
This paper is included in the Proceedings of the
12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’16).
November 2–4, 2016 • Savannah, GA, USA

ISBN 978-1-931971-33-1

Open access to the Proceedings of the
12th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

Fast and Concurrent RDF Queries with RDMA-
Based Distributed Graph Exploration

Jiaxin Shi, Youyang Yao, Rong Chen, and Haibo Chen, Shanghai Jiao Tong University;
Feifei Li, University of Utah

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/shi

Fast and Concurrent RDF Queries with RDMA-based

Distributed Graph Exploration

Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen

Institute of Parallel and Distributed Systems,

Shanghai Jiao Tong University

Feifei Li

School of Computing,

University of Utah

Contacts: {rongchen, haibochen}@sjtu.edu.cn

Abstract

Many public knowledge bases are represented and stored

as RDF graphs, where users can issue structured queries

on such graphs using SPARQL. With massive queries

over large and constantly growing RDF data, it is im-

perative that an RDF graph store should provide low la-

tency and high throughput for concurrent query process-

ing. However, prior systems still experience high per-

query latency over large datasets and most prior designs

have poor resource utilization such that each query is

processed in sequence.

We present Wukong1, a distributed graph-based RDF

store that leverages RDMA-based graph exploration to

provide highly concurrent and low-latency queries over

large data sets. Wukong is novel in three ways. First,

Wukong provides an RDMA-friendly distributed key/-

value store that provides differentiated encoding and

fine-grained partitioning of graph data to reduce RDMA

transfers. Second, Wukong leverages full-history prun-

ing to avoid the cost of expensive final join opera-

tions, based on the observation that the cost of one-sided

RDMA operations is largely oblivious to the payload

size to a certain extent. Third, countering conventional

wisdom of preferring migration of execution over data,

Wukong seamlessly combines data migration for low la-

tency and execution distribution for high throughput by

leveraging the low latency and high throughput of one-

sided RDMA operations, and proposes a worker-obliger

model for efficient load balancing.

Evaluation on a 6-node RDMA-capable cluster shows

that Wukong significantly outperforms state-of-the-art

systems like TriAD and Trinity.RDF for both latency and

throughput, usually at the scale of orders of magnitude.

1Short for Sun Wukong, who is known as the Monkey King and is a main

character in the Chinese classical novel “Journey to the West”. Since Wukong

is known for his extremely fast speed (21,675 kilometers in one somersault) and

the ability to fork himself to do massive multi-tasking, we term our system as

Wukong. The source code and a brief instruction on how to install Wukong is

available at http://ipads.se.sjtu.edu.cn/projects/wukong.

1 Introduction

Many large datasets are continuously published us-

ing the Resource Description Framework (RDF)

format, which represents a dataset as a set of

〈sub ject, predicate,ob ject〉 triples that form a di-

rected and labeled graph. Examples include Google’s

knowledge graph [20] and a number of public knowledge

bases including DBpedia [1], Probase [51], PubChem-

RDF [32] and Bio2RDF [7]. There are also a number of

public and commercial websites like Google and Bing

providing online queries through SPARQL2 to such

datasets.

With the increasing scale of RDF datasets and the

growing number of queries per second, it is highly de-

manding that an RDF store provides low latency and

high throughput over highly concurrent queries. In re-

sponse, much recent research has been devoted to de-

veloping scalable and high performance systems to in-

dex RDF data and process SPARQL queries. Early

RDF stores like RDF-3X [33], SW-Store [8], HexaS-

tore [49] usually use a centralized design, while later de-

signs such as TriAD [21], Trinity.RDF [54], H2RDF [38]

and SHARD [40] use a distributed store in response to

the growing data sizes.

An RDF dataset is essentially a labeled, directed

multigraph. Hence, it may be either stored as a set

of triples as elements in relational tables (i.e., a triple

store) [33, 21, 38, 53], or managed as a native graph (i.e.,

a graph store) [9, 58, 52, 54]. Prior work [54] shows that

while using a triple store may enjoy query optimizations

designed for relational database queries, query process-

ing intensively relies on join operations over potentially

large tables, which usually generates huge redundant in-

termediate data. Besides, using relational tables to store

triples may limit the generality such that existing sys-

tems can hardly support general graph queries over RDF

data such as reachability analysis and community detec-

2A recursive acronym for SPARQL Protocol and RDF Query Language.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 317

http://ipads.se.sjtu.edu.cn/projects/wukong

tion [44].

In this paper, we describe Wukong, a distributed in-

memory RDF store that provides low-latency, concur-

rent queries over large RDF datasets. To make it easy

to scale out, Wukong follows a graph-based design by

storing RDF triples as a native graph and leverages graph

exploration to handle queries. Unlike prior graph-based

RDF stores that are only designed to handle one query at

a time, Wukong is also designed to provide high through-

put such that it can handle hundreds of thousands of

concurrent queries per second. The key techniques of

Wukong are centered around using one-sided RDMA to

provide fast and concurrent graph exploration.

RDMA-friendly Graph Model and Store (§4). Be-

sides storing RDF triples as a graph by treating ob-

ject/subject as vertices and predicate as edges, Wukong

extends an RDF graph by introducing index vertices so

that indexes are naturally parts of the graph. To partition

and distribute data among multiple machines, Wukong

applies a differentiated partition scheme [13] to embrace

both locality (for normal vertices) and parallelism (for

index vertices) during query processing. Based on the

observation that RDF queries only touch a small subset

of graph data (e.g., a subset of vertices and/or a subset of

a vertex’s data), Wukong further incorporates predicate-

based finer-grained vertex decomposition and stores the

decomposed graph data into a refined, RDMA-friendly

distributed hashtable inherited from DrTM-KV [48] to

reduce RDMA transfers.

RDMA-based Full-history Pruning (§5.2). Being

aware of the cost-insensitivity of one-sided RDMA op-

erations with respect to data size, Wukong leverages full-

history pruning such that it can precisely prune unneces-

sary intermediate data. Consequently, Wukong can avoid

the costly centralized final join on the results aggregated

from multiple machines.

RDMA-based Query Distribution (§5.3). Depend-

ing on the selectivity and complexity of queries, Wukong

decomposes a query into a sequence of sub-queries

and handles multiple independent sub-queries simulta-

neously. For each sub-query, Wukong adopts an RDMA

communication-aware mechanism: for small (selective)

queries, it uses in-place execution that leverages one-

sided RDMA read to fetch necessary data so that there

is no need to move intermediate data; for large (non-

selective) queries, it uses one-sided RDMA WRITE to

distribute the query processing to all related machines.

To prevent large queries from blocking small queries

when handling concurrent queries, Wukong provides a

latency-centric work stealing scheme (namely worker-

obliger model) to dynamically oblige queries in strag-

gling workers.

We have implemented Wukong and evaluated it on a

6-node cluster using a set of common RDF query bench-

R-Group

Course

Student

Professor
mo

ad

mo:memberOf

tc:takesCourse

to:teacherOf

ad:advisor

ty:type (not incl.)

...

...

X-Lab

OS

DS

Kurt

Erik

Raven

Marie

Logan

tc

...

Bobby

tc
to

mo
mo

mo
mo

mo

mo

to

tc

tc

...

ad

ad

ad

...

tc
tc

Steve
...

mo

Fig. 1: An example RDF graph.

marks over a set of synthetic (e.g., LUBM and WSDTS)

and real-life (e.g., DBPSB and YAGO2) datasets. Our

experiment shows that Wukong provides orders of mag-

nitude lower latency compared to state-of-the-art central-

ized (e.g., RDF-3X and BitMat) and distributed (e.g.,

TriAD and Trinity.RDF) systems. An evaluation using

a mixture of queries on LUBM [3] shows that Wukong

can achieve up to 269K queries per second on 6 machines

with 0.80 milliseconds median latency.

2 Background

2.1 RDF and SPARQL

An RDF dataset is a graph (aka RDF graph) com-

posed by triples, where a triple is formed by

〈sub ject, predicate,ob ject〉. A triple can be regarded as

a directed edge (predicate) connecting two vertices (from

subject to object). Thus, an RDF graph can be alterna-

tively viewed as a directed graph G = (V,E), where V is

the collection of all vertices (subjects and objects), and

E is the collection of all edges, which are categorized

by their labels (predicates). W3C has provided a set of

unified vocabularies (as part of the RDF standard) to en-

code the rich semantics, where the rdfs:type predicate (or

type for short) provides a classification of vertices of an

RDF graph into different groups. As shown in Figure 1,

a simplified sample RDF graph of LUBM dataset [3], the

entity Steve has type Professor3, and there are four cate-

gories of edges linking entities, namely, memberOf (mo),

takesCourse (tc), teacherOf (to), and advisor (ad).

SPARQL, a W3C recommendation, is the standard

query language for RDF datasets. The most common

type of SPARQL queries is as follows:

Q := SELECT RD WHERE GP

where, GP is a set of triple patterns and RD is a re-

sult description. Each triple pattern is of the form

〈sub ject, predicate,ob ject〉, where each of the subject,

predicate and object may denote either a variable or a

constant. Given an RDF data graph G, the triple pat-

tern GP searches on G for a set of subgraphs of G, each

of which matches the graph pattern defined by GP (by

binding pattern variables to values in the subgraph). The

result description RD contains a subset of variables in the

graph patterns.

3To save space, we use color circles to represent the type of entities.

318 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

mo

toSELECT ?Y WHERE {
?X memberOf X-Lab .
?X type Professor .
?X teacherOf ?Y .

}
X-Lab

Prof

?X
ty

?Y
OS

DS

SPARQL Graph Results

Fig. 2: A SPARQL query (Q1) on sample RDF graph.

For example, as shown in Figure 2, the query Q1 re-

trieves all objects that were taught (to) by a Professor

who is a member (mo) of X-Lab. The query can also be

graphically represented by a query graph, in which ver-

tices represent the subjects and objects of the triple pat-

terns; the black vertices represent constants, and the red

vertices represent variables; The edges represent pred-

icates in the required patterns (GP). The query results

(?Y, described in RD) include DS and OS.

Difference from graph analytics. Readers might be

curious about the relationship between RDF queries and

graph analytics [28, 18, 31, 19, 13, 41, 55, 56], especially

a recent design [50] used one-sided RDMA to implement

message-passing primitives. However, there are several

fundamental differences between RDF queries and graph

analytics.

First, RDF queries are user-centric; thus minimizing

the roundtrip latency is more important than maximizing

network throughput. Second, RDF queries only touch a

small subset of a graph instead of processing the entire

graph, making it not worthwhile to dedicate all resources

to run a single query. Third, graph-analytics is usually

done in a batch-oriented manner in contrast to concur-

rently serving multiple RDF queries.

2.2 Existing Solutions

We then discuss two representative approaches adopted

in existing state-of-the-art RDF systems.

Triple store and triple join: A majority of existing

systems store and index RDF data as a set of triples in

relational databases, and excessively leverage triple join

operations to process SPARQL queries. Generally, query

processing consists of two phases: Scan and Join. In

the Scan phase, the RDF engine decomposes a SPARQL

query into a set of triple patterns. For the query in Fig-

ure 2, the triple patterns are {?X memberOf X-Lab}, {?X

type Professor} and {?X teacherOf ?Y}. For each triple

pattern, it generates a temporary query table with bind-

ings by scanning the triple store. In the Join phase, the

query tables are joined to produce the final query results.

Some prior work [54] has summarized the inherent

limitations of triple-store based approach. First, triple

stores rely excessively on costly join operations, espe-

cially for distributed merge/hash-join. Second, the scan-

join approach may generate large redundant intermediate

results. Finally, while using redundant six primary SPO4

4S, P and O stand for subject, predicate and object accordingly.

SELECT ?X ?Y ?Z WHERE {
?X teacherOf ?Y .
?Z takesCourse ?Y .
?Z advisor ?X .

}
OS

tc

to

ad

Logan

Marie

ad
tc

?X
?Y

to

?Z

SPARQL Graph Results

Fig. 3: A SPARQL query (Q2) on sample RDF graph.

permutation indexes [49] can accelerate scan operations,

such indexes lead to heavy memory pressure.

Graph store and graph exploration: Instead of join-

ing query tables, Trinity.RDF [49] stores RDF data in a

native graph model on top of a distributed in-memory

key/value store, and leverages fast graph-exploration

strategy for query processing. It further adopts one-step

pruning (i.e., the constraint in the immediately prior step)

to reduce the intermediate results. As an example, con-

sidering Q1 in Figure 2 over the data in Figure 1, after

exploring the type of Professor for each member of X-

Lab with respect to the data in Figure 1, we find that the

possible binding for ?X is only Erik and Logan, and the

rest of members are pruned.

However, the graph exploration in Trinity.RDF relies

on a final centralized join to filter out non-matching re-

sults. For example, the query Q2 in Figure 3 asks for ad-

visors (?X), courses (?Y) and students (?Z) such that the

advisor advises (ad) the student who also takes a course

(tc) taught by (to) the advisor. After exploring all three

triple patterns in Q2 with respect to the data in Figure 1,

the non-matching bindings, namely, Logan
−→
to OS, OS

←−
tc

Raven and Raven
−→
ad Erik will not be pruned until a final

join. Prior work [21, 37] indicates that the final join is

a potential bottleneck, especially for queries with cycles

and/or large intermediate results.

2.3 RDMA and Its Characteristics

Remote Direct Memory Access (RDMA) is a cross-node

memory access technique with low-latency and low CPU

overhead, due to complete bypassing of target OS ker-

nel and/or CPU. RDMA provides both two-sided mes-

sage passing interfaces like SEND/RECV Verbs as well

as one-sided operations such as READ, WRITE and

two atomic operations (fetch-and-add and compare-and-

swap). As noted in prior work [30, 16, 48], one-sided

operations are usually less disruptive than its two-sided

counterparts due to no CPU involvement to the target

machine. To minimize interference among multiple ma-

chines during query processing, we focus on one-sided

RDMA operations in this paper. However, it should be

straightforward to use two-sided RDMA operations in

Wukong as well.

Figure 4(a) shows the throughput (in Kbps) of dif-

ferent communication primitives. RDMA undoubtedly

achieves the highest throughput for all payload sizes,

while the throughput of TCP/IP over IPoIB (IP over In-

finiBand) or 10GbE approaches that of one-sided RDMA

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 319

10
4

10
5

10
6

10
7

10
8

10
9

16 256 4K 64K 1M

T
h
ro

u
g
h
p
u
t
(K

b
p
s
)

Size of Payload (Bytes)

RDMA

IPoIB

10GbE

10
2

10
3

10
4

10
5

 1

 10

16 256 4K 64K 1M

L
a
te

n
c
y
 (

µ
s
)

Size of Payload (Bytes)

RDMA

IPoIB

10GbE

Fig. 4: (a) The throughput and (b) the latency of random

reads using one-sided RDMA and TCP/IP with the increase

of payload sizes.

with the increase of payload sizes. For payload sizes

larger than 4K bytes, the difference is limited to 4 times.

In contrast, the gap of roundtrip latencies is always more

than an order-of-magnitude, as shown in Figure 4(b).

Therefore, it is imperative to leverage one-sided RDMA

operations (i.e., READ and WRITE) to boost latency-

oriented query processing. Further, an interesting feature

is that the latency of RDMA is relatively insensitive to

payload sizes, because small-sized requests cannot satu-

rate the high-bandwidth network card5. For example, the

latency only increases slightly (from 1.56µs to 2.25µs)

even if the payload size increases 256X (from 8 bytes to

2K bytes).

3 Overview

Setting: Wukong assumes a cluster that is connected

with a high-speed, low-latency network with RDMA fea-

tures. Wukong targets SPARQL queries over a large vol-

ume of RDF data; it scales by partitioning an RDF graph

into a large number of shards across multiple machines.

Wukong may duplicate edges to make sure each ma-

chine contains a self-contained subgraph (e.g., no dan-

gling edges) of the input RDF graph, for better locality.

Wukong also creates index vertices to assist queries. In

each machine, Wukong employs a worker-thread model

by running n worker threads atop n cores; each worker

thread executes a query at a time.

Architecture: An overview of Wukong’s architecture

is shown in Figure 5. Wukong follows a decentralized

model on the server side, where each machine can di-

rectly serve clients’ requests. Each client6 contains a

client library that parses SPARQL queries into a set of

stored procedures, which are sent to the server side to

handle the request. Alternatively, Wukong can also use a

set of dedicated proxies to run the client-side library and

balance client requests. Some sophisticated mechanisms

like congestion control [57] and load balancing [36] can

also be implemented at the proxy, which are beyond the

scope of this paper. Moreover, to avoid sending and

storing long strings and thus save network bandwidth

5Note that this features also applies to other communication primi-

tives (e.g., TCP/IP over IPoIB or 10GbE).
6The client may be not the end user but the front-end of Web service.

Fig. 5: The architecture overview of Wukong.

and memory consumption, each string is first converted

into a unique ID by the string server, similar to prior

work [54, 21].

Each server consists of two separate layers: query en-

gine and graph store. The query engine layer binds a

worker thread on each core with a logical task queue

to continuously handle requests from clients or other

servers. The graph store layer adopts an RDMA-friendly

key/value store over distributed hashtable to support a

partitioned global address space. Each machine stores

a partition of the RDF graph, which is shared by all of

worker threads on the same machine.

Query processing: Wukong is designed to provide

low-latency to multiple concurrent queries from clients.

The client or the proxy decides which server a request

will be first sent to according to the request types. For

a query starting with a constant vertex, Wukong sends

the request to the server holding the vertex. For a query

starting with a set of vertices with a specific type or pred-

icate, Wukong then sends the request to all replicas of the

corresponding index vertex.

Wukong parses a query into an operator tree, the same

as other systems. Each query may be represented as a

chain of sub-queries. Each machine handles a sub-query

and then dispatches the remaining sub-queries to other

machines when necessary. A sub-query will be pushed

into the task queue to be scheduled and executed asyn-

chronously.

4 Graph-based RDF Data Modeling

This section provides a detailed description of the graph

indexing, partitioning and storing strategies employed by

Wukong, which are the basis to sequentially and concur-

rently process SPARQL queries on RDF data.

4.1 Graph Model and Indexes

Wukong uses a directed graph to model and store RDF

data, where each vertex corresponds to an entity in an

RDF triple (subject or object) and each edge is labeled

as a predicate and points from subjects to objects. As

SPARQL queries may rely on retrieving a set of subject-

s/object vertices connected by edges with certain pred-

icates, we provide two kinds of index vertices to assist

320 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Prof
ty

ty
ty Logan

Steve
to

OS to
Erik

Logan

to

DS

Erik
ty:type

to:teacherOf

Prof:Professor

Fig. 6: Two types of index vertex of Wukong.

such queries, as shown in Figure 6. To avoid confusion,

we use the normal vertex to refer to subjects and objects.

For the query pattern with a certain predicate, like {?Y

teacherOf ?Z} (see Q2 in Figure 3), we propose the pred-

icate index (P-idx) to maintain all subjects and objects

labeled with the particular predicate using its in and out

edges respectively. The index vertex essentially serves as

an inverted index from the predicate to the corresponding

subjects or objects. For example, in Figure 6, a predicate

index teacherOf (to) links to all normal vertices whose

in-edges (DS and OS) or out-edges (Erik and Logan) con-

tain the label to. This corresponds to the PSO and POS

indexes in the triple store approaches.

Further, the special predicate type (ty) is used to group

a set of subjects that belong to a certain type, like {?X

type Prof} (see Q1 in Figure 2). Therefore, we treat the

objects of such predicate as the type index (T-idx), in-

stead of providing a uniform but useless predicate index

type to link all objects and subjects. For example, a type

index Prof in Figure 6(b) maintains all normal vertices

which are of the type of professors.

Unlike prior graph-based approaches that manage in-

dexes using separate data structures, Wukong treats in-

dexes as essential parts (vertices and edges) of an RDF

graph and also takes into consideration the partitioning

and storing of such indexes. This has two benefits. First,

this eases query processing using graph exploration such

that the graph exploration can directly start from an in-

dex vertex. Second, this makes it easy and efficient to

distribute the indexes among multiple servers, as shown

in the following sections.

4.2 Differentiated Graph Partitioning

One key step of supporting distributed query is partition-

ing a graph among multiple machines, while still pre-

serving good access locality and enabling parallelism.

We observe that complex queries usually involve a large

number of vertices through a certain predicate or type,

which should be executed on multiple machines to ex-

ploit parallelism.

Inspired by PowerLyra [13], Wukong adopts differen-

tiated partitioning algorithms to normal and index ver-

tices. One difference is that unlike PowerLyra, Wukong

does not use the degrees to differentiate vertices, because

an RDF query only navigates through a vertex and then

routes to only a portion of its neighbors. Therefore,

unlike graph analytics, a high-degree vertex in skewed

X-Lab OS

MarieLogan

Bobby

admo to tc

R P S C

Steve DS

KurtErik

Raven

admo to tc

P S C
ty

ty
ty

ty
ty ty

ty
ty

ty
ty

R:R-Group P:Professor S:Student C:course

ty:type mo:memberOf ad:advisor to:teacherOf tc:takesCourse

T-idx

P-idx

normal

Fig. 7: A hybrid graph partitioning on two servers.

graphs does not necessarily incur significant imbalance

for query processing, and it can be handled by fork-join

execution appropriately (§ 5.3).

As shown in Figure 7, each normal vertex (e.g., DS)

will be randomly assigned (i.e., by hashing the vertex

ID) to only one machine with all of its edges (IDs of

neighbors). Note that the edges linked to predicate index

(i.e., dotted arrows) will not be included in the edge list

of normal vertices, since there is no need to find a pred-

icate index vertex via normal vertices and this can save

plenty of memory. Different from a normal vertex, each

index vertex (e.g., takesCourse and Course) will be split

and replicated to multiple machines with edges linked to

normal vertices on the same machine. This naturally dis-

tributes the indexes and their load among each machine.

4.3 RDMA-friendly Predicate-based Store

Similar to Trinity.RDF [54], Wukong uses a distributed

key/value store to physically store the graph. However,

unlike prior work that simply uses vertex ID (vid) as

the key, and the in and out edge list (each element is

a 〈predicate,vid〉 pair) as the value, Wukong uses a

combination of the vertex ID (vid), predicate/type ID

(p/tid) and in/out direction (d) as the key (in the form of

〈vid, p/tid,d〉), and the list of neighboring vertex IDs or

predicate/type IDs as the value. The main observation is

that an SPARQL query is usually concerned with query-

ing upon partial neighboring vertices satisfying a partic-

ular predicate (e.g., X predicate ?Y). Therefore, missing

the predicate and direction information in the key would

lead to plenty of unnecessary computation cost and net-

working traffic. The finer-grained vertex decomposition

using predicates also makes it possible to build local

predicate indexing, which corresponds to the PSO and

POS indexes in triple store approaches.

To uniformly store normal and index vertices and

adapt differentiated partitioning strategies, Wukong sep-

arates the ID mapping for vertex ID (vid) and predicate/-

type ID (p/tid). The ID 0 of vid (INDEX) is reserved for

the index vertex, while the ID 0 and 1 of p/tid are re-

served for the predicate and type indexes respectively.

Figure 8 illustrates part of detailed cases on the sample

graph. The key of normal vertex starts from a nonzero vid

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 321

p/tid

vid

Key:�vid|p/tid|d� Value:�v/p/tid�

0|6|0 1,2

0 INDEX
1 Steve
2 Erik
3 Raven
4 Kurt
5 DS
6 X-Lab
7 Logan
8 Bobby
9 Marie

10 OS

0 pred
1 ty
2 ad
3 to
4 tc
5 mo
6 Prof
7 Std
8 Crs
9 R-Grp

2|0|1 1,3,5

0|5|0 2,3,4

2|1|1 6

0 in
1 out

0|6|0 7

7|1|1 6

3,9

T-idx

P-idx

normal

0|5|0 7,8,9

2|5|1 6

10|0|0 4

10|4|0

Fig. 8: The design of predicate-based key/value store.

and relies on p/tid to distinguish different meanings of the

value. The p/tid ID 0 and 1 represent the value as a list of

predicate IDs and a type ID for the vertex respectively;

otherwise the value is a list of normal vertices linked to

the normal vertex with a certain predicate (p/tid). For ex-

ample, the predicates labeled on out-edges of vertex Erik

is represented as the key 〈2|0|1〉, and the value 〈1,3,5〉
means type, teacherOf and memberOf. While the type

of vertex Erik is represented as the key 〈2|1|1〉, and the

value 〈6〉 means Professor. The key of an index vertex

always starts from a zero vid, and linked to a list of local

normal vertices. For example, all subjects of the predi-

cate memberOf on Server 0 (Erik, Raven and Kurt) and

Server 1 (Logan, Bobby and Marie) are stored with the

same key 〈0|5|0〉 but on different servers.

Finally, due to the goal of leveraging the advanced

networking features such as RDMA, Wukong is built

upon an RDMA-friendly distributed hashtable derived

from DrTM-KV [48] and thus enjoys its nice features

like RDMA-friendly cluster hashing and location-based

cache. However, as the key/value store in Wukong is

designed for query processing instead of transaction pro-

cessing, we notably simplify the design by removing un-

necessary metadata for checking consistency and sup-

porting transactions. Likewise, other symmetric RDMA-

friendly stores [16] can also work with Wukong to store

RDF graph and support query processing (§5).

5 Query Processing

5.1 Basic Query Processing

An RDF query can be represented as a subgraph with

free variables (i.e., not bound to specific subjects/ob-

jects yet). The goal of the query is to find bindings of

specific subjects/objects to the free variables while re-

specting the subgraph pattern. However, it is well-known

that using subgraph matching would be very costly due

to the frequent yet costly joins [54]. Hence, like prior

work [54], Wukong leverages graph exploration by walk-

ing the graph in specific orders according to each edge of

the subgraph.

There are several cases for each edge in a graph query,

depending on whether the subject, the predicate or the

object is a free variable. For the common cases where the

predicate is known but the subject/object are free vari-

to

to

to

to

H:Erik to H:Logan to
Erik Logan

H:Erik to DS
DS OS

Kurt Raven

H:Logan to OS

H:Erik to DS
tc Kurt

H:Logan to OS tc Raven
Logan to OS tc Marie

tc tctc

ad

Erik
Logan

ad

Marie

Logan to OS tc
Marie ad Logan

Raven

ad
Logan to OS tc
Raven ad Erik

INDEX|to Erik

Erik|to DS

DS|tc Kurt

Raven|ad Erik

INDEX|to Logan

Logan|to OS

OS|tc Raven,Marie

Marie|ad Logan

Fig. 9: A sample of execution flow on Wukong. The blue

label H: shows the full history.

ables, Wukong can leverage the predicate index to begin

the graph exploration. Take Q2 in Figure 3 as an exam-

ple, which aims at querying advisors, courses and stu-

dents such that the advisor advises the student who also

takes a course taught by the advisor. The query forms a

cyclic subgraph containing three free variables. Wukong

chooses an order of exploration according to a cost-based

approach with some heuristics.

As shown in Figure 9, Wukong starts exploration from

the teacherOf predicate (to). Since Wukong extends the

graph with predicate indexes, it can start exploration

from the index vertex for teacherOf in each machine in

parallel, whose neighbors contain Erik and Logan in each

server accordingly. In Step2, Wukong combines Erik and

Logan with teacherOf to form the key to get the corre-

sponding courses, which are {Erik
−→
to DS} and {Logan

−→
to

OS} accordingly. In Step3, Wukong continues to explore

the graph from the course vertex for each tuple in parallel

and tries to get all students that take the course. Thanks

to the differentiated graph partitioning, there is no com-

munication through Step1-3. In Step4, Wukong lever-

ages the constraint information to filter out non-matching

results to get the final result.

For (rare) cases where the predicate is unknown,

Wukong starts graph exploration from a constant vertex

(in cases where either subject or object is known) with a

reserved p/tid 0 (pred). The value is the list of predicates

associated with the vertex, and then Wukong iterates over

them one by one. The remaining process is similar to

those described above.

5.2 Full-history Pruning

Note that there could be tuples that should be filtered out

during the graph exploration. For example, since there

is no expected advisor predicate (ad) for Kurt, the re-

lated tuples should be filtered out to minimize redundant

computation and communication. Further, in Step 4, as

Raven’s advisor is Erik instead of Logan, the graph ex-

ploration path also should be pruned as well.

Prior graph-exploration strategies [54] usually use a

one-step pruning approach by leveraging the constraint

322 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

in the immediately prior step to filter out unnecessary

data (e.g., only DS and OS in Step 3). In the final step,

it leverages a single machine to aggregate and conduct a

final join over the results to filter out non-matching re-

sults. However, recent study [21, 37] found that, the final

join can easily become the bottleneck of a query since all

results need to be aggregated into a single machine for

joining. Our experiment on LUBM [3] shows that some

query spends more than 90% of execution time on the

final join (details in §7.3).

Instead, Wukong adopts a full-history pruning ap-

proach such that Wukong passes the full exploration his-

tory to the next step within or across machines. The main

observation is that, the cost of RDMA operations is in-

sensitive to the payload size when it is smaller than a cer-

tain size (e.g., 2K bytes). Besides, the steps and variables

in an RDF query are usually not many (i.e., less than

10), and each history item only contains subject/objec-

t/predicate IDs. Thus there won’t be too much informa-

tion carried even for the final few steps. Consequently,

the cost remains low even passing more history informa-

tion across machines. Further, improving the locality of

graph exploration can also avoid additional network traf-

fic from the full-history pruning.

As shown in Figure 9, Wukong passes {Erik
−→
to}, {Erik

−→
to DS} and {Erik

−→
to DS

←−
tc Kurt} locally on Server 0

in each step; Kurt can be simply pruned without using

history information due to no expected predicate (ad).

Server 0 can leverage the full history ({Logan
−→
to OS

←−
tc

Raven}) from Server 1 to prune Raven as Raven’s advi-

sor is not Logan.

As Wukong has the full history during graph explo-

ration, there is no need of a final join to filter out non-

matching results. Though it appears that Wukong may

bring additional network traffic when fetching cross-

machine history, the fact that Wukong can prune non-

matching results early may save network traffic as well.

For example, the query L1 on LUBM-10240 can bene-

fit from early pruning to save about 96% network traffic

(462MB vs. 18MB). Besides, many query histories are

passed within a single machine and thus do not cause

additional network traffic. In case the full history size

is excessively large, Wukong can adaptively fall back to

one-step pruning for the sub-query. However, we did not

encounter such a case during our evaluation.

5.3 Migrating Execution or Data

During the graph exploration process, there will be dif-

ferent tradeoffs on whether migrating data or execution.

Wukong provides in-place and fork-join executions ac-

cordingly. For a query step, if only a few vertices need

to be fetched from remote machines, Wukong uses in-

place execution mode that synchronously leverages one-

sided RDMA READ to directly fetch vertices from re-

Fig. 10: A sample of (a) in-place and (b) fork-join execution.

mote machines, as shown in Figure 10(a). Using one-

sided RDMA READ can enjoy the benefit of bypassing

remote CPU and OS. For example, in Figure 9, Server 1

can directly read the advisor of Raven (i.e., Erik) by one

RDMA READ, and locally generate ({Logan
−→
to OS

←−
tc

Raven
−→
ad Erik}).

For a query step, if many vertices may be fetched,

Wukong leverages a fork-join execution mode that

asynchronously splits the following query computation

into multiple sub-queries running on remote machines.

Wukong leverages one-sided RDMA WRITE to directly

push a sub-query with full history into the task queue of

a remote machine, as shown in Figure 10(b). This can

also be done without bothering remote CPU and OS. For

example, in Figure 9, Server 1 can send a sub-query with

the full history ({Logan
−→
to OS

←−
tc Raven}) to Server 0.

Server 0 will locally execute the sub-query to generate

({Logan
−→
to OS

←−
tc Raven

−→
ad Erik}). Note that, depend-

ing on the sub-query, the target machine may further do a

fork-join operation to remote machines, forming a query

tree. Each fork point then joins its forked sub-queries and

returns the results to the parent fork point. In addition,

all of sub-queries will be executed asynchronously with-

out any global barrier and communication among worker

threads. Even if two sub-queries access the same vertex,

they are still independent due to working on different ex-

ploration paths.

Since the cost of RDMA operations is insensitive to

the size of the payload, for each query step, Wukong de-

cides on the execution mode at runtime according to the

number of RDMA operations (|N|) for the next step. for

the fork-join mode, |N| is twice the number of servers;

for the in-place mode, |N| is equal to the number of

required vertices. Each server will decide individually.

Wukong simply uses a heuristic threshold according to

the setting of cluster. Further, some vertices have a sig-

nificant large number of edges with the same predicate,

resulting in slower RDMA READ due to oversized pay-

load. Wukong can label such vertices associated with

the predicate to force the use of the fork-join mode when

partitioning the RDF graph.

5.4 Concurrent Query Processing

Depending on the complexity and selectivity, the la-

tency (i.e., execution time) of a query may vary signifi-

cantly. For example, the latency differences among seven

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 323

1 int next = 1

OBLIGER()
2 s = state[(tid+next)%N]

3 q = NULL

4 s.lock()

5 if (s.cur == tid //reentry

6 || s.end < now)

7 s.cur = tid;

8 s.end = now + T

9 next++

10 q = s.dequeue()

11 s.unlock()

12 return q

SELF()
13 s = state[tid]

14 s.lock()

15 s.cur = tid

16 s.end = now + T

17 next = 1

18 q = s.dequeue()

19 s.unclock()

20 return q

NEXT_QUERY()
21 if (q = OBLIGER())

22 return q

23 return SELF()

Fig. 11: The pseudo-code of worker-obliger algorithm.

queries in LUBM [3] can reach around 3,000X (0.17ms

and 516ms for L5 and L1 queries accordingly). Hence,

dedicating an entire cluster for a single query, as done in

prior approaches [54, 21], is not cost-effective.

Wukong is designed to handle a massive number of

queries concurrently while trying to parallelize a single

query to reduce the query latency. The difficulty is that,

given the significantly varied query latencies, how to

minimize inter-query interference while providing good

utilization of resources, e.g., a lengthy query should not

significantly extend the latency of a fast query.

The online sub-query decomposition and the dynamic

execution mode switching serve as a keystone to support

massive queries in parallel. Specifically, Wukong uses a

private FIFO queue to schedule queries for each worker

thread, which works well for small queries. However, if

there is a lengthy query, it will monopolize the worker

thread and impose queuing delays on the execution of

small waiting queries. This will incur much higher la-

tency than necessary. Worse even, a lengthy query with

multi-threading enabled (Section 6) may monopolize the

entire cluster.

The work stealing mechanism [10] is widely used to

provide load balance in parallel systems, which allows

tasks can be stolen from any queue of worker threads.

However, the traditional algorithm is inefficient as the

stolen tasks in Wukong are mostly sub-millisecond la-

tency queries. Further, the unrestricted stealing among

all workers may incur large overhead due to high con-

tention.

To this end, Wukong uses a worker-obliger work steal-

ing algorithm for multiple workers on each machine, as

shown in Figure 11. Each worker is designated to oblige

next few neighboring workers in case they are busy with

processing a lengthy (sub-)query. After finishing a (sub-

)query, a worker first checks a neighboring worker in turn

if its (sub-)query has a timeout (i.e., s.end < now).

If so, that worker might be handling a lengthy query

and thus its following up queries may be delayed. In

this case, this obliging worker steals one query from that

worker’s queue to process. After obliging its neighbor-

ing workers (until seeing a non-busy one), the worker

Fig. 12: The logical task queue in Wukong.

will then continue to handle its own queries by dequeu-

ing from its own worker queue.

Note that, when all workers can handle their queries

within a time threshold (i.e., T), each worker only needs

to handle queries in its own queue. The checking

code is also very lightweight and the state lock (i.e.,

s.lock()) won’t be contended as there will only at

most two workers (i.e., SELF and OBLIGER) may try to

acquire the lock in usual. It could be possible that an

obliger get stucked in handling a lengthy query for oth-

ers; in this case, another worker may oblige this worker

similarly.

6 Implementation

The Wukong prototype comprises around 6,000 lines of

C++ code. It currently runs atop an RDMA-capable clus-

ter. This section describes some implementation issues.

Task queues Wukong binds a worker thread on each

core with a logical private task queue, which is used by

both clients and worker threads on other servers to sub-

mit (sub-)queries. Wukong leverages RDMA operations

(especially one-sided RDMA) to accelerate the commu-

nication among worker threads; however, the clients may

still connect servers using general interconnects.

The logical queue per thread in Wukong consists of

one client queue (Client-Q) and multiple server queues

(Server-Q). For the client queue, Wukong follows tradi-

tional concurrent queue to serve the queries from many

clients. But due to the lack of expressiveness of one-

sided RDMA operations, implementing RDMA-based

concurrent queue may incur large overhead. On the con-

trary, using separate task queues for each worker threads

of each remote machine may exponentially increase the

number of queues. Fortunately, we observe that there is

no need to allow all worker threads on a remote machine

sending queries to all local worker threads. To remedy

this, Wukong only provides a one-to-one mapping be-

tween the work threads on different machines, as shown

in Figure 12. This can avoid not only the burst of task

queues but also complicated concurrent mechanisms.

Launching query To launch a query, the start point of

a query can be a normal vertex (e.g., {?X memberOf X-

Lab}) or a predicate or type index (e.g., {?X teacherOf

?Y}). Since the index vertex is replicated to multiple

servers, Wukong allows the client library to send the

same query to all servers such that the query can be dis-

324 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

S1

S0

IM
vid|p/tid|d

v0key v1

sn|offset

add-triple

wait-query

write-v

inc-csn

start(csn:X)

allocated

free

value-region

ptr

X X+1

sn|cnt

sn|cnt

sn

cnt_v0

cnt_v1

csn

Fig. 13: The extension of graph store and the execution flow

of injection for evolving RDF graphs.

tributed from the beginning. However, distributed ex-

ecution may not be worthwhile for a low-degree index

vertex. Therefore, Wukong will decide whether repli-

cas of an index vertex need to process the query or not

when partitioning the RDF graph. For low-degree index

vertices, the master will process the query alone by ag-

gregating data from replicas through one-sided RDMA

READ, and the replicas will simply discard queries. For

high-degree index vertices, both the master and replicas

will individually process the query on local graph.

Multi-threading By default, Wukong processes a

(sub-)query using only a single thread on each server.

To reduce latency of a query, Wukong also allows run-

ning a time-consuming query with multiple threads on

each server, at the requests of the client. A worker thread

received the multi-threaded (MT) query will invite other

worker threads on the same server to process the query

in parallel. Wukong adopts a data-parallel approach to

automatically parallelize the query after the first graph

exploration. Each worker thread will individually pro-

cess the query on a part of subgraph. Note that the max-

imum number of participants for a query is claimed by

the client, but finally restricted by the MT threshold of

the server.

Evolving graph While most prior RDF stores only

support read-only queries, Wukong is also built with pre-

liminary support to incrementally update the graph with

concurrent queries. New triples will be periodically in-

gested to the RDF store, and all queries will run a con-

sistent snapshot. Figure 13 illustrates three extensions to

Wukong to support incremental update.

RDF Store. To support the dynamic increase of value,

Wukong provides a buddy memory allocator. When the

value space is full, the allocator will find a free value

with double capacity, copy all data of the old value to

the new one, and replace the pointer of the key using

an atomic instruction. Further, to provide a consistent

snapshot to above queries, each key should be extended

with two versions (v0 and v1) that consist of its snapshot

number and the offset within its value. The left part of

Figure 13 illustrate the extension of RDF store.

Query processing. On each machine, there are two

global reference counters (cnt v0 and cnt v1) to record

Table 1: A collection of real-life and synthetic datasets.

Dataset #Triples #Subjects #Objects #Predicates

LUBM-10240 1,410 M 222 M 165 M 17

WSDTS 109 M 5.2 M 9.8 M 86

DBPSB 15 M 0.3 M 5.2 M 14,128

YAGO2 190 M 10.5 M 54.0 M 99

the number of outstanding queries on two latest snap-

shots, and a current snapshot number (csn). Each query

will first read the current snapshot number, and actively

increase and decrease the corresponding counter before

and after execution. The snapshot number of a query will

be used to fetch a consistent version of all values and be

inherited by all of its sub-queries.

RDF data injection. The added RDF triples in the new

graph will be locally injected into all servers, which is

coordinated by a single injection master (IM). Wukong

performs the injection by executing the following steps.

First, all triples are added in the background and remain

invisible to concurrent queries. Meanwhile, all outstand-

ing queries on the older snapshot (between v0 and v1)

should be completed in advance. After they are done,

each server will safely overwrite the older version within

the keys by the new one and notify IM. When all servers

are ready, IM will finally ask all servers to finish the

injection of the new snapshot by atomically increasing

the current snapshot number (csn) and the older global

counter (between cnt v0 and cnt v1). The right part of

Figure 13 shows the execution flow of the injection of

the snapshot X+1 on two servers (S0 and S1).

7 Evaluation

7.1 Experimental Setup

Hardware configuration: All evaluations were con-

ducted on a rack-scale cluster with 6 machines. Each ma-

chine has two 10-core Intel Xeon E5-2650 v3 processors

and 64GB of DRAM. Each machine is equipped with

two ConnectX-3 MCX353A 56Gbps InfiniBand NICs

via PCIe 3.0 x8 connected to a Mellanox IS5025 40Gbps

IB Switch, and an Intel X520 10GbE NIC connected

to a Force10 S4810P 10GbE Switch. All machines run

Ubuntu 14.04 with Mellanox OFED v3.0-2.0.1 stack.

In all experiments, we reserve two cores on each pro-

cessor to generate requests for all machines to avoid

the impact of networking between clients and servers as

done in prior OLTP work [48, 17, 47, 46]. For a fair

comparison, we measure the query execution time by ex-

cluding the cost of literal/ID mapping. All experimental

results are the average of five runs.

Benchmarks: We use two synthetic and two real-life

datasets, as shown in Table 1. The synthetic datasets are

the Leigh University Benchmark (LUBM) [3] and the

Waterloo SPARQL Diversity Test Suite (WSDTS) [5].

For LUBM, we generate 5 datasets with different sizes

using the generator v1.7 in NT format. For queries, we

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 325

Table 2: The query performance (msec) on a single machine.

LUBM

2560
Wukong TriAD

TriAD-SG RDF-3X BitMat

(50K) (mem) (mem)

L1 752 621 3,315 2.3E5 abort

L2 120 149 221 4,494 36,256

L3 306 316 3,101 3,675 752

L4 0.19 3.38 3.34 2.2 55,451

L5 0.11 2.34 1.36 1.0 52

L6 0.56 20.7 6.06 37.5 487

L7 671 2,176 2,753 9,927 19,323

Geo. M 15.7 72.3 108 441 –

Table 3: The query performance (msec) on a 6-node cluster.

LUBM

10240
Wukong TriAD

TriAD-SG Trinity
SHARD

(200K) .RDF

L1 516 2,110 1,422 12,648 19.7E6

L2 78 512 695 6,081 4.4E6

L3 203 1,252 1,225 8,735 12.9E6

L4 0.41 3.4 3.9 5 10.6E6

L5 0.17 3.1 4.5 4 4.2E6

L6 0.89 63 4.6 9 8.7E6

L7 464 10,055 11,572 31,214 12.0E6

Geo. M 16 190 141 450 9.1E6

use the benchmark queries published in Atre et al. [9],

which were widely used by many distributed RDF sys-

tems [21, 54, 27]. WSDTS publishes a total of 20 queries

in four categories. The real-life datasets are the DBpe-

dia’s SPARQL Benchmark (DBPSB) [1] and YAGO2 [6,

22]. For DBPSB, we choose 5 queries provided by its

official website. YAGO2 is a semantic knowledge base,

derived from Wikipedia, WordNet and GeoNames. We

follow the queries defined in H2RDF+ [37].

Comparing targets: We compare the query perfor-

mance of Wukong against several state-of-the-art sys-

tems. 1) centralized systems: RDF-3X [33] and Bit-

Mat [9]; 2) distributed systems: TriAD [21], Trin-

ity.RDF [54] and SHARD [40]. Since Trinity.RDF is

not publicly available and TriAD reported superior per-

formance over it, we only directly compare the results

published in their paper [54] with the same workload.

Except Wukong, all systems run over InfiniBand using

IPoIB. We also enable string server for all systems to

save memory consumption, reduce network bandwidth,

and boost string matching.

7.2 Single Query Performance

We first study the performance of Wukong for a single

query using the LUBM dataset.

For a fair comparison to centralized systems, we run

Wukong and TriAD on a single machine and report the

in-memory performance of RDF-3X and BitMat. As

shown in Table 27, Wukong has significantly outper-

formed RDF-3X and BitMat by several orders of mag-

nitude, due to fast graph exploration for simple queries

and efficient multi-threading for complex queries. Note

that L3 has an empty final result even with huge interme-

diate results and thus there is no significant performance

7LUBM-2560 is used due to limited main memory of a single machine, where

the average (geometric mean) latency of Wukong on 6 machines is 7.5 msec.

difference between Wukong and BitMat. TriAD also en-

ables multi-threading and provides similar performance

compared to Wukong for large (non-selective) queries.

However, for small (selective) queries, Wukong is still at

least an order-of-magnitude faster than TriAD due to the

fast graph exploration, even without the optimizations

aiming at distributed environment.

We further compare Wukong with distributed systems

with multi-threading enabled using LUBM-10240 in Ta-

ble 3. For small queries (L4, L5 and L6), Wukong out-

performs TriAD by up to 70.6X (from 8.4X) mainly due

to the in-place execution with one-sided RDMA READ.

For large queries (L1, L2, L3 and L7), Wukong still out-

performs TriAD by up to 21.7X (from 4.1X), thanks to

the fast graph exploration with indexing vertex and full-

history pruning. The join-ahead pruning with summary

graph (SG) improves the performance of TriAD, espe-

cially for L1 and L6, while Wukong still outperforms

the average (geometric mean) latency of TriAD-SG by

9.0X (ranging from 2.8X to 26.6X). Compared to Trin-

ity.RDF, which also uses graph-exploration strategy, the

improvement of Wukong is at least one order of mag-

nitude (from 10.1X to 78.0X), thanks to the full-history

pruning that avoids redundant computation and commu-

nication as well as the time-consuming final join. Note

that the result of Trinity.RDF is evaluated on a cluster

with similar interconnects and twice the number of ma-

chines. SHARD is several orders of magnitude slower

than other systems since it randomly partitions the RDF

data and employs Hadoop as a communication layer for

handling queries.

Table 4: The query latency (msec) of Wukong on evolving

LUBM with 1 million triples/second ingestion rate.

LUBM-10240 L1 L2 L3 L4 L5 L6 L7

Wukong 587 87 222 0.43 0.18 0.95 516

Overhead (%) 12.0 10.3 8.6 4.7 5.6 6.3 10.1

Evolving RDF Graphs: To investigate the perfor-

mance of Wukong on a continually growing graph, we

ingest triples to the LUBM-10240 with the rate of 1

million triples per second on our 6-node cluster, while

simultaneously handling queries. Currently, Wukong

adopts a queries-friendly design, which minimizes the

impact on query processing. The main overhead is from

the versioning read. As shown in Table 4, the perfor-

mance overhead of latency is only about 10.3% and 5.5%

for large (L1, L2, L3 and L7) and small (L4, L5 and L6)

queries respectively, depending on the number of data

accessing.

7.3 Factor Analysis of Improvement

To study the impact of each design decision and how

they affect the query performance, we iteratively enable

each optimization and collect the query latency using the

LUBM-10240 dataset, as shown in Table 5:

326 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 5: The contribution of optimizations to query latency

(msec) of Wukong. Optimizations are cumulative.

LUBM

10240
BASE +RDMA +FHP +IDX +PBS +DYN

L1 9,766 9,705 888 853 814 516

L2 2,272 2,161 1,559 84 79 78

L3 421 404 404 205 203 203

L4 1.49 0.79 0.78 0.78 0.56 0.41

L5 1.00 0.39 0.39 0.39 0.31 0.17

L6 3.84 1.40 1.37 1.37 1.17 0.89

L7 2,176 2,041 657 494 466 464

Geo. M 102.3 69.1 39.6 22.6 19.9 15.7

• BASE: leverages graph-exploration strategy with

one-step pruning. The communication adopts

message passing over TCP/IP.

• +RDMA: uses one-sided RDMA operations to

improve the communication.

• +FHP: enables full-history pruning (§5.1 and 5.2).

• +IDX: adds two types of index vertex (§4.1) and

differentiated graph partitioning (§4.2).

• +PBS: leverages predicate-based finer-grained

vertex decomposition (§4.3).

• +DYN: supports in-place execution and dy-

namically switches between data migration and

execution distribution (§5.3).

Overall, all optimizations (+DYN) improves the av-

erage (geometric mean) latency by 6.5X over the basic

version (BASE). The basic version already outperforms

TriAD for small queries by leveraging graph exploration,

while having inferior performance for large queries due

to the overhead of the (expensive) final join operations.

Note that Wukong can detect the empty final result of L3

in early steps and thus avoid the final join.

Leveraging RDMA for communication (+RDMA)

improves the baseline performance slightly (ranging

from 1% to 7%) for large queries and about twice (rang-

ing from 1.9X to 2.7X) for small queries, depending on

the proportion of communication cost. By skipping the

costly final join, enabling full-history pruning (+FHP)

notably accelerates the non-selective queries. The index

vertex with differentiated partitioning (+IDX) can im-

prove the parallelism and reduce network traffic for large

queries launching from a set of entities (subject/object)

with a certain predicate or type, especially for L2. L2

collects a large number of entities (i.e., Courses) on each

machine, which can be avoided by decentralizing index

vertex. Using predicate-based graph store (+PBS) fur-

ther notably reduces the latency of small queries (rang-

ing from 1.2X to 1.4X), due to finer-grained vertex de-

composition by predicates. Finally, the in-place execu-

tion can bypass remote CPU and OS and avoid the over-

head of task scheduling by leveraging one-sided RDMA

READ to fetch remote data. Therefore, the optimization

(+DYN) improves the performance by up to 1.8X.

Table 6: A comparison of query latency (msec) with different

execution modes.

LUBM

10240
L1 L2 L3 L4 L5 L6 L7

In-place 21,859 80 204 0.42 0.17 2.43 12,068

Fork-join 813 79 203 0.63 0.47 1.27 466

Dynamic 516 78 203 0.41 0.17 0.89 464

To further study the benefit of dynamic execution

mode switching in each step, we configure Wukong with

a fixed mechanism (i.e. in-place or fork-join). As shown

in Table 6, in-place mode is beneficial for L4 and L5,

while fork-join execution is beneficial for L7. In addi-

tion, L2 and L3 are not sensitive to the choice of execu-

tion modes. L1 and L6 are relatively special, in which

different steps require different modes for achieving op-

timal performance. Wukong can always choose the right

mode in runtime and thus outperform in-place and fork-

join mode alone by up to 42.3X and 2.8X. Note that the

poor performance of L1 and L7 with in-place mode is

caused by massive small-sized RDMA READs.

2
4

2
6

2
8

2
10

2
12

2
14

2
16

2
0

2
1

2
2

2
3

2
4

L
a
te

n
c
y
 (

m
s
e
c
)

Number of Threads

L1

L2

L3

L7

0.00

0.40

0.80

1.20

1.60

2
0

2
1

2
2

2
3

2
4

L
a
te

n
c
y
 (

m
s
e
c
)

Number of Threads

L4

L5

L6

Fig. 14: The latency of queries in group (I) and (II) with the

increase of threads on LUBM-10240.

7.4 Scalability

We evaluate the scalability of Wukong in three aspects by

scaling the number of threads, the number of machines,

and the size of dataset accordingly. We categorize seven

queries on LUBM dataset into two groups according to

the sizes of intermediate and final results as done in prior

work [54]. Group (I): L1, L2, L3, and L7; the results of

such queries increase with the growing of dataset. Group

(II): L4, L5, and L6; such queries are quite selective and

produce fixed-size results regardless of the data size.

Scale-up: We first study the performance impact of

multi-threading on LUBM-10240 using fixed 6 servers.

Figure 14 shows the latency of queries on a logarithmic

scale with the logarithmic increase of threads. For group

(I), the speedup of Wukong ranges from 9.9X to 14.3X

with the increase of threads from 1 to 16. For group

(II), since the queries just involve a small subgraph and

are not CPU-intensive, Wukong always adopts a single

thread for the query and provides a stable performance.

Scale-out: We also evaluated the scalability of

Wukong with respect to the number of servers. Note

that we omit the evaluation on a single server as LUBM-

10240 (amounting to 230GB in raw NT format) cannot

fit into memory. Figure 15(a) shows a linear speedup of

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 327

 0

 500

 1000

 1500

 2000

 2 3 4 5 6

L
a
te

n
c
y
 (

m
s
e
c
)

Number of Machines

L1

L2

L3

L7

0.00

0.40

0.80

1.20

1.60

 2 3 4 5 6

L
a
te

n
c
y
 (

m
s
e
c
)

Number of Machines

L4

L5

L6

Fig. 15: The latency of queries in group (I) and (II) with the

increase of machines on LUBM-10240.

2
0

2
2

2
4

2
6

2
8

2
10

2
2

2
4

2
6

2
8

2
10

L
a
te

n
c
y
 (

m
s
e
c
)

Size of Datasets [x10 Univ.]

L1

L2

L3

L7

0.00

0.40

0.80

1.20

1.60

2
2

2
4

2
6

2
8

2
10

L
a
te

n
c
y
 (

m
s
e
c
)

Size of Datasets [x10 Univ.]

L4

L5

L6

Fig. 16: The latency of queries in group (I) and (II) with the

increase of LUBM datasets (40-10240).

Wukong for group (I) ranging from 2.46X to 3.54X, with

the increase of servers from 2 to 6. It implies Wukong

can efficiently utilize the parallelism of a distributed sys-

tem by leveraging fork-join execution mode. For group

(II), since the intermediate and final results are relatively

small and fixed-size, using more machines does not im-

prove the performance as expected, but the performance

is still stable by using in-place execution to restrict the

network overhead.

Data size: We further evaluated Wukong with the in-

crease of dataset size from LUBM-40 to LUBM-10240

while keeping the number of threads and servers fixed.

As shown in Figure 16, for group (I), Wukong scales

quite well with the growing of dataset, due to efficiently

passing full history and the elimination of the final join.

For group (II), Wukong can achieve stable performance

regardless of the increasing dataset size, due to the in-

place execution with one-sided RDMA READ.

Wukong is a good practicer of the COST metric [29],

which pursues scalable parallelism for large queries and

efficient use of resources for small queries.

7.5 Throughput of Mixed Workloads

Unlike prior RDF stores [54, 21] that are only designed

to handle one query at a time, Wukong is also designed to

provide high throughput such that it can handle hundreds

of thousands of concurrent queries per second. There-

fore, we build emulated clients and a mixed workload

to study the behavior of RDF stores serving concurrent

queries.

For Wukong, each server runs up to 4 emulated clients

on dedicated cores. All clients will send as many queries

as possible periodically until the throughput saturated.

For TriAD8, a single client will send queries one by one

8We are not aware of open-sourced RDF systems supporting concurrent

10
2

10
3

10
4

10
5

10
6

10
7

 2 3 4 5 6

T
h
ro

u
g
h
p
u
t
(q

u
e
ry

/s
e
c
)

Number of Machines

Wukong

TriAD

1

20

40

60

80

100

 0.1 1 10 100 1000

C
D

F
 (

%
)

Latency (msec)

A1

A2

A3

L4

L5

L6

Fig. 17: (a) The throughput of a mixture of queries with the

increase of machines, and (b) the CDF of latency for 6 classes

of queries on 6 machines.

since it only can handle one query at a time.

We first use a mixture workload consisting of 6 classes

of queries9, all of which disable multi-threading. The

query in each class has a similar behavior except that the

start point is randomly selected from the same type of

vertices (e.g., Univ0, Univ1, etc.). The distribution of

query classes follows the reciprocal of their average la-

tency. As shown in Figure 17, Wukong achieves a peak

throughput of 269K queries/second on 6 machines (97K

queries/second on 2 machines), which is at least two

orders of magnitude higher than TriAD (from 278X to

740X). Under the peak throughput, the geometric mean

of 50th (median) and 99th percentile latency is just 0.80

and 5.90 milliseconds respectively.

 50

 100

 150

 200

 250

 300

[2]X[4] [3]X[4] [4]X[4] [5]X[4] [6]X[4]

T
h
ro

u
g
h
p
u
t
(K

 q
u
e
ry

/s
e
c
)

Number of (Logical) Nodes

Wukong

 50

 100

 150

 200

 250

 300

[6]X[1] [6]X[2] [6]X[3] [6]X[4]

T
h
ro

u
g
h
p
u
t
(K

 q
u
e
ry

/s
e
c
)

Number of (Logical) Nodes

Wukong

Fig. 18: The throughput of a mixture of queries with the

increase of logical nodes. The tick labels of x-axis are the

configuration, and the symbol of [m]X[n] corresponds with

#machines and #nodes/machine.

Scalability with logical nodes: To overcome the re-

striction of cluster size, we emulate a large cluster by

scaling the logical nodes on each machine and evaluate

the throughput of Wukong along with the increase of log-

ical nodes. Each logical node has 4 worker threads and

the interaction between logical nodes still uses one-sided

RDMA operations even on the same machine. As shown

in Figure 18, Wukong scales out to 24 nodes by both the

number of machines and the number of nodes per ma-

chine; the throughput reaches 282K queries per second.

Multi-threading query: To further study the impact

of enabling multi-threading (MT) for time-consuming

queries. We dedicate a client to continually send MT

query processing. On the other hand, existing graph databases or graph-analytics

systems have even worse performance compared to TriAD due to the lack of RDF

and SPARQL supporting.
9The templates of 6 classes of queries are based on group (II) queries (L4, L5,

and L6) and three additional queries (A1, A2, and A3) from the official LUBM

website (#1, #3, and #5).

328 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 50

 100

 150

 200

 250

 300

1 2 4 8 16

T
h
ro

u
g
h
p
u
t
(K

 q
u
e
ry

/s
e
c
)

Number of Threads

mixed workload

1 2 4 8 16
MT Threshold

w/ MT query

2
8

2
10

2
12

2
14

1 2 4 8 16

L
a
te

n
c
y
 (

m
s
e
c
)

MT Threshold

MT query

Fig. 19: (a) The throughput of a mixture of queries with the

increase of threads, (b) the throughput with multi-threaded

(MT) queries under various MT thresholds, and (c) the av-

erage latency of multi-threaded (MT) queries.

1

20

40

60

80

100

 0.1 1 10 100 1000

C
D

F
 (

%
)

Latency (msec)

A1
A2
A3
L4
L5
L6

1

20

40

60

80

100

 0.1 1 10 100 1000

C
D

F
 (

%
)

Latency (msec)

A1
A2
A3
L4
L5
L6

Fig. 20: The CDF of latency for 6 classes of queries on 6

machines (a) w/o and (b) w/ worker-obliger mechanism. Each

server uses fixed 8 threads (threshold=4).

queries (i.e., L1) and configure Wukong with different

MT thresholds. As shown in Figure 19(b) and (c), with

the increase of the MT threshold, both the throughput of

Wukong and the time of interference (the latency of MT

query) will degrade. For example, under the threshold 8,

Wukong can still perform 186K queries/second and the

average latency of MT query is about 1,118 msec.

Worker-obliger mechanism: The MT query will also

influence the latency of other small queries in the wait-

ing queues. Figure 20(a) show the CDF graph of latency

for 6 classes of non-MT queries. The 80th percentile

latency increases at least two orders of magnitude and

the 99th percentile latency reaches several thousands of

msec. With the worker-obliger mechanism, as shown in

Figure 20(b), Wukong can notably reduce the query la-

tency while preserving the throughput.

LUBM

2560

MEM

(GB)

Wukong 18.5

BASE 12.3

TriAD 30.7

RDF-3X 24.2

BitMat 27.4
0 20 40 60 80 100 120 140

Wukong

BASE

TriAD

Memory Usage (GB)

RDF Unused

Other RDMA

P-idx T-idx

Fig. 21: A comparison of memory usage and breakdown on

various systems for (a) LUBM-2560 and (b) LUBM-10240.

The storage size is 6.2GB and 25GB respectively.

7.6 Memory Consumption

Readers might be interested in how the memory con-

sumption of Wukong compares to other state-of-the-art

systems. Triple stores, including TriAD, RDF-3X, and

BitMat, rely on redundant six primary SPO permuta-

tion indexes [49] to accelerate querying, which, however,

lead to high memory pressure. In contrast, managing

RDF data in native graph form is much space-efficient,

which only doubles the triples in RDF for subjects and

objects. Figure 21(a) compares the memory usage of var-

ious systems for LUBM-2560 on a single machine. All

triple stores consume much more memory compared to

Wukong, especially for its basic version (i.e., BASE).

Figure 21(b) further shows a breakdown of memory

usage in Wukong for LUBM-10240 on the 6-node clus-

ter. Compared to the base version, Wukong adds about

3.9GB and 0.9GB memory for predicate index (P-idx)

and type index (T-idx), as well as additional 15.5GB

memory for RDF to support predicate-based store. Fur-

thermore, 9.0GB memory (1.5GB per machine) is re-

served for one-sided RDMA operations. Note that the

underlying key/value store of Wukong is a hashtable with

less than 75% occupancy, because Wukong is currently

not well tuned for high space-efficiency.

7.7 Other Datasets

We further study the performance of Wukong and TriAD

over more other synthetic and real-life datasets. Note

that we do not provide the performance of TriAD-SG be-

cause the hand-tuned parameter of summary graph is not

known and it only improves performance in few cases.

Table 7: The latency (msec) of queries on WSDTS

WSDTS
L1-L5 S1-S7 F1-F5 C1-C3

(Geo. M) (Geo. M) (Geo. M) (Geo. M)

TriAD 4.5 5.3 17.5 36.6

Wukong 1.0 0.9 3.6 10.3

WSDTS: We first compare the performance of TriAD

and Wukong over WSDTS dataset using 20 diverse

queries, which are classified into linear (L), star (S),

snowflake (F) and complex (C). Table 7 shows the

geometric mean of latency for various query classes.

Wukong always outperforms TriAD by up to 58.2X

(from 1.6X). For L1, L3, S1, S7 and F5, Wukong is at

least one order of magnitude faster than TriAD since the

queries are quite selective and appropriate for graph ex-

ploration. For only two queries, F1 and C3, the improve-

ment of Wukong is less than 2.0X.

Table 8: The latency (msec) of queries on DBPSB

DBPSB D1 D2 D3 D4 D5 Geo. M

TriAD 4.93 4.10 5.56 7.68 3.51 4.97

Wukong 1.75 0.48 0.41 3.70 1.14 1.16

DBPSB: Table 8 shows the performance of five rep-

resentative queries on DBPSB, which is a relative small

real-life dataset, but has quite more predicates. Wukong

outperforms TriAD by at least 2X (up to 13.6X), and

the improvement of geometric mean reaches 4.3X. For

D2 and D3, the speedup reaches 8.6X and 13.6X respec-

tively since the queries are relatively selective.

YAGO2: Table 9 compares the performance of TriAD

and Wukong on a large real-life dataset YAGO2. For the

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 329

Table 9: The latency (msec) of queries on YAGO2

YAGO2 Y1 Y2 Y3 Y4 Geo. M

TriAD 1.13 2.14 68,841 6,193 179

Wukong 0.12 0.17 38,571 3,501 41

simple queries, Y1 and Y2, Wukong is one order of mag-

nitude faster than TriAD due to fast in-place execution.

For the complex queries, Y3 and Y4, Wukong can still

notably outperforms TriAD by about 1.8X due to full-

history pruning and RDMA-friendly task queues.

8 Related Work

RDF query over triple and relational store: There

have been a large number of triple-based RDF stores that

use relational approaches to storing and indexing RDF

data [33, 34, 8, 49, 42, 11]. Since join is expensive and

a key step for query processing in such triple stores, they

perform various query optimizations including heuristic

optimizations [33], join-ordering exploration [33], join-

ahead pruning [34], and query caching [39]. Specially,

TriAD [21] is a recent distributed in-memory RDF en-

gine that leverages join-ahead pruning and graph sum-

marization with asynchronous message passing for par-

allelization. SHAPE [27] is a distributed engine upon

RDF-3X by statically replicating and prefetching data.

As shown in prior work [54], graph exploration avoids

many redundant immediate results generated during ex-

pensive join operations and thus typically delivers better

performance. A recent study, SQLGraph [45], leverages

a relational store to store RDF data but processes RDF

queries as a graph store. Yet, it focuses on query rewrit-

ing and schema refinement to support ACID-style trans-

actions and thus has different objectives from Wukong.

RDF query over graph store: There is an increasing

interest in using native graph model to store and query

RDF data [9, 53, 58, 52, 54]. BitMat [9], gStore [58] and

TripleBit [53] are centralized graph stores with sophisti-

cated indexes to improve query performance. Sedge [52]

is a distributed SPARQL query engine based on a sim-

ple Pregel implementation, which tries to minimize the

inter-machine communication by group-based commu-

nication. The most related work is Trinity.RDF [54], a

distributed in-memory RDF store that leverages graph

exploration to process queries. Wukong’s design centers

around the usage of fast interconnect with RDMA fea-

tures to allow fast graph exploration. Wukong also intro-

duces novel graph-based indexes as well as differentiated

graph partitioning and query processing to improve the

overall system performance.

RDF query over MapReduce: Several distributed

RDF systems are built atop existing frameworks like

MapReduce [38, 37, 40, 43], e.g., H2RDF [38, 37] and

SHARD [40]. PigSPARQL [43] maps SPARQL op-

erations into PigLatin [35] queries, which in turn is

translated into MapReduce programs. However, due

to the lack of efficient iterative computation support,

MapReduce-based computation is usually sub-optimal

for SPARQL execution, as shown in prior work [21, 54].

Graph databases and query systems: Neo4j [2] and

HyperGraphDB [24] focus on supporting online transac-

tion processing (OLTP) on graph data; however they are

not distributed and cannot support web-scale graphs par-

titioned over multiple machines. Titan [4] instead sup-

ports distributed graph traversals over multiple machines,

which, however, does not support SPARQL queries.

Facebook’s TAO [12] provides a simple API and data

model to store and query geographically distributed data.

Unicorn [15] further leverages TAO as the storage layer

to support searching over the social data. To our knowl-

edge, none of the above systems exploit RDMA as well

as the optimization techniques in Wukong to boost query

latency and throughput.

RDMA-centric stores: The low latency and high

throughput of RDMA-based networking stimulate much

work on RDMA-centric key/value stores [30, 25], OLTP

platforms [48, 17, 14] and graph analytics engines [50,

23]. Specifically, GraM [50] is an efficient and scal-

able graph analytics engine that leverages multicore and

RDMA to provide fast batch-oriented graph analytics.

However, handling SPARQL queries is significantly dif-

ferent from graph analytics and thus Wukong can hardly

benefit from the design of GraM. Further, Wukong is de-

signed to handle highly concurrent queries while GraM

is designed to handle one graph-analytics task at a time.

Recently, Kalia et al. [26] provide several of RDMA de-

sign space for system designers.

9 Conclusion

This paper describes Wukong, a distributed in-memory

RDF store that leverages RDMA-based graph explo-

ration to support fast and concurrent SPARQL queries.

Wukong significantly outperforms state-of-the-art sys-

tems and can process a mixture of small and large queries

at 269K queries/second on a 6-node RDMA-capable

cluster. Currently, we only consider the SPARQL query

over timeless RDF datasets; our future work may extend

Wukong to support RDF stream processing (RSP)10.

10 Acknowledgments

We sincerely thank our shepherd Dushyanth Narayanan

and the anonymous reviewers for their insightful sugges-

tions, as well as Yunhao Zhang for sharing his experience

to support evolving RDF graphs. This work is supported

in part by the National Key Research & Development

Program (No. 2016YFB1000500), the National Natural

Science Foundation of China (No. 61402284, 61572314)

and the Zhangjiang Hi-Tech program (No. 201501-YP-

B108-012).

10https://www.w3.org/community/rsp/

330 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.w3.org/community/rsp/

References

[1] DBpedias SPARQL Benchmark. http://aksw.org/

Projects/DBPSB.

[2] Neo4j Graph Database. http://neo4j.org/.

[3] SWAT Projects - the Lehigh University Benchmark (LUBM).

http://swat.cse.lehigh.edu/projects/lubm/.

[4] Titan: Distributed Graph Database. http://titan.

thinkaurelius.com/.

[5] Waterloo SPARQL Diversity Test Suite (WSDTS). https://

cs.uwaterloo.ca/˜galuc/wsdts/.

[6] YAGO: A High-Quality Knowledge Base. http://

www.mpi-inf.mpg.de/departments/

databases-and-information-systems/

research/yago-naga/yago.

[7] Bio2RDF: Linked Data for the Life Science. http://

bio2rdf.org/, 2014.

[8] ABADI, D. J., MARCUS, A., MADDEN, S. R., AND HOLLEN-

BACH, K. Sw-store: a vertically partitioned dbms for seman-

tic web data management. The VLDB JournalThe International

Journal on Very Large Data Bases 18, 2 (2009), 385–406.

[9] ATRE, M., CHAOJI, V., ZAKI, M. J., AND HENDLER, J. A.

Matrix ”bit” loaded: A scalable lightweight join query processor

for rdf data. In Proceedings of the 19th International Conference

on World Wide Web (New York, NY, USA, 2010), WWW ’10,

ACM, pp. 41–50.

[10] BLUMOFE, R. D., AND LEISERSON, C. E. Scheduling mul-

tithreaded computations by work stealing. J. ACM 46, 5 (Sept.

1999), 720–748.

[11] BORNEA, M. A., DOLBY, J., KEMENTSIETSIDIS, A., SRINI-

VAS, K., DANTRESSANGLE, P., UDREA, O., AND BHAT-

TACHARJEE, B. Building an efficient rdf store over a relational

database. In Proceedings of the 2013 ACM SIGMOD Interna-

tional Conference on Management of Data (New York, NY, USA,

2013), SIGMOD ’13, ACM, pp. 121–132.

[12] BRONSON, N., AMSDEN, Z., CABRERA, G., CHAKKA, P., DI-

MOV, P., DING, H., FERRIS, J., GIARDULLO, A., KULKARNI,

S., LI, H., ET AL. Tao: Facebooks distributed data store for the

social graph. In Presented as part of the 2013 USENIX Annual

Technical Conference (USENIX ATC 13) (2013), pp. 49–60.

[13] CHEN, R., SHI, J., CHEN, Y., AND CHEN, H. Powerlyra:

Differentiated graph computation and partitioning on skewed

graphs. In Proceedings of the Tenth European Conference on

Computer Systems (New York, NY, USA, 2015), EuroSys ’15,

ACM, pp. 1:1–1:15.

[14] CHEN, Y., WEI, X., SHI, J., CHEN, R., AND CHEN, H. Fast and

general distributed transactions using rdma and htm. In Proceed-

ings of the Eleventh European Conference on Computer Systems

(2016), ACM, p. 26.

[15] CURTISS, M., BECKER, I., BOSMAN, T., DOROSHENKO, S.,

GRIJINCU, L., JACKSON, T., KUNNATUR, S., LASSEN, S.,

PRONIN, P., SANKAR, S., SHEN, G., WOSS, G., YANG, C.,

AND ZHANG, N. Unicorn: A system for searching the social

graph. Proc. VLDB Endow. 6, 11 (Aug. 2013), 1150–1161.

[16] DRAGOJEVIĆ, A., NARAYANAN, D., HODSON, O., AND CAS-

TRO, M. FaRM: Fast remote memory. In Proceedings of the 11th

USENIX Conference on Networked Systems Design and Imple-

mentation (2014), NSDI’14, USENIX Association, pp. 401–414.

[17] DRAGOJEVIĆ, A., NARAYANAN, D., NIGHTINGALE, E. B.,

RENZELMANN, M., SHAMIS, A., BADAM, A., AND CASTRO,

M. No compromises: Distributed transactions with consistency,

availability, and performance. In Proceedings of the 25th Sym-

posium on Operating Systems Principles (New York, NY, USA,

2015), SOSP’15, ACM, pp. 54–70.

[18] GONZALEZ, J., LOW, Y., GU, H., BICKSON, D., AND

GUESTRIN, C. PowerGraph: Distributed graph-parallel compu-

tation on natural graphs. In OSDI (2012).

[19] GONZALEZ, J. E., XIN, R. S., DAVE, A., CRANKSHAW, D.,

FRANKLIN, M. J., AND STOICA, I. Graphx: Graph processing

in a distributed dataflow framework. In OSDI (2014).

[20] GOOGLE INC. Introducing the knowledge

graph: things, not strings. https://

googleblog.blogspot.co.uk/2012/05/

introducing-knowledge-graph-things-not.

html, 2012.

[21] GURAJADA, S., SEUFERT, S., MILIARAKI, I., AND

THEOBALD, M. Triad: A distributed shared-nothing rdf en-

gine based on asynchronous message passing. In Proceedings of

the 2014 ACM SIGMOD International Conference on Manage-

ment of Data (New York, NY, USA, 2014), SIGMOD ’14, ACM,

pp. 289–300.

[22] HOFFART, J., SUCHANEK, F. M., BERBERICH, K., LEWIS-

KELHAM, E., DE MELO, G., AND WEIKUM, G. Yago2: Explor-

ing and querying world knowledge in time, space, context, and

many languages. In Proceedings of the 20th International Con-

ference Companion on World Wide Web (New York, NY, USA,

2011), WWW’11, ACM, pp. 229–232.

[23] HONG, S., DEPNER, S., MANHARDT, T., VAN DER LUGT, J.,

VERSTRAATEN, M., AND CHAFI, H. Pgx.d: A fast distributed

graph processing engine. In Proceedings of the International

Conference for High Performance Computing, Networking, Stor-

age and Analysis (New York, NY, USA, 2015), SC ’15, ACM,

pp. 58:1–58:12.

[24] IORDANOV, B. Hypergraphdb: a generalized graph database. In

Web-Age information management. Springer, 2010, pp. 25–36.

[25] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Using

rdma efficiently for key-value services. In Proceedings of the

2014 ACM Conference on SIGCOMM (2014), SIGCOMM’14,

ACM, pp. 295–306.

[26] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Design

guidelines for high performance rdma systems. In Proceedings of

the 2016 USENIX Conference on Usenix Annual Technical Con-

ference (2016), USENIX ATC’16.

[27] LEE, K., AND LIU, L. Scaling queries over big rdf graphs with

semantic hash partitioning. Proc. VLDB Endow. 6, 14 (Sept.

2013), 1894–1905.

[28] MALEWICZ, G., AUSTERN, M. H., BIK, A. J., DEHNERT,

J. C., HORN, I., LEISER, N., AND CZAJKOWSKI, G. Pregel:

a system for large-scale graph processing. In SIGMOD (2010),

pp. 135–146.

[29] MCSHERRY, F., ISARD, M., AND MURRAY, D. Scalability! But

at what COST? In HotOS ’15 (2015).

[30] MITCHELL, C., GENG, Y., AND LI, J. Using one-sided rdma

reads to build a fast, cpu-efficient key-value store. In USENIX

Annual Technical Conference (2013), pp. 103–114.

[31] MURRAY, D., MCSHERRY, F., ISAACS, R., ISARD, M.,

BARHAM, P., AND ABADI, M. Naiad: a timely dataflow sys-

tem. In SOSP (2013).

[32] NATIONAL CENTER FOR BIOTECHNOLOGY INFORMATION.

PubChemRDF. https://pubchem.ncbi.nlm.nih.

gov/rdf/, 2014.

[33] NEUMANN, T., AND WEIKUM, G. Rdf-3x: A risc-style engine

for rdf. Proc. VLDB Endow. 1, 1 (Aug. 2008), 647–659.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 331

http://aksw.org/Projects/DBPSB
http://aksw.org/Projects/DBPSB
http://neo4j.org/
http://swat.cse.lehigh.edu/projects/lubm/
http://titan.thinkaurelius.com/
http://titan.thinkaurelius.com/
https://cs.uwaterloo.ca/~galuc/wsdts/
https://cs.uwaterloo.ca/~galuc/wsdts/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago
http://bio2rdf.org/
http://bio2rdf.org/
https://googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-things-not.html
https://googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-things-not.html
https://googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-things-not.html
https://googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-things-not.html
https://pubchem.ncbi.nlm.nih.gov/rdf/
https://pubchem.ncbi.nlm.nih.gov/rdf/

[34] NEUMANN, T., AND WEIKUM, G. Scalable join processing on

very large rdf graphs. In Proceedings of the 2009 ACM SIGMOD

International Conference on Management of Data (New York,

NY, USA, 2009), SIGMOD ’09, ACM, pp. 627–640.

[35] OLSTON, C., REED, B., SRIVASTAVA, U., KUMAR, R., AND

TOMKINS, A. Pig latin: a not-so-foreign language for data pro-

cessing. In Proceedings of the 2008 ACM SIGMOD international

conference on Management of data (2008), ACM, pp. 1099–

1110.

[36] OUSTERHOUT, K., WENDELL, P., ZAHARIA, M., AND STO-

ICA, I. Sparrow: Distributed, low latency scheduling. In Pro-

ceedings of the Twenty-Fourth ACM Symposium on Operating

Systems Principles (New York, NY, USA, 2013), SOSP ’13,

ACM, pp. 69–84.

[37] PAPAILIOU, N., KONSTANTINOU, I., TSOUMAKOS, D., KAR-

RAS, P., AND KOZIRIS, N. H2rdf+: High-performance dis-

tributed joins over large-scale rdf graphs. In 2013 IEEE Interna-

tional Conference on Big Data (2013), IEEE BigData ’13, IEEE,

pp. 255–263.

[38] PAPAILIOU, N., KONSTANTINOU, I., TSOUMAKOS, D., AND

KOZIRIS, N. H2rdf: Adaptive query processing on rdf data in

the cloud. In Proceedings of the 21st International Conference

on World Wide Web (New York, NY, USA, 2012), WWW ’12

Companion, ACM, pp. 397–400.

[39] PAPAILIOU, N., TSOUMAKOS, D., KARRAS, P., AND KOZIRIS,

N. Graph-aware, workload-adaptive sparql query caching. In

Proceedings of the 2015 ACM SIGMOD International Confer-

ence on Management of Data (New York, NY, USA, 2015), SIG-

MOD ’15, ACM, pp. 1777–1792.

[40] ROHLOFF, K., AND SCHANTZ, R. E. High-performance, mas-

sively scalable distributed systems using the mapreduce software

framework: The shard triple-store. In Programming Support In-

novations for Emerging Distributed Applications (New York, NY,

USA, 2010), PSI EtA ’10, ACM, pp. 4:1–4:5.

[41] ROY, A., BINDSCHAEDLER, L., MALICEVIC, J., AND

ZWAENEPOEL, W. Chaos: Scale-out graph processing from sec-

ondary storage. In Proceedings of the 25th Symposium on Op-

erating Systems Principles (New York, NY, USA, 2015), SOSP

’15, ACM, pp. 410–424.

[42] SAKR, S., AND AL-NAYMAT, G. Relational processing of rdf

queries: A survey. SIGMOD Rec. 38, 4 (June 2010), 23–28.

[43] SCHÄTZLE, A., PRZYJACIEL-ZABLOCKI, M., AND LAUSEN,

G. Pigsparql: Mapping sparql to pig latin. In Proceedings of the

International Workshop on Semantic Web Information Manage-

ment (2011), ACM, p. 4.

[44] SHAO, B., WANG, H., AND LI, Y. Trinity: A distributed graph

engine on a memory cloud. In SIGMOD (2013).

[45] SUN, W., FOKOUE, A., SRINIVAS, K., KEMENTSIETSIDIS, A.,

HU, G., AND XIE, G. Sqlgraph: An efficient relational-based

property graph store. In Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data (New York,

NY, USA, 2015), SIGMOD ’15, ACM, pp. 1887–1901.

[46] THOMSON, A., DIAMOND, T., WENG, S.-C., REN, K., SHAO,

P., AND ABADI, D. J. Calvin: Fast distributed transactions

for partitioned database systems. In Proceedings of the 2012

ACM SIGMOD International Conference on Management of

Data (2012), SIGMOD’12, ACM, pp. 1–12.

[47] TU, S., ZHENG, W., KOHLER, E., LISKOV, B., AND MADDEN,

S. Speedy transactions in multicore in-memory databases. In

Proceedings of the Twenty-Fourth ACM Symposium on Operating

Systems Principles (2013), SOSP’13, ACM, pp. 18–32.

[48] WEI, X., SHI, J., CHEN, Y., CHEN, R., AND CHEN, H. Fast

in-memory transaction processing using rdma and htm. In Pro-

ceedings of the 25th Symposium on Operating Systems Principles

(New York, NY, USA, 2015), SOSP ’15, ACM, pp. 87–104.

[49] WEISS, C., KARRAS, P., AND BERNSTEIN, A. Hexastore: Sex-

tuple indexing for semantic web data management. Proc. VLDB

Endow. 1, 1 (Aug. 2008), 1008–1019.

[50] WU, M., YANG, F., XUE, J., XIAO, W., MIAO, Y., WEI, L.,

LIN, H., DAI, Y., AND ZHOU, L. Gram: Scaling graph computa-

tion to the trillions. In Proceedings of the Sixth ACM Symposium

on Cloud Computing (New York, NY, USA, 2015), SoCC ’15,

ACM, pp. 408–421.

[51] WU, W., LI, H., WANG, H., AND ZHU, K. Q. Probase: A prob-

abilistic taxonomy for text understanding. In Proceedings of the

2012 ACM SIGMOD International Conference on Management

of Data (2012), ACM, pp. 481–492.

[52] YANG, S., YAN, X., ZONG, B., AND KHAN, A. Towards ef-

fective partition management for large graphs. In Proceedings of

the 2012 ACM SIGMOD International Conference on Manage-

ment of Data (New York, NY, USA, 2012), SIGMOD ’12, ACM,

pp. 517–528.

[53] YUAN, P., LIU, P., WU, B., JIN, H., ZHANG, W., AND LIU,

L. Triplebit: A fast and compact system for large scale rdf data.

Proc. VLDB Endow. 6, 7 (May 2013), 517–528.

[54] ZENG, K., YANG, J., WANG, H., SHAO, B., AND WANG, Z. A

distributed graph engine for web scale rdf data. In Proceedings

of the 39th international conference on Very Large Data Bases

(2013), PVLDB’13, VLDB Endowment, pp. 265–276.

[55] ZHANG, M., WU, Y., CHEN, K., QIAN, X., LI, X., AND

ZHENG, W. Exploring the hidden dimension in graph processing.

In OSDI (2016).

[56] ZHU, X., CHEN, W., ZHENG, W., AND XIAOSONG, M. Gem-

ini: A computation-centric distributed graph processing system.

In OSDI (2016).

[57] ZHU, Y., ERAN, H., FIRESTONE, D., GUO, C., LIPSHTEYN,

M., LIRON, Y., PADHYE, J., RAINDEL, S., YAHIA, M. H., AND

ZHANG, M. Congestion control for large-scale rdma deploy-

ments. In Proceedings of the 2015 ACM Conference on Special

Interest Group on Data Communication (New York, NY, USA,

2015), SIGCOMM ’15, ACM, pp. 523–536.

[58] ZOU, L., MO, J., CHEN, L., ÖZSU, M. T., AND ZHAO, D.

gstore: Answering sparql queries via subgraph matching. Proc.

VLDB Endow. 4, 8 (May 2011), 482–493.

332 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

	Introduction
	Background
	RDF and SPARQL
	Existing Solutions
	RDMA and Its Characteristics

	Overview
	Graph-based RDF Data Modeling
	Graph Model and Indexes
	Differentiated Graph Partitioning
	RDMA-friendly Predicate-based Store

	Query Processing
	Basic Query Processing
	Full-history Pruning
	Migrating Execution or Data
	Concurrent Query Processing

	Implementation
	Evaluation
	Experimental Setup
	Single Query Performance
	Factor Analysis of Improvement
	Scalability
	Throughput of Mixed Workloads
	Memory Consumption
	Other Datasets

	Related Work
	Conclusion
	Acknowledgments

