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ABSTRACT

Applications like social networking, urban monitoring and

market feed processing require stateful stream query: a query

consults not only streaming data but also stored data to ex-

tract timely information; useful information from streaming

data also needs to be continuously and consistently inte-

grated into stored data to serve inflight and future queries.

However, prior streaming systems either focus on stream

computation, or are not stateful, or cannot provide low la-

tency and high throughput to handle the fast-evolving linked

data and increasing concurrency of queries.

This paper presents Wukong+S, a distributed stream

querying engine that provides sub-millisecond stateful query

at millions of queries per-second over fast-evolving linked

data. Wukong+S uses an integrated design that combines

the stream processor and the persistent store with efficient

state sharing, which avoids the cross-system cost and sub-

optimal query plan in conventional composite designs (e.g.,

Storm/Heron+Wukong). Wukong+S uses a hybrid store to

differentially manage timeless data and timing data accord-

ingly and provides an efficient stream index with locality-

aware partitioning to facilitate fast access to streaming data.

Wukong+S further provides decentralized vector timestamps

with bounded snapshot scalarization to scale with nodes and

massive queries at efficient memory usage.

We have designed Wukong+S conforming to the RDF

data model and Continuous SPARQL (C-SPARQL) query

interface and have implemented Wukong+S by extending a

state-of-the-art static RDF store (namely Wukong). Evalua-

tion on an 8-node RDMA-capable cluster using LSBench

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SOSP ’17, October 28, 2017, Shanghai, China

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5085-3/17/10. . . $15.00

https://doi.org/10.1145/3132747.3132777

and CityBench shows that Wukong+S significantly outper-

forms existing system designs (e.g., CSPARQL-engine, Stor-

m/Heron+Wukong, and Spark Streaming/Structured Stream-

ing) for both latency and throughput, usually at the scale of

orders of magnitude.
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1 INTRODUCTION

Much information is most valuable when they first appear

such that it is super-critical to timely process it. The real-time

demand has driven the design and implementation of a num-

ber of stream processing systems [19, 30, 33, 38, 40, 45, 51].

Yet, the exponentially increasing data rate is constantly push-

ing the limit of processing capability. For example, the Op-

tions Price Reporting Authority (OPRA)1, which gathers

market data feed by aggregating all quotes and trades from

the options exchanges, has observed a peek messages rate at

10,244,894 per second in March 2015 and the rate is contin-

uing doubling annually [7]. Similarly, the peak rate of new

tweets per second has reached 143,199 in August, 2013.

With the increasing volume of streaming data and stored

data, it is vitally important to timely query useful informa-

tion from them. For public datasets and streams, there may

be a massive number of users registering different stream

queries, making it necessary to support highly concurrent

queries. Moreover, streaming data usually contains tremen-

dous useful information; such data should be consistently

and instantly integrated to the stored knowledge base for fu-

ture continuous and one-shot queries.2

1https://www.opradata.com/.
2Continuous query is registered and periodically executed. One-shot query

is a query that runs immediately and only once.

https://doi.org/10.1145/3132747.3132777
https://doi.org/10.1145/3132747.3132777
https://doi.org/10.1145/3132747.3132777
https://www.opradata.com/
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However, many prior systems target at stream computa-

tion (like PageRanking) over changing datasets (like Na-

iad [35], Spark Streaming [51] and TimeStream [40]).

Stream computation differs from stream query such that the

former usually favors serialized computation over a large por-

tion of streaming data, while the later focuses on concurrent

queries over a specific set of both streaming and stored data.

Most prior systems also do not consistently integrate stream-

ing data for concurrent queries or do not query the persistent

store to get the base knowledge, and thus are stateless [9, 10].

While many streaming databases have clear semantics and

well-defined SQL interfaces, they have inferior performance

over fast-growing linked data when facing massively concur-

rent queries due to costly join operations [41, 52] and over-

fitting semantics (e.g., ACID).

In this paper, we describe Wukong+S3, a distributed

stream querying engine that achieves millions of queries

per-second and sub-millisecond latency. Wukong+S is state-

ful such that a query may touch both streaming and stored

data, and the timeless data4 in a stream is simultane-

ously integrated into the persistent store and consistently

visible to concurrent queries. Wukong+S provides several

features required by stateful stream querying, including

querying over multiple varied-scale streams, supporting on-

line aggregation over such streams as well as the stored

data, while satisfying consistency requirements (e.g., pre-

fix integrity [50]) of queries without sacrificing freshness.

Wukong+S adopts a standard declarative streaming query in-

terface called Continuous-SPARQL (C-SPARQL) [15] and

represents the underlying linked data using the Resource De-

scription Framework (RDF) [8], which is recommended by

W3C and used by many knowledge bases [3, 16, 23, 36, 49].

This provides users with a familiar programming interface

and data model and allows easy integration of existing RDF

datasets for extended queries due to good interoperabil-

ity [32].

The conventional way is to combine a stream proces-

sor with a static graph store. For example, the de-facto

CSPARQL-engine [44] combines Esper [4] with Apache

Jena [1]. However, our performance measurement with both

CSPARQL-engine and our better-performed implementation

(Apache Storm [45]/Heron [27] with a fast persistent store

called Wukong [41]) shows that this design style incurs

high communication cost and redundant insertions between

the stream processor and the persistent store (§2.3). Such

a composite design further leads to suboptimal query plans

and limited scalability in terms of queries due to inefficient

data sharing among queries. Being aware of this, we design

3The source code and brief instructions of Wukong+S are available at http://

ipads.se.sjtu.edu.cn/projects/wukong.
4Timeless data contains the factual data without timing information and thus

should be absorbed to update the knowledge base.

Wukong+S as an integrated design that intensively shares

states and streaming data between the stream processor and

the persistent store.

Wukong+S is made efficient with several key design

choices. First, to respect data locality and minimize data

transfer, Wukong+S uses a hybrid store comprising a time-

based transient store and a continuous persistent store to

provide differentiated management for timing and timeless

data. Yet, the two stores share the same set of data such

that each tuple is only inserted once. Second, Wukong+S

provides a stream index for fast accesses to streaming data.

The streaming data is sharded with locality-aware partition-

ing where some stream indexes are dynamically replicated

among nodes. This saves lookup cost and provides efficient

load balance. Third, to provide consistent stream query over

multiple varied-scale streams, Wukong+S uses decentralized

vector timestamps to derive a most-recent consistent state of

streaming data insertion. Wukong+S uses a bounded scalar-

ization scheme to projecting the vector timestamps into a

scalar snapshot number, by coordinating updates from multi-

ple streams to the underlying persistent store. Such a design

scales Wukong+S with nodes and massive queries at efficient

memory usage.

We have implemented Wukong+S by extending

Wukong [41] to support continuous updates to the RDF store

and C-SPARQL queries. To our knowledge, Wukong+S is

the first distributed C-SPARQL query engine. To demon-

strate the effectiveness and efficiency of Wukong+S, we

have conducted a set of evaluations using two popular

streaming benchmarks: LSBench [28] and CityBench [12].

Evaluations on an 8-node RDMA-capable cluster show

that Wukong+S achieves up to 1.08M queries per second

with 0.11ms median latency. Wukong+S significantly

outperforms CSPARQL-engine [44], Apache Storm [45]

and Heron [27] over Wukong [41], as well as Spark Stream-

ing [51] and Structured Streaming [50] for both latency and

throughput, usually at the scale of orders of magnitude.

2 MOTIVATION

2.1 A Motivating Example: Social Networking

Many real-world applications5, such as social network-

ing [28] and urban computing [12], require query process-

ing systems to interact with massive users and concurrently

serve a large number of stream queries over high-volume

stored and streaming data. The initially stored data is the

base knowledge such as existing user profiles and friend rela-

tionships, while the streaming data is continuously generated

from social networking activities (e.g., tweets and likes).

Fig. 1 illustrates a simplified sample of data in social

networking. The initially stored data (X-Lab) is represented

5https://www.w3.org/community/rsp/wiki/Use_cases.

http://ipads.se.sjtu.edu.cn/projects/wukong
http://ipads.se.sjtu.edu.cn/projects/wukong
https://www.w3.org/community/rsp/wiki/Use_cases
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ty:type   li:like ht:hashtag

fo:follow po:post ga:gps_add 

Logan po T-15     0802
T-15  ga [31,121] 0802
T-15  ht #sosp17  0802

Erik  po T-16     0805
T-16  ga [41,-74] 0805

Logan po T-17     0808
T-17  ga [31,121] 0808

Erik  li T-15 0806
Tony  li T-15 0806
Bruce li T-15 0806

Clint li T-15 0810
Steve li T-15 0810
Erik  li T-17 0810

Logan li T-16 0812
Thor  li T-15 0812

Logan li T-12 0801
Erik  li T-14 0801

t
i
m
e

t
i
m
e

Tuple

Fig. 1: A sample of streaming and stored data in social networking.

as a directed graph, which captures the relationships (i.e.,

edges) among various entities (i.e., vertices). There are six

categories of edges linking entities, namely, type (ty), fol-

low (fo), post (po), like (li), gps_add (ga), and hashtag

(ht). The currently stored data includes two members of

X-Men (Logan and Erik) following each other, and several

tweets (T-12, T-13, and T-14) with some hashtag (#sosp17)

posted by them. There are two streams, Tweet_Stream and

Like_Stream, which continuously update tweets with some

interesting information (e.g., like, location and hashtag). The

streaming data is represented as time-based tuple sequences,

each produced by a data source continuously (e.g., sensors

or social networking applications). Each tuple consists of a

triple and its timestamp, like 〈Logan, po, T-15〉 0802, which

means “Logan” post (po) a tweet (T-15) at 0802.

A typical one-shot query and a continuous query (uni-

formly called stream queries) on the sample dataset are

shown in Fig. 2. The one-shot query only consults the stored

data to retrieve matching results once. For example, the one-

shot query QS retrieves all tweets (?X) that were posted (po)

by “Logan” with the hashtag (ht) “#sosp17” and liked (li)

by “Erik”. The current result only includes “T-13”. To cope

with dynamic knowledge, the continuous query considers

both stored and streaming data to provide continuously re-

newed output. For example, the continuous query QC re-

trieves pairs of people (?X and ?Y) and tweets (?Z) from the

streams (Tweet_Stream and Like_Stream) and the stored data

(X-Lab) every second such that one person (?X) posts (po) a

tweet (?Z) in the last 10 seconds that is liked (li) by another

person (?Y) in the last 5 seconds whom he follows (fo). Sup-

pose that the query is registered at 0809; the first execution

result at 0810 includes “Logan Erik T-15” since the following

tuples match all conditions.

〈Logan, po, T-15〉, 0802

〈Logan, fo, Erik〉
〈Erik, li, T-15〉, 0806

We summarize the workload characteristics as follows.

• Data Connectivity. The streaming data from many

real-world applications like social networking and ur-

ban computing, are highly-connected to mirror the re-

lationship among entities.

REGISTER QUERY QC
SELECT ?X ?Y ?Z
FROM Tweet_Stream [RANGE 10s STEP 1s]
FROM Like_Stream  [RANGE 5s STEP 1s]
FROM X-Lab
WHERE {
GRAPH Tweet_Stream  { ?X po ?Z }
GRAPH X-Lab         { ?X fo ?Y }
GRAPH Like_Stream   { ?Y li ?Z }  

}

SELECT ?X

FROM X-Lab
WHERE {
Logan po ?X
?X    ht #sosp17
Erik  li ?X

}

(b) Continuous Query(a) One-shot Query

Query Condition

Fig. 2: A sample of one-shot (QS) and continuous (QC) queries.

• Query Statefulness. A continuous query may retrieve

both history knowledge from stored data and recently

generated knowledge from multiple streams.

• Data Integration. To provide fresh results for one-shot

queries, the stored data should continuously absorb

useful timeless information (e.g., tweets and likes)

from streams to derive an up-to-date information base.

2.2 Stream Querying System

Based on the workload characteristics, we propose a stream

querying system that aims at supporting a massive amount of

(continuous and one-shot) queries over streaming and stored

data. There are several unique requirements that distinguish

a stream querying system from other streaming systems.

Stateful. Stream query is stateful. More specifically, the

continuous query will retrieve results not only from stream-

ing data for the latest information, but also from stored data

for history knowledge. Meanwhile, the one-shot query also

demands continuous evolvement of the stored data to gener-

ate up-to-date knowledge.

Sharing among concurrent queries. All streaming and

stored data will be shared by concurrent queries from mas-

sive users who register continuous queries or submit one-

shot queries. Meanwhile, a single query may access multiple

streams and stored data.

Partial data. A stream query usually touches only a small

fraction of dataset matching the query conditions. Mean-

while, different queries may be interested in different parts

of streaming and stored data.

Latency-oriented. To catch up the fast-changing linked

data (e.g., the stock market and quantitative trading data),

query latency should be a first-class citizen.

Alternative#1: Stream computation systems. Much prior

work [6, 22, 27, 35, 40, 42, 45] in system community fo-

cus on large-scale stream computation. First, stream com-

putation is usually stateless, which usually only considers

the streaming data and leaves the computation on stored data

to other systems. Second, stream computation normally con-

sumes the entire streaming data to generate new features

like twitter user ranking [22] and crowdsourced traffic es-

timation [51]. Third, stream computation usually dedicates
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Fig. 3: A comparison between composite and integrated design.

all resources to run a single computation task at a time. Fi-

nally, stream computation is usually done in a batch-oriented

manner to maximize the resource usage (e.g., network band-

width), which may compromise the latency [22, 51].

Alternative#2: Stream processing engine. There is also a

much broader context including the work from database com-

munity [9, 10, 18, 31, 34, 43]. Such prior work also focuses

on processing continuous queries over streaming data, which,

however, widely adopts the relational data model (e.g., table)

and query operators (e.g., filter, join). Prior work [41, 46, 52]

has summarized some inherent limitations and shown no-

tably inferior performance of such an approach for querying

highly-linked data.

2.3 Conventional Approach: Composite Design

Existing approach recommended by the community adopts

the combination of a relational stream processor and a

conventional query-oriented store. For example, CSPARQL-

engine [44] combines Esper [4] with Apache Jena [1]. The

one-shot query will be directly sent to the store, while

the continuous query will be splitted into two parts (i.e.,

streaming and stored part specified by the GRAPH clause)

which are separately executed on stream processor and query-

oriented store. The two parts of results will be joined to

project the final results. To facilitate further discussions,

we call such an approach composite design in this paper

(Fig. 3(a)).

Such a design maximizes the reuse of existing systems and

optimizations in decades. However, the composite design is

still not completely stateful, since the one-shot queries al-

ways run on static stored data without observing updates of

timeless data from streaming data. Besides, there are several

key deficiencies. Since CSPARQL-engine only runs on a sin-

gle node with very limited performance (§6.2), we build a

better-performed system by composing two state-of-the-art

systems: Apache Storm [45] and Wukong [41]. The contin-

uous query (QC) in Fig. 2 is used to illustrate the issues. As

shown in the legend of Fig. 4, we carefully co-locate Storm

and Wukong to reduce network traffic and run Storm on a

single node as small workloads do not scale well on Storm

(details in §6.2 and §6.10). Specifically, the first and third

a) TOT:101.8ms (CC=39.1%)

GP1

GP3

2.9
24.0

1
5
.
8

27.9

1.6

57.5

GP2 GP1

GP3

2.9

27.9

4
7
.
75

7
.
6

GP2

1
1
6
.
0

b) TOT:249.2ms (CC=46.5%)

Fig. 4: The breakdown of execution time (ms) of (QC) on

Storm+Wukong with different query plans. The blue number is the

cross-system cost (CC).

query conditions (GP1 and GP3) in QC will run on Storm

and the second one (GP2) will run on Wukong.

Issue#1: Cross-system cost. Since the composite design

runs a single continuous query on two separate systems, the

cross-system cost (CC) is an obvious overhead, which gen-

erally consists of the data transformation and transmission

cost. Such a cost becomes significant when combining two

high-performance components. In Fig. 4(a), the query results

of GP1 (831 tuples) in Storm should be transformed into the

format of query for Wukong. Similarly, the results of GP2

(9,532 tuples) will be transformed back and join with the re-

sults of GP3 (85,927 tuples) to get the final results (1,918

tuples) in Storm.6 Consequently, around 40% execution time

is wasted due to the cross-system cost.

Issue#2: Sub-optimal query plan. To reduce the num-

ber of cross-system executions, the composite design may

change the query plan, the execution order of query condi-

tions. For QC, as shown in Fig. 4(b), Storm can execute GP1

and GP3 and join the results first. After that the intermediate

results (83,099 tuples) will be sent to the Wukong to retrieve

the final results (1,918 tuples). However, the overall execu-

tion is even slower due to the inefficient query plan, which is

caused by insufficient pruning of intermediate results. Two

separate systems also restrict the choice of an optimal query

plan due to the lack of global information. On the other hand,

prior work [41, 46, 52] shows that using relational query pro-

cessing for highly-connected data intensively relies on costly

join operations, which usually generate huge redundant inter-

mediate data, especially when no sophisticated index exists.

The lengthy execution time within Storm in Fig. 4 also con-

firms the claim. Unfortunately, to our knowledge, there is no

streaming system supporting fast graph-exploration.

Issue#3: Limited scalability. A continuous query usually

touches only a small subset of streaming and stored data,

making it not worthwhile to dedicate all resources to run a

single query. However, most existing streaming systems are

designed for computation and focus on scaling a single task

6Note that we carefully optimize the execution by embedding all tuples into

a single query to minimize the transformation cost, co-locating two systems

to minimize the transmission cost, as well as executing GP3 in parallel. The

uncertain task scheduling cost in Storm is also not included.
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Fig. 5: The architecture and execution flow of Wukong+S.

execution. When facing millions of concurrent queries, such

systems cannot efficiently share the same streaming data

among different queries, since it is non-trivial to maintain the

execution of millions of queries with different window sizes

and steps. On the other hand, duplicating streaming data to

different queries will significantly increase the memory pres-

sure and limit the throughput of streaming systems.

3 APPROACH AND OVERVIEW

Our approach: integrated design. Wukong+S uses an in-

tegrate design that targets at a mixture of continuous and

one-shot queries over both streaming and stored data. The

key principle of integrated design is to treat the persistent

store as the first-class citizen, namely store-centric design.

As shown in Fig. 3(b), the persistent store will be extended

to the hybrid store that can absorb the streaming data and

concurrently serve both continuous and one-shot queries.

Our store-centric design naturally fits the stateful stream-

ing query, where the continuous query can freely access both

streaming and stored data and the one-shot query can retrieve

evolving stored data. This provides the benefit of low-latency

and global semantics to generate an optimal query plan. Fur-

ther, all queries can share the same streaming and stored

data without redundant resource consumption such as dupli-

cated streaming data. Finally, concurrent queries interested

in different parts of streaming and stored data can run concur-

rently, which further improves the efficiency and scalability

of the system.

However, a naive design would lead to quick growth of

space and cause excessive garbage collection operations,

which ultimately limits the query performance and scala-

bility. We demonstrate this using a system design that ex-

tends Wukong to support both continuous and one-shot query

(§6.2).

First, the streaming data consists of both timeless (e.g.,

tweets and likes) and timing (e.g., GPS address) data. There-

fore, the hybrid store should consider not only how to ab-

sorb the timeless data, but also how to flexibly and efficiently

sweep the timing data and the timestamps of timeless data

after they are expired. Wukong+S addresses this challenge

with a hybrid store to provide differentiated management of

timing and timeless data (§4.1).

Second, in the hybrid store, the streaming data may be

scattered over the entire stored data, which will significantly

hurt the data locality of continuous queries accessing stream-

ing data. Wukong+S provides an efficient stream index with

locality-aware partitioning to improve access performance to

streaming data with good locality (§4.2).

Third, for a distributed stream querying system, it is im-

portant to ensure data consistency in a scalable way, includ-

ing consistency among multiple streams from querying dif-

ferent stream windows and consistency among concurrent

queries and insertions. Wukong+S provides decentralized

vector timestamps scheme with bounded scalarization to em-

brace both scalability and memory efficiency (§4.3).

Architecture. As shown in Fig. 5(a), Wukong+S follows

a decentralized architecture on the server side, where each

node can directly serve clients’ requests. Each client7 con-

tains a client library that can parse continuous and one-shot

queries into a set of stored procedures, which will be imme-

diately executed for one-shot queries or registered for con-

tinuous queries on the server side respectively. Alternatively,

Wukong+S can use a set of dedicated proxies to run the

client-side library and balance client requests. To avoid send-

ing long strings to the server and thus save network band-

width, each string is first converted into a unique ID by the

string server, as done in Wukong [41].

Wukong+S assumes a cluster that is connected by a high-

speed, low-latency network with RDMA. It scales by parti-

tioning the initially stored data into a large number of shards

across multiple nodes and dispatching streams to different

nodes. The query engine layer binds a worker thread on each

core with a logical task queue to continuously handle re-

quests. The data store layer manages a partition of the data

store, which is shared by all worker threads on the same node.

Each node contains a continuous query engine and a one-shot

query engine, which handle different queries accordingly.

Execution flow. Fig. 5(b) illustrates the execution flow of

Wukong+S. Users can register continuous queries to the Con-

tinuous Engine, which passes the registered queries to the

Coordinator. The Coordinator prepares the input of each con-

tinuous query and invokes queries when data is ready. Each

stream will first be handled by the Adaptor, which uses a

batch-based model that groups tuples by individual times-

tamps. This model is similar to “mini batches” of small time

intervals in Spark Streaming [51]. During the batching pro-

cess, the Adaptor will also discard unrelated tuples and in-

dicate whether each tuple is timing or timeless. Then Dis-

patcher will partition and dispatch the tuples in a batch to

7The client may not be the end user but the front-end of web service.
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value

key

1|4|1 5,6,7

7|4|0 1

Logan po T-15   0802

0|4|0 4,5,6,70 INDEX
1 Logan
2 Erik
3 #SO..
4 T-12
5 T-13
6 T-14
7 T-15

0 pred
1 ty
2 fo
3 li 
4 po
... 

0 in
1 out

Fig. 6: The injection of a triple on continuous persistent store.

multiple nodes. Meanwhile, the Injector on each node will

insert the batches received from Dispatchers into the hybrid

Store, where query workers will access the store accordingly

to extract data in a particular stream window. Users can still

send one-shot queries to the One-shot Engine, which will

concurrently execute the queries on the data store and return

the results to users.

4 DETAILED DESIGNS

4.1 Hybrid Store

Wukong+S provides a hybrid store to differentially handle

streaming and stored data. For timeless data that is accessed

by both continuous and one-shot queries, an incremental

persistent store is used to absorb timeless data in streams,

along with the initially stored data. For timing data that is

only accessed by continuous queries, Wukong+S uses a time-

based transient store, which consists of a sequence of tran-

sient slices. Once some transient slices have expired (i.e., all

registered continuous queries no longer need to access it),

Wukong+S will use a garbage collector to clean it up period-

ically.

Base store. Wukong+S inherits Wukong [41] as the basic

store. Since Wukong+S assumes that the initially stored data

is represented as a directed graph, our basic store uses a com-

bination of vertex ID (vid), edge ID (eid) and in/out direction

(d) as the key (in the form of [vid|eid|d]) and the list of neigh-

boring vertex IDs as the value. Except for the normal vertices

in the graph, the basic store also creates index vertices to as-

sist queries that rely on retrieving a set of normal vertices

connected by edges with a certain label. It can be viewed as

a reverse mapping from a kind of edge to the normal vertices.

Fig. 6 shows how the initially stored data (i.e., X-Lab) in

Fig. 1 is stored in the base store. An additional mapping ta-

ble (ID-mapping) maintained by String Server [41] is used

to convert each string into a unique ID for both data and

queries.8 As an example, the neighbor list for all out-edges

of Logan labeled with po is specified by key [1|4|1] and the

value is 5 and 6 (i.e., T-13 and T-14). The index key [0|4|0]
points to all normal vertices that have an in-edge labeled with

po so that the value is 4, 5, and 6 (i.e., T-12, T-13, and T-14).

8Wukong+S uses 46-bit ID (> 70 trillion unique entities) and simply skips

GC for the mapping table, since we assume that some continuous or one-

shot queries may access them in the future.
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Fig. 7: The design of time-based transient store in Wukong+S.

For each query, Wukong+S uses the constant part of a

query condition as the key to do the graph-exploration [41]

starting from the normal vertex or the index vertex. For ex-

ample, all posts match the first query condition (Logan po

?X) of the one-shot query QS in Fig. 1 can be retrieved by

using Logan and po as key to access the value (i.e., T-13 and

T-14).

Continuous persistent store. To continuously absorb the

timeless portion of streams (e.g., tweets, likes and hashtags),

Wukong+S extends the basic store to support incremental

key/value update, resulting in a continuous persistent store.9

The incremental timeless data will be accessed by both con-

tinuous queries with proper stream windows and one-shot

queries at all time. For each timeless tuple in the stream,

Wukong+S will inject the useful part of timeless tuple into

the persistent store, while the timestamp is maintained by

stream index (§4.2); the injections may require appending to

multiple existing key/value pairs or creating new ones.

Fig. 6 shows the impact on key/value stores due to adding

a new tuple (〈Logan, po, T-15〉, 0802) in the Tweet_Stream.

First, the new string (T-15) would be converted into a unique

ID (7) and updated to the ID mapping table in the String

Server. Second, the key/value pair for new vertices should be

inserted (e.g., [7|4|0]→ [2]). Third, the vid of new vertex (7)

should be appended to the value of its neighboring vertices

(e.g., 7 of [5,6,7] for [1|4|1]). Finally, the involved index

vertex (po) should be also updated (e.g., 7 of [4,5,6,7] for

[0|4|0]). The timestamp (0900) would be simply discarded

due to the timeless semantics of persistent store.

The Injector on each node is in charge of inserting the

timeless tuples received from Dispatchers on different nodes

into the local shard of the persistent store. When multiple

Injector threads are required due to massive streams or high

stream rate, Wukong+S will statically partition the key space

of the store and exclusively assign one partition to one thread,

which can avoid using locks during injection.

Time-based transient store. The timing data in the

streams will only be accessed by involved continuous queries

in a certain window; they should be efficiently swept out

upon expiration. Therefore, Wukong+S introduces a new

9Wukong only provides a preliminary support to update, which only allows

single stream and adopts centralized injection mechanism.
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Fig. 8: The design of stream index in Wukong+S.

time-based transient store to hold timing data. Since streams

may have different windows sizes and steps, Wukong+S

maintains a transient store for each stream. Meanwhile,

Wukong+S uses the same sharding approach for both persis-

tent and transient stores, which co-locates the timeless and

timing data in the stream.

As shown in Fig. 7, the time-based transient store consists

of a sequence of transient slices arranged in time order. Each

transient slice stores the timing data of a stream batch. The

Injector thread will continuously create new transient slices

and append them to the later side, while the garbage collector

(GC) thread will also continuously free old transient slices

and remove them from the earlier side. Wukong+S uses a

contiguous ring buffer with fixed user-defined memory bud-

get to store time-based transient slices. The GC thread will

be periodically invoked in the background, or explicitly in-

voked when the ring buffer is full.

4.2 Stream Index

Continuous query is different from one-shot query, as it

needs to frequently access the latest steaming data. Com-

pared to the stored data, the size of streaming data in a win-

dow is quite small. After the persistent store absorbs the

streaming data, such small data will be scattered over the

entire persistent store. Accessing streaming data through the

normal path is very slow, as it will first use query condition to

locate the key and then walk through the value to retrieve the

data matching the involved window. For example, as shown

in Fig. 8, suppose that the continuous query wants to retrieve

all persons that like the tweet T-15 from 0807 to 0811. It has

to use [7|3|0] to locate key in the persistent store first, and

then walk the value to find matched results Clint and Steve

(i.e., 12 and 13). Worse even, all the timestamps of triples

must also be stored in the persistent store, which will result

in additional memory cost as they are useless10 once expired

and GC would significantly interfere with the execution of

one-shot queries.

To remedy this issue, Wukong+S proposes stream index to

provide a fast path for continuous queries to access stream-

ing data. The stream index also eliminates the timestamp

10The timestamps of streaming data are useless for general one-shot queries,

and Wukong+S can support time-based one-shot queries by Time-ontology

(https://www.w3.org/TR/owl-time/) if needed.

LoganT-15

SteveTony #so.

Erik

T-16

Bruce

T-12T-14

Clint

Thor T-13
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[41,-74]
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Like_Stream

Fig. 9: The locality-aware partitioning for stream index.

from timeless data in the stream to save memory and avoid

interference to one-shot queries. Fig. 8 illustrate 3 steam-

ing indexes of the Like_Stream corresponding to timeless

data in the left sample stream. Similar to the transient store,

Wukong+S arranges the stream indexes in a time-based order

and also creates and removes the stream indexes in two sides.

Each stream index consists of several entries that have the

same structure to the key in the persistent store. The only dif-

ference to the key in key/value store is the pointer may locate

to the middle of value.11 For example, the continuous query

can use the timestamp and [7|3|0] to locate the key in a cer-

tain stream index first, and then directly retrieve the matched

results. The search space is extremely decreased and inde-

pendent to the size of stored data.

Locality-aware partitioning. The general approach to par-

titioning stream index is to co-locate the index and data,

which can provide the data locality for the continuous query.

However, it may result in the execution of continuous queries

to be split into multiple nodes, namely migrating execution.

We observe that the continuous queries are generally small

and selective, since the streaming data is relatively less than

the whole knowledge base. Wukong [41] has shown that mi-

gration execution is not optimal for such queries due to the

cost of network traffic and additional scheduling latency. Al-

ternatively, the continuous query can also fetch the streaming

data from remote nodes and run on a single node, namely mi-

grating data, which can further leverage one-sided RDMA

reads to bypass remote CPU and OS. Unfortunately, the par-

titioned stream index would incur an additional RDMA read.

Considering that the stream index is relatively small,

Wukong+S replicates the index to avoid additional RDMA

reads. However, blindly replicating the stream index to all

nodes is not scalable and may cause large overhead due to

data injection and garbage collection. Therefore, Wukong+S

will only replicate the stream index to the node where the reg-

istered continuous queries demand to access this stream.12

11The pointer in the stream index and the persistent store is a 96-bit fat

pointer that includes the address (64-bit) and size (32-bit).
12The requisite stream is explicitly declared by some keywords (e.g.,

“FROM” and “GRAPH” in Fig. 2(b)).

https://www.w3.org/TR/owl-time/
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Fig. 10: Distributed stream injection and punctual query trigger.

Meanwhile, the registration of continuous queries will also

consider their involved streams. The continuous query can

always access stream index locally and uses RDMA reads

to access the remote data if necessary. According to the reg-

istration information, Wukong+S can even dynamically cre-

ate and replicate stream index on demand. Our partitioning

mechanism for stream index exploits the query locality rather

than the data locality. Fig. 9 shows a sample partition for

the stream indexes of Like_Stream and Tweet_Stream. Note

that stream indexes are always shared by all local continuous

queries.

4.3 Consistent Query with High Memory

Efficiency

To provide good scalability, the streaming and stored data

in Wukong+S is shared by all queries, which avoids redun-

dant resource consumption. However, it is non-trivial to en-

sure consistency for all continuous queries on different nodes

with different window sizes and steps (continuous queries),

or even one-shot queries.

For a continuous query, the question to answer is when to

trigger it. Wukong+S adopts a data-driven execution model

for streams, where a query will be invoked when its win-

dows of involved streams are ready. Since a stream batch

will be partitioned and inserted into multiple nodes, it is nec-

essary to make streaming data visible only when they have

been inserted at all nodes. To this end, Wukong+S adopts

vector timestamps (VTS) to reflect the insertion state of mul-

tiple streams on each node. Each node has local vector times-

tamps (Local_VTS) to record the current state of all streams

on this node as shown in Fig. 10 (e.g., batch#4 of S0 and

batch#12 of S1 has finished insertion on Node0). The Co-

ordinator on each node will compute stable vector times-

tamps (Stable_VTS) from the Local_VTS on all nodes, and

invoke the continuous queries registered on the engine when

all timestamps of their windows for the next execution are

smaller than or equal to the corresponding timestamps in the

Stable_VTS. For example, in Fig. 10, the query (QC) needs

the batch#5 of S0 so that it can not be executed according to

the current Stable_VTS ([4,12]).

9 410 11

11 5103 4

. . .
SN=2:[S0=3,S1=9]
SN=3:[S0=5,S1=12]

3

9

S0: 4
S1:12

S0: 5
S1:12

12

12

Fig. 11: A sample of bounded snapshot scalarization. The blue boxes

with snapshot information point to the start of the corresponding snap-

shots, which is physically stored in the key.

For one-shot query, since the timeless data of streams (e.g.,

tweets and likes) will be updated to the persistent store, the

stored data is no longer static for one-shot queries. Therefore,

Wukong+S treats one-shot queries as read-only transactions

and the streaming data insertion as append-only transactions.

Snapshot isolation is used to ensure all one-shot queries can

read a consistent state of the persistent store. Meanwhile,

Wukong+S ensures that stream batches within a stream will

be inserted in order and the order of batches from different

streams is indifferent. Consequently, the append-only trans-

actions will never conflict under snapshot isolation.

A straightforward solution to implement snapshot isola-

tion is to reuse the timestamp of streams to stamp all stream-

ing data in the persistent store; each one-shot query will first

read the stable vector timestamps (i.e., Stable_VTS) as the

timestamp of the query (i.e., Query_VTS), and always read

the value whose timestamp is not larger than it. However,

this solution requires all streaming data in the value associ-

ated with vector timestamps, which will incur large memory

overhead and degrade performance due to the pollution of

timestamps on key/value pairs.

On the other hand, moving the timestamps to the key can

avoid the pollution to the value, while the memory space

overhead may further increase due to additional pointers, and

it is still non-trivial to maintain infinite timestamps in the key.

Bounded snapshot scalarization. Wukong+S addresses

this issue by transferring the vector timestamps (VTS) into

a scalar snapshot number (SN), which represents a novel

tradeoff between the CPU/memory cost with the staleness

of one-shot query. First, the Coordinator will announce a

plan of the mapping between a snapshot number (SN) and

the range of vector timestamps (VTS) in advance (i.e., SN-

VTS Plan), Second, the Injector on each node ensures that

all stream batches with the same snapshot number (SN) are

consecutively stored in key/value pairs; in this way, a snap-

shot of each key is only associated with one memory interval.

Finally, each query will obtain a stable snapshot number (Sta-

ble_SN) instead of Stable_VTS, and use it to read a consistent

snapshot from the persistent store.

There are three key points of this solution. First, the

Coordinator can leverage the interval of the mappings to
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control the staleness of query results. If the increase of

mappings is limited to 1 (e.g., from SN=2:[S0=3,S1=9] to

SN=3:[S0=4,S1=9]), then the one-shot query can also pro-

vide the latest results. However, it will restrict the insertion

of streaming data since the Injector can only insert the stream

batch#4 of stream S0 on all nodes. On the other hand, if the

increase of mappings is large, the Injector will be more flex-

ible to insert stream batches, while the query result will be

stale to the last snapshot. Generally, the more balance of the

speed of Injectors on each node is, the smaller of the interval

of mappings will be chosen.

Second, the Coordinator can leverage the progress of the

plan to control the memory overhead (the number of SNs in

the key). For example, if the Coordinator always publishes

a single new mapping after the current mapping has reached

on all nodes, each key only needs to maintain the information

(i.e., SN and pointer) for two snapshots, namely one is for

using and another is for inserting.

Third, compared to the vector timestamps (VTS), the snap-

shot scalarization mechanism is very flexible to handle dy-

namic streams. For example, after adding a new stream (S2),

the Coordinator just needs to extend the VTS part of the next

SN-VTS Plan (e.g., SN=4:[S0=7,S1=15,S2=1]). The change

to streams is completely transparent to the one-shot query

since it is only aware of the snapshot number (SN).

As shown in Fig. 11, the current Stable_SN is 2, which

means that the streaming data of S0 before batch#3 and S1

before batch#9 has been visible as stored data to both contin-

uous and one-shot queries; currently the snapshot 3 is insert-

ing, while Node1 is stalled to wait for the new plan of the

mapping for SN#4.

After batch#5 of S0 is inserted on Node0, the Local_VTS

on Node0 will become [S0=5,S1=12]. The Coordinator will

find that the insertion state has met the requirement of SN#3

according to the SN-VTS plan and updates Local_SN on

Node0 to 3. The Coordinator will further publish a new plan

of the mapping for SN#4 and update Stable_SN to 3. The

Injector can continue to absorb the streaming data and over-

write the snapshot number 2 by 4.

Consistency guarantee. Similar to Structured Stream-

ing [50], Wukong+S also provides “prefix integrity” for

both continuous and one-shot queries. For continuous

queries, Wukong+S uses distributed vector timestamps (Lo-

cal/Stable_VTS) to ensure that the order streaming data

arrives is equal to the order of visibility to queries. For

one-shot queries, the mapping from VTS to SN (snapshot

scalarization) still preserves the orders of VTS. Currently,

as C-SPARQL’s time model13 assumes that timestamps in

each stream appear in monotonically non-decreasing order,

13http://streamreasoning.github.io/RSP-QL/RSP_Requirements_Design_

Document/.

Wukong+S does not need to handle out of order issues in

input streams.

5 IMPLEMENTATION

The Wukong+S prototype comprises around 6,800 lines of

C++ code and is capable of running on a cluster, with or

without RDMA. Wukong+S adopts a standard declarative

streaming query interface called Continuous-SPARQL (C-

SPARQL) [15] and represents the underlying linked data us-

ing the Resource Description Framework (RDF) [8], which

is recommended by W3C and used by many knowledge

bases [3, 16, 23, 36, 49].

Fault tolerance. Wukong+S assumes upstream backup

such that the stream sources buffer recently sent data and

replay them [26]. It also can be implemented by external

durable message service (e.g., Kafka [2] and Scribe [5]).

Meanwhile, Wukong+S provides at-least-once semantics to

the continuous queries. This means that there may exist two

executions on the same window of streams in case of ma-

chine failure. It would be trivial to address it in the client by

checking the time information of results.

Wukong+S uses two different mechanisms to handle fail-

ures at the query engine layer and the data store layer. In the

query engine layer, Wukong+S only needs to log all contin-

uous queries to the persistent storage and simply re-register

them after recovery from a machine failure. In the data store

layer, Wukong+S adopts incremental checkpointing by peri-

odically logging in background. Each machine will only log

the streaming data locally.

Wukong+S will use the stream index to locate the data

since the latest checkpoint and store them (key and value) to

the persistent storage. Note that the data of different streams

within a checkpoint can be logged in parallel even sharing the

same key-value pair. The order of them is not important af-

ter recovery. Further, the local and stable vector timestamps

(Local_VTS and Stable_VTS) should also be persistent. Af-

ter that, Wukong+S will notify the source of streams to flush

buffered data until the next checkpoint.

Since the stream index and data in the transient store

will expire after the involved windows slide, Wukong+S can

choose to avoid logging such data. The inspection approach

is similar to that of the garbage collection. However, it may

delay the end of the checkpoint and increase the pressure of

the stream source if large window interval exists.

To recover from a machine failure, Wukong+S will reload

initial RDF data first and then all durable checkpoints in

a proper order. The latest stream index and the transient

store will be reloaded if needed. Wukong+S will further

re-register continuous queries and the latest local and sta-

ble vector timestamps (Local_VTS and Stable_VTS). The

http://streamreasoning.github.io/RSP-QL/RSP_Requirements_Design_Document/
http://streamreasoning.github.io/RSP-QL/RSP_Requirements_Design_Document/
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SN_VTS_Plan and the Local_SN will be reset to the Sta-

ble_VTS.

Currently, Wukong+S mainly considers durability rather

than availability, which can be implemented by replicating

initial data and log checkpoints on remote nodes [21]. More-

over, Wukong+S does not support dynamic reconfiguration,

while some mechanisms in prior work [22, 48] can similarly

be applied to our system.

Leveraging RDMA. As Wukong+S is based on Wukong,

which leverages RDMA to optimize throughput and latency,

Wukong+S also follows its pace to support stream processing

while maintaining low latency and high throughput.

First, we observe that queries on streams normally access

only a modest amount of data. Hence, instead of using a

distributed fork-join style execution, Wukong+S leverages

RDMA’s low latency feature and the fact that the latency is

usually insensitive to the payload size to a certain extent [41]

to provide in-place execution. That is, Wukong+S mainly

uses a single thread on a single machine to handle a query.

The parallelism is still achieved since the data of stream is

distributed to all machines and a lot of queries can be pro-

cessed in parallel.

Second, under an integrated design of Wukong+S, the

stream index is another type of location cache and provides

another layer of indirection to fast access streaming data. A

normal remote access to a key/value pair requires at least two

RDMA reads: read key (lookup) and read value. To this end,

Wukong+S accumulates the stream index for each stream

within one machine. Hence, a query only needs to use one

RDMA read to retrieve the key/value pair since the stream

index is already locally accessible. As the stream index is

usually much smaller than data, it is usually feasible to accu-

mulate all stream indexes for one stream in one machine.

6 EVALUATION

6.1 Experimental Setup

Hardware configuration: All evaluations were conducted

on a rack-scale cluster with 8 nodes. Each node has two 12-

core Intel Xeon E5-2650 v4 processors and 128GB DRAM.

Each node is equipped with a ConnectX-3 MCX354A

56Gbps InfiniBand NIC via PCIe 3.0 x8 connected to a Mel-

lanox IS5025 40Gbps IB Switch, and an Intel X540 10GbE

NIC connected to a Force10 S4810P 10GbE Switch. All

nodes run Ubuntu 16.04 with Mellanox OFED v3.4 stack.

Benchmarks: We evaluate Wukong+S using two popu-

lar RDF streaming benchmarks, LSBench [28] and City-

Bench [12].14 LSBench models a typical social network

which comprises streaming data continuously generated

14The detail of queries is available at https://github.com/SJTU-IPADS/

wukong-s.

Table 1: The initial size of RDF data, the default stream rate and the

usage of RDF streams for each query.

LSBench L1 L2 L3 L4 L5 L6

Initial 3.75B Triples X X X X

PO 10K Tuples/s X X X X X

PO-L 86K Tuples/s X

PH 10K Tuples/s X

PH-L 7.5K Tuples/s X

GPS 20K Tuples/s

CityBench C1 C2 C3 C4 C5 C6 C7 C8 C9 C10C11

Initial 139K Triples X X X X X X X X X

VT1 19 Tuples/s X X

VT2 19 Tuples/s X X X X

WT 12 Tuples/s X X

UL 7 Tuples/s X X

PK1 4 Tuples/s X X X X

PK2 4 Tuples/s X X X

PL1-5 4 Tuples/s X

Size & Rate

Size & Rate

from user activities and stored data representing properties

of the social graph (e.g., user profiles and friend relation-

ships). LSBench provides 6 types of continuous queries over

both stored data and 5 RDF data streams for post (PO), post-

like (PO-L), photo (PH), photo-like (PH-L), and GPS (GPS).

We use 118 million tuples as initially stored dataset for eval-

uations on a single node, and 3.75 billion tuples for those

on 8 nodes. The default stream rate of the 5 streams in total

is 133K tuples per second. For brevity, the range and step

of each window over the 5 streams are set to 1s and 100ms

respectively in all queries.

CityBench simulates a smart city application, which con-

ducts continuous queries over real-time IoT data streams gen-

erated by various sensors in the city of Aarhus, Denmark.

CityBench provides 11 types of continuous queries over 11

RDF streams for vehicle traffic (VT1-2), parking (PK1-2),

weather (WT), user location (UL), and pollution (PL1-5). We

use the default setting of stream rate and initially stored data

and set the size and step of all windows to 3s and 1s respec-

tively.

Table 1 shows the default settings of both LSBench and

CityBench, and the usage of data streams for each continu-

ous query, which is implemented as a C-SPARQL query.

Comparing targets: We compare the performance of

Wukong+S with systems representing state of the art. As

for the composite design, we evaluate the performance of

CSPARQL-engine v0.9.7 [44] and the integration of Apache

Storm v1.0.2 [45] with Wukong [41]. CSPARQL-engine15

leverages Esper [4] and Apache Jena [1] to split and run

a query on streaming and stored data respectively, and fur-

ther generates the final results by joining the outputs of two

15CSPARQL-engine has limited capacity for processing stored data so that

we remove all untouched triples for a much smaller initial dataset for it.

https://github.com/SJTU-IPADS/wukong-s
https://github.com/SJTU-IPADS/wukong-s
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Table 2: The query performance (ms) on a single node.

LSBench

118M
Wukong+S

Storm+Wukong CSPARQL

All (Storm) (Wukong) -engine

L1 0.13 0.20 0.20 - 155
L2 0.10 1.62 1.16 0.10 708
L3 0.13 1.29 0.74 0.14 872
L4 1.19 30.38 30.38 - 291
L5 2.89 51.04 10.41 11.55 1,984
L6 2.14 65.04 11.55 8.60 3,395

Geo. M 0.48 5.91 - - 757

subcomponents. For Storm+Wukong16, we use the bolt ab-

straction in Storm to implement select and join operators, as

well as proxy operators which contact Wukong for execution

steps touching the stored data.

To compare the implementation on a single system, we

compare Wukong+S with Spark Streaming v2.2.0 [14, 51],

which stands for a popular solution for building stream-

ing applications. Both streaming and stored data are rep-

resented as in-memory RDDs (i.e., the data abstraction in

Spark). More specifically, we use DataFrames, the wrapper

of RDDs, to store RDF data and Spark SQL [14] to per-

form the queries. We further build an intuitive extension

of Wukong, namely Wukong/Ext, which can incrementally

absorb all data (timing and timeless) in RDF streams and

run queries over all the data. It can be roughly regarded as

Wukong+S without stream index in the latency evaluations.

Note that Wukong/Ext does not implement GC because it is

non-trivial to find and remove timestamps and timing data

from the tremendous dataset in graph stores.

It should be noted that the two composite solutions and

Spark Streaming do not support evolving persistent store

and thus perform queries over a static stored dataset. This

keeps them away from the consistency problems faced by

Wukong+S. In contrast, Wukong+S is the only system that

supports evolving graph and distinguishes between timing

and timeless data in streams. Moreover, the number of cores

in Wukong+S for serving each continuous query on each

node is restricted to 1, since they are usually light-weight and

processed in a concurrent way. It means that the performance

(latency) of Wukong+S could be further improved when nec-

essary, and this will be discussed later in §6.4.

6.2 Latency

We first study the performance of Wukong+S for each single

continuous query using the LSBench dataset. All experimen-

tal results are the median latency (i.e., 50th percentile) of one

hundred runs.

Since CSPARQL-engine is a single-node system, we first

run Wukong+S, Storm+Wukong and CSPARQL-engine on

a single node and report their in-memory performance for

16We exclude the latency caused by Storm job scheduler and only consider

execution time of each bolt.

Table 3: The query performance (ms) on a 8-node cluster.

LSBench

3.75B
Wukong+S

Storm+Wukong Spark

All (Storm) (Wukong) Streaming

L1 0.10 0.23 0.23 - 219
L2 0.08 1.64 1.02 0.11 527
L3 0.11 2.62 2.97 0.16 712
L4 1.78 31.14 31.14 - 346
L5 3.50 40.77 14.37 3.49 2,215
L6 1.68 49.03 36.16 2.39 1,422

Geo. M 0.46 6.29 - - 679

Table 4: The further performance comparison on a 8-node cluster.

LSBench

3.75B
Heron+Wukong Structured Wukong

All (Heron) (Wukong) Streaming /Ext

L1 0.24 0.24 - 287 0.19
L2 1.58 0.74 0.11 743 0.14
L3 2.35 1.72 0.15 1,698 0.17
L4 30.92 30.92 - x 6.91
L5 31.72 13.23 3.73 x 7.36
L6 45.78 24.48 2.65 x 7.33

Geo. M 5.85 - - - 1.08

LSBench-118M. As shown in Table 2, Wukong+S signifi-

cantly outperforms Storm+Wukong by up to 30.4X (from

1.6X) and CSPARQL-engine for three orders of magnitude,

mainly due to the benefit of its integrated design. CSPARQL-

engine usually needs hundreds of milliseconds to execute

once for a single query, indicating its inefficiency from both

its composite design and slow building blocks (e.g., Apache

Jena). We decompose the latency of Storm+Wukong to better

understand why it is higher. First, the cross-system overhead

(i.e., total latency excluding latency in both components) for

L2, L3, L5 and L6 is relatively high, ranging from 22.3%

to 57.0% of the total latency. The overhead consists of data

transformation and transmission between subcomponents ac-

quired by composite design. L1 and L4 only touch streaming

data, so that the query is solely within Storm. Second, com-

paring with Wukong+S, Storm+Wukong incurs a higher la-

tency in Wukong, which adopts the same graph exploration

strategy for query processing. This is caused by the ineffi-

cient query plan endured by systems adopting composite de-

sign. The problem of sub-optimal query plan leads to larger

intermediate results and further results in higher latency in

the Wukong subcomponent. These results back up our claim

in §2.3.

We then compare Wukong+S in the distributed setting us-

ing LSBench-3.75B, as shown in Table 3. Wukong+S also

significantly outperforms Storm+Wukong by up to 29.2X

(from 2.3X) and Spark Streaming for three orders of mag-

nitude. The cross-system overhead of Storm+Wukong is still

up to 56.2% (from 13.8%). It implies that even if we replace

Storm with a new, faster stream processor, the total latency

will remain much high. To demonstrate this, we use Heron

v0.15.0 [27] to replace Storm in our composite solution.17

17Heron (https://twitter.github.io/heron/) is the de-facto stream processing

engine inside Twitter with better performance and scalability, as well as

API-compatible with Storm.

https://twitter.github.io/heron/
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Table 5: The performance impact of RDMA on Wukong+S.

LSBench L1 L2 L3 L4 L5 L6 Geo.M

Wukong+S 0.10 0.08 0.11 1.78 3.50 1.68 0.46
Non-RDMA 0.11 0.08 0.12 6.22 6.14 4.90 0.75

Slowdown 1.1X 1.0X 1.1X 3.5X 1.8X 2.9X 1.6X

As shown in Table 4, Heron+Wukong indeed improves the

performance of queries that only touch streaming data (e.g.,

L1 and L4). However, for queries touching both streaming

and stored data (e.g., L2, L3, L5 and L6), the cross-system

cost and sub-optimal query plan still dominate the overall la-

tency. Thus, Wukong+S still outperforms Heron+Wukong by

up to 27.3X (from 2.4X).

As for Spark Streaming, the latency is always at the level

of hundreds of milliseconds, indicating its inefficiency to

handle continuous queries by leveraging costly join oper-

ations for all of the streaming and stored data. Readers

might be interested in the performance of Structured Stream-

ing [50] recently introduced by Apache Spark, which aims

at building continuous streaming applications. Structured

Streaming treats streaming data as an unbounded table and al-

lows to run continuous queries on both streaming and stored

data. However, there are many unsupported operations in the

current implementation.18 For example, any kind of joins be-

tween two streaming datasets is not yet supported. Therefore,

we can only illustrate the latency of three queries (i.e., L1-

L3) for Structured Streaming in Table 4. The performance is

even worse than that of Spark Streaming due to the additional

cost of processing unbounded table.

To further study the merits of Wukong+S compared

to an intuitive extension of static RDF store, we devel-

oped Wukong/Ext derived from Wukong [41] with fast

data injection. The key difference between Wukong+S and

Wukong/Ext is in their strategy for maintaining timestamps

and extracting the subgraph for a certain time period from

underlying stores. Wukong+S utilizes stream index as a fast

path to extract graph data in a stream window. The stream

index is built along with the injection of data streams, and

stale indexes are periodically removed to save memory. By

contrast, Wukong/Ext directly inserts both streaming data

and their timestamps into the underlying store, leading to

two consequences. First, extracting data in a certain time pe-

riod is inefficient without indexing, incurring high latency in

Wukong/Ext. As shown in Table 4, Wukong+S outperforms

Wukong/Ext by up to 4.4X (from 1.6X), and the speedup

is more obvious for large queries (more than 2X). Second,

Wukong/Ext does not support efficient garbage collection,

since deletion is costly and non-trivial after data and times-

tamps are coupled together in the underlying store. The stale

and useless timestamps will accumulate in Wukong/Ext, re-

sulting in unnecessary memory and execution cost along

18https://spark.apache.org/docs/2.2.0/structured-streaming-programming-guide.

html#unsupported-operations.
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Fig. 12: The latency of queries in group (I) and (II) with the increase

of nodes on LSBench-3.75B.

with the injection of streams. On the contrary, the stream

index in Wukong+S is carefully organized in memory and

hence are very friendly to garbage collection.

The performance impact of RDMA.. To pursue low-

latency for processing queries over streaming and stored data,

Wukong+S leverages RDMA to enable in-place execution

over streaming data by stream index and locality-aware parti-

tioning (§4.2). Nevertheless, Wukong+S can still run on non-

RDMA network (e.g., 10GbE) using a fork-join style exe-

cution [41]. We enforce a purely fork-join execution mode

in Wukong+S over both streaming and stored data without

RDMA (i.e., Non-RDMA). As shown in Table 5, the per-

formance of selective queries (L1-L3) is non-sensitive to

RDMA since all of them start from a constant entity and can

be completed mostly within a single node. However, for non-

selective queries (L4-L6), the workload over both stream-

ing and stored data will be distributed across all nodes. The

communication and synchronization cost incurs performance

slowdown of 1.8X to 3.5X.

6.3 Scalability

We evaluate the scalability of Wukong+S with respect to the

number of nodes. Note that we omit the evaluation on a sin-

gle server as LSBench-3.75B (amounting to 653GB in raw

format) cannot fit into memory.Since continuous queries are

usually lightweight, we assign only 1 core on each node to

a single query. We categorize the six queries on LSBench

dataset into two groups according to the relation between

their result size and the data size they access as done in prior

work [41, 52]. Group (I): L1, L2, and L3; such queries are se-

lective and produce quite fixed-size results regardless of the

total data size. Group (II): L4, L5, and L6; the results size of

such queries increase with the growth of dataset.

Fig. 12(b) shows the speedup of Wukong+S for group (II)

ranging from 2.8X to 3.2X, with the increase of servers from

2 to 8. This implies that Wukong+S can efficiently utilize the

parallelism of the fork-join execution mode over tremendous

stored data. For group (I), since the intermediate and final re-

sults are relatively small and fixed-size, using more machines

do not improve the performance as shown in Fig. 12(a), but

the performance is still stable by using in-place execution to

reduce the network overhead.

https://spark.apache.org/docs/2.2.0/structured-streaming-programming-guide.html#unsupported-operations
https://spark.apache.org/docs/2.2.0/structured-streaming-programming-guide.html#unsupported-operations
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Fig. 13: The latency of queries in group (I) and (II) with the increase

of stream rate on LSBench-3.75B.

6.4 Stream Rate

We also evaluate the scalability of Wukong+S in terms of

stream rate. Stream rate in social networking applications

usually experience changes over time. Higher stream rate

means a larger amount of data in a stream window and may

further cause the latency of continuous queries to increase.

We keep the setting of LSBench in the latency evaluation

and then increase the stream rate from 33K to 533K tuples

per second. The number of tuples in each window increases

proportionally.

As shown in Fig. 13, Wukong+S can achieve stable perfor-

mance for queries in Group (I) regardless of the increasing

stream rate, since such queries produce fixed-size results ir-

relevant to the amount of data in their windows. For queries

in Group (II), latency increases with the growth of stream

rate, since the result sizes of such queries also increase. Yet,

it is still at a low level (smaller than 16ms in this test).

To avoid excessive resource consumption, we previously

assigned only 1 core on each node for one continuous query.

Adding more cores is an efficient way to relieve the tension.

For example, assigning 4 cores on each node can speed up

L4, L5 and L6 by 3.0X, 3.5X and 2.7X respectively (i.e.,

latency drops from 8.5ms, 15.1ms and 7.3ms to 2.85ms,

4.37ms and 2.67ms accordingly). The result demonstrates

that clients are able to trade resources for performance when

low latency is critical.

Table 6: The data injection and indexing cost (ms) per mini-batch

(100ms) for all five streams of LSBench (post (PO), post-like (PO-L),

photo (PH), photo-like (PH-L), and GPS) with default stream rate.

LSBench

3.75B
PO PO-L PH PH-L GPS

10K/s 86K/s 10K/s 7.5K/s 20K/s

Injection 0.52 1.77 0.45 0.16 1.18
Indexing 0.23 0.43 0.22 0.21 0.34

Total 0.75 2.20 0.67 0.37 1.57

6.5 Injection Cost

We then evaluate the influence of data injection on the la-

tency of Wukong+S. Different to prior stream computation

systems, Wukong+S injects the streaming data into the under-

lying stores before launching stream queries. If the query ex-

ecution overlaps the injection of corresponding stream batch,

the injection may interfere the latency of such queries.

 0

 0.3

 0.6

 0.9

 1.2

 2  3  4  5  6  7  8

T
h
ro

u
g
h
p
u
t 
(M

 q
u
e
ry

/s
e
c
)

Number of Machines

WSP

1

20

40

60

80

100

 0.1  1  10

C
D

F
 (

%
)

Latency (msec)

L1

L2

L3

Fig. 14: (a) The throughput of a mixture of 3 classes of queries with

the increase of nodes, and (b) the CDF of latency on 8 nodes.
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Fig. 15: (a) The throughput of a mixture of 6 classes of queries with

the increase of nodes, and (b) the CDF of latency on 8 nodes.

As shown in Table 6, the data injection usually costs up to

2.20ms (from 0.37ms) delay for 100ms stream batch using

default stream rate. To further break down the injection cost,

the delay for building stream index is from 0.21ms to 0.43ms.

The impact of data injection to the query latency is visualized

in the CDF graph at Fig. 14(b) and 15(b) as the tail.

6.6 Throughput of Mixed Workloads

Unlike prior systems, Wukong+S is designed to provide high

query throughput at millions of continuous queries per sec-

ond. In contrast, CSPARQL-engine executes queries sequen-

tially, so that its throughput is directly related to latency.

Spark Streaming and Apache Storm do not support data shar-

ing between different queries, making them difficult to im-

prove query throughput in this scenario.

We build emulated clients and two mixed workloads to

study the performance of Wukong+S serving large number

of concurrent queries registered by these clients. Each node

runs 4 emulated clients and 16 worker threads for continu-

ous queries on dedicated cores. All clients will register as

many queries as possible until the accumulated throughput

saturated. Each node also reserve 2 cores on each processor

to import and coordinate data streams.

We first use a mixed workload consisting of 3 classes of

queries (L1-L3). The query in each class has similar behav-

ior except that the start point is randomly selected from the

same type of vertices (e.g., Photo Album0, Photo Album1,

etc.). The distribution of query classes follows the recipro-

cal of their average latency. As shown in Fig. 14, Wukong+S

achieves a peak throughput of 1.08M queries/sec on 8 nodes,

4.2X than that on 2 nodes (254K queries/sec). Under the peak

throughput, the geometric mean of 50th (median) and 99th

percentile latency is 0.11ms and 0.90ms respectively.



SOSP ’17, October 28, 2017, Shanghai, China Yunhao Zhang, Rong Chen, Haibo Chen

Table 7: The memory usage (MB/min) comparison between stream-

ing data and stream index for LSBench in default setting.

LSBench

3.75B
PO PO-L PH PH-L GPS Total

10K/s 86K/s 10K/s 7.5K/s 20K/s 133K/s

data 6.39 38.22 4.76 7.90 5.45 62.73
index 2.96 0.60 1.89 0.51 – 5.95

ratio 46.3% 1.6% 39.7% 6.5% – 9.5%

We then use another mixed workload consisting of all 6

classes of queries (L1-L6). The mixture strategy is similar

to the previous test and we obtain the results in Fig. 15.

Wukong+S achieves a peak throughput of 802K queries/sec

on 8 nodes, 5.0X than that on 2 nodes (161K queries/sec).

The super scalability of throughput is mainly due to decreas-

ing latency of L4-L6 in a larger cluster. Under the peak

throughput, the median, 90th and 99th percentile latency for

L4 class query is 2.3ms, 2.7ms and 4.1ms respectively.

6.7 Memory Consumption

In our design, we assume that stream index is small enough

to be replicated in the cluster. We also assume that bounded

snapshot scalarization can efficiently reduce memory usage.

We now evaluate the two design choices under the default

setting of LSBench-3.75B on our 8-node cluster.

Since GPS stream is not timeless (i.e., data will be in-

jected into the transient store), stream index is not needed for

executing related continuous queries. As shown in Table 7,

62.73MB raw data arrive in every minute with the default

setting, resulting in 5.95MB memory consumption for the in-

dex. It means that if we wish to reserve all timestamps for 10

minutes, around 60MB should be reserved on each node for

the stream index, which is quite affordable comparing to the

raw data size (i.e., 627MB).

The benefits of bounded snapshot scalarization. When reg-

istering 2 streams and reserving 2 snapshots, the memory

footprint for stored RDF data is 37.7GB on each node, and

increases to 44.0GB without bounded snapshot scalariza-

tion. The memory footprint further increases to 40.9GB and

50.4GB with and without bounded snapshot scalarization

when reserving 3 snapshots. Registering all 5 streams will

cause no memory increase with bounded snapshot scalariza-

tion but increases memory footprint to 53.6GB otherwise.

6.8 Fault-tolerance Overhead

We have implemented a simple logging and checkpointing

mechanism in Wukong+S for fault tolerance. We conduct

the throughput test again with fault tolerance mechanisms en-

abled using the mixed workload of L1-L3 mentioned in §6.6

(i.e., LSBench-3.75B on 8 nodes). The result shows that log-

ging delay for each batch is around 0.3ms and the throughput

drops from 1.07M to 803K queries per second, about 11.2%

decrease. The 99th percentile latency increases from 0.15ms

Table 8: The performance comparison (ms) for one-shot query.

LSBench S1 S2 S3 S4 S5 S6 Geo.M

Wukong 4.04 0.11 0.19 23.1 0.26 60.2 1.77

Wukong+S/Off 4.12 0.12 0.20 24.1 0.28 61.8 1.83
Wukong+S/On 4.31 0.11 0.21 25.5 0.29 64.2 1.93

to 0.73ms due to checkpointing, while the 90th percentile la-

tency is largely unchanged.

6.9 Performance Impact on One-shot Queries

Wukong+S is the only known system that can concurrently

process both continuous and one-shot queries with stream-

ing and incremental stored data. Wukong+S binds continu-

ous and one-shot query engines on dedicated cores of two

different processors to minimize the interfere with each

other, and shares a single persistent store but accessed by

different paths. To evaluate the performance of one-shot

(SPARQL) queries over large datasets of Wukong+S, we

compare Wukong+S with the basic persistent RDF store

(Wukong [41]), which is the fastest system as far as we know.

We use default LSBench-3.75B setting with six typical one-

shot queries.19 The detailed system settings are listed below:

• Wukong: executing one-shot queries on static stored

dataset

• Wukong+S/Off: enabling all 5 streams of LSBench

and executing one-shot queries by 8 dedicated worker

threads over dynamic stored dataset.

• Wukong+S/On: additionally running 8 worker threads

for continuous query with their maximum throughput.

As shown in Table 8, Wukong+S inherits the good perfor-

mance of Wukong. Enabling streams (Wukong+S/Off) may

cause little performance degradation (leas than 5%) to some

queries due to consistency issues. Further, since one-shot and

continuous queries are separately assigned to threads on dif-

ferent cores, their execution (Wukong+S/On) has little inter-

ference (about 5%) despite sharing the stored dataset.

6.10 Other Workload: CityBench

We further study the performance of Wukong+S, Spark

Streaming and Storm+Wukong over CityBench with setting

shown in Table 1. The stream rate and data size are very

small because the data was collected in a relatively small

city. Therefore, we deploy the systems on a single node to

test their latency. For a similar application in a megacity such

as New York City, the stored data and stream rate would in-

crease thousands of times.

As shown in Table 9, Wukong+S outperforms

Storm+Wukong by up to 18.3X (from 2.7X) for queries

touching both streaming and stored data and significantly

19The detail of queries is available at https://github.com/SJTU-IPADS/

wukong-s.

https://github.com/SJTU-IPADS/wukong-s
https://github.com/SJTU-IPADS/wukong-s
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Table 9: The query performance (ms) on a single node.

CityBench

137K
Wukong+S

Storm+
Storm Wukong

Spark

Wukong Streaming

C1 0.24 4.40 0.66 0.64 872
C2 0.37 4.48 0.80 0.64 1,557
C3 0.26 4.10 0.70 0.31 675
C4 0.98 2.67 0.25 0.99 802
C5 0.94 4.10 0.36 2.10 790
C6 0.26 1.91 0.25 0.24 764
C7 0.24 2.23 0.40 0.34 762
C8 0.27 2.05 0.43 0.30 692
C9 1.15 3.91 1.12 1.15 1,088
C10 0.78 1.18 1.18 - 1,086
C11 0.16 0.17 0.17 - 193

Geo. M 0.41 2.21 - - 766

outperforms Spark Streaming. For Storm+Wukong, the

cross-system overhead dominates the latency (i.e., from

40.1% to 75.4%) and the latency of Wukong subcomponent

is up to 2.67X than that of Wukong+S. These results

again demonstrate the issues of a composite design (i.e.,

cross-system cost and inefficient query plan), especially for

complex queries.

7 RELATED WORK

Stream processing engines. The increasing importance of

real-time data processing has stimulated considerable inter-

ests in both academia and industry [9, 10, 18, 31, 34, 39, 43].

They usually adopt a relational data model and thus are not

suitable for processing highly linked streams due to a phe-

nomenon called “Join Bomb” [46]. Furthermore, they do not

consider the combination of stream data and stored data (i.e.,

perform queries solely on stream data). MaxStream [18] pro-

vides a unified interface for users to query on both streaming

and stored data, and adopts a composite design to manage

streaming systems and databases.

There are several related domains in database community,

including temporal database [17], time series database [25]

and graph database [13]. Compared to Wukong+S, such de-

signs target at different scenarios and data models, and thus

present different design decisions.

Stream computation systems. Different from stream pro-

cessing engines, there are also many streaming computa-

tion platforms [6, 11, 20, 27, 29, 35, 45] on which pro-

grammers can write and submit their own code for compu-

tation on streaming data. These systems tend to provide a

general abstraction for all kinds of streaming problems, so

that their performance is hard to reach the same level of

Wukong+S for stream querying workload over fast-evolving

linked data, and most of them do not consider the combina-

tion of streaming and stored data. Recently, Apache Spark

introduces Structured Streaming [50] to build continuous

streaming applications, which offers the unbounded table to

treat streaming data and allows to run continuous queries on

both streaming and stored data. However, it is hard to support

fast query-oriented operations on both streaming and stored

data due to its design choices trending toward the computa-

tion (e.g., unsorted, non-index table abstraction).

Several systems [22, 42, 47] are developed to support

large-scale computation on streaming graphs, like PageRank,

SSSP and KMeans. Kineograph [22] also adopts distributed

consistent snapshots with epoch commits, which however re-

sults in high latency up to the order of minutes. Tornado [42]

also uses graph snapshots and splits the iterative graph com-

putation into main and branch loops to converge the results

fast. KickStarter [47] can produce safe and profitable results

for computation on streaming graphs via trimmed approxi-

mations. The latency of such work usually reaches several

seconds or even minitues.

Static RDF systems. There have been a large number

of efforts devoted to building static RDF systems with

high performance. State-of-the-art approaches can be clas-

sified into two categories: triple stores that use relational

approach to storing and indexing RDF data [24, 37], and

graph stores that use native graph model and query data by

graph-exploration [41, 52]. Compared to the intuitive exten-

sion of static RDF systems for stateful continuous queries,

Wukong+S mainly improves the performance and function-

ality in three ways: 1) uses stream index (§4.2) to efficiently

access streaming data sprinkled all over the store; 2) decou-

ples the timing and timeless data in streams and proposes

time-based transient store to facilitate GC (§4.1); 3) uses a

bounded scalarization scheme (§4.3) to support consistent

one-shot queries at efficient memory usage.

8 CONCLUSION

This paper describes Wukong+S, the first distributed RDF

streaming engine that provides real-time consistent query

over streaming datasets. Several key designs like separating

timeless and timing data in hybrid store, extracting stream

windows by stream index and using bounded snapshot scalar-

ization for evolving timeless data made Wukong+S fast and

consistent. Evaluations on an 8-node RDMA-capable cluster

using LSBench and CityBench show that Wukong+S signif-

icantly outperforms CSPARQL-engine, Storm+Wukong and

Spark Streaming for both latency and throughput, usually at

the scale of orders of magnitude.

ACKNOWLEDGMENTS

We sincerely thank our shepherd Roxana Geambasu and the

anonymous reviewers for their insightful suggestions. This

work is supported in part by the National Key Research

& Development Program (No. 2016YFB1000500), the Na-

tional Natural Science Foundation of China (No. 61402284,

61772335, 61572314, 61525204), the National Youth Top-

notch Talent Support Program of China, and Singapore NRF

(CREATE E2S2).



SOSP ’17, October 28, 2017, Shanghai, China Yunhao Zhang, Rong Chen, Haibo Chen

REFERENCES
[1] Apache Jena. https://jena.apache.org/.

[2] Apache Kafka. http://kafka.apache.org/.

[3] DBpedia’s SPARQL Benchmark. http://aksw.org/Projects/DBPSB.

[4] Esper. http://www.espertech.com/esper/.

[5] Facebook Scribe. https://github.com/facebook/scribe.

[6] Microsoft StreamInsight Official blog. https://blogs.msdn.microsoft.

com/streaminsight/.

[7] Options Price Reporting Authority. https://en.wikipedia.org/wiki/

Options_Price_Reporting_Authority.

[8] RDF 1.1 Concepts and Abstract Syntax. https://www.w3.org/TR/

rdf11-concepts/.

[9] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack,

J.-H. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, et al. The

Design of the Borealis Stream Processing Engine. In CIDR, volume 5,

pages 277–289, 2005.

[10] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey,

S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: A New

Model and Architecture for Data Stream Management. The VLDB

Journal, 12(2):120–139, Aug. 2003.

[11] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman,
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