantage

of it. However, most prior work is mainly based on native

languages [4, 9–11, 18, 27, 32, 37, 42]. There are some re-

cent interests in extending NVM support from native code

into high-level programming languages like Java [20, 36, 40].

However, they all provide similar eager persistency models:

when write operations are issued, they are expected to be

persisted as soon as possible. For example, Espresso [40] pro-

vides the flushAPIs to flush cache lines into NVM right after

they are written, while AutoPersist [36] guarantees that all

objects reachable from a durable root are timely persisted by

the Java runtime (JVM).

While an eager persistency model is suitable for applica-

tions requiring strict crash consistency, many applications

only require a relaxed crash consistency such that data is

not necessarily persisted right after it is written. A good ex-

ample is big-data processing frameworks, which have gener-

ated a logical execution plan in advance for fault-tolerance.

Such frameworks allow users to checkpoint intermediate

data for faster recovery, but if the checkpoint is not ready,

they can always turn to an alternative mechanism, where

the lost data is recomputed according to the logical plan. For

such applications, the eager persistency model may cause

unnecessary but prohibitive overhead.

To this end, we propose GCPersist, a Java NVM frame-

work that makes a novel synergy between lazy persistency

and garbage collection (GC). The lazy persistency model in

1

https://doi.org/10.1145/3381052.3381318
https://doi.org/10.1145/3381052.3381318

VEE ’20, March 17, 2020, Lausanne, Switzerland Mingyu Wu, Haibo Chen, Hao Zhu, Binyu Zang, Haibing Guan

GCPersist guarantees that all objects reachable from persis-

tent roots, which are marked by applications, are automati-

cally persisted after a GC cycle. Thanks to the reachability-

based workflow of GC, the data copying process for persis-

tency can be perfectly piggybacked with GC.

Nevertheless, since the access latency in NVM is still

larger than DRAM, if the data is directly moved to NVM dur-

ing GC, applications need to access their datasets at NVM

and suffer from performance slowdown. To this end, GCPer-

sist further provides two different persistency levels: single-

copy persistency and snapshot persistency. In single-copy per-

sistency, objects reachable from persistent roots only reside

in NVM. Such objects will serve read/write operations re-

gardless of crashes. In contrast, snapshot persistency will

store a read-only snapshot in NVM while keeping objects

still in DRAM. Objects in DRAM will serve the read/write

operations from applications to reduce overhead without

crashes, while those in NVM will only be used after a crash.

Applications are free to choose between the two modes ac-

cording to different scenarios.

GCPersist is implemented atop the garbage collector in

Espresso [40], which is originally based on Parallel Scav-

enge Garbage Collector (PSGC), the default collector in

OpenJDK 8. The evaluation atop Spark shows that GCPer-

sist can reduce the recovery time by up to 3.26X while only

introducing 1-6% runtime overhead, which is significantly

better compared with prior work. Our evaluation suggests

that GCPersist can enable more applications to benefit from

NVM.

To summarize, the contributions of this paper is as fol-

lows:

• A novel lazy persistency model which exploits the in-

teraction between applications and the garbage collec-

tor in managed runtime languages (Section 3).

• GCPersist, an easy-to-use NVM programming frame-

work atop the lazy persistency model to enable fast

recovery for resilient applications (Section 4).

• An evaluation on Spark to confirm that GCPersist re-

covers from failure notably faster with little overhead

during normal execution (Section 5).

2 Background and Motivation

2.1 Programming with NVM in Java

High-speed, byte-addressable NVM has been commercially

available as Intel releases its Optane DC Persistent Mem-

ory [19]. Similar to DRAM, NVM is also attached to the

memory bus. However, since mainstream processors are

equipped with volatile caches between CPUs and the mem-

ory subsystem, data will not become persistent until it

leaves the cache. To guarantee persistency, Intel has intro-

duced an instruction named clwb to explicitly write back a

1 function List insert(List l, Element e) {

2 List *new_list = new List();

3 new_list->data = e;

4 clwb(new_list->data);

5 sfence();

6 new_list->next = l;

7 clwb(new_list->next);

8 sfence();

9 return new_list;

10 }

Figure 1. Pseudo code of a function for inserting an element to a

list.

cache line into NVM. Since clwb can be executed in an out-

of-order fashion, developers further need to insert fence in-

structions (sfence) to enforce the order. For example, Figure 1

shows the pseudo code to insert an element to the head of

a list. After allocating a list from NVM (suppose the NVM

allocator has ensured its persistency), both the data and the

reference to the next element should be persisted via clwb.

Since the data field should be persisted before the reference

field to avoid pointing to corrupted data, we should further

add a sfence.

RDD0 RDD1 RDD2

readfile map(f1) flatmap(f2)

data loss: recomputing from

RDD1 and flatmap(f2)

Figure 2. An example of an RDD chain and its corresponding re-

covery mechanism

Unfortunately, for high-level programming languages

like Java, hardware instructions like clwb and sfence are

not reachable for developers. Therefore, prior work like

Espresso [40] and AutoPersist [36] has provided abstrac-

tions to connect Java programmers with NVM. Their pro-

gramming models are illustrated in Figure 3.

Espresso (Figure 3a) proposes pnew to allocate mem-

ory from NVM for persistent objects. It further provides

flush-related high-level APIs to ensure the persistency in

field-level. pnew and flush APIs allow developers to ma-

nipulate persistent data in a fine-grained way. AutoPer-

sist (Figure 3b) instead proposes an easy-to-use persistency

framework, where developers only annotate some objects as

durable roots. AutoPersist will automatically guarantee that

all objects reachable from persistent roots will be copied to

NVM and persisted. When the persistency order matters,

AutoPersist requires applications to wrap their code into

failure-atomic regions.

Although the programmingmodel in Espresso andAutoP-

ersist differ, they both provide eager persistency. Espresso en-

courages applications to invoke flush APIs to force cached

2

GCPersist: An Efficient GC-assisted Lazy Persistency Framework VEE ’20, March 17, 2020, Lausanne, Switzerland

data to be written back, while AutoPersist guarantees that

all write operations related to durable roots should be trans-

formed to data manipulation in NVM, accompanied with

clwb and sfence instructions. Therefore, they are mainly

leveraged for applications with many fine-grained updates,

such as key-value stores and databases.

2.2 Recovery in resilient applications

Large applications may have designed their own fault-

tolerant protocols so that they can function well when en-

countering data loss. We name those applications resilient

applications.Although the strict persistencymodel provided

by Espresso and AutoPersist works well, it may hurt the

performance of those applications due to a large amount of

sfence and clwb instructions. In this work, we use Apache

Spark [43], a state-of-the-art data processing framework, to

exemplify those applications.

Spark enjoys fault-tolerant data processing mainly

thanks to its data abstraction, Resilient Distributed Dataset

(RDD). An RDD can be seen as a collection of data objects,

which can be further partitioned and distributed into dif-

ferent machines. Each RDD is responsible for memorizing

its lineage, i.e., how the data objects inside this RDD are

computed from others. Even though data objects in an RDD

are lost due to failures, they can be recomputed from other

RDDs with the help of the lineage. Figure 2 illustrates an

example of RDD chains in Spark. The chain starts with a

file where serialized data is transformed into Java objects,

and extends with various operators like map and flatmap.

Suppose the data in RDD2 is lost due to failures like pro-

gram crashes or machine shutdowns, the Spark worker will

traverse backward on the chain, fetch data from RDD1, and

recompute the lost data by reapplying the flatmap opera-

tor with the user-defined function f2. If the data in RDD1 is

also unavailable, it should be recomputed by RDD0. For the

worst case, the worker should re-read the file and recompute

all RDDs on the chain.

Spark already provides a cache API for applications to ex-

plicitly keep some RDDs in memory for performance con-

sideration. For example, machine learning applications may

choose to store the training data in memory so as to process

it in each iteration. However, cached RDDs are not resilient

against crashes as they are stored in volatile memory.When

a failure happens, Spark executors still need to recompute

RDDs even though they have been cached, which leads to

a costly recovery phase. The problem becomes more severe

due to the fact that data processing applications like Spark

are prone to out-of-memory (OOM) errors [13]. If another

executor restarts by recomputing all the RDDs, it is likely

to fail for the same reason. Therefore, it is natural to extend

the semantic of cache to store RDDs in NVM for both close-

to-DRAM access speed and fast recovery.

To support caching data in NVM, we have modified

Spark to leverage the Persistent Java Heap (PJH) design in

Espresso. When an RDD is going to be cached, Spark will

store it into NVM with pnew and flush APIs. We have eval-

uated our modified Spark with a logistic regression applica-

tion (provided by Spark itself), which trains a logistic regres-

sion model for several iterations on a cached training data

set.

To understand the performance of recovery with NVM

cache, we manually add some crash events by sending kill

signals to the Spark executor. Before killing the executor,

we also clean up the page cache to simulate a whole-system

crash. When the executor is down, its manager (named

Worker in Spark) will launch a new one for subsequent

tasks. We mainly focus on the iteration where the crash

happens, and leverage two metrics to measure the recov-

ery efficiency: overall execution time for the iteration and

maximum task execution time for tasks after the crash. The

former metric shows the user-experienced latency of the it-

eration (in Spark, users can observe per-iteration execution

time through GUI) while the latter one reflects the time oc-

cupied by recomputation due to a crash. Both of them can

be collected from the log of Spark.

As illustrated in Figure 4a, caching RDDs in NVM sig-

nificantly accelerates the recovery phase. Thanks to the

NVM cache, the maximum task execution time compared

to a DRAM one is reduced by 7.54X, while the overall ex-

ecution time for the problematic iteration is reduced by

2.44X. The performance improvement mainly comes from

reduced recomputation: with the NVM cache, the newly-

launched executor can directly fetch cached objects without

re-reading serialized file contents in the disk. We have also

simulated a case where only the Spark executor is crashed

due to software error by avoiding flushing the file cache

(DRAM+pagecache) in Figure 4a). In this case, our NVM-

cache version (with file cache flushed) still reduces the max-

imum task execution time and the overall execution time by

2.44X and 0.59X, which further shows the satisfying recov-

ery efficiency with NVM.

Unfortunately, although storing objects in NVM enables

fast recovery, the overhead for normal execution is prohibi-

tive. When running the logistic regression algorithm for 100

iterations with crashes, the execution time with NVM cache

increases from 112.976s to 145.754s (increased by 29.0%). To

further understand the performance overhead, we present

the execution time of the first ten iterations in Figure 4b.

For the first iteration in the logistic regression application,

Spark needs to read the file from disk and cache the contents

in memory in the form of Java objects. Since our modified

Spark requires allocating and persisting objects into NVM,

the execution time is doubled. For later iterations, the aver-

age execution time for NVM cache is 21.1% larger, mainly

3

VEE ’20, March 17, 2020, Lausanne, Switzerland Mingyu Wu, Haibo Chen, Hao Zhu, Binyu Zang, Haibing Guan

1 List insert(List l, Element e) {

2 List new_list = pnew List();

3 // Metadata-related operations

4 Field data = l.getClass().getDeclaredField("data");

5 Field next = l.getClass().getDeclaredField("next");

6 new_list.data = e;

7 data.flush(new_list.data);

8 new_list.next = l;

9 next.flush(new_list.next);

10 }

(a) Espresso

1 @durable_root

2 public static List global_list;

3 List insert(List l, Element e) {

4 atomic {

5 List new_list = new List();

6 new_list.data = e;

7 new_list.next = l;

8 global_list = new_list;

9 }

10 }

(b) AutoPersist

Figure 3. Prior NVM programming models in Java

due to the performance gap between DRAM and NVM1,

which is also considerable.

To summarize, leveraging NVM cache in resilient appli-

cations like Spark can dramatically improve the recovery

efficiency, but it also results in considerable overhead to

their normal executions mainly because of (1) eagerly flush-

ing objects for persistency and (2) the performance gap

between DRAM and NVM. The prohibitive overhead hin-

ders resilient applications to leverage the virtues of non-

volatile memory, and this motivates us to search for another

technique to accomplish loose but high-performance persis-

tency.

0

10

20

DRAM DRAM+pagecache NVM

E
x
e

c
u

ti
o

n
 t

im
e

 (
s

)

Others Task execution

(a) Recovery time after a crash

0

5

10

15

20

Spark Job

E
x
e

c
u

ti
o

n
 t

im
e

 (
s

)

DRAM−cache NVM−cache

(b) Normal execution time without

crashes

Figure 4. Evaluation on the logistic regression application in

Spark, with and without NVM cache

3 Design of GCPersist

To mitigate the overhead introduced by the strict persis-

tency model in prior systems, we propose GCPersist, which

instead integrates with the GC module in managed runtime

to provide a lazy persistency model for better performance.

3.1 Lazy persistency model with runtime support

The core idea behindGCPersist is the lazy persistencymodel.

Rather than eagerly writing back dirty cache lines into

NVM, the lazy persistency level can defer the data persis-

tency operations to the future. Prior work has proposed de-

signs to relax the persistent model to mitigate the overhead

1Although prior work assumes that the read latency of NVM is similar to

DRAM, recent experiments [22] show that the latency for Intel Optane PM

is more than 2x compared to that in DRAM.

introduced by expensive cache flush/write-back instruc-

tions. For example, Pelley et al. [35] propose epoch persis-

tency, which exploits persistency barriers before which pre-

vious write operations must reach NVM. Nawab et al. [32]

introduce periodic persistency, which assumes a global fence

to write back all cached data to NVM. Those persistency

models can improve the performance by reducing the num-

ber of cache write-back instructions, but they mainly have

two limitations. First, they are mainly designed for imple-

menting transactional data structures, where their models

can be used to persist cached data when a transaction com-

mits, but it is not clear how to generalize them to resilient ap-

plications like Spark. Second, they are designed to support

applications in native code, and they do not consider high-

level languages where applications are able to co-operate

with the underlying runtime system. To this end, we decide

to explore our own lazy persistency model with the man-

aged runtime in mind.

Our persistency model assumes that the applications

are running atop a managed runtime with Stop-The-World

(STW) GC support, i.e., the runtime will periodically pause

all application threads (or mutators) for memory reclama-

tion. When mutators are paused, all of them reach a quies-

cent state where the referential integrity holds for all objects

in the data heap. This assumption holds for many popular

languages, such as Java, C#, Scala, etc. Our GC-assisted lazy

persistency model is constructed by three components:

• Persistent data identification. Applications should in-

form the runtime which objects are required to be per-

sisted through specific APIs.

• Asynchronous reachability-based persistency. When

STW GC happens, the garbage collector will copy all

objects supposed to be persistent to NVM.

• Post-crash inspection. Since the data persistency

is achieved asynchronously, the managed runtime

should provide APIs for applications to determine if

the data objects have been persisted before crashes.

Figure 5 illustrates the three components of our lazy per-

sistency model in GCPersist. We will discuss them respec-

tively in the rest of this section.

4

GCPersist: An Efficient GC-assisted Lazy Persistency Framework VEE ’20, March 17, 2020, Lausanne, Switzerland

a

DRAM NVM

b
c

setRoot

d
a'

b'
c'

persistent root

(a) Persistent data identification (through setRoot

API)

a

DRAM NVM

b
c

d
a'

b'
c'

!"#$

persistent root

(b) Asynchronous reachability-based persis-

tency with GC

DRAM NVM

b'
c'

a'

checkHeap

a

b
c

d

persistent root

(c) Post-crash inspection (through checkHeap

API)

Figure 5. The components in the lazy persistency model of GCPersist

3.2 Persistent data identification

To persist data objects, applications should explicitly mark

them so that the underlying runtime only moves them to

NVM. However, persistent objects may appear at different

locations in the source code, and manually annotating all

of them may require considerable engineering work. There-

fore, we provide a root-based API to simplify the annotation

process.

A root is an object which is treated as "root of persistency".

All objects reachable from a root (including itself) should

be persisted into NVM. GCPersist introduces setRoot(Object

o, String name) for applications to explicitly mark an object

o as a persistent root and associate the object with a name,

which is useful during recovery. The usage of setRoot is sim-

ilar to the@durable_root annotation in AutoPersist [36]. set-

Root significantly reduces the labor work required to mark

persistent data. In Figure 5a, we mark object a with setRoot

to instruct the managed runtime to persist both b and c. In

the case of Spark, we only need to mark the array object in

the RDD as a root so that the whole dataset can be persisted.

3.3 Asynchronous reachability-based persistency

GCPersist assumes that the runtime system periodically

pauses all Java threads for GC.When GC begins, GC threads

will start with known root objects, usually stack variables

and global data structures of JVM (e.g., class-related meta-

data), to mark all reachable objects as alive. This marking

process is very similar to our root-based persistency model,

which also requires traversing from persistent roots to all

reachable objects. Therefore, the persistency process can be

perfectly integrated with GC.

In the design of GCPersist, GC will construct a root set to

include both volatile roots (such as stack variables) and per-

sistent roots (annotated by applications) so that GC threads

will mark them together. Furthermore, GC threads should

use two different marks, alive and persistent, to classify live

objects. If an object is reachable from one which should be

copied to NVM later, wewill mark it as persistent. Otherwise,

the object is only marked as alive.

When the mark phase ends, GC threads will continue to

collect the heap. With the help of marks, GC threads can

identify objects supposed to be persistent and thereby copy

them to NVM. Note that GCPersist only requires the GC

threads to mark live objects and is not bound with specific

GC algorithms. Although the mark-based GC algorithm has

many invariants (mark-sweep, mark-copy, mark-compact,

etc.), GCPersist can be integrated with all of them. For mark-

copy andmark-compact GC, since all marked objects should

be copied to their corresponding new address, GC threads

only need to modify the copy logic so that objects marked

as persistent will be moved to NVM. For mark-sweep GC,

GC threads need to scan the whole heap to clean up the

dead objects. Therefore, when they find an object marked

as persistent, they will copy it to NVM and put the original

DRAM space into the free list. For objects marked as alive,

GC threads should additionally inspect their references and

modify those originally pointing to objects marked as per-

sistent as they have been moved to NVM.

WhenGC ends, all objects reachable frompersistent roots

have been stored into NVM. Therefore, we insert a fence in-

struction to mark the end of the persistency process (similar

to a global fence in [32]). After the fence instruction, all ref-

erences in NVM will be safely pointed to other persistent

objects, and no dangling pointers will be found even after a

crash.

3.4 Post-crash inspection

Since GCPersist defers the persistency of objects to the GC

point, the data can be lost when a crash happens before GC.

Therefore, GCPersist should provide a mechanism so that

those resilient applications can detect that their data has not

been persisted in NVM and turn to their own fault-tolerance

techniques. Besides, the APIs should also be simple to re-

duce the labor work in the recovery procedure.

Objects in NVM are usually organized in a heap [4, 10, 21],

where applications exploit persistent roots to access objects

therein. Therefore, GCPersist provides checkHeap to check

if all persistent objects can be safely accessed from roots.

In the example of Figure 5c, the recovery threads will start

from the persistent root a’ to check if all reachable objects

only contain references to persistent data.

Note that it is also possible to support finer-grained APIs

like checkRoot(Object o) to check if objects reachable from

5

VEE ’20, March 17, 2020, Lausanne, Switzerland Mingyu Wu, Haibo Chen, Hao Zhu, Binyu Zang, Haibing Guan

one specific root are persistent. However, since GC will en-

sure the persistency of a heap in an all-or-nothing fashion

(through the global fence), checkRoot is not necessary.

DRAM NVM

c

a
b

source

dest

setRoot

c'

b'

c''

a'

(a) Before GC

DRAM NVM

a
b

source

dest

!
"
#
$

c

setRoot

c'

b'

c''

a'

!"#$

(b) After GC (snapshot mode)

DRAM NVM

a
b

source

dest

!
"
#
$

c

setRoot

c'

b'

c'

a'

!"#$

(c) After GC (single-copy mode)

Figure 6. The heap image before/after GC in different persistency

modes

3.5 Differentiated persistency modes

After GCPersist persists objects into NVM during GC, nor-

mal read/write operations from applications will be directly

served by NVM. Unfortunately, since the basic performance

of NVM is somewhat worse than DRAM, applications may

still suffer from significant performance penalty (consider

Figure 4). We provide differentiated persistency modes to

solve this problem.

Since the read/write latency of NVM is still larger than

DRAM, applications may want to access DRAM during nor-

mal execution and turn to NVM only when a crash happens.

We thereby propose a mode named snapshot persistency,

where persistent objects only serve as a read-only snapshot

for those in DRAM.When GC threads find an object marked

as persistent, rather than directly moving it into NVM, they

will create two copies of it, move one copy to DRAM and the

other to NVM. For references to those objects, GC threads

should check if their owners are supposed to be persistent.

If the references come from an object which also requires

persistency, they should be modified to point to the copy in

NVM, DRAM otherwise. For example (Figure 6a), suppose

we have three live objects in DRAM required to be copied

(suppose the managed runtime adopts a copy-based collec-

tor). Since object c is referenced by a persistent root a and a

normal object b, the snapshot persistency mode inGCPersist

requires it to be split into two copies: c’ is moved to another

place in DRAM while c” goes to NVM. As object b resides

in DRAM, its reference will be modified to point to c’. In

contrast, the reference in a will point to c”. When GC ends

(Figure 6b), the objects in NVM are still self-contained, and

c” serves as a read-only snapshot of c’. For object a, since

no object in DRAM refers to it, it only keeps one copy a’

in NVM as a persistent root. On the contrary, the original

mode will only move c into NVM (shown in Figure 6c), so

we refer it as single-copy persistency mode.

With the help of the snapshot persistency mode, applica-

tions can directly access cached objects in DRAM so that the

runtime overhead without crashes is reduced. The snapshot

mode can also be extended to other scenarios, such as snap-

shotting in NVM file systems [41]. Nevertheless, it also has

some deficiencies:

Worse portability. Copy-based GC algorithms usually

assume that an object only has one destination during GC,

so they exploit forwarding pointers to store the destination

for effective reference updates. Since the snapshotmodewill

assign two destinations for some objects, the forwarding

pointer mechanism is no longer feasible. Those GC algo-

rithms may require significant modifications to support the

snapshot mode.

Larger memory footprint. Since the snapshot mode

keeps two copies of the same object in DRAM and NVM re-

spectively, the memory footprint is doubled. For scenarios

where memory resource is scarce, the snapshot mode may

not be suitable.

Due to those problems, although the snapshot mode is

exploited by default in GCPersist, it can fall back into the

single-copy mode in some cases. In our implementation (see

Section 4), both modes have been implemented, and users

can switch to the single-copy mode by configuring the JVM

launch options.

4 Implementation

4.1 Overview

To unlock lazy persistency for resilient applications, we

have implemented GCPersist in the HotSpot JVM of Open-

JDK 8. GCPersist inherits the heap structure in Espresso,

which extends the traditional generational heap design to

include Persistent Java Heap (PJH) for all persistent Java ob-

jects in NVM. Therefore, the heap layout in GCPersist con-

sists of three parts: young space to store short-lived objects,

old space to store long-lived objects, and PJH to store per-

sistent objects. GCPersist is based on the Parallel Scavenge

Garbage Collector (PSGC), the default GC in OpenJDK 8, to

manage the heap space. It has carefully modified PSGC to

automatically and efficiently persist objects into NVM.

4.2 Algorithm

PSGC provides two different algorithms tomanage the heap.

Young GC is used to collect only the young space, and ob-

jects in the old space will not be moved. In contrast, Old GC

6

GCPersist: An Efficient GC-assisted Lazy Persistency Framework VEE ’20, March 17, 2020, Lausanne, Switzerland

Region 1

Region 2 Region 3 Region 4Source

Dest Region 1 Region 2 Region 3

Thread 1 Thread 2 Thread 3

Live Data 2048 bytes 2048 bytes 512 bytes

Mark Bitmap

Region 1

(a) Mark phase: mark live objects in the mark

bitmap

Region 1 Region 2 Region 3 Region 4Source

1024 bytes 1536 bytes 1024 bytes 1024 bytesLive Data

Dest Region 1 Region 2 Region 3

Region Mapping

Region 4

Thread 1 Thread 2 Thread 3

Live Data 2048 bytes 2048 bytes 512 bytes

(b) Summary phase: count per-region live data

and generate the region mapping

Region 1 Region 2 Region 3 Region 4Source

Dest Region 1 Region 2 Region 3

Thread 1 Thread 2 Thread 3

Region Fill

Live Data 2048 bytes 2048 bytes 512 bytes

(c) Compact phase: fill regions in parallel accord-

ing to the region mapping

Figure 7. The old GC algorithm in PSGC

is designed to scan the whole heap for memory reclamation.

We have modified both two algorithms to supportGCPersist.

4.2.1 Young GC

The young GC algorithm in PSGC is mark-copy: GC threads

will mark all live objects in the young space and move them

to their new destination. It seems to be a good fit for GCPer-

sist, but GCPersist cannot be integrated with it because the

young GC algorithm only collects the young space. If an

object resides in the old space and entails persistency, the

young GC algorithm will overlook it and result in crash in-

consistency after GC. Therefore, GCPersist will not be acti-

vated during young GC, and all volatile objects reachable

from NVM will still reside in DRAM.

Although those objects reachable from NVM will not be

persisted during young GC, GCPersist should ensure that

they are treated as live objects by GC threads. To achieve

this, GCPersist adds all the persistent roots in PJH to the

root set of young GC so that all objects reachable from those

roots are scanned and marked. However, this technique is

potentially inefficient as it requires to scan objects from per-

sistent roots regardless of their location (DRAM or NVM),

and we have provided optimizations for this problem (see

Section 4.5).

4.2.2 Old GC

We integrate GCPersist with the old GC algorithm in PSGC

to achieve lazy persistency. The algorithm is mark-compact:

all live objects will be copied to the beginning of the heap

to construct a large and contiguous free space. To support

thread-level parallelism, PSGC has divided the heap into

many regions. As illustrated in Figure 7, the algorithm con-

tains three phases. In the first mark phase, GC threads will

simultaneously mark all live objects and memorize them in

a bitmap (namedmark_bitmap). In the subsequent summary

phase, live objects will be classified according to the region

they reside so that each region can count the size of live

objects. According to the per-region live data count, PSGC

can generate a region mapping to specify which region the

data objects will be copied after old GC. In the last com-

pact phase, PSGC will decide which regions are required to

be filled with live objects according to the region mapping.

All regions will be abstracted as a RegionTask and pushed

into a global work queue. GC threads will fetch tasks from

the queue so that they can fill the corresponding regions

with live objects in parallel. After copying live objects to

the region, GC threads are also responsible for updating ref-

erences therein.

All three phases in the old GC should be modified to sup-

port GCPersist. Algorithm 1 and 2 elaborate on the modified

oldGC algorithm inGCPersist. For simplicity, we skip the de-

tails on parallelism-related logic like task-fetching and only

focus on four vital functions: MarkObject, Summary, FillRe-

gion, and RefUpdate. We will first discuss the implementa-

tion of single-copy mode in that it is simpler, and describe

the snapshot mode later.

In the mark phase, GC threads will leverage a stack to

mark live objects. The marking algorithm starts with a

reference to some root object (Line 2), either volatile or

persistent, and continues with repeatedly fetching unpro-

cessed references until the stack becomes empty. In addi-

tion to the mark_bitmap, we further add a new bitmap

named perm_bitmap to mark objects reachable from persis-

tent roots. When a reference is popped from the stack (Line

4), we will get the object obj it refers to (Line 5) and referent

which holds this reference (Line 6). Afterward, we will de-

termine if obj is reachable from NVM by checking if referent

has been marked in our added perm_bitmap (Line 10). If ref-

erent is reachable from NVM, obj is also transitively reach-

able, so we will also mark it in perm_bitmap. Otherwise, obj

will only be marked in the originalmark_bitmap. After pro-

cessing obj itself, we should also push its references into the

working stack for further marking (Line 18-20).

In the summary phase, GCPersist will scan the region to

count the size of live data. The idea is to find all live objects

within the region from two bitmaps and add their sizes to-

gether (Line 26-37). Since GCPersist requires copying data

to NVM, it maintains two counts: mark_count for live data

in DRAM and perm_count for NVM. Note that if an ob-

ject is in both two bitmaps, its size will only be added into

perm_count as it will later be copied into NVM. According

to those two numbers, GCPersist can calculate the destina-

tion region for the under-processed region (Line 38-46). A

source region will have two kinds of destination regions:

pdest in NVM and dest in DRAM. Source and destination

regions keep references to each other to generate a region

mapping.

7

VEE ’20, March 17, 2020, Lausanne, Switzerland Mingyu Wu, Haibo Chen, Hao Zhu, Binyu Zang, Haibing Guan

Algorithm 1 The mark and summary algorithm for GCPer-

sist

1: function MarkObject(root)

2: workstack .push(root)

3: whileworkstack .size() != 0 do

4: re f ← workstack .pop()

5: obj ← dere f erence(re f)

6: re f erent ← GetOwner(re f)

7: if isMarked(obj) then

8: continue

9: end if

10: if perm_bitmap.isMarked(re f erent) then

11: perm_bitmap.mark(obj)

12: if SnapShotMode then

13: mark_bitmap.mark(obj)

14: end if

15: else

16: mark_bitmap.mark(obj)

17: end if

18: for re f in obj do

19: workstack .push(re f)

20: end for

21: end while

22: end function

23: function Summary(reдion)

24: nextobj ← Min(mark_bitmap.next(reдion.beдin),

25: perm_bitmap.next(reдion.beдin))

26: while nextobj < reдion.end do

27: if perm_bitmap.isMarked(nextobj) then

28: reдion.perm_count += nextobj .size

29: if SnapShotMode then

30: reдion.mark_count += nextobj .size

31: end if

32: else if mark_bitmap.isMarked(obj) then

33: reдion.mark_count += nextobj .size

34: end if

35: nextobj ← Min(mark_bitmap.next(nextobj),

36: perm_bitmap.next(nextobj))

37: end while

38: if reдion.perm_count != 0 then

39: perm_reдion← Calc(reдion,perm_count)

40: perm_reдion.source ← reдion

41: reдion.pdest ← perm_reдion

42: else if reдion.mark_count != 0 then

43: dest_reдion ← Calc(reдion,mark_count)

44: dest_reдion.source ← reдion

45: reдion.dest ← dest_reдion

46: end if

47: end function

In the final compact phase, GC threads will fetch destina-

tion regions and fill them up with live objects from source

regions. As Algorithm 2 shows, for a destination region, GC

threads first find its source region (Line 2) and determine

if it resides in NVM (Line 3). If the destination region is in

NVM, GC threads will find all live objects within the source

region by querying the perm_bitmap andmove them to their

new address (Line 6, 12). Otherwise, GC threads will turn to

mark_bitmap and copy objects from DRAM (omitted in the

algorithm).

After copying an object, GC threads are also responsible

for updating references therein (Line 8-10). Since reference

updates only happen after copying, all references should

originally point to the address of an object before copying,

i.e., its address in the source region. Therefore, to process

a reference, GC threads first get the referred object src_obj

and the source region it resides (Line 21-22). The next step

is to determine if the reference is reachable from NVM by

querying the perm_bitmap with the address of src_obj. If it

is supposed to be copied into NVM, GC threads will gener-

ate pdest_obj, which is calculated from the source region’s

NVM destination pdest and src_obj (Line 23-25). The calcula-

tion algorithm is complicated and irrelevant, so we will not

discuss the detail. pdest_obj will be assigned to the reference

ref as the new address of src_obj (Line 30-31). If src_obj is

not reachable from NVM, GC threads will generate dest_obj

with a similar algorithm and store it to the reference (Line

26-27, 32-34).

The algorithm above is capable of supporting the single-

copy persistency mode. As for the snapshot persistency mode,

the logic is somewhat different. For the mark phase, if an

object is reachable from NVM, as it will be split into two

copies, we mark it in both two bitmaps (Line 13). Besides,

both counts in the summary phase should consider the size

of those objects (Line 30). In the reference updating algo-

rithm, the new value of a reference depends on the loca-

tion the reference resides. If the reference is in NVM, the

objects it refers to must also be copied into NVM, so the as-

signed value will be pdest_obj (Line 37). If it is in DRAM,

even though the object it refers to should be copied to

NVM, its value should be modified to the destination ad-

dress in DRAM dest_obj (Line 39). This difference highlights

the characteristic of the snapshot mode: when old GC com-

pletes, no references in DRAM will point to NVM. Objects

in NVM will be stored in the background and only become

useful during crash recovery.

4.3 Programming APIs

Both setRoot and checkHeap required by the lazy persistency

model are supported in our implementation. setRoot has al-

ready been implemented by Espresso: it leverages APIs to

mark all persistent roots so that applications can access their

persistent data after the PJH is reloaded. Therefore, we only

need to implement checkHeap on our own.

8

GCPersist: An Efficient GC-assisted Lazy Persistency Framework VEE ’20, March 17, 2020, Lausanne, Switzerland

Algorithm 2 The compact algorithm for GCPersist

1: function FillRegion(reдion)

2: src_reдion ← reдion.source

3: if InNVM(reдion) then

4: next_obj ← perm_bitmap.next(src_reдion.beдin)

5: while next_obj < src_reдion.end do

6: Copy(reдion.top,next_obj)

7: # region.top stores the data from next_obj

8: for re f in reдion.top do

9: UpdateRef(reдion.top)

10: end for

11: reдion.top += next_obj .size

12: next_obj ← perm_bitmap.next(next_obj)

13: end while

14: else

15: # this branch has nearly the same logic except

16: that it uses mark_bitmap

17:

18: end if

19: end function

20: function UpdateRef(re f)

21: src_obj ← dere f erence(re f)

22: src_reдion ← Locate(src_obj)

23: if perm_bitmap.isMarked(src_obj) then

24: pdest_obj ← CalcRef(src_reдion.pdest ,

25: src_obj)

26: else if mark_bitmap.isMarked(src_obj) then

27: dest_obj ← CalcRef(src_reдion.dest , src_obj)

28: end if

29: if not SnapShotMode then

30: if pdest_obj != NULL then

31: re f ← pdest_obj

32: else

33: re f ← dest_obj

34: end if

35: else

36: if InNVM(re f) then

37: re f ← pdest_obj

38: else

39: re f ← dest_obj

40: end if

41: end if

42: end function

A straw-man implementation of checkHeap would be

traversing the persistent heap through all roots and check if

there are dangling references out of NVM. However, since

our implementation of GC has guaranteed that all refer-

ences remain intact when old GC ends, traversing the heap

after a crash is no longer necessary. We identify the valid-

ity of the whole heap by exploiting a byte in the metadata

part of the PJH, which also resides in NVM together with

persistent objects. When the object content in NVM is mod-

ified by applications or GC threads, wewill mark the heap as

invalid, and it is unrecoverable. When GC ends, the whole

heap becomes valid and recoverable. When a crash occurs,

checkHeap simply returns the value stored in the validity

byte. This solution avoids prohibitive heap traversal and ac-

celerates the recovery time.

4.4 Persistency Guarantee

Stabilizing persistency points. GCPersist relies on the old

GC to guarantee the persistency of user data. However, the

frequency of old GC is unstable and highly dependent on

the applications and JVM configurations. When the mem-

ory resource is abundant, or the young GC algorithm is

quite effective, old GC rarely happens. Therefore, we have

modified the policy in JVM to determine whether old GC

is required. As mentioned above, when setRoot is invoked,

or an object in NVM is modified, we will mark the heap as

invalid. When young GC happens, GCPersist will check the

validity byte andmaintain a counter tomemorize howmany

young GC cycles it has witnessed after the persistent heap

becomes invalid. When the counter reaches a threshold, an

old GC phase will be triggered, so the persistent heap be-

comes valid again. We have proposed a JVM option GCPer-

sistThreshold to control the number of young GC the appli-

cation can tolerate without a valid persistent heap. We also

provide a timer-based policy: when the time duration after

the heap becomes unrecoverable exceeds a preset threshold

(e.g., a second), GCPersist will force old GC to happen.

Deferred persistency. According to the lazy persis-

tency model, writes to NVM are not necessarily persistent

until the global fence. Therefore, we will only issue batched

cache flushing operations (clwb) at the end of old GC. Since

we are still in the Stop-The-World environment, GCPersist

can leverage all GC threads to simultaneously flush the

cache for better performance. Afterward, we only insert one

fence instruction to serve as the global fence. Due to the par-

allel cache flushing and single fence instruction, the perfor-

mance of GCPersist is much better than prior work.

4.5 Optimizations on read-mostly datasets

Although the persistent heap turns unrecoverable after a

single write to NVM, directly writing to NVM happens very

rarely in many scenarios. In big-data processing applica-

tions like Spark, the data abstraction (RDD) is immutable

and cannot be directly modified by applications. Therefore,

once the data has been persisted in NVM, they will only

serve read operations. In the snapshot use cases like file

systems and databases, the snapshot will be written-once

and read-only. Consequently, those datasets stored in NVM

are read-mostly. According to the observation, we have pro-

posed several optimization techniques to further improve

the performance of GCPersist.

9

VEE ’20, March 17, 2020, Lausanne, Switzerland Mingyu Wu, Haibo Chen, Hao Zhu, Binyu Zang, Haibing Guan

Detecting writes to NVM. Since write operations on

NVM will invalidate the persistent heap, GCPersist must

accurately detect them. A traditional solution to this prob-

lem is write barriers, with which JVM instruments detection

code before each write operations from Java applications.

However, this solution will affect the performance of each

write and thus slow down the applications. We instead ex-

ploit a hardware-based solution. When the persistent heap

is created, or the old GC has validated the heap, we will

mark the whole heap as read-only in the page table, with

mprotect calls. Therefore, every time when a write hits on

NVM, a page fault will be triggered, and JVM can detect it

through a pre-registered page fault handler and thereby set

the validity byte. Once the heap becomes invalid, we invoke

mprotect again to enable subsequent writes to all the mem-

ory pages in NVM. Although the overhead of page fault han-

dling is much larger than a single write barrier, it happens

only once while barriers may be executed millions of times.

Improving young GC. Since the young GC algorithm

only collects the young space, it must ensure that all objects

in both the old space and the persistent heap are alive and

leverage them as roots. In our implementation, all persis-

tent roots will be added into the root set of young GC for its

mark-copy collection, which may induce unnecessary scans

on the persistent heap. Fortunately, this problem can also be

resolved with the memory protection technique. After the

old GC ends, objects in NVM are self-contained, and no ref-

erencewill escape fromNVM. Therefore, when a newyoung

GC cycle is triggered, GCPersist will check if the persistent

heap still remains valid. If the heap is still valid, its con-

tents are not changed, and no reference in NVM will point

to DRAM. Consequently, GCPersist can avoid adding persis-

tent roots into the root set, and the young GC will become

as effective as one without using NVM.

Detecting append operations. As analyzed above,

when a dataset has been copied into NVM, it is unlikely to

be updated. Therefore, writes that invalidate the persistent

heap are usually setRoot calls to append new datasets into

NVM. GCPersist tries to leverage this behavior by differen-

tiating the allocated memory from the unallocated. When a

page fault occurs, GCPersist will check the faulted address

to determine whether it is an append request to expand the

persistent heap or an update request to modified the allo-

cated contents. If it is an append operation, GCPersist will

only enable writes to the unallocated areas.

This technique distinguishes those active datasets which

have not been copied into NVM from others. It would be

useful for the continuous checkpoint case, where datasets

are iteratively generated and checkpointed for fast recov-

ery. When the JVM crashes, objects in the old checkpoints

are still treated as valid and thus can be reused for error re-

covery.

5 Evaluation

5.1 Experiment setup

GCPersist is implemented atop Espresso JVM, which is a

modified version of OpenJDK 8u102-b14. We provide a JVM

option PersistByGC so that applications are free to disable

GCPersist if theywant tomanage the persistent data on their

own. It takes about 1,800 LoCs to implement GCPersist.

We leverage Spark, a well-known big-data processing

framework, as an example of resilient applications. The ver-

sion of Spark is 2.1.0. To support caching objects in NVM for

Spark, we mainly modify three parts. First, since Spark pro-

vides a persist interface for users to specify which level of

storage the RDD should be cached (DRAM, disk, or both),

we add a new level named NVM. Second, we modify the

MemoryStore class to create persistent heap and identify

RDDs cached in NVM. When it finds that an RDD should

be stored to NVM (specified by applications), it will invoke

setRoot to connect the data array with a reference in NVM.

We also modify the scheduler to avoid recomputation when

data in NVM is available. Thanks to the easy-to-use APIs

of GCPersist, we only need about 50 LoCs to implement the

core part of the recoverable NVM cache for Spark (By com-

parison, the codebase of Spark is over 140K LoCs).

Four applications are exploited to evaluate our GCPersist:

PageRank (PR), KMeans (KM), LogisticRegression (LR), and

TransitiveClosure (TC). All of them can be found in the exam-

ple folder of Spark. For LR and KM we leverage synthesized

datasets (1.4G) for training, while for PR and TC we use two

real-world graphs respectively: Berkeley/Stanford [24] (15K

vertices, 171K edges) and Blogs [1] (1K vertices, 19K edges).

For GCPersist, all those datasets will be cached into NVM

for later reuse. Although the datasets for PR and TC are not

large, they will be quickly inflated and induce a large mem-

ory footprint during runtime as they introducemany shuffle

operations.

Due to the limited number of available NVM machines,

all experiments are conducted on one server with dual

Intel Xeon Gold 5125M CPUs (20 logical cores for each).

Each CPU is equipped with six Intel Optane DC PM de-

vices (128GB for each PM device, 1.5T altogether). To avoid

NUMA issues, we allocate persistent memory from a single

CPU, and bind all threads of Spark executor onto it to force

localmemory access. The heap size for the Java heap is 20GB

while the size of PJH is 2GB. Since Spark only caches one

replica for each RDD, the recovery time will not be affected

much with a multi-node setting.

5.2 Baseline

We mainly compare our GCPersist with two prior projects:

Espresso and AutoPersist. We also leverage a vanilla Spark

running on the Espresso JVM (without using NVM) as an

ideal baseline. Unfortunately, since AutoPersist is built on

the Maxine JVM while Espresso and GCPersist are built on

10

GCPersist: An Efficient GC-assisted Lazy Persistency Framework VEE ’20, March 17, 2020, Lausanne, Switzerland

DRAM NVM

!"#$%$&

ab

c
d

b'

c'
d'

(a) Application issues

a.x=b to activate Au-

toPersist

DRAM NVM

ab

c
d

b'

c'
d'

!"#$

(b) AutoPersist tran-

sitively copies objects

to DRAM

DRAM NVM

ab

c
d

b'

c'
d'

(c) The reference will

be updated after all

objects have been per-

sisted

Figure 8. The workflow of AutoPersist

the HotSpot JVM, it would be unfair to directly compare

their performance. Therefore, we have implemented a sim-

plified version of AutoPersist on the HotSpot VM, which we

refer to as AutoPersist* in our evaluation.

AutoPersist is an easy-to-use Java NVM programming

framework which also leverages runtime to automatically

persists Java objects into NVM. In AutoPersist, applications

are asked to annotate durable roots, and the underlying run-

time ensures that all objects reachable from roots are per-

sisted in NVM as soon as possible. When an application

thread creates a reference fromNVM to DRAM, the runtime

must detect it and transitively persist all objects reachable

from NVM. As Figure 8 illustrates, when the application is-

sues a.x = b to connect object a in NVM with b in DRAM,

AutoPersist will automatically calculate a transitive closure,

which contains all DRAM objects reachable from a. For each

object, AutoPersist ensures that it will not be persisted until

all objects it refers has reached NVM. After all objects have

been persisted, AutoPersist will finally update the reference

in a to the new address of b, i.e., b’, to guarantee that no

reference is out of NVM.

Implementing a full-fledged AutoPersist framework re-

quires significantmodifications to the JVM, including object

layout, read/write barriers, and garbage collection. There-

fore, we implement a simplified version named AutoPersist*

which only works in Spark. When Spark is going to cache

an RDD in NVM, it will set the corresponding data array

as a durable root, where we insert a JVM call named NVM-

Copy to transitively copy all objects reachable from the ar-

ray into NVM. The implementation ofNVMCopy mainly fol-

lows the transitive persistency algorithm in the paper of Au-

toPersist [36].

5.3 Recovery time

For recovery, we compare GCPersist with the vanilla Spark

atop Espresso JVM where no NVM is used (Vanilla). We

manually add SIGKILL signals in the same job for both and

drop the file cache to simulate a machine crash. The recov-

ery time is measured as the completion time of the first

iteration after the crash. Figure 9a shows that the recov-

ery time can be reduced for all four applications. The re-

duction is from 9% in TC to 3.26X in LR. Figure 9b further

breaks the recovery time into three parts: data loading, re-

computation, and others (including fault detection and ex-

ecutor re-launching). Since the data loading and recompu-

tation are overlapped in KM and LR, we merge them to-

gether in Figure 9b. The result shows that our GCPersist can

help improve both data loading and recomputation thanks

to caching data into NVM. The improvement for GCPersist

drops for PR and TC as they are more computing-intensive

and exploit smaller datasets. The result suggests thatGCPer-

sist can achieve even better recovery performance with

larger datasets.

0

10

20

30

40

50

KM LR PR TC

R
e
c
o

v
e
ry

 t
im

e
 (

s
)

GCPersist Vanilla

(a) Recovery time

KM LR PR TC

GCP Vani GCP Vani GCP Vani GCP Vani

0

10

20

30

40

50

R
e
c
o

v
e
ry

 t
im

e
 (

s
)

Load Mixed Others Recompute

(b) Breakdown

Figure 9. The crash recovery time of GCPersist against the vanilla

baseline with DRAM cache

5.4 Normal execution time

For normal execution time, we compare our GCPersist

against Espresso (with pnew) and AutoPersist*. We still use

the Espresso JVM with DRAM cache (Vanilla) as the best re-

sult GCPersist can achieve. Figure 10 shows the execution

time for three applications. Since the cached data entries

may contain Scala objects, which is not supported by pnew,

we only provide the evaluation result in LR for Espresso.

0

50

100

150

KM LR PR TC

E
x
e
c
u

ti
o

n
 t

im
e
 (

s
)

AutoPersist* Espresso GCPersist Vanilla

(a) Normal Execution Time

KM LR PR TC

A
u

to

E
s

p

G
C

P

V
a

n
i

A
u

to

E
s

p

G
C

P

V
a

n
i

A
u

to

E
s

p

G
C

P

V
a

n
i

A
u

to

E
s

p

G
C

P

V
a

n
i

0

50

100

150

E
x
e
c
u

ti
o

n
 t

im
e
 (

s
)

Execution GC Persistency

(b) Breakdown

Figure 10. The normal execution time without crash for GCPersist

and prior work

As Figure 10 illustrates, the performance of our GCPersist

is close to the vanilla baseline and introduces 1.01% - 6.49%

overhead. For the KM case, the execution time for GCPer-

sist is even better than the baseline. As shown in Figure 10b,

GCPersist reaches similar execution time and slightly larger

GC time compared with baseline. In contrast, the normal

execution time dramatically increases when applications ex-

ploit Espresso or AutoPersist* to persist their data intoNVM.

As for the LR case, the runtime overhead for Espresso and

11

VEE ’20, March 17, 2020, Lausanne, Switzerland Mingyu Wu, Haibo Chen, Hao Zhu, Binyu Zang, Haibing Guan

AutoPersist* is 31.1% and 34.8%, respectively. Figure 10b fur-

ther reveals that the overhead comes from eagerly flushing

objects into NVM (persistency) and the performance gap be-

tween DRAM and NVM devices (execution).

Note that for the LR application, the performance for Au-

toPersist* is close to Espresso. Although AutoPersist* can re-

duce the number of cache write-back instructions as it has

full knowledge of the object layout, it has two major prob-

lems. First, AutoPersist* leverages a queue to process refer-

ences in a breadth-first-search fashion, which is known to

squander the locality of applications. Second, AutoPersist*

has to remember all the objects and references it has modi-

fied in a queue, and the size of the queue would be very large

when the number of objects to be processed is huge. In LR,

AutoPersist* needs to maintain an 80MB queue to remem-

ber objects. Besides those sources of overhead, the original

AutoPersist also induces constant overhead (such as read-

/write barriers), which has been hidden in our simplified

implementation. The result suggests that both AutoPersist

and Espresso is not suitable for resilient applications due to

their over-constrained persistency models.

We have also evaluated the single-copy mode of GCPer-

sist atop LR. Compared with the snapshot mode, the exe-

cution time is 8.2% larger because of the access overhead

on NVM, but the DRAM footprint is reduced by 29.4%. This

experiment suggests that the single-copy mode will be cost-

effective in a memory-hungry environment.

6 Related Work

6.1 Heap-based data management in NVM

Many systems have been implemented tomanage persistent

data in NVM, and a well-known strategy is to manage NVM

in heaps, where applications access persistent data through

roots. NV-heaps [10] proposes a heap abstraction for flexible

data management, high-performance data access, and refer-

ential integrity. Makalu [4] provides a crash-consistent heap

allocator for NVM. Intel’s persistent memory development

kit (PMDK) [21] also supports heap-based memory manage-

ment. Prior work like PCJ [20] and MDS [17] provides a

shim layer in Java so that Java applications can access data

in NVM. Espresso [40] and AutoPersist [36] directly manage

Java objects inNVM to improve the access performance, and

GCPersist has further extended them to support resilient ap-

plications with trivial overhead.

Another line of work enables data management in NVM

for Java but for other considerations. Write-rationing GC [2,

3] migrates read-mostly Java objects to NVM to extend

NVM lifetimes. Panthera [38] enables object management

on hybrid memories for Spark to leverage the large capac-

ity and energy-efficiency of NVM. In contrast, GCPersist fo-

cuses on the persistency characteristic of NVM to support

fast crash recovery.

6.2 Lazy persistency model and systems

Compared with strict/eager persistency, lazy persistency

model defers the data persistency for better performance.

Pelley et al. [23, 35] propose epoch persistency to divide exe-

cutions into epochs within which the persistency order does

not matter. Nawab et al. [32] present periodic persistency

where a global fence is periodically executed to write back

all dirty cache lines into NVM. Our model instead includes

the co-operation with garbage collector for better perfor-

mance.

To avoid expensive cache flush and fence instructions,

prior systems also leverage lazy persistency to asyn-

chronously persist data into NVM. SoupFS [12] exploits

the traditional soft update mechanism to move the cache

flush instructions in NVM file systems off the critical path.

DudeTM [27] and Kamino-Tx [30] delays the persistency of

transactions by priorly writing to backup storage in DRAM.

Pisces [15] avoids eagerly updating NVMdata by leveraging

dual-versioned concurrency control (DVCC) and loosening

the serializability level to snapshot isolation (SI). GCPersist

achieves lazy persistency by relying on the old GC to copy

data into NVM.

6.3 Runtime optimizations for big-data processing

frameworks

Big-data processing frameworks [8, 14, 16, 43] have grown

up into an important kind of workload in managed-runtime

languages. The rise of those frameworks has stimulated re-

searches on developing a better managed runtime for them.

Gerenuk [31] transforms the Java code to directly access na-

tive data for performance improvement. Yak [34] designs a

big-data-friendly garbage collector to manage objects based

on epochs, while NG2C [5–7] divides the heap into many

generations to manage objects in finer granularity. Scis-

sorGC [25, 26] improves the performance of old GC for

big-data applications. Wang et al. [39] enable elastic mem-

ory resource management for multiple JVMs in the cloud

environment. Skyway [33] proposes an optimized serializa-

tion/deserialization protocol to directly send/receive object

graph between JVMs. Taurus [28, 29] coordinates GC in dif-

ferent JVMs to improve the execution time of Spark appli-

cations. GCPersist also proposes runtime optimizations but

focuses on the crash recovery part of big-data processing

frameworks.

7 Conclusion

This work proposes GCPersist, an easy-to-use NVM pro-

gramming framework designed especially for resilient ap-

plications. GCPersist is built atop a novel GC-assisted lazy

persistency model, and the evaluation with Intel Optane DC

persistent memory shows that GCPersist can significantly

improve the recovery performance of Spark with trivial

overhead during normal execution.

12

GCPersist: An Efficient GC-assisted Lazy Persistency Framework VEE ’20, March 17, 2020, Lausanne, Switzerland

References
[1] Lada A Adamic and Natalie Glance. 2005. The Political Blogosphere

and the 2004 US Election: Divided they Blog. In Proceedings of the 3rd

International Workshop on Link Discovery. ACM, 36–43.

[2] Shoaib Akram, Jennifer Sartor, Kathryn McKinley, and Lieven Eeck-

hout. 2019. Crystal Gazer: Profile-driven write-rationing garbage col-

lection for hybrid memories. Proceedings of the ACM on Measurement

and Analysis of Computing Systems 3, 1 (2019), 9.

[3] Shoaib Akram, Jennifer B Sartor, Kathryn S McKinley, and Lieven

Eeckhout. 2018. Write-rationing garbage collection for hybrid mem-

ories. ACM SIGPLAN Notices 53, 4 (2018), 62–77.

[4] Kumud Bhandari, Dhruva R Chakrabarti, and Hans-J Boehm. 2016.

Makalu: Fast recoverable allocation of non-volatile memory. In Pro-

ceedings of the 2016 ACM SIGPLAN International Conference on Object-

Oriented Programming, Systems, Languages, and Applications. ACM,

677–694.

[5] Rodrigo Bruno and Paulo Ferreira. 2017. POLM2: automatic profiling

for object lifetime-aware memory management for hotspot big data

applications. In Proceedings of the 18th ACM/IFIP/USENIX Middleware

Conference. ACM, 147–160.

[6] Rodrigo Bruno, Luís Picciochi Oliveira, and Paulo Ferreira. 2017.

NG2C: pretenuring garbage collection with dynamic generations for

HotSpot big data applications. InACM SIGPLANNotices, Vol. 52. ACM,

2–13.

[7] Rodrigo Bruno, Duarte Patrício, José Simão, Luis Veiga, and Paulo Fer-

reira. 2019. Runtime Object Lifetime Profiler for Latency Sensitive Big

Data Applications. In Proceedings of the Fourteenth EuroSys Conference

2019. ACM, 28.

[8] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl,

Seif Haridi, and Kostas Tzoumas. 2015. Apache flink: Stream and

batch processing in a single engine. Bulletin of the IEEE Computer

Society Technical Committee on Data Engineering 36, 4 (2015).

[9] Dhruva R Chakrabarti, Hans-J Boehm, and Kumud Bhandari. 2014.

Atlas: Leveraging locks for non-volatile memory consistency. In ACM

SIGPLAN Notices, Vol. 49. ACM, 433–452.

[10] Joel Coburn, Adrian M Caulfield, Ameen Akel, Laura M Grupp, Ra-

jesh K Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps:

making persistent objects fast and safe with next-generation, non-

volatile memories. ACM Sigplan Notices 46, 3 (2011), 105–118.

[11] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and Haibo Chen.

2019. Performance and protection in the ZoFS user-space NVM file

system. In Proceedings of the 27th ACM Symposium on Operating Sys-

tems Principles. 478–493.

[12] Mingkai Dong and Haibo Chen. 2017. Soft Updates Made Simple and

Fast on Non-volatile Memory. In 2017 USENIX Annual Technical Con-

ference (USENIX ATC 17). USENIX Association, Santa Clara, CA, 719–

731.

[13] Lu Fang, Khanh Nguyen, Guoqing Xu, Brian Demsky, and Shan Lu.

2015. Interruptible tasks: Treating memory pressure as interrupts for

highly scalable data-parallel programs. In Proceedings of the 25th Sym-

posium on Operating Systems Principles. 394–409.

[14] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw,

Michael J Franklin, and Ion Stoica. 2014. Graphx: Graph processing

in a distributed dataflow framework. In 11th {USENIX} Symposium on

Operating Systems Design and Implementation ({OSDI} 14). 599–613.

[15] Jinyu Gu, Qianqian Yu, Xiayang Wang, Zhaoguo Wang, Binyu Zang,

Haibing Guan, and Haibo Chen. 2019. Pisces: a scalable and efficient

persistent transactional memory. In 2019 {USENIX} Annual Technical

Conference ({USENIX}{ATC} 19). 913–928.

[16] Apache Hadoop. 2009. Hadoop.

[17] Hewlett Packard Enterprise. 2016. Managed Data Structures.

https://github.com/HewlettPackard/mds.

[18] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy, Kimberly Kee-

ton, and Patrick Eugster. 2017. NVthreads: Practical Persistence for

Multi-threaded Applications. In Proceedings of the Twelfth European

Conference on Computer Systems. ACM, 468–482.

[19] INTEL. 2019. Intel(R) Optane(TM) DC Persistent Mem-

ory. https://www.intel.com/content/www/us/en/architecture-

andtechnology/optane-dc-persistent-memory.html..

[20] INTEL. 2019. Persistent Collections for Java.

https://github.com/pmem/pcj.

[21] INTEL. 2020. pmem.io: Persistent Memory Programming.

http://pmem.io/.

[22] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-

saman Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subra-

manya R Dulloor, et al. 2019. Basic performance measurements

of the intel optane DC persistent memory module. arXiv preprint

arXiv:1903.05714 (2019).

[23] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M Chen, and Thomas F

Wenisch. 2016. High-Performance Transactions for Persistent Mem-

ories. In Proceedings of the Twenty-First International Conference on

Architectural Support for Programming Languages and Operating Sys-

tems. ACM, 399–411.

[24] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Ma-

honey. 2008. Statistical Properties of Community Structure in Large

Social and Information Networks. In Proc. Int. World Wide Web Conf.

695–704.

[25] Haoyu Li, Mingyu Wu, and Haibo Chen. 2018. Analysis and Opti-

mizations of Java Full Garbage Collection. In Proceedings of the 9th

Asia-Pacific Workshop on Systems. 1–7.

[26] Haoyu Li, MingyuWu, Binyu Zang, andHaibo Chen. 2019. ScissorGC:

scalable and efficient compaction for Java full garbage collection. In

Proceedings of the 15th ACM SIGPLAN/SIGOPS International Confer-

ence on Virtual Execution Environments. 108–121.

[27] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yong-

wei Wu, Weimin Zheng, and Jinglei Ren. 2017. DUDETM: Build-

ing Durable Transactions with Decoupling for Persistent Memory. In

Proceedings of the Twenty-Second International Conference on Archi-

tectural Support for Programming Languages and Operating Systems.

ACM, 329–343.

[28] Martin Maas, Krste Asanović, Tim Harris, and John Kubiatowicz.

2016. Taurus: A holistic language runtime system for coordinating

distributed managed-language applications. ACM SIGOPS Operating

Systems Review 50, 2 (2016), 457–471.

[29] MartinMaas, TimHarris, Krste Asanović, and JohnKubiatowicz. 2015.

Trash day: Coordinating garbage collection in distributed systems. In

15th Workshop on Hot Topics in Operating Systems (HotOS {XV}).

[30] Amirsaman Memaripour, Anirudh Badam, Amar Phanishayee, Yanqi

Zhou, Ramnatthan Alagappan, Karin Strauss, and Steven Swanson.

2017. Atomic In-place Updates for Non-volatile Main Memories with

Kamino-Tx.. In EuroSys. 499–512.

[31] Christian Navasca, Cheng Cai, Khanh Nguyen, Brian Demsky, Shan

Lu, Miryung Kim, and Guoqing Harry Xu. 2019. Gerenuk: thin com-

putation over big native data using speculative program transforma-

tion. In Proceedings of the 27th ACM Symposium on Operating Systems

Principles. ACM, 538–553.

[32] Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles B Morrey III,

Dhruva R Chakrabarti, and Michael L Scott. 2017. Dalí: A periodically

persistent hash map. In 31st International Symposium on Distributed

Computing (DISC 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-

matik.

[33] Khanh Nguyen, Lu Fang, Christian Navasca, Guoqing Xu, Brian Dem-

sky, and Shan Lu. 2018. Skyway: Connecting managed heaps in dis-

tributed big data systems. In ACM SIGPLAN Notices, Vol. 53. ACM,

56–69.

[34] Khanh Nguyen, Lu Fang, Guoqing Xu, Brian Demsky, Shan Lu,

Sanazsadat Alamian, and OnurMutlu. 2016. Yak: A high-performance

big-data-friendly garbage collector. In Proc. the 12th USENIX Confer-

ence on Operating Systems Design and Implementation.

13

VEE ’20, March 17, 2020, Lausanne, Switzerland Mingyu Wu, Haibo Chen, Hao Zhu, Binyu Zang, Haibing Guan

[35] Steven Pelley, Peter M Chen, and Thomas F Wenisch. 2014. Memory

persistency. ACM SIGARCH Computer Architecture News 42, 3 (2014),

265–276.

[36] Thomas Shull, Jian Huang, and Josep Torrellas. 2019. AutoPersist: an

easy-to-use Java NVM framework based on reachability. In Proceed-

ings of the 40th ACM SIGPLAN Conference on Programming Language

Design and Implementation. ACM, 316–332.

[37] Haris Volos, Andres Jaan Tack, and Michael M Swift. 2011.

Mnemosyne: Lightweight persistent memory. InACM SIGARCHCom-

puter Architecture News, Vol. 39. ACM, 91–104.

[38] ChenxiWang, Huimin Cui, Ting Cao, John Zigman, Haris Volos, Onur

Mutlu, Fang Lv, Xiaobing Feng, and Guoqing Harry Xu. 2019. Pan-

thera: holistic memory management for big data processing over hy-

brid memories. In Proceedings of the 40th ACM SIGPLANConference on

Programming Language Design and Implementation. ACM, 347–362.

[39] JingjingWang andMagdalena Balazinska. 2017. Elastic MemoryMan-

agement for Cloud Data Analytics. In 2017 USENIX Annual Technical

Conference (USENIX ATC 17). USENIX Association, Santa Clara, CA,

745–758.

[40] Mingyu Wu, Ziming Zhao, Haoyu Li, Heting Li, Haibo Chen, Binyu

Zang, and Haibing Guan. 2018. Espresso: Brewing java for more non-

volatility with non-volatile memory. InACM SIGPLANNotices, Vol. 53.

ACM, 70–83.

[41] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadhara-

iah, Amit Borase, Tamires Brito Da Silva, Steven Swanson, and Andy

Rudoff. 2017. NOVA-Fortis: A fault-tolerant non-volatile main mem-

ory file system. In Proceedings of the 26th Symposium on Operating

Systems Principles. 478–496.

[42] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong

Yong, and Bingsheng He. 2015. NV-Tree: reducing consistency cost

for NVM-based single level systems. In 13th USENIX Conference on

File and Storage Technologies (FAST 15). 167–181.

[43] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott

Shenker, and Ion Stoica. 2010. Spark: cluster computing with working

sets. In Proceedings of the 2nd USENIX conference on Hot topics in cloud

computing. 10–10.

14

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Programming with NVM in Java
	2.2 Recovery in resilient applications

	3 Design of GCPersist
	3.1 Lazy persistency model with runtime support
	3.2 Persistent data identification
	3.3 Asynchronous reachability-based persistency
	3.4 Post-crash inspection
	3.5 Differentiated persistency modes

	4 Implementation
	4.1 Overview
	4.2 Algorithm
	4.3 Programming APIs
	4.4 Persistency Guarantee
	4.5 Optimizations on read-mostly datasets

	5 Evaluation
	5.1 Experiment setup
	5.2 Baseline
	5.3 Recovery time
	5.4 Normal execution time

	6 Related Work
	6.1 Heap-based data management in NVM
	6.2 Lazy persistency model and systems
	6.3 Runtime optimizations for big-data processing frameworks

	7 Conclusion
	References

