
Fast and Concurrent RDF Queries using RDMA-assisted GPU Graph Exploration

Siyuan Wang, Chang Lou, Rong Chen, Haibo Chen

Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

Contacts: {rongchen, haibochen}@sjtu.edu.cn

ABSTRACT

RDF graph has been increasingly used to store and rep-

resent information shared over the Web, including social

graphs and knowledge bases. With the increasing scale

of RDF graphs and the concurrency level of SPARQL

queries, current RDF systems are confronted with ineffi-

cient concurrent query processing on massive data paral-

lelism, which usually leads to suboptimal response time

(latency) as well as throughput.

In this paper, we present Wukong+G, the first graph-

based distributed RDF query processing system that effi-

ciently exploits the hybrid parallelism of CPU and GPU.

Wukong+G is made fast and concurrent with three key

designs. First, Wukong+G utilizes GPU to tame ran-

dom memory accesses in graph exploration by efficiently

mapping data between CPU and GPU for latency hiding,

including a set of techniques like query-aware prefetch-

ing, pattern-aware pipelining and fine-grained swapping.

Second, Wukong+G scales up by introducing a GPU-

friendly RDF store to support RDF graphs exceeding

GPU memory size, by using techniques like predicate-

based grouping, pairwise caching and look-ahead replac-

ing to narrow the gap between host and device memory

scale. Third, Wukong+G scales out through a commu-

nication layer that decouples the transferring process for

query metadata and intermediate results, and leverages

both native and GPUDirect RDMA to enable efficient

communication on a CPU/GPU cluster.

We have implemented Wukong+G by extending a

state-of-the-art distributed RDF store (i.e., Wukong)

with distributed GPU support. Evaluation on a 5-node

CPU/GPU cluster (10 GPU cards) with RDMA-capable

network shows that Wukong+G outperforms Wukong by

2.3X-9.0X in the single heavy query latency and im-

proves latency and throughput by more than one order

of magnitude when facing hybrid workloads.

1 INTRODUCTION

Resource Description Framework (RDF) is a standard

data model for the Semantic Web, recommended by

W3C [5]. RDF describes linked data as a set of triples

forming a highly connected graph, which powers infor-

mation retrievable through the query language SPARQL.

RDF and SPARQL have been widely used in Google’s

knowledge graph [22] and many public knowledge bases,

such as DBpedia [1], PubChemRDF [38], Wikidata [8],

Probase [59], and Bio2RDF [10].

The drastically increasing scale of RDF graphs has

posed a grand challenge to fast and concurrent queries

over large RDF datasets [17]. Currently, there have been

a number of systems built upon relational databases, in-

cluding both centralized [40, 12, 58] and distributed [48,

44, 23] designs. On the other hand, Trinity.RDF [62]

uses graph exploration to reduce the costly join opera-

tions in intermediate steps but still requires a final join

operation. To further accelerate distributed query pro-

cessing, Wukong [51] leverages RDMA-based graph ex-

ploration to support massively concurrency queries with

low latency requirement and adopts full-history pruning

to avoid the final join operation.

Essentially, many RDF queries have embarrassing par-

allelism, especially for heavy queries, which usually

touch a large portion of the RDF graph on an excessive

amount of paths using graph exploration. This poses a

significant challenge even for multicore CPUs to handle

them efficiently, which usually causes lengthy execution

time. For example, the latency differences among seven

queries in LUBM [7] is more than 3,000X (0.13ms and

390ms for Q5 and Q7 accordingly). This may cause one

heavy query block all other queries, substantially extend-

ing the latency of other queries and dramatically impair-

ing the throughput of processing concurrent queries [51].

This problem has also gained increased attention [45].

In this paper, we present Wukong+G1 with a novel de-

sign that exploits a distributed heterogeneous CPU/GPU

cluster to accelerate heterogeneous RDF queries based

on distributed graph exploration. Unlike CPUs pur-

suing the minimized execution time for single instruc-

tions, GPUs are designed to provide high computational

throughput for massive simple control-flow operations

with little or no control dependency. Such features

expose a design space to distribute hybrid workloads

by offloading heavy queries to GPUs. Nevertheless,

different from many traditional GPU workloads, RDF

graph queries are memory-intensive instead of compute-

intensive: there are limited arithmetic operations and

most of the processing time is spent on random mem-

ory accesses. This unique feature implies that the key

of performance optimizations in Wukong+G is on smart

1The source code and a brief instruction of Wukong+G are available at

http://ipads.se.sjtu.edu.cn/projects/wukong.

http://ipads.se.sjtu.edu.cn/projects/wukong

tc:takesCourse

to:teacherOf

ad:advisor

ty:type

tc

to

to

tc
ad

ad

C

S

Pty

OS
Logan

DS

Erik to

tc

ad
Bobby

MarieKurt

ty

ty

ty
ty

ty

ty

SELECT ?X ?Y ?Z WHERE {
?X teacherOf ?Y .
?Z takesCourse ?Y .
?Z advisor ?X .

}

ad
tc

?X

?Y
to

?Z

Graph

TP-1

TP-2

TP-3

P:professor

S:student

C:course

SELECT ?X WHERE {
?X advisor Logan .
?X takesCourse OS .

} SPARQL

SPARQL

ad

?X

OS

to

Logan

Graph

QL

QH

Fig. 1: A sample of RDF data and two SPARQL queries (QH and

QL). White circles indicate the normal vertices (subjects and objects);

dark circles indicate the (type and predicate) index vertices. QH is a

heavy query, and QL is a light query.

memory usage rather than improving the computation al-

gorithm. Wukong+G is made fast and concurrent with

the following key designs:

GPU-based query execution (§4.1). To achieve the

best performance for massive random accesses de-

manded by heavy queries, Wukong+G leverages the

many-core feature and latency hiding ability of GPUs.

Besides making use of hardware advantages, Wukong+G

surmounts the limitations of GPU memory size and

PCIe (PCI Express) bandwidth by adopting query-aware

prefetching to mitigate the constraints on graph size,

pattern-aware pipelining to hide data movement cost,

and fine-grained swapping to minimize data transfer size.

GPU-friendly RDF store (§4.2). To support desired

CPU/GPU co-execution pattern while still enjoying the

fast graph exploration, Wukong+G follows a distributed

in-memory key/value store and proposes a predicate-

based grouping to aggregate keys and values with the

same predicate individually. Wukong+G further smartly

manages GPU memory as a cache of RDF store by sup-

porting pairwise caching and look-ahead replacing.

Heterogeneous RDMA communication (§4.3). To

preserve better communication efficiency in a heteroge-

neous environment, Wukong+G decouples the transfer-

ring process of query metadata and intermediate results

for SPARQL queries. Wukong+G uses native RDMA to

send metadata like query plan and current step among

CPUs, and uses GPUDirect RDMA to send current in-

termediate results (history table) directly among GPUs.

This preserves the performance boost brought by GPUs

from potential expensive CPU/GPU data transfer cost.

We have implemented Wukong+G by extending

Wukong [51], a state-of-the-art distributed RDF query

system to support heterogeneous CPU/GPU process-

ing. To confirm the performance benefit of Wukong+G,

we have conducted a set of evaluations on a 5-node

CPU/GPU cluster (10 GPU cards) with RDMA-capable

network. The experimental results using the LUBM [7]

benchmark show that Wukong+G outperforms Wukong

by 2.3X-9.0X in the single heavy query latency and im-

proves latency and throughput by more than one order of

magnitude when facing hybrid workloads.

2 BACKGROUND AND MOTIVATION

2.1 RDF and SPARQL

An RDF dataset is composed by triples, in the form of

〈sub ject, predicate,ob ject〉. To construct a graph (aka

RDF graph), each triple can be regarded as a directed

edge (predicate) connecting two vertices (from subject

to object). In Fig. 1, a simplified sample RDF graph of

LUBM dataset [7] includes two professors (Logan and

Erik), three students (Marie, Bobby, and Kurt), and two

courses (OS and DS).2 There are also three predicates

(teacherOf (to), advisor (ad) and takeCourse (tc)) to link

them. Two types of indexes, predicate and type, are

added to accelerate query processing on RDF graph [51].

SPARQL, a W3C recommendation, is a standard

query language developed for RDF graphs, which de-

fines queries regarding graph patterns (GP). The princi-

pal part of SPARQL queries is as follows:

Q := SELECT RD WHERE GP

where (RD) is the result description and GP consists of

triple patterns (TP). The triple pattern looks like a nor-

mal triple except that any constant can be replaced by a

variable (e.g., ?X) to match a subgraph. The result de-

scription RD contains a subset of variables in the triple

patterns (TP) to define the query results. For example,

the query QH in Fig. 1 asks for professors (?X), courses

(?Y) and students (?Z) such that the professor advises

(ad) the student who also takes a course (tc) taught by

(to) the professor. After exploring all three TPs in QH on

the sample graph in Fig. 1, the exact match of RD (?X,

?Y and ?Z) is only a binding of Logan, OS, and Bobby.

Query processing on CPU. There are two representa-

tive approaches adopted in state-of-the-art RDF systems,

(relational) triple join [40, 58, 12, 23] and graph explo-

ration [62, 51]. A recent study [51] found that graph ex-

ploration with full-history pruning can provide low la-

tency and high throughput for concurrent query process-

ing. Therefore, we illustrate this approach to demonstrat-

ing the query processing on CPU with the sample RDF

graph and SPARQL query (QH) in Fig. 1.

As shown in Fig. 2, all triple patterns of the query (QH)

will be iterated in sequence (➊) to generate the results

(history table) by exploring the graph, which is stored in

an in-memory key/value store. According to the variable

(?Y) of the current triple pattern (TP-2), each row of a

certain column in the history table (➋) will be combined

with the constant (takesCourse) of the triple pattern as

2Since the special predicate type (ty) is used to group a set of entities,

we follow Wukong [51] to treat every type (e.g., professor (P)) as an

index, the same as predicates (e.g., advisor (ad)).

TP-0

TP-1

TP-3

...

TP-2

1

2

3
4

5

?X ?Y?Z

Fig. 2: The execution flow of query processing on CPU.

the key (➌) to retrieve the value (➍). The value will be

appended to a new column (?Z) of the history table (➎).

Note that an extra triple pattern (TP-0) from an index ver-

tex (teacherOf) will be used to collect all start vertices

satisfying a variable (?X) in TP-1.

Full-history pruning. Since processing RDF query by

graph exploration needs to traverse the RDF graph, it is

crucial to prune infeasible paths for better performance.

There are basically two approaches: partial-history prun-

ing [62], by inheriting partial history information (in-

termediate results) from previous steps of traversing

to prune the following traversal paths; and full-history

pruning [51], by passing the history information of all

previous traversal steps for pruning. Wukong has ex-

ploited full-history pruning to prune unnecessary inter-

mediate results precisely and make all traversal paths

completely independent. Thanks to the fast RDMA-

capable network as well as the relative cost-insensitivity

of one-sided RDMA operations regarding payload size,

full-history pruning is very effective and efficient to han-

dle concurrent queries.

Workload heterogeneity. Prior work [62, 23, 51] has

observed that there are two distinct types of SPARQL

queries: light and heavy. Light queries (e.g., QL in Fig. 1)

usually start from a (constant) normal vertex and only

explore a few paths regardless of the dataset size. In con-

trast, heavy queries (e.g., QH in Fig. 1) usually start from

an (type or predicate) index vertex and explore massive

amounts of paths, which increases along with the growth

of dataset size. The top of Fig. 3 demonstrates the num-

ber of paths explored by two typical queries (Q5 and Q7)

on LUBM-10240 (10 vs. 16,000,000).

The heterogeneity in queries can result in tremendous

latency differences on state-of-the-art RDF stores [51],

even reaching more than 3,000X (0.13ms and 390ms

for Q5 and Q7 on LUBM-10240 accordingly).3 There-

fore, the multi-threading mechanism is widely used by

prior work [23, 62, 51] to improve the performance of

heavy queries. However, such approach is intrinsically

restricted by the limited computation resource of CPU.

Currently, the maximum number of cores in a commer-

cial CPU processor is usually less than 16. Moreover,

3Detailed experimental setup and results can be found in §6.

the lengthy queries will significantly extend the latency

of light queries and impair the throughput of process-

ing concurrent queries. Some CPU systems like Oracle

PGX [4] try to address this issue by adopting priority

mechanism. However, with no variation of computing

power, the sacrifice of user experience for one type of

queries is unavoidable.

2.2 Hardware Trends

Hardware heterogeneity. With the prevalence of

computational workloads (e.g., machine learning and

data mining applications), it is now not uncommon to see

server-class machines equipped with GPUs in the mod-

ern datacenter. As a landmark difference compared to

CPU, the number of GPU cores (threads) can easily ex-

ceed two thousand, which far exceeds existing multicore

CPU processors. As shown in Fig. 3, in a typical het-

erogeneous (CPU/GPU) machine, CPU and GPU have

their private memory (DRAM) connected by PCIe with

limited bandwidth (10GB/s). Compared to host mem-

ory (CPU DRAM), device memory (GPU DRAM) has

much higher bandwidth (288GB/s vs. 68GB/s) but less

capacity (12GB vs. 128GB). Generally, GPU is opti-

mized for performing massive, simple and independent

operations with intensive accesses on a relatively small

memory footprint.

Fast communication: GPUDirect with RDMA.

GPUDirect is a family of technologies that is continu-

ously developed by NVIDIA [3]. Currently, it can sup-

port various efficient communications, including inter-

node, intra-node, and inter-GPU. RDMA (Remote Direct

Memory Access) is a networking feature to directly ac-

cess the memory of a remote machine, which can bypass

remote CPU and operating system, and avoid redundant

memory copy. Hence, it has unique features like high

speed, low latency and low CPU overhead. GPUDirect

RDMA has been introduced in NVIDIA Kepler-class

GPUs, like Tesla and Quadro series. This technique en-

ables direct data transfer between GPUs by InfiniBand

NICs as the name suggests [2].

2.3 Opportunities

Though prior work (e.g., Wukong [51]) has successfully

demonstrated the low latency and high throughput of

running light queries solely by leveraging graph explo-

ration with full-history pruning, it is still incompetent to

handle heavy queries efficiently. This leads to subop-

timal performance when facing hybrid workloads com-

prising both light and heavy queries.

This problem is not due to the design and implementa-

tion of existing state-of-the-art systems, which have been

heavily optimized by several approaches including multi-

threading [62, 23, 51] and work-stealing scheme [51].

We attribute the performance issues mainly to the lim-

Fig. 3: Motivation of Wukong+G Fig. 4: The architecture overview of Wukong+G.

itation of handling hybrid workloads (light and heavy

queries) on the homogeneous hardware (CPU), which

can provide neither sufficient computation resources (a

few cores) nor efficient data accesses (low bandwidth).

GPU is a good candidate to host heavy queries. First,

the graph exploration strategy for query processing heav-

ily relies on traversing massive paths on the graph store,

which is a typical memory-intensive workload targeted

by GPU’s high memory bandwidth. Second, the mem-

ory latency hiding capability of GPU is inherently suit-

able for the random traversal on RDF graph, which is

notoriously slow due to poor data locality. Third, ev-

ery traversal path with the full-history pruning scheme is

entirely independent, which can be fully parallelized on

thousands of GPU cores.

In summary, the recent trend of hardware heterogene-

ity (CPU/GPU) opens an opportunity for running differ-

ent queries on different hardware; namely, running light

queries on CPUs and heavy queries on GPUs.

3 WUKONG+G: AN OVERVIEW

System architecture. An overview of Wukong+G’s

architecture is shown in Fig. 4. Wukong+G assumes run-

ning on a modern cluster connected with RDMA-capable

fast networking, where each machine is equipped with

one or more GPU cards. The GPU’s device memory is

treated as a cache for the large pool of the CPU’s host

memory. Wukong+G targets various SPARQL queries

over a large volume of RDF data; it scales by partition-

ing the RDF graph into a large number of shards across

multiple servers. Wukong+G may duplicate edges to

make sure each server contains a self-contained subgraph

(e.g., no dangling edges) of the input RDF graph for bet-

ter locality. Note that there are no replicas of vertices

in Wukong+G as no vertex data needs to synchronize.

Moreover, Wukong+G also creates index vertices [51]

for types and predicates to assist query processing.

Similar to prior work [51], Wukong+G follows a de-

centralized, shared-nothing, main-memory model on the

server side. Each server consists of two separate layers:

query engine and graph store. The query engine layer

employs a worker-thread model by running N worker

threads atop N CPU cores and dedicates one CPU core

to run an agent thread; the agent thread will assist the

worker threads on GPU cores to run queries. Each work-

er/agent thread on CPU has a task queue to continuously

handle queries from clients or other servers, one at a

time. The graph store layer adopts an RDMA-friendly

key/value store over a distributed hash table to support

a partitioned global address space. Each server stores

a partition of the RDF graph, which is shared by all of

worker/agent threads on the same server.

Wukong+G uses a set of dedicated proxies to run

the client-side library and collect queries from massive

clients. Each proxy parses queries into a set of stored

procedures and generates optimal query plans using a

cost-based approach. The proxy will further use the cost

to classify a query into one of two types (light or heavy),

and deliver it to a worker or agent thread accordingly.4

Basic query processing on GPU. In contrast to the

query processing on CPU, which has to perform a triple

pattern with massive paths in a verbose loop style (see

Fig. 2), Wukong+G can fully parallelize the graph explo-

ration with thousands of GPU cores. The basic approach

is to dedicate one CPU core to perform the control-flow

of the query, and use massive GPU cores to parallelize

the data-flow of the query. As shown in Fig. 5, the

agent thread on CPU core will first read the next triple

pattern (➊) of the current query and prepare a cache of

RDF datasets on GPU memory (➋). After that, the agent

thread will leverage all GPU cores to perform the triple

pattern in parallel (➌). Each worker thread on GPU core

can independently fetch a row in the history table (➍)

and combine it with the constant (takesCourse) of the

triple pattern (TP-2) as the key (➎). The value retrieved

by the key (➏) will be appended to a new column (?Z)

of the history table (➐). While the hybrid design seems

intuitive, Wukong+G still faces three challenges to run

SPARQL queries on GPUs, which will be addressed by

the techniques in §4:

4The recent release of Wukong (https://github.com/

SJTU-IPADS/wukong) introduced a new cost-based query

planner for graph exploration, where the cost estimation is roughly

based on the number of paths may be explored. Wukong+G uses a

user-defined threshold for the cost to classify queries.

https://github.com/SJTU-IPADS/wukong
https://github.com/SJTU-IPADS/wukong

TP-0

TP-1

TP-2

...

TP-2

1

23

4 5 6

7
?X ?Y?Z

Fig. 5: The execution flow of query processing on CPU/GPU.

C1: Small GPU memory. It is well known that GPU

can obtain optimal performance only when the device

memory (GPU DRAM) gets everything ready. Prior sys-

tems [62, 23, 51] can store an entire RDF graph in the

host memory (CPU DRAM) since it is common that

server-class machines equip with several hundred GBs

of memory. However, this assumption does not apply to

GPU since its current memory size usually stays less than

16GB. We should not allow device memory size to limit

the upper bound of the supported working sets.

C2: Limited PCIe bandwidth. The memory foot-

print of SPARQL queries may touch arbitrary triples

of the RDF graph. Therefore, the data transfer be-

tween CPU and GPU memory during query processing

is unavoidable, especially for concurrent query process-

ing. However, GPUs are connected to CPUs by PCIe

(PCI Express), which has insufficient memory band-

width (10GB/s). To avoid the bottleneck of data trans-

fer, we should carefully design mechanisms to predict

access patterns and minimize the number, volume and

frequency of data swapping.

C3: Cross-GPU communication. With the increasing

scale of RDF datasets and the growing number of con-

current queries, it is highly demanding that query pro-

cessing systems can scale to multiple machines. Prior

work [57, 51] has shown the effectiveness and effi-

ciency of the partitioned RDF store and the worker-

thread model. However, the intra-/inter-node commu-

nication between multiple GPUs has a long path: 1)

device-to-host via PCIe; 2) host-to-host via networking;

3) host-to-device via PCIe. We should customize the

communication flow for various participants to reduce

the latency of network traffic.

4 DESIGN

4.1 Efficient Query Processing on GPU

Facing the challenges like small GPU memory and lim-

ited PCIe bandwidth, we propose the following three key

techniques to overcome them.

Query-aware prefetching. With the increase of RDF

datasets, the limited GPU memory size (less than 16GB)

QH

Process QH on GPU

to out tc in ad out* * *

TP-0: to|in ?X
TP-1: ?X to|out ?Y
TP-2: ?Y tc|in ?Z
TP-3: ?Z ad|out ?X

* * *

TP-0 TP-1 TP-2 TP-3

Time
Per-query

Per-pattern

Pipeline

Per-block

Time

Out-of-memory
RDF data

Time

Time

Time

predicate
direction

Overlap with the planning of this query
or the processing of a previous query

predicate direction

Prefetch data from CPU DRAM to GPU DRAM

Fig. 6: The timeline of processing sample query (QH) on GPU.

is not enough to host the entire RDF graph. Wukong+G

thus treats the GPU memory as a cache of CPU memory,

and only ensures the necessary data is retained in GPU

memory before running a query. However, it is non-

trivial to decide the working set of a query accurately.

As shown in the second timeline of Fig. 6, Wukong+G

proposes to just prefetch the triples with the predicates

involved in a query, which can enormously reduce the

memory footprint of a query from the entire RDF graph

to the per-query scale. This assumption is based on

two observations: 1) each query only touches a part of

RDF graph; 2) the predicate of a triple pattern is com-

monly known (i.e., 〈?X , predicate,?Y 〉). For example,

the sample query (QH) only requires three predicates

(teacherOf, takesCourse, and advisor), occupying about

3.7GB memory (0.3GB, 2.9GB, and 0.5GB respectively)

for LUBM-2560.

Pattern-aware pipelining. For a query with many

triple patterns, the total memory footprint of a single

query may still exceed the GPU memory size. For-

tunately, we further observe that the triple patterns of

a query will be executed in sequence. It implies that

Wukong+G can further reduce the demand for memory

to the per-pattern scale. As shown in the third timeline

of Fig. 6, Wukong+G can only prefetch the triples with a

certain predicate that is used by the triple pattern will be

immediately executed. Thus, for the sample query (QH)

on LUBM-2560, the demand for GPU memory will fur-

ther reduce to 2.9GB, the size of the maximum predicate

(takesCourse).

Moreover, since the data prefetching and query pro-

cessing are split into multiple independent phases,

Wukong+G can use a software pipeline to create paral-

lelism between the execution of the current triple pattern

and the prefetching of the next predicate, as shown in the

fourth timeline of Fig. 6. Note that it will also increase

the memory footprint to the maximum size of two suc-

cessive predicates (takesCourse and advisor).

Fine-grained swapping. Although the pattern-aware

pipelining can overlap the latency of data prefetching

and query processing, it is hard to perfectly hide the

I/O cost due to limited bandwidth between system and

Table 1: A summary of optimizations for query processing on GPU.

“X |Y” indicates XGB memory footprint and Y GB data transfer. (†)

The numbers are evaluated on 6GB GPU memory.

Granularity Main Techniques
Q7 (GB)

on LUBM-2560

Entire graph Basic query processing 16.3 | 16.3

Per-query Query-aware prefetching 5.6 | 5.6

Per-pattern Pattern-aware pipelining 2.9 | 5.6

Per-block Fine-grained swapping 2.9 | 0.7†

device memory (e.g., 10GB/s). For example, prefetch-

ing 2.9GB triples (takesCourse) requires about 300ms,

which is even longer than the whole query latency

(100ms). Therefore, Wukong+G adopts a fine-grained

swapping scheme to maintain the triples cached in GPU

memory. All triples with the same predicate will be fur-

ther split into multiple fixed-size blocks, and the GPU

memory will cache the triples in a best-effort way (§4.2).

Consequently, the demand of memory will be further re-

duced to the per-block scale.

Moreover, the data transferring cost will also become

the per-block scale, and all cached data on GPU mem-

ory can be reused by multiple triple patterns of the same

query or even multiple queries. As shown in the fifth

timeline of Fig. 6, when most triples of the required pred-

icates have been retained in GPU memory, the prefetch-

ing cost can be perfectly hidden by query processing.

Even for the first required predicate, Wukong+G still can

hide the cost by overlapping it with the planning time of

this query or the processing time of a previous query.

Table 1 summarizes the granularity of data prefetching

on GPU memory, and shows the size of memory foot-

print and data transfer for a real case (Q7 on LUBM-

2560). Note that Q7 is similar to QH but requires five

predicates. The memory footprint of Q7 with fine-

grained swapping is equal to the available GPU memory

size (6GB) since Wukong+G only swaps out the triples

of predicates on demand.

4.2 GPU-friendly RDF Store

Prior work [62, 51, 64] uses a distributed in-memory

key/value store to physically store the RDF graph,

which is efficient to support random traversals in graph-

exploration scheme. In contrast to the intuitive de-

sign [62] that simply uses vertex ID (vid) as the key, and

the in-/out-edge list (each element is a [pid,vid] pair) as

the value, Wukong [51] uses a combination of the vertex

ID (vid), predicate ID (pid) and in/out direction (d) as the

key (in the form of [vid, pid,d]), and the list of neighbor-

ing vertex IDs as the value (e.g., [Logan, to,out] 7−→ [DS]
in the left part of Fig. 7).

This design can prominently reduce the graph traver-

sal cost for both local and remote accesses. However,

the triples (both key and value) with the same predi-

cate are still sprinkled all over the store. It implies that

the cost of prefetching keys and values for a triple pat-

tern is extremely high or even impossible. Therefore,

the key/value store on CPU memory should be carefully

re-organized for heterogeneous CPU/GPU processing by

aggregating all triples with the same predicate and direc-

tion into a segment. Furthermore, the key and value seg-

ments should be maintained in a fine-grained way (block)

and be cached in pairs. Finally, the mapping between

keys and values should be retained in the key/value cache

on GPU memory, which uses a separate address space.

Wukong+G proposes the following three new techniques

to construct a GPU-friendly key/value store, as shown in

the right part of Fig. 7.

Predicate-based grouping (CPU memory). Based on

the idea of predicate-based decomposition in Wukong,

Wukong+G adopts predicate-based grouping to exploit

the predicate locality of triples and retains the encoding

of keys and values. The basic idea is to partition the

key space into multiple segments, which are identified

by the combination of predicate and direction (i.e., [pid,

d]). To preserve the support of fast graph exploration,

Wukong+G still uses the hash function within the seg-

ment but changes the parameter from the entire key (i.e.,

[vid, pid,d]) to the vertex ID (vid). The number of keys

and values in each segment are collected during loading

the RDF graph and aligned to an integral multiple of the

granularity of data swapping (block). To ensure that all

values belonged to the triples with the same predicate

are stored contiguously, Wukong+G groups such triples

and inserts them together. Moreover, Wukong+G uses

an indirect mapping to link keys and values, where the

link is an offset within the value space instead of a direct

pointer. As shown in the right part of Fig. 7, the triples

required by TP-2 (i.e., 〈Kurt, tc,DS〉 and 〈Bobby, tc,OS〉)
are aggregated together in both key and value spaces (the

purple boxes).

Pairwise caching (GPU memory). To support fine-

grained swapping, Wukong+G further splits each seg-

ment into multiple fixed-size blocks and stores them into

discontinuous blocks of the cache on GPU memory, like

[Logan, to,out] and [Erik, to,out]. Note that the block

size for keys and values can be different. Wukong+G fol-

lows the design on CPU memory to cache key and value

blocks into separate regions on GPU memory, namely

key cache and value cache. Wukong+G uses a simple ta-

ble to map key and value blocks, and the link from key to

value becomes the offset within the value block. Unlike

the usual cache, the linked key and value blocks must be

swapped in and out the (GPU) cache in pairs, like [OS,

tc, in] and [Bobby] (the purple boxes). Thus, Wukong+G

maintains a bidirectional mapping between the pair of

cached key and value blocks. Moreover, a mapping table

of block ID between RDF store (CPU) and cache (GPU)

is used to re-translate the link between keys and values,

Logan

Erik

to

to

out

out

DS

OS

Pidx to in Logan Erik

OS

DS

tc in

tc in

Bobby

Kurt

Bobby ad out

Logan

Marie ad out

Logan

Logan

Erik

to

to

out

out

DSOS

Pidx to in Logan Erik

DS

OS

tc in

tc in

Kurt Bobby

Bobby ad out

LoganMarie ad out

Logan

QSTP-0: to|in ?X
TP-1: ?X to|out ?Y
TP-2: ?Y tc|in ?Z
TP-3: ?Z ad|out ?X

Pidx to in

Logan

DS

to

tc

out

in

Erik

OS

to out

tc in

Logan Erik

DS

OS Kurt

Bobby

2
3

1

3
6

1

2

4

5

3

1

2

Fig. 7: The structure of GPU-friendly RDF store. Fig. 8: Communication flow w/o and w/ GPUDirect.

when the pairwise blocks (key and value) are swapped in

GPU memory.

Look-ahead replacement policy. The mapping table

of block IDs between RDF store and cache records

whether the block has been cached. Before running a

triple pattern of the query, all of key and value blocks

should be prefetched to the GPU memory. For example,

the key [OS, tc, in] and value [Bobby] should be loaded

into the cache before processing TP-2. Wukong+G pro-

poses a look-ahead LRU-based replacement policy to

decide where to store prefetched key and value blocks.

Specifically, Wukong+G prefers to use free blocks first

and then chooses the blocks that will not be used by the

following triple patterns of this query (look-ahead), with

the highest LRU score. The worst choice is the blocks

will be used by the following triple patterns, and then the

block of the farthest triple pattern will be replaced. Note

that the replacement policies for keys and values are the

same and there is at most a pair of key/value blocks will

be swapped out due to the pairwise caching scheme.

For example, as shown in the right part of Fig. 7, be-

fore running the triple pattern TP-2, all key/value blocks

of the predicate takeCourse (tc) should be swapped in the

cache (the purple boxes). The value block with [Bobby]
can be loaded to a free block, while the key block with

[OS, tc, in] will replace the cached block with [Pidx, to,

in], since it was used by TP-0 with the highest LRU score.

4.3 Distributed Query Processing

Wukong+G splits the RDF graph into multiple disjoint

partitions by a differentiated partitioning algorithm [51,

19] 5, and each machine hosts an RDF graph partition

and launches many worker threads on CPUs and GPUs

to handle concurrent light and heavy queries respectively.

The CPU worker threads on different machines will only

communicate with each other for (light) query process-

ing, and it is the same to GPU worker threads for (heavy)

query processing.

5The normal vertex (e.g., Logan) will be assigned to only one machine

with all of its edges, while the index vertex (e.g., teacherOf) will be

split and replicated to multiple machines with edges linked to normal

vertices on the same machine.

To handle light queries on CPU worker threads,

Wukong+G simply follows the procedure (see

Fig. 2) that has been successfully demonstrated by

Wukong [51]. However, to handle heavy queries on

GPU worker threads, the procedure (see Fig. 5) becomes

complicated due to the assistance of (CPU) agent thread

and the maintenance of (GPU) RDF cache.

Execution mode: fork-join. Prior work [51] proposes

two execution modes, in-place and fork-join, for dis-

tributed graph exploration to migrate data and execu-

tion respectively. The in-place execution mode syn-

chronously leverages one-sided RDMA READ to directly

fetch data from remote machines, while the fork-join

mode asynchronously splits the following query compu-

tation into multiple sub-queries running on remote ma-

chines. Wukong+G follows the design on CPU worker

threads but only adopts the fork-join mode for query pro-

cessing on GPU, because the in-place mode is usually in-

efficient for heavy queries [51] and migrating data from

remote CPU memory to local GPU memory is still very

costly even with RDMA operations.

In the fork-join mode, the agent thread will split the

running query (metadata) with intermediate results (his-

tory table) into multiple sub-queries for the following

query processing, and dispatch them to the task queue

of agent threads on remote machines by leveraging one-

sided RDMA WRITE. Therefore, multiple heavy queries

can be executed on multiple GPUs concurrently in a

time-sharing way. However, the current history table is

located in GPU memory (see Fig. 8), such that it would

be inefficient to fetch and split the table by using a single

agent thread on CPU (➊ and ➋ in Fig. 8(a)). Therefore,

Wukong+G leverages all GPU cores to partition the his-

tory table in fully parallel (➊ in Fig. 8(b)) using a dy-

namic task scheduling mechanism [47, 18].

Communication flow. To support fork-join execution,

the sub-queries will be sent to target machines with their

metadata (e.g., query plan and current step) and history

table (intermediate results), and the history table will be

sent back with final results at the end. As shown in

Fig. 8(a), the query metadata will be delivered by one-

sided RDMA operations between the CPU memory of

Table 2: A collection of synthetic and real-life datasets. #T, #S, #O

and #P mean the number of triples, subjects, objects and predicates

respectively. (†) The size of datasets in raw NT format.

Dataset #T #S #O #P Size†

LUBM-2560 352 M 55 M 41 M 17 58GB

LUBM-10240 1,410 M 222 M 165 M 17 230GB

DBPSB 15 M 0.3 M 5.2 M 14,128 2.8GB

YAGO2 190 M 10.5 M 54.0 M 99 13GB

two machines (➌ and ➏). In contrast, the history table

has to go through a long path from local GPU mem-

ory to the remote GPU memory, and finally goes back

to the local CPU memory. A detailed communication

flow for history table (see Fig. 8(a)): 1) from local GPU

memory to local CPU memory (➊, Device-to-Host); 2)

from local CPU memory to remote CPU memory (➌,

Host-to-Host); 3) from remote CPU memory to remote

GPU memory (➍, Host-to-Device); 4) from remote GPU

memory to remote CPU memory (➎, Device-to-Host);

5) from local CPU memory to remote CPU memory (➏,

Host-to-Host).

GPUDirect [3] opens an opportunity for Wukong+G

to directly write history table from local GPU memory to

remote GPU and CPU memory. Hence, Wukong+G de-

couples the transferring process of query metadata and

history table (➋ and ➋ in Fig. 8(b)), and further short-

ens the communication flow for history table by leverag-

ing GPUDirect RDMA. It also avoids the contention on

agent thread with the metadata transferring. A detailed

communication flow for history table (see Fig. 8(b)): 1)

from local GPU memory to remote GPU memory (➋,

Device-to-Device); 2) from remote GPU memory to lo-

cal CPU memory (➌, Device-to-Host).

Moreover, to mitigate the pressure on GPU mem-

ory when handling multiple heavy queries, Wukong+G

choose to send the history table of pending queries from

local GPU memory to the buffer on remote CPU mem-

ory first via GPUDirect RDMA, and delay the prefetch-

ing of history table from CPU memory to GPU memory

till handling the query on GPU.

5 IMPLEMENTATION

Wukong+G prototype is implemented in 4,088 lines of

C++/CUDA codes atop of the code base of Wukong.

This section describes some implementation details.

Multi-GPUs support. Currently, it is not uncommon

to equip every CPU socket with a separate GPU card for

low communication cost and good locality. To support

such multi-GPUs on a single machine, Wukong+G runs a

separate server for each GPU card and several co-located

CPU cores (usually a socket). All servers comply with

the same communication mechanism via GPUDirect-

capable RDMA operations, regardless of whether two

servers share the same physical machine or not.

Too large intermediate results. In rare cases, the in-

termediate results may overflow the history buffer on

Table 3: The query performance (msec) on a single server.

LUBM-2560 TriAD Wukong Wukong+G

H

Q1 (3.6GB) 851 992 165

Q2 (2.4GB) 211 138 31

Q3 (3.6GB) 424 340 63

Q7 (5.6GB) 2,194 828 100

Geo. M 639 443 75

L

Q4 1.45 0.13 0.16

Q5 1.10 0.09 0.11

Q6 16.67 0.49 0.51

Geo. M 2.98 0.18 0.21

GPU memory. For example, we witness this scenario

in YAGO2 benchmark (§6.8) that a heavy query keeps

spanning out without any pruning. Wukong+G can hor-

izontally divide the intermediate results into multiple

strips by row and only hold a single strip into the his-

tory table on GPU memory. The remaining strips will

stay in CPU memory and be swapped in GPU memory

one-by-one while processing a single triple pattern.

6 EVALUATION

6.1 Experimental Setup

Hardware configuration. All evaluations are con-

ducted on a rack-scale cluster with 10 servers on 5 ma-

chines. We run two servers on a single machine. Each

server has one 12-core Intel Xeon E5-2650 v4 CPU with

128GB of DRAM, one NVIDIA Tesla K40m GPU with

12GB of DRAM, and one Mellanox ConnectX-3 56Gbps

InfiniBand NIC via PCIe 3.0 x8 connected to a Mellanox

IS5025 40Gbps IB Switch. Wukong+G only provides a

one-to-one mapping between the work and agent threads

on different servers [51], which mitigates the scalability

issue of RDMA networks with reliable transports [31]

and simplifies the implementation of the task queue. In

all experiments, we reserve two cores on each CPU to

generate requests for all servers to avoid the impact of

networking between clients and servers as done in prior

work [54, 56, 57, 20, 51].

Benchmarks. Our benchmarks include one synthetic

and two real-life datasets, as shown in Table 2. The

synthetic dataset is the Lehigh University Benchmark

(LUBM) [7]. We generate 5 datasets with differ-

ent sizes (up to LUBM-10240) and use the query set

published in Atre et al. [13], which are widely used

by many distributed RDF systems [36, 62, 23, 51].

The real-life datasets include the DBpedia’s SPARQL

Benchmark (DBPSB) [1] and YAGO2 [9, 30]. For

DBPSB, we use the query set recommended by its of-

ficial site. For YAGO2, we collect our query set from

both H2RDF+ [43] and RDF-3X [42] to make sure the

test covers both light and heavy queries.

Comparing targets. We compare our system against

two state-of-the-art distributed RDF query systems,

TriAD [23] (RDF relational store) and Wukong [51]

(RDF graph stores). Note that TriAD does not sup-

Table 4: The query performance (msec) on 10 servers.

LUBM-10240 TriAD Wukong Wukong+G

H

Q1 (14.25GB) 3,400 480 211

Q2 (9.74GB) 880 66 12

Q3 (14.25GB) 2,835 171 19

Q7 (22.58GB) 10,806 390 100

Geo. M 3,094 215 47

L

Q4 3.08 0.44 0.46

Q5 1.84 0.13 0.17

Q6 65.20 0.70 0.71

Geo. M 7.04 0.34 0.38

port concurrent query processing, so we only compare

to it in the single query performance. As done in prior

work [62, 23, 51], the string server is enabled for all sys-

tems to save memory usage, reduce network bandwidth,

and boost string matching.

6.2 Single Query Performance

We first study the performance of Wukong+G for a single

query using the LUBM dataset. Table 3 shows the opti-

mal performance of different systems on a single server

with LUBM-2560. For Wukong+G, there is no data

swapping during single query experiment since the cur-

rent memory footprint of all queries on LUBM-2560 (the

numbers in brackets) is smaller than the GPU memory

(12GB). The query-aware prefetching reduces the mem-

ory footprint to the per-query granularity (see Table 1).

Although Wukong and TriAD have enabled multi-

threading (10 worker threads), Wukong+G can still sig-

nificantly outperform such pure CPU systems for heavy

queries (Q1-Q3, Q7) by up to 8.3X and 21.9X (from

4.5X and 5.2X) due to wisely leveraging hardware ad-

vantages. The improvement of average (geometric mean)

latency reaches 5.9X and 8.5X. For the light queries (Q4-

Q6), Wukong+G inherits the prominent performance of

Wukong by leveraging graph exploration and outper-

forms TriAD by up to 32.7X.

We further compare Wukong+G with Wukong and

TriAD (multi-threading enabled) on 10 servers using

LUBM-10240 in Table 4. For heavy queries, Wukong+G

still outperforms the average (geometric mean) latency of

Wukong by 4.6X (ranging from 2.3X to 9.0X), thanks to

the heterogeneous RDMA communication for preserv-

ing the good performance of GPU at scale. Further,

using up all CPU worker threads to accelerate a sin-

gle query is not practical for concurrent query process-

ing since it will result in throughput collapse. For light

queries, Wukong+G incurs about 12% performance over-

head (geometric mean) compared to Wukong due to ad-

justing the layout of key/value store on CPU memory for

predicate-based grouping. Wukong+G is still one order

of magnitude faster than TriAD due to the in-place exe-

cution with one-sided RDMA READ [51].

6.3 Factor Analysis of Improvement

To study the impact of each technique and how they af-

fect the query performance, we iteratively enable each

Table 5: The contribution of (cumulative) optimizations to the query

latency (msec) evaluated on 3GB GPU memory.

LUBM-2560 Per-query Per-parttern Per-block Pipeline

Q1 (3.6GB) x 743 313 295

Q2 (2.4GB) 284 283 32 31

Q3 (3.6GB) x 309 62 63

Q7 (5.6GB) x 893 622 610

optimization and collect the average latency by repeat-

edly running the same query on a single server with

3GB GPU memory for LUBM-2560. As shown in Ta-

ble 5, even using query-aware prefetching (per-query),

the memory footprints of query Q1, Q3 and Q7 still

exceed available GPU memory (see Table 3). Hence,

they can not run until enabling pattern-aware prefetch-

ing (per-pattern). The effectiveness of fine-grained swap-

ping (per-block) varies on different queries. It is quite

effective on Q2 and Q3 (8.8X and 5.0X) since all triples

required by triple patterns can almost be stored in 3GB

GPU memory. Note that Q3 returns an empty history ta-

ble (intermediate results) half-way and reduces the prac-

tical runtime memory footprint to 2.5GB. For Q1 and

Q7, although the relative large memory footprint (3.6GB

and 5.6GB), incurs massive data swapping (1.5GB by

187 time and 5.1GB by 734 times), the cache sharing

with fine-grained mechanism can still notably reduce the

query latency by 2.4X and 1.4X. Moreover, pipeline does

not work on Q2 and Q3 without data prefetching time.

The improvement for Q1 and Q7 is still limited since

the prefetching and execution time for each triple pat-

tern are quite imbalanced. For example, 88% of blocks

are swapped at two triple patterns for Q7.

Table 6: A comparison of query performance (msec) w/o and w/

GPUDirect RDMA (GDR) on 10 servers with LUBM-10240.

LUBM-10240 Q1 Q2 Q3 Q7

Wukong+G w/o GDR 222 (53.4) 13 22 103 (26.1)

Wukong+G w/ GDR 211 (40.1) 13 22 98 (21.3)

6.4 GPUDirect RDMA

To shorten communication flow and avoid redundant

memory copy for history table (intermediate results)

of queries, Wukong+G leverages GPUDirect RDMA

(GDR) to write history table directly from local GPU

memory to remote GPU and CPU memory (§4.3). To

study the impact of leveraging GPUDirect RDMA, we

enforce Wukong+G to purely use native RDMA for both

query metadata and history table (i.e., Wukong+G w/o

GDR). As shown in Table 6, the performance of Q2 and

Q3 is non-sensitive to GPUDirect RDMA because of no

data transfer among GPUs. For Q1, leveraging GPUDi-

rect RDMA can reduce about 30% communication cost

(53.4ms vs. 40.1ms), since the query need to send about

487MB intermediate results by about 990 times RDMA

operations. For queries with relatively large intermediate

results or many triple patterns, there are more rooms for

the overall performance improvement.

 0

 300

 600

 900

 1200

2 3 4 5 6 7 8 9 10

L
a
te

n
c
y
 (

m
s
e
c
)

Number of Servers

Q1

Q2

Q3

Q7

10
-1

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

M
e
d
ia

n
 L

a
te

n
c
y
 (

m
s
e
c
)

Throughput (queries/sec)

WKI/H

WKI/L

WKD/H

WKD/L

WKG/H

WKG/L

 0

 200

 400

 600

 800

 3 4 5 6 7 8 9 10

L
a
te

n
c
y
 (

m
s
e
c
)

Size of GPU Mem(GB)

Q1

Q2

Q3

Q7

0

20

40

60

80

100

 0 50 100 150 200 250

C
D

F
 (

%
)

Latency (msec)

Q1

Q2

Q3

Q7

Fig. 9: The latency with the in-

crease of servers.

Fig. 10: The performance of hybrid work-

load on 10 servers with LUBM-10240.

Fig. 11: The latency with the

increase of GPU memory.

Fig. 12: The CDF of latency

for mixed heavy workload.

6.5 Scalability

We evaluate the scalability of Wukong+G with the in-

crease of servers. Since the latency of light queries of

Wukong+G mainly inherits from Wukong, We only re-

port the experimental results of heavy queries handled

by GPUs. As shown in Fig. 9, the speedup of heavy

queries ranges from 4.8X to 23.8X. As the number of

servers increases from 2 to 10, a good horizontal scala-

bility is shown. After a detailed analysis of the experi-

mental results, we reveal that there are two different fac-

tors improving the performance at different stages. In

the first stage (from 2 to 4 servers), the increase of total

GPU memory provides the main contribution to the per-

formance gains, ranging from 3.2X to 8.5X, by reducing

memory swapping cost. In the second stage (from 4 to

10 servers), since Wukong+G stops launching expensive

memory swapping operations when enough GPU mem-

ory is available, the main performance benefits come

from using more GPUs, ranging from 1.5X to 2.8X.

Discussion. With the further increase of servers, the

single query latency may not further decrease due to

fewer workload per server and more communication

cost. It implies that it is not worth making all resources

(GPUs) participate in a single query processing, espe-

cially for a large-scale cluster (e.g., 100 servers). There-

fore, Wukong+G will limit the participants of a single

query and can still scale well in term of throughput by

handling more concurrent queries simultaneously on dif-

ferent servers.

6.6 Performance of Hybrid Workloads

One principal aim of Wukong+G is to handle concur-

rent hybrid (light and heavy) queries in an efficient and

scalable way. Prior work [51] briefly studied the perfor-

mance of Wukong with a mixed workload, which con-

sists of 6 classes of light queries (Q4-Q6 and A1-A36).

The light query in each class has a similar behavior ex-

cept that the start point is randomly selected from the

same type of vertices (e.g., Univ0, Univ1, etc.). The

distribution of query classes follows the reciprocal of

their average latency. Therefore, we first extend origi-

nal mixed workload by adding 4 classes of heavy queries

6Three additional queries (A1, A2, and A3) are from the official LUBM

website (#1, #3, and #5).

(Q1-Q3, Q7), and then allow all clients to freely send

light and heavy queries7 according to the distribution of

query classes.

We compare Wukong+G (WKG) with two differ-

ent settings of Wukong: Default (WKD) and Isola-

tion (WKI). Wukong/Default (WKD) allows all worker

threads to handle hybrid queries, while Wukong/Isola-

tion (WKI) reserves half of the worker threads to han-

dle heavy queries. Each server runs two emulated clients

on dedicated cores to send requests. Wukong launches

10 worker threads, while Wukong+G launches 9 worker

threads and an agent thread. The multi-threading for

heavy queries is configured to 5. We run the hybrid

workload over LUBM-10240 on 10 servers for 300 sec-

onds (10s warmup) and report the throughput and me-

dian (50th percentile) latency for light and heavy queries

separately over that period in Fig. 10.

For heavy queries, Wukong+G improves throughput

and latency by over one order of magnitude compared

to Wukong (WKD and WKI). The throughput of WKD

is notably better (about 80%) than that of WKI, since it

can use all worker threads to handle heavy queries. For

light queries, Wukong+G performs up to 345K queries

per second with median latency of 0.6ms by 9 worker

threads. The latency can be halved with a small 10% im-

pact in throughput. As expected, WKI can provide about

half of the throughput (199K queries/s) with a similar la-

tency since only half of the worker threads (5) are used

to handle light queries. However, the throughput and la-

tency of WKD for light queries are thoroughly impacted

by the processing of heavy queries.

6.7 RDF Cache on GPU

To study the influence of GPU cache for the performance

of heavy queries on Wukong+G, we first evaluate the sin-

gle query latency using LUBM-2560 on a single server

with the GPU memory sizes varying from 3GB to 10GB.

We repeatedly send one kind of heavy queries until the

cache on GPU memory is warmed up, and illustrate the

average latency of heavy queries in Fig. 11. Since the

memory footprint of Q2 (2.4GB) is always smaller than

the GPU memory, the latency is stable, and there is no

data swapping. For Q3, although the memory footprint

7In prior experiment [51], only up to one client is used to continually

send heavy queries (i.e., Q1).

Table 7: The latency (msec) of queries on DBPSB and YAGO2

DBPSB D1 D2 D3 D4 D5 Geo. M

Wukong 1.28 0.15 0.25 4.25 1.08 0.74

Wukong+G 0.53 0.16 0.26 0.99 0.52 0.41

YAGO2 Y1 Y2 Y3 Y4 Geo. M

Wukong 0.10 0.13 4685 752 14.6

Wukong+G 0.11 0.15 1856 398 10.5

of the query is about 3.6GB, the latency is still stable

since the history table becomes empty after the first two

triple patterns due to contradictory conditions, where

the rest predicate segment (about 1.1GB) will never be

loaded. For Q1 and Q7, the latency decreases with the

increase of GPU memory due to the decrease of data

swapping size. However, the break point of Q7 is later

than that of Q1 since it has a relatively larger memory

footprint (5.6GB vs. 3.6GB).

To show the effectiveness of sharing GPU cache by

multiple heavy queries, We further evaluate the perfor-

mance of a mixture of four heavy queries using LUBM-

2560 on a single server with 10GB GPU memory. As

shown in Fig. 12, the geometric mean of 50th (median)

and 99th percentile latency is just 84.5 and 93.8 mil-

liseconds respectively, under the peak throughput. Com-

pared to the single query latency (see Table 3), the per-

formance degradation is just 3% and 14%, thanks to our

fine-grained swapping and look-ahead replacing. Dur-

ing the experiment, the number and volume of blocks

swapped in per second are about 96 and 750MB.

6.8 Other Workloads

We further compare the performance of Wukong+G

with Wukong on two real-life datasets, DBPSB [1] and

YAGO2 [9]. As shown in Table 7, for light queries (D2,

D3, Y1, and Y2), Wukong+G can provide a close perfor-

mance to Wukong due to following the same execution

mode and a similar in-memory store. For heavy queries

(D1, D4, D5, Y3, and Y4), Wukong+G can notably out-

perform Wukong by up to 4.3X (from 1.9X).

7 RELATED WORK

Wukong+G is inspired by and departs from prior RDF

query processing systems [40, 58, 41, 12, 50, 13, 65, 60,

14, 61, 62, 23, 51, 32, 64], but differs from them in ex-

ploiting a distributed heterogeneous CPU/GPU cluster to

accelerate heterogeneous RDF queries.

Several prior systems [11, 12] have leveraged column-

oriented databases [53] and vertical partitioning for RDF

dataset, which group all triples with the same predicate

into a single two-column table. The predicate-based

grouping in Wukong+G is driven by a similar observa-

tion. However, Wukong+G still randomly (hash-based)

assign keys within the segment to preserve fast RDMA-

based graph exploration, which plays a vital role for run-

ning light queries efficiently on CPU.

Using prefetching and pipelining mechanisms are not

new, which have been exploited in many graph-parallel

systems [49, 35] and GPU-accelerated systems [37] to

hide the latency of memory accesses. Wukong+G em-

ploys a SPARQL-specific prefetching scheme and en-

ables such techniques on multiple concurrent jobs (heavy

queries) that share a single cache on the GPU memory.

There has been a lot of work [25, 24, 39, 26, 29,

27, 55, 46, 28] focusing on exploiting the unique fea-

tures of GPUs to accelerate database operations. Mega-

KV [63] is an in-memory key/value store that uses

GPUs to accelerate index operations by only saving in-

dexes on the GPU memory to ease device memory pres-

sure. CoGaDB [15, 16] uses a column-oriented caching

mechanism on GPU memory to accelerate OLAP work-

load. SABER [34] is a hybrid high-performance rela-

tional stream processing engine for CPUs and GPUs.

Wukong+G is inspired by prior work, while the differ-

ences in workloads result in different design choices.

To our knowledge, none of the above systems exploit

distributed heterogeneous (CPU/GPU) environment, let

alone using RDMA as well as GPUDirect features.

To reduce communication overhead between multi-

ple GPUs, NVIDIA continuously puts forward GPUDi-

rect technology [3], including GPUDirect RDMA and

GPUDirect Async (under development [6]). They en-

able direct cross-device data transfer on data plane and

control plane, respectively. Researchers have also in-

vestigated how to provide network [33, 21] and file sys-

tem abstractions [52] based on such hardware features.

Our design currently focuses on using GPUs to deal with

heavy queries for RDF graphs. The above efforts provide

opportunities to build a more flexible and efficient RDF

query system through better abstractions.

8 CONCLUSIONS

The trend of hardware heterogeneity (CPU/GPU) opens

new opportunities to rethink the design of query pro-

cessing systems facing hybrid workloads. This paper

describes Wukong+G, a graph-based distributed RDF

query system that supports heterogeneous CPU/GPU

processing for hybrid workloads with both light and

heavy queries. We have shown that Wukong+G achieves

low query latency and high overall throughput in the sin-

gle query performance and hybrid workloads.

ACKNOWLEDGMENTS

We sincerely thank our shepherd Howie Huang and

the anonymous reviewers for their insightful sugges-

tions. This work is supported in part by the Na-

tional Key Research & Development Program (No.

2016YFB1000500), the National Natural Science Foun-

dation of China (No. 61772335, 61572314, 61525204),

the National Youth Top-notch Talent Support Program of

China, and Singapore NRF (CREATE E2S2).

REFERENCES

[1] DBpedias SPARQL Benchmark. http://aksw.org/

Projects/DBPSB.

[2] Developing a Linux Kernel Module using GPUDi-

rect RDMA. http://docs.nvidia.com/cuda/

gpudirect-rdma/index.html.

[3] NVIDIA GPUDirect. https://developer.

nvidia.com/gpudirect.

[4] Parallel Graph AnalytiX (PGX). http://www.

oracle.com/technetwork/oracle-labs/

parallel-graph-analytix/overview/

index.html.

[5] Semantic Web. https://www.w3.org/

standards/semanticweb/.

[6] State of GPUDirect Technologies.

http://on-demand.gputechconf.

com/gtc/2016/presentation/

s6264-davide-rossetti-GPUDirect.pdf.

[7] SWAT Projects - the Lehigh University Benchmark

(LUBM). http://swat.cse.lehigh.edu/

projects/lubm/.

[8] Wikidata. https://www.wikidata.org.

[9] YAGO: A High-Quality Knowledge Base. http://

www.mpi-inf.mpg.de/departments/

databases-and-information-systems/

research/yago-naga/yago.

[10] Bio2RDF: Linked Data for the Life Science. http://

bio2rdf.org/, 2014.

[11] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollen-

bach. Scalable semantic web data management using

vertical partitioning. In Proceedings of the 33rd Interna-

tional Conference on Very Large Data Bases, VLDB’07,

pages 411–422, 2007.

[12] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollen-

bach. Sw-store: a vertically partitioned dbms for semantic

web data management. The VLDB Journal, 18(2):385–

406, 2009.

[13] M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler. Matrix

”bit” loaded: A scalable lightweight join query proces-

sor for rdf data. In Proceedings of the 19th International

Conference on World Wide Web, WWW’10, pages 41–50,

2010.

[14] M. A. Bornea, J. Dolby, A. Kementsietsidis, K. Srini-

vas, P. Dantressangle, O. Udrea, and B. Bhattacharjee.

Building an efficient rdf store over a relational database.

In Proceedings of the 2013 ACM SIGMOD International

Conference on Management of Data, SIGMOD’13, pages

121–132, 2013.

[15] S. Breß. The design and implementation of CoGaDB:

A column-oriented gpu-accelerated dbms. Datenbank-

Spektrum, 14(3):199–209, 2014.

[16] S. Breß, N. Siegmund, M. Heimel, M. Saecker, T. Lauer,

L. Bellatreche, and G. Saake. Load-aware inter-co-

processor parallelism in database query processing. Data

& Knowledge Engineering, 93:60–79, 2014.

[17] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Di-

mov, H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, H. Li,

et al. Tao: Facebooks distributed data store for the social

graph. In Proceedings of the 2013 USENIX Annual Tech-

nical Conference, USENIX ATC’13, pages 49–60, 2013.

[18] R. Chen, H. Chen, and B. Zang. Tiled-mapreduce: Op-

timizing resource usages of data-parallel applications on

multicore with tiling. In Proceedings of the 19th Interna-

tional Conference on Parallel Architectures and Compi-

lation Techniques, PACT’10, pages 523–534, 2010.

[19] R. Chen, J. Shi, Y. Chen, and H. Chen. Powerlyra: Dif-

ferentiated graph computation and partitioning on skewed

graphs. In Proceedings of the Tenth European Confer-

ence on Computer Systems, EuroSys’15, pages 1:1–1:15,

2015.

[20] Y. Chen, X. Wei, J. Shi, R. Chen, and H. Chen. Fast

and general distributed transactions using rdma and htm.

In Proceedings of the Eleventh European Conference on

Computer Systems, EuroSys’16, pages 26:1–26:17, New

York, NY, USA, 2016. ACM.

[21] F. Daoud, A. Watad, and M. Silberstein. GPUrdma: Gpu-

side library for high performance networking from gpu

kernels. In Proceedings of the 6th International Workshop

on Runtime and Operating Systems for Supercomputers,

ROSS’16, pages 6:1–6:8, 2016.

[22] Google Inc. Introducing the knowledge

graph: things, not strings. https://

googleblog.blogspot.co.uk/2012/05/

introducing-knowledge-graph-things-not.

html, 2012.

[23] S. Gurajada, S. Seufert, I. Miliaraki, and M. Theobald.

Triad: A distributed shared-nothing rdf engine based on

asynchronous message passing. In Proceedings of the

2014 ACM SIGMOD International Conference on Man-

agement of Data, SIGMOD’14, pages 289–300, 2014.

[24] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju,

Q. Luo, and P. V. Sander. Relational query coprocess-

ing on graphics processors. ACM Trans. Database Syst.,

34(4):21:1–21:39, Dec. 2009.

[25] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo,

and P. Sander. Relational joins on graphics processors.

In Proceedings of the 2008 ACM SIGMOD International

Conference on Management of Data, SIGMOD’08, pages

511–524, 2008.

http://aksw.org/Projects/DBPSB
http://aksw.org/Projects/DBPSB
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect
http://www.oracle.com/technetwork/oracle-labs/parallel-graph-analytix/overview/index.html
http://www.oracle.com/technetwork/oracle-labs/parallel-graph-analytix/overview/index.html
http://www.oracle.com/technetwork/oracle-labs/parallel-graph-analytix/overview/index.html
http://www.oracle.com/technetwork/oracle-labs/parallel-graph-analytix/overview/index.html
https://www.w3.org/standards/semanticweb/
https://www.w3.org/standards/semanticweb/
http://on-demand.gputechconf.com/gtc/2016/presentation/s6264-davide-rossetti-GPUDirect.pdf
http://on-demand.gputechconf.com/gtc/2016/presentation/s6264-davide-rossetti-GPUDirect.pdf
http://on-demand.gputechconf.com/gtc/2016/presentation/s6264-davide-rossetti-GPUDirect.pdf
http://swat.cse.lehigh.edu/projects/lubm/
http://swat.cse.lehigh.edu/projects/lubm/
https://www.wikidata.org
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago
http://bio2rdf.org/
http://bio2rdf.org/
https://googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-things-not.html
https://googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-things-not.html
https://googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-things-not.html
https://googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-things-not.html

[26] J. He, M. Lu, and B. He. Revisiting co-processing for

hash joins on the coupled cpu-gpu architecture. Pro-

ceedings of the VLDB Endowment, 6(10):889–900, Aug.

2013.

[27] J. He, S. Zhang, and B. He. In-cache query co-processing

on coupled cpu-gpu architectures. Proceedings of the

VLDB Endowment, 8(4):329–340, Dec. 2014.

[28] M. Heimel, M. Kiefer, and V. Markl. Self-tuning, gpu-

accelerated kernel density models for multidimensional

selectivity estimation. In Proceedings of the 2015 ACM

SIGMOD International Conference on Management of

Data, SIGMOD’15, pages 1477–1492, 2015.

[29] M. Heimel, M. Saecker, H. Pirk, S. Manegold, and

V. Markl. Hardware-oblivious parallelism for in-memory

column-stores. Proceedings of the VLDB Endowment,

6(9):709–720, 2013.

[30] J. Hoffart, F. M. Suchanek, K. Berberich, E. Lewis-

Kelham, G. de Melo, and G. Weikum. Yago2: Explor-

ing and querying world knowledge in time, space, con-

text, and many languages. In Proceedings of the 20th In-

ternational Conference Companion on World Wide Web,

WWW’11, pages 229–232, 2011.

[31] A. Kalia, M. Kaminsky, and D. G. Andersen. Design

guidelines for high performance rdma systems. In Pro-

ceedings of the 2016 USENIX Conference on Usenix An-

nual Technical Conference, USENIX ATC’16, 2016.

[32] A. Khandelwal, Z. Yang, E. Ye, R. Agarwal, and I. Sto-

ica. Zipg: A memory-efficient graph store for interactive

queries. In Proceedings of the 2017 ACM International

Conference on Management of Data, SIGMOD’17, pages

1149–1164, 2017.

[33] S. Kim, S. Huh, X. Zhang, Y. Hu, A. Wated, E. Witchel,

and M. Silberstein. GPUnet: Networking abstractions for

gpu programs. In Proceedings of the 11th USENIX Sym-

posium on Operating Systems Design and Implementa-

tion, volume 14 of OSDI’14, pages 6–8, 2014.

[34] A. Koliousis, M. Weidlich, R. Castro Fernandez, A. L.

Wolf, P. Costa, and P. Pietzuch. Saber: Window-based

hybrid stream processing for heterogeneous architectures.

In Proceedings of the 2016 International Conference

on Management of Data, SIGMOD’16, pages 555–569,

2016.

[35] P. Kumar and H. H. Huang. G-store: high-performance

graph store for trillion-edge processing. In International

Conference forHigh Performance Computing, Network-

ing, Storage and Analysis, SC’16, pages 830–841. IEEE,

2016.

[36] K. Lee and L. Liu. Scaling queries over big rdf graphs

with semantic hash partitioning. Proceedings of the

VLDB Endowment, 6(14):1894–1905, Sept. 2013.

[37] L. Ma, Z. Yang, H. Chen, J. Xue, and Y. Dai. Garaph: ef-

ficient gpu-accelerated graph processing on a single ma-

chine with balanced replication. In 2017 USENIX Annual

Technical Conference, USENIX ATC’17, pages 195–207.

USENIX Association, 2017.

[38] National Center for Biotechnology Information. Pub-

ChemRDF. https://pubchem.ncbi.nlm.nih.

gov/rdf/, 2014.

[39] S. I. F. G. N. Nes and S. M. S. M. M. Kersten. Monetdb:

Two decades of research in column-oriented database ar-

chitectures. Data Engineering, 40, 2012.

[40] T. Neumann and G. Weikum. RDF-3X: A risc-style

engine for rdf. Proceedings of the VLDB Endowment,

1(1):647–659, Aug. 2008.

[41] T. Neumann and G. Weikum. Scalable join processing on

very large rdf graphs. In Proceedings of the 2009 ACM

SIGMOD International Conference on Management of

Data, SIGMOD’09, pages 627–640, 2009.

[42] T. Neumann and G. Weikum. The RDF-3X engine for

scalable management of rdf data. The VLDB Journal,

19(1):91–113, Feb. 2010.

[43] N. Papailiou, I. Konstantinou, D. Tsoumakos, P. Karras,

and N. Koziris. H2rdf+: High-performance distributed

joins over large-scale rdf graphs. In 2013 IEEE Interna-

tional Conference on Big Data, IEEE BigData’13, pages

255–263, 2013.

[44] N. Papailiou, I. Konstantinou, D. Tsoumakos, and

N. Koziris. H2rdf: Adaptive query processing on rdf

data in the cloud. In Proceedings of the 21st International

Conference on World Wide Web, WWW’12 Companion,

pages 397–400, 2012.

[45] Philip Howard. Blazegraph GPU. https://

www.blazegraph.com/whitepapers/

Blazegraph-gpu_InDetail_BloorResearch.

pdf, 2015.

[46] H. Pirk, S. Manegold, and M. Kersten. Waste not... ef-

ficient co-processing of relational data. In Proceedings

of the 2014 IEEE 30th International Conference on Data

Engineering, ICDE’14, pages 508–519, 2014.

[47] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski,

and C. Kozyrakis. Evaluating mapreduce for multi-

core and multiprocessor systems. In Proceedings of the

2007 IEEE 13th International Symposium on High Per-

formance Computer Architecture, HPCA’07, pages 13–

24, 2007.

[48] K. Rohloff and R. E. Schantz. High-performance, mas-

sively scalable distributed systems using the mapreduce

software framework: The shard triple-store. In Program-

ming Support Innovations for Emerging Distributed Ap-

plications, PSI EtA’10, pages 4:1–4:5, 2010.

https://pubchem.ncbi.nlm.nih.gov/rdf/
https://pubchem.ncbi.nlm.nih.gov/rdf/
https://www.blazegraph.com/whitepapers/Blazegraph-gpu_InDetail_BloorResearch.pdf
https://www.blazegraph.com/whitepapers/Blazegraph-gpu_InDetail_BloorResearch.pdf
https://www.blazegraph.com/whitepapers/Blazegraph-gpu_InDetail_BloorResearch.pdf
https://www.blazegraph.com/whitepapers/Blazegraph-gpu_InDetail_BloorResearch.pdf

[49] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-stream:

Edge-centric graph processing using streaming partitions.

In Proceedings of the Twenty-Fourth ACM Symposium on

Operating Systems Principles, SOSP’13, pages 472–488,

2013.

[50] S. Sakr and G. Al-Naymat. Relational processing of rdf

queries: A survey. SIGMOD Record, 38(4):23–28, June

2010.

[51] J. Shi, Y. Yao, R. Chen, H. Chen, and F. Li. Fast and

concurrent rdf queries with rdma-based distributed graph

exploration. In Proceedings of the 12th USENIX Confer-

ence on Operating Systems Design and Implementation,

OSDI’16, pages 317–332, 2016.

[52] M. Silberstein, B. Ford, I. Keidar, and E. Witchel. Gpufs:

Integrating a file system with gpus. ACM Trans. Comput.

Syst., 32(1):1:1–1:31, Feb. 2014.

[53] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,

M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,

E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and S. Zdonik.

C-store: A column-oriented dbms. In Proceedings of the

31st International Conference on Very Large Data Bases,

VLDB ’05, pages 553–564. VLDB Endowment, 2005.

[54] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.

Speedy transactions in multicore in-memory databases.

In Proceedings of the Twenty-Fourth ACM Symposium

on Operating Systems Principles, SOSP’13, pages 18–32.

ACM, 2013.

[55] K. Wang, K. Zhang, Y. Yuan, S. Ma, R. Lee, X. Ding, and

X. Zhang. Concurrent analytical query processing with

gpus. Proceedings of the VLDB Endowment, 7(11):1011–

1022, 2014.

[56] Z. Wang, H. Qian, J. Li, and H. Chen. Using restricted

transactional memory to build a scalable in-memory

database. In Proceedings of the Ninth European Con-

ference on Computer Systems, EuroSys’14, pages 26:1–

26:15, New York, NY, USA, 2014. ACM.

[57] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast in-

memory transaction processing using rdma and htm. In

Proceedings of the 25th Symposium on Operating Sys-

tems Principles, SOSP ’15, pages 87–104, New York,

NY, USA, 2015. ACM.

[58] C. Weiss, P. Karras, and A. Bernstein. Hexastore: Sex-

tuple indexing for semantic web data management. Pro-

ceedings of the VLDB Endowment, 1(1):1008–1019, Aug.

2008.

[59] W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: A prob-

abilistic taxonomy for text understanding. In Proceed-

ings of the 2012 ACM SIGMOD International Conference

on Management of Data, SIGMOD’12, pages 481–492,

2012.

[60] S. Yang, X. Yan, B. Zong, and A. Khan. Towards effective

partition management for large graphs. In Proceedings

of the 2012 ACM SIGMOD International Conference on

Management of Data, SIGMOD’12, pages 517–528, New

York, NY, USA, 2012. ACM.

[61] P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang, and L. Liu.

Triplebit: A fast and compact system for large scale rdf

data. Proceedings of the VLDB Endowment, 6(7):517–

528, May 2013.

[62] K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang. A dis-

tributed graph engine for web scale rdf data. In Proceed-

ings of the 39th international conference on Very Large

Data Bases, PVLDB’13, pages 265–276, 2013.

[63] K. Zhang, K. Wang, Y. Yuan, L. Guo, R. Lee, and

X. Zhang. Mega-kv: A case for gpus to maximize the

throughput of in-memory key-value stores. Proceedings

of the VLDB Endowment, 8(11):1226–1237, 2015.

[64] Y. Zhang, R. Chen, and H. Chen. Sub-millisecond stateful

stream querying over fast-evolving linked data. In Pro-

ceedings of the 26th Symposium on Operating Systems

Principles, SOSP’17, pages 614–630, 2017.

[65] L. Zou, J. Mo, L. Chen, M. T. Özsu, and D. Zhao. gStore:

Answering sparql queries via subgraph matching. Pro-

ceedings of the VLDB Endowment, 4(8):482–493, May

2011.

	Introduction
	Background and Motivation
	RDF and SPARQL
	Hardware Trends
	Opportunities

	Wukong+G: An Overview
	Design
	Efficient Query Processing on GPU
	GPU-friendly RDF Store
	Distributed Query Processing

	Implementation
	Evaluation
	Experimental Setup
	Single Query Performance
	Factor Analysis of Improvement
	GPUDirect RDMA
	Scalability
	Performance of Hybrid Workloads
	RDF Cache on GPU
	Other Workloads

	Related Work
	Conclusions

