
This paper is included in the Proceedings of the 
2022 USENIX Annual Technical Conference.

July 11–13, 2022 • Carlsbad, CA, USA
978-1-939133-29-8

Open access to the Proceedings of the 
2022 USENIX Annual Technical Conference 

is sponsored by

KRCORE: A Microsecond-scale RDMA Control Plane 
for Elastic Computing

Xingda Wei, Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong 
University, and Shanghai AI Laboratory; Fangming Lu, Institute of Parallel and 

Distributed Systems, SEIEE, Shanghai Jiao Tong University; Rong Chen, Institute of 
Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University, and Shanghai 

AI Laboratory; Haibo Chen, Institute of Parallel and Distributed Systems, SEIEE, 
Shanghai Jiao Tong University

https://www.usenix.org/conference/atc22/presentation/wei



KRCORE: A Microsecond-scale RDMA Control Plane for Elastic Computing

Xingda Wei1,2, Fangming Lu1, Rong Chen∗1,2, and Haibo Chen1

1Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University
2Shanghai AI Laboratory

Abstract
We present KRCORE, an RDMA library with a microsecond-
scale control plane on commodity RDMA hardware for elastic
computing. KRCORE can establish a full-fledged RDMA con-
nection within 10µs (hundreds or thousands of times faster
than verbs), while only maintaining a (small) fixed-sized con-
nection metadata at each node, regardless of the cluster scale.
The key ideas include virtualizing pre-initialized kernel-space
RDMA connections instead of creating one from scratch, and
retrofitting advanced RDMA dynamic connected transport
with static transport for both low connection overhead and
high networking speed. Under load spikes, KRCORE can
shorten the worker bootstrap time of an existing disaggre-
gated key-value store (namely RACE Hashing) by 83%. In
serverless computing (namely Fn), KRCORE can also reduce
the latency for transferring data through RDMA by 99%.

1 Introduction
The desire for high resource utilization has led to the devel-
opment of elastic applications such as disaggregated storage
systems [52, 16, 67]. Elasticity provides a quick increase or
decrease of computing resources (e.g., processors or contain-
ers) based on application demands. Since the resources are
dynamically launched and destroyed, minimizing the control
path overheads—including process startup and creating net-
work connections—is vital to applications, especially those
with ephemeral execution time. Elastic applications typically
have networking requirements. For instance, computing nodes
in a disaggregated storage system access the data stored at
the storage nodes across the network.

RDMA is a fast networking feature widely adopted in data-
centers [53, 19, 13]. Unfortunately, RDMA has a slow control
path: the latency of creating an RDMA connection (15.7ms) is
15,700X higher than its data path operation (see Figure 1(b)).
As the latency of typical RDMA-enabled applications that
require elasticity has reached to microsecond-scale (see Fig-
ure 1(a)), this high connection time may significantly decrease
the application efficiency, e.g., increasing latency when ex-
panding resources to handle load spikes. The cost is chal-
lenging to reduce because it not only includes software data
structure initialization costs but also involves extensive hard-
ware resource configurations, as RDMA offloads network
processing to the network card (§2.3.1).
∗Rong Chen is the corresponding author (rongchen@sjtu.edu.cn)

Fig. 1. (a) The execution time (Data) of typical elastic RDMA-
enabled applications, and (b) the breakdown of control path costs.
RACE [67] is a disaggregated key-value store. FaRM-v2 [46] is
a database that can accelerate serverless transactions [63]. YCSB-
C [11] and TPC-C [50] are representative benchmarks for each
system. The serverless platform evaluated is Fn [43].

A common approach to avoiding the control path cost is
to cache connections and share them with different appli-
cations. However, user-space RDMA connections can not
be directly shared by different applications, because each
app has its own exclusive driver data structure and dedi-
cated hardware resources. Nevertheless, sharing a kernel-
space RDMA connection is possible since applications share
the same kernel (LITE [53]). However, LITE has perfor-
mance and resource inefficiency issues (§2.3.2) in elastic
computing, because it doesn’t target this scenario. First, it
still pays the initialization cost under cache misses. Second,
caching all RDMA connections to all nodes is resource ineffi-
cient (e.g., taking several GBs of memory), especially when
a production RDMA-capable cluster has reached a scale of
more than 10,000 nodes [34]. Finally, sharing RDMA con-
nections complicates the preservation of the low-level verbs
interfaces, which is important to apply RDMA-aware opti-
mizations [67, 55, 14, 57, 24, 25]. LITE only provides a
high-level API.

We continue the line of reusing connections to boost
the RDMA control path, and further overcome the issues
mentioned above. We present KRCORE, a networking li-
brary with an ultra-fast control plane. KRCORE can estab-
lish a full-fledged RDMA-capable connection within 10 µs,
only 0.05% and 0.22% of the verbs and LITE under cache
misses, respectively. More importantly, KRCORE only needs
a small amount of fixed-sized memory for the connection
pool (e.g., 64MB), irrelevant to the cluster scale. Finally, KR-
CORE supports low-level RDMA interfaces compatible with
existing RDMA-aware optimizations.

USENIX Association 2022 USENIX Annual Technical Conference    121

rongchen@sjtu.edu.cn


Supporting such a fast control plane seems to contradict our
promise of a small fixed-sized connection pool. To achieve
this, KRCORE makes a key innovation: we retrofit a less-
studied yet widely supported advanced RDMA hardware
feature—dynamic connected transport (DCT) [1]—to the
kernel. DCT allows a single RDMA connection to commu-
nicate with different hosts. Its connection and re-connection
are offloaded to the hardware and thus, are extremely fast
(less than 1µs). Our observation is that when virtualizing an
established kernel-space DCT connection to different applica-
tions, they no longer pay the control path cost and memory
consumption of ordinary RDMA connections.

In designing KRCORE, we found virtualizing DCT with a
low-level API brings several new challenges, and we propose
several techniques to address them (§3.1). First, DCT requires
querying a piece of metadata to establish a new connection.
Using RPC can not achieve a stable and low latency. Fur-
ther, RPC needs extra CPU resources to handle DCT-related
queries. Observing the small memory footprint of DCT meta-
data, we propose an architecture that deploys RDMA-based
key-value stores to offload the metadata queries to one-sided
RDMA READ (§4.2). Second, DCT has a lower data path
performance than normal RDMA transport (RC) due to its dy-
namic connecting feature. The performance is mostly affected
when a node keeps a long-term communication with another.
Therefore, we introduce a hybrid connection pool that retains
a few RC connections connected to frequently communicated
nodes to improve the overall performance. KRCORE further
adopts a transfer protocol that can transparently switch a
virtualized connection from DCT to RC (§4.6). Finally, we
propose algorithms to safely virtualize a shared physical QP
to multiple applications with a low-level API (§4.4).

We implement KRCORE as a loadable Linux kernel mod-
ule in Rust. We also extended an existing kernel-space RDMA
driver (mlnx-ofed-4.9) to bring DCT to the kernel. To the
best of our knowledge, KRCORE is the first to achieve a
microsecond-scale RDMA control plane. Although KRCORE
is a general-purpose RDMA library, it really shines with elas-
tic computing applications. Our experiments demonstrated
that KRCORE can reduce the computing node startup time of
a state-of-the-art production RDMA-enabled disaggregated
key-value store (RACE [67]) by 83%, from 1.4s to 244ms
(§5.3.1). For serverless computing—another popular elastic
application, KRCORE can shorten the data transfer time over
RDMA by 99%, from 33.3ms to 0.12µs (§5.3.2).

Our source code and experiments are available at https:
//github.com/SJTU-IPADS/krcore-artifacts.

2 Background and Motivation
2.1 The case for fast control path in elastic computing

KRCORE targets systems that require elasticity: the ability to
automatically scale according to application demands. One
such case is disaggregated storage systems where the com-
puting nodes and storage nodes are separated and connected

by the network [52, 16, 67]. Under high loads, the system
can dynamically add computing nodes for better performance:
and they need to establish connections to the storage nodes on-
the-fly. Another important case is serverless computing [22]
where the platforms instantaneously launch short-lived tasks
with containers1. The launch time typically includes network
connections [51].

Unlike long-running tasks (e.g., web servers), the control
path (e.g., network creation) is typically on the critical path of
elastic applications. For example, before executing the appli-
cation code, a serverless function that issues database trans-
actions must first establish network connections to remote
storage nodes [63, 21]. With RDMA, the transaction latency
has reached 10-100µs [14, 57]. Reducing the control path
costs—including launching a container and creating network
connections—is therefore vital to the end-to-end execution
time or tail latency of elastic applications (see Figure 1).

Much research has focused on reducing other control path
costs, e.g., the container launch time to about 10ms [40] and
even sub-millisecond [15]. However, only a few considered
accelerating network connection creation [51], especially for
RDMA. The control path of RDMA is indeed several orders
of magnitude slower than its data path (e.g., 22ms vs. 2µs in
§2.3). It is also orders of magnitude slower than the execution
time of common elastic RDMA-enabled applications, or other
control path costs (see Figure 1).

2.2 RDMA and queue pair (QP)

RDMA is a high bandwidth and low latency networking fea-
ture widely adopted in modern datacenters [53, 19]. It has
two well-known primitives: two-sided provides a message
passing primitive while one-sided provides a remote memory
abstraction—the RDMA-capable network card (RNIC) can
directly read/write server memory in a CPU-bypassing way.

Although RDMA is commonly used in the user-space, the
kernel adopts the same verbs API (verbs), which exposes
network connections as queue pairs (QPs). Each QP has a
send queue (sq), a completion queue (comp_queue), and a
receive queue (recv_queue). Both primitives follow a similar
execution flow. To send a request (or a batch of requests),
the CPU uses post_send to post it (or them) to the send
queue. If the request is marked as signaled, the completion
can be polled from the completion queue via poll_cq. For
two-sided primitive, the CPU can further receive messages
with poll_cq over the receive queue. Before receiving, one
should use post_recv to post message buffers to the QP.
Note that the CPU needs to register memory through reg_mr
to give RNIC memory access permissions.

QP has several kinds of transport each with different capa-
bilities. We focus on improving the control path performance
of reliable connected QP (RCQP), as it is the most commonly
used one that supports both RDMA primitives and is reliable.

1Serverless platforms may use virtual machine (VM)s to run tasks, which is
not the focus of our paper. §6 discusses how KRCORE can apply to VMs.

122    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/SJTU-IPADS/krcore-artifacts
https://github.com/SJTU-IPADS/krcore-artifacts


CL

S0

S1

Data path

open_device,
reg_mr, etc

change_rtr

create_qp change_rts

RDMA requests

Control path

Init Create + Configure

Fig. 2. The execution flow of a client (CL) communicating with two
nodes (S0 and S1) using user-space verbs. change_rtr changes
the QP to ready to receive status while change_rts changes the
QP to ready to send status.

Fig. 3. (a) Huge performance gap btw. RDMA’s control path and
data path (issuing 8B READ) when connecting and communicating
with one node. (b) A breakdown of RDMA control path time.

2.3 Analysis of RDMA control path costs

2.3.1 User-space control path costs

Consider the example in Figure 2 where a client sends RDMA
requests to two nodes. The control path includes first initial-
izing the driver context (Init)2, creating the QPs (Create),
exchanging the QP information to the remote peer with a
handshake protocol and configuring the QPs to ready states
(Configure). Figure 3(a) reports its latency, which is 7,850X
higher than the data path (Verbs control vs. Verbs data).

Issue: High hardware setup cost. To quantify the costs
in detail, Figure 3 breakdowns the control path time. We
carefully optimize the connection handshake with RDMA’s
connectionless datagram [26], which is orders of magnitude
faster than using TCP/UDP. Contradicting the common wis-
dom, exchanging the connection information through the net-
work (Handshake) is not the dominant factor: Handshake
only contributes 2.4% of the total time. The cost is dominated
by communicating with the RNIC hardware for the connec-
tion setups. Consider the create_qp in Create: we found
87% of the create_qp time (361µs vs. 413µs) is waiting
for the RNIC to create the hardware queues.

2.3.2 Existing kernel-space solution is insufficient

LITE [53] is the only kernel-space RDMA solution and is
the closest to our work. It provides high-level remote memory
read, write and RPC interfaces over the low-level verbs API
(§2.2). LITE maintains an in-kernel connection pool that
2Including creating the protection domain and registering the memory.

CL

S0

S1

Data path Control path Data path

RDMA requests

create_qp change_rtr

create_qp change_rts

RDMA requests

RCQP Pool 
S0 ✔
S1
S2

✘
✘...

Fig. 4. The execution flow of a client (CL) communicating with
two nodes (S0 and S1) with the kernel-space RDMA assuming that
CL has cached a QP to S0 in its connection pool.

caches RCQPs connected to all nodes, which avoids the user-
space Init (Figure 2) costs because applications share the
same kernel-space driver data structures. However, it still has
the following issues for elastic applications:

Issue#1: High cost connecting to a new node. If the RCQP
of the target node is not cached, LITE must follow the same
Create and Configure as user-space RDMA, e.g., S1 in Fig-
ure 4, which are non-trivial (2ms for each connection). Note
that we have carefully optimized LITE’s control path: LITE
originally adopts a centralized cluster manager to create con-
nections, which can only establish tens of QPs per second.
We optimize it with a decentralized connection scheme using
RDMA’s connectionless datagram. The optimization achieves
a 2ms per-connection latency and 712 QPs/second per node
throughput (Figure 3), bottlenecked by the RNIC (see §2.3.1).

Issue#2: Huge memory consumption. Caching RCQPs
connected to all other nodes can mitigate Issue#1. However,
this strategy has huge per-machine memory consumption
since the number of RCQPs needed scales linearly with the
cluster size. In LITE, each QP consumes at least 159KB
memory3, excluding the message buffers and receive queues
(may share between different QPs via shared receive queue).
Therefore, LITE would consume at least 1.52 GB memory
per node for fast connection on a modern RDMA-capable
cluster with more than 10,000 nodes[17].

Issue#3: Inflexible interface. LITE exposes a high-level
RDMA API (e.g., a synchronous remote memory read), which
simplifies sharing the same QP to different applications. How-
ever, it is inflexible to apply RDMA-aware optimizations
widely adopted in the literature [67, 55, 14, 57, 24, 25],
e.g., sending different read/write requests within a batch asyn-
chronously. To utilize these optimizations, applications need
verbs low-level API (§2.2). Unfortunately, directly execut-
ing the low-level API on a shared QP can easily corrupt the
QP states (see §3.1), and interrupt application running. We
carefully design the QP virtualization algorithms to correctly
virtualize a shared QP with verbs’s low-level API (§4.4).

3It configures the QP with 292 sq and 257 comp_queue entries, a common
setup in RDMA-based systems. Each sq entry takes 448B while cq takes
64B. The driver would further round queues to fit the hardware granularity.

USENIX Association 2022 USENIX Annual Technical Conference    123



3 Approach and Overview
Opportunity: advanced RDMA transport (DCT). Dynam-
ically Connected Transport (DCT) [1] is an advanced RDMA
feature widely supported in commodity RNICs (e.g., from
Mellanox Connect-IB [37] to ConnectX-7 [35]). DCT pre-
serves the functionalities of RC and further supports dynamic
connecting: a DCT QP (DCQP) can communicate to different
nodes without user-initiated connections: RNIC can create
DCT connections on-the-fly by piggybacking control plane
messages with data plane ones. Since the connections are only
processed in the hardware, DCT re-connection is extremely
fast: our measured overhead is less than 1µs. When using DC-
QPs, the host only needs to specify the target node’s RDMA
address and its DCT metadata (i.e., DCT number and DCT
key) in each request.

Basic approach: virtualized kernel-space DCQP. The goal
is to achieve an ultra-fast control plane for the applications.
Our basic approach is to virtualize kernel-space DCQPs
(as VQPs) to user-space applications. The observation is
that DCT naturally addresses the costly creation overhead
(Issue#1) and the huge memory consumption (Issue#2) of
RCQPs (§2.3.2). A kernel-space solution further mitigates
the user-space driver loading costs (§2.3.1).

VQP also supports low-level RDMA interfaces
(e.g., ibv_post_send) with the necessary extended
API suitable for elastic computing (§4.1). Therefore,
users can flexibly apply existing RDMA-aware optimiza-
tions [24, 25, 57] (Issue #3 in §2.3.2). Note that different
VQPs can share the same physical QP in the kernel.
Nevertheless, KRCORE provides an exclusively owned QP
abstraction to the applications.

3.1 Challenges and solutions

C#1. Efficient DCT metadata query. DCQP needs to
query the DCT metadata before sending requests. Specifi-
cally, to allow communicating with DCT, the server must first
create a DCT target identified by a key and number (DCT
metadata). Afterward, the clients can piggyback the metadata
in their requests to communicate with the created target.

A viable solution is to send an RPC to the target node to
query the metadata using RDMA’s connectionless datagram
(UD)4, which prevents control plane costs as UD is connec-
tionless. However, it is inefficient in performance and CPU
usage. First, the latency of RPC may vibrate to tens of mil-
liseconds due to the scheduling and queuing overhead of the
CPU. Second, KRCORE must deploy extra kernel threads to
handle the queries.

Solution: RDMA-based meta server. We replicate the DCT
metadata at a few global meta servers backed by RDMA-
enabled key-value stores (KVS) [67, 58, 55, 13], meaning
each node can query it with one-sided RDMA bypassing the
CPU. To support one-sided RDMA while preventing QP over-

4It only supports two-sided RDMA.

S1 ✔

CL

S0

S1

Data path Control path (Background)

MS
query pool

RDMA requests

1 2 3

3

create_qp

change_rtsHybrid 
Pool

DCT ✔

change_rtr

S0 ✔

Hybrid 
Pool

DCT ✔

RCQP

S0 ✔

Fig. 5. The execution flow of a client (CL) communicating with
two nodes (S0 and S1) with KRCORE. MS: meta server. Note that
KRCORE always put the hardware control path (i.e., creating RC-
QPs) in the background.

provisions, KRCORE only maintains a few RCQPs connected
to nearby meta servers. Replicating the DCT metadata is
practical because it is small: 12B is sufficient for one node to
handle all requests from others.

C#2. Performance issues of DCT. DCT is slower than RC
in peak throughput and may incur high tail latency due to re-
connection (§5.2). The performance is mostly affected when
a node frequently sends requests to the same node.

Solution: virtualized hybrid QP. KRCORE manages a hy-
brid QP pool that stores both RC and DC QPs. A VQP can
transparently switch between DC and RCQP (§4.6), allow-
ing us to create RCQPs in the background on-the-fly without
exposing the creations overhead to the applications.

C#3. QP state protection. If we directly forward the VQP
request (from ibv_post_send) from different applica-
tions to the (same) shared physical QP, QP’s physical states
can easily be corrupted due to malformed requests or queue
overflow, because verbs API assumes an exclusively owned
QP. Bringing the QP back to a normal state is costly because
it requires reconfiguration (the Configure in Figure 3 (b)).

Solution: pre-check. KRCORE carefully checks the physical
queue capacity and request integrity before forwarding the
requests to the physical QP. The overhead of these checks is
negligible as they only involve simple calculations. Thus, we
can avoid QP corruption while preserving the RDMA-aware
optimizations (§4.4) of using low-level interfaces.

3.2 Execution flow and architecture

Execution flow. Applications can use KRCORE to create
RDMA-capable connections in a few microseconds. Figure 5
presents its execution flow when communicating to two nodes.
First, we find available RCQPs in the hybrid pool (¶). If ex-
ists (S0), we directly virtualize it. Otherwise (S1), we choose
a DCQP and fetch the target node’s DCT metadata (·) ac-
cordingly. Finally, we virtualize the selected QP so that the
client can send RDMA requests with them (¸).

To increase the likelihood of hitting RCQPs, KRCORE
analyzes the host’s networking patterns and creates RCQPs
in the background (e.g., to S1).

Architecture. Figure 6 presents the KRCORE library ar-
chitecture. On each node, KRCORE is a loadable Linux

124    2022 USENIX Annual Technical Conference USENIX Association



RDMA Network

...

Linux

APP APP...

Hybrid QP Pool

Application

Valid
MR

…

VQPs

KRCORE

Server Addr DCT Meta
0d:9a03:... 73|4096

MS

MRStoreDCCache

RNIC

App

......

...

DCQPsRCQPs

SnS1

...

S0

Meta Server KRCORE kernel module

Fig. 6. An overview of KRCORE architecture.

int qconnect(ibv_qp *qp, ibv_gid gid, int port); ## like POSIX connect 

int qbind(ibv_qp *qp, ibv_gid gid, int port); ## like POSIX bind 

KRCore’s extended verb’s control path API 

int qpop_msgs(ibv_qp *qp, int num_entries,   ## like POSIX(accept) + 
              ibv_qp **src_qp, ibv_wc *wc);    ## verbs(ibv_poll_cq)

KRCore’s extended verb’s data path API 

Example code: Client
1 ibv_qp_init_attr attr;
2 attr.qp_type = KRCORE_VQP; 

3 qp = ibv_create_qp(..., &attr); 

4 qconnect(qp, gid, port); 

5 ibv_send_wr wr;
6 ibv_send_wr *bad_wr_ptr; 
  ## send a message
7 ibv_post_send(qp, &wr, &bad_wr);

Example code: Server
1 ibv_qp_init_attr attr;
2 attr.qp_type = KRCORE_VQP; 

3 qp = ibv_create_qp(..., &attr); 

4 qbind(qp, gid, port); 

5 ibv_qp *new_conn = NULL;
6 ibv_wc wc; 
  ## receive a message
7 qpop_msg(qp, 1, &new_conn, &wc);

Fig. 7. The KRCORE extended API atop of verbs and a simplified
use case. Lines in � and � are extended code for the client and server,
respectively. Applications can also use the verb’s data path call
(e.g., ibv_post_send) to issue RDMA requests with KRCORE.

kernel module hosting per-application (e.g., VQP) and per-
node (e.g., Hybrid QP Pool) data structures (§4.2). KRCORE
also deploys meta servers (MS) on a few nodes to facilitate
DCT metadata lookup. These servers are backed by DrTM-
KV [58]—a state-of-the-art RDMA-enabled KVS—to accel-
erate the metadata lookup. The metadata is broadcasted by
each machine during its boot time.

4 Detailed Design

4.1 Programming interface of KRCORE

To simplify application development and porting, it is impor-
tant to keep backward compatibility between KRCORE and
verbs, the de facto standard for using RDMA. In principle,
KRCORE can provide the same interface with verbs similar
to existing work (i.e., Freeflow [30]). However, verbs is not
designed for elastic computing and may bring inflexibility
or under-utilization of KRCORE. Therefore, we propose an
extended API based on verbs inspired by Demikernel [64], as
shown in Figure 7. Specifically, KRCORE introduces a new
type of QP (VQP) with the following new primitives:

qconnect and qbind. The verbs API has no method for
‘connect’ commonly found in networking libraries. Therefore,
developers have to implement and optimize RDMA connec-
tion setups themselves. We provide a qconnect API to
abstract the fast connection provided by KRCORE. Specif-
ically, after calling qconnect on a VQP to a remote host
(identified by the RDMA address (gid) and a port), the VQP
can issue one-sided and two-sided requests to it. Note that
remote end must bind to the address using qbind before-
hand so that the sender can issue two-sided requests, similar
to POSIX bind.

qpop_msgs. RCQPs are one-to-one connected—meaning
the server must know how many clients may connect. This
is unhandy for elastic applications because clients can dy-
namically connect to a server. Therefore, KRCORE VQP
is many-to-one: after binding to an address, a VQP can dy-
namically accept new connections when receiving messages:
qpop_msgs will return a list of (src_qp,message) pairs,
where the src_qp is a VQP connected to the corresponding
sender of the message.

Besides the extended API, KRCORE also supports com-
mon verbs data path API, e.g., ibv_post_send, ibv_-
post_recv and ibv_poll_cq (see §2.2). Figure 7 show-
cases a simplified code example of sending a message from
a client to a server with VQP. At the client, it can use
KRCORE_VQP as a marker to create a VQP. After success-
fully connecting the VQP with qconnect, the client can
call ibv_post_send to send the message.

Note that the VQP has the semantic as RCQP—meaning
that they have reliability guarantees and support all RDMA
operations (with various low-level optimizations).

4.2 Data structures

Hybrid QP pool. Each VQP (§4.1) is backed by a kernel-
space virtual QP that has an identifier, a reference to a physical
QP and virtualized counterparts of RDMA queues (see §2.2).
The physical QP is selected from a hybrid QP pool with both
DCQPs and RCQPs. The DCQPs are statically initialized
upon boot time and RCQPs are created on-the-fly.

In principle, the pool only needs one DCQP to handle all
the RDMA requests of the host. However, only using one
DCQP introduces extra latency when sending concurrent re-
quests to different servers. Specifically, if two requests target-
ing different hosts go over the same DCQP, the second must
wait for an additional reconnection before RNIC can process
it. This can be mitigated by increasing the DCQP pool size
since reconnections can run concurrently. Yet, the best choice
of the pool size depends on the hardware setting (§5.2). On
our platform, we choose 8 DCQPs in the pool.

To further prevent lock contention [26], we divide the pool
on a per-CPU basis: Each VQP only virtualizes QPs from
its local CPU’s pool. This strategy is optimized for cases
when each QP is exclusively used by one thread, a common
pattern in RDMA applications [47, 55, 26, 17, 33]. In case

USENIX Association 2022 USENIX Annual Technical Conference    125



of thread migrations, KRCORE also re-virtualizes QPs in the
background with a transparent QP transfer protocol (§4.6).

Meta Server. For steady and low-latency DCT metadata
query, we replicate all the nodes’ metadata at a few global
meta servers backed by DrTM-KV [58], a state-of-the-art
RDMA-enabled KVS. Note that replicating all the DCT meta
at one server is practical because they are extremely small
(e.g., 17KB for a 1,000-server cluster).

The meta server stores a mapping between the RDMA
address (key) and its corresponding DCT number and key
(value). These key-value pairs can be queried via DrTM-KV
with a few one-sided RDMA READs. Since sending one-
sided requests also requires RDMA connections, each node
pre-connects to nearby meta servers (e.g., one in the same
rack) with RCQPs during boot time and thus, it can find the
DCT metadata of a given server in several microseconds even
under high load.

Optimization: DCCache. Observing that the DCT meta-
data is extremely small (12B), each node further caches them
locally to save network round-trips querying the meta server.
The metadata is suitable for caching because they are only
invalidated when the corresponding host is down.

ValidMR and MRStore. To safely virtualize a physical QP
to multiple VQPs, KRCORE additionally checks the validity
of remote memory accesses to prevent QP state corruption
(§4.4). These checks were originally done by the RNIC using
the information stored in the NIC cache. Thus, we should
also record them in KRCORE. We additionally bookkeep
the registered memory regions (MR)s in ValidMR, which is
also implemented with DrTM-KV. After the bookkeeping,
KRCORE can query the local/remote ValidMRs to check the
local/remote memory regions’ validity.

Like DCCache, we also cache the checked remote MR
locally (in MRStore) to avoid extra round-trips. However,
caching remote MRs may introduce consistency problems:
unlike long-lived DCT metadata, MRs are managed by the ap-
plications and can be de-registered on-the-fly. To this end, KR-
CORE adopts a lease-based lightweight invalidation scheme:
the cached MRs are periodically (e.g., 1 second) flushed.
Upon de-registration, KRCORE waits for this period before
freeing the MR.

4.3 Control path operations

KRCORE reuses initialized QPs upon VQP connection and
creation, whose simplified pseudocode executed in the KR-
CORE kernel is shown in Algorithm1.
vqp_create initializes the basic data structures of

VQP—mainly allocating the software send and completion
queues in the kernel. The physical QP assignment is delayed
to the VQP connection (line 5) because we are unaware of
the remote target during creation.
vqp_connect connects a VQP to a remote end by as-

signing a pre-initialized kernel-space QP (either RCQP or

Algorithm 1: VQP creation and connection
1: Function vqp_create(Q):
2: Q.id← allocate a free identifier
3: Q.comp_queue← allocate a software queue
4: Q.recv_queue← allocate a software queue
5: Q.qp← NULL / Updated by qconnect

6: Function vqp_connect(Q, addr):
7: if Q.qp == NULL then
8: if addr in HybridQPPool.RC then
9: Q.qp← select in HybridQPPool.RC[addr]

10: else
11: Q.qp← select in HybridQPPool.DC
12: if addr not in DCCache then
13: meta← query nearby connected MetaServer
14: add meta to DCCache
15: Q.dct_meta← meta

DCQP) to it. Given the remote addr, it first checks whether
an RCQP is available in the HybridQPPool (line 8). If so, we
choose an available QP and assign it to Q.qp (line 9). Oth-
erwise, we select a DCQP (line 11). Note that all DCQPs in
the pool are available because KRCORE can virtualize one
physical QP to multiple VQPs (§4.4).

When assigning a DCQP to VQP, we need to fetch the
remote end’s DCT metadata (line 12−15) if the metadata
is not cached in the DCCache. We issue one-sided RDMA
READs to the MetaServer to query it (line 13).

Background RCQP creations. To increase the likelihood
of hitting an RCQP in the pool, KRCORE maintains back-
ground routines to sample frequently communicated nodes,
create RCQPs for frequently communicated ones in the
HybridQPPool and reclaim rarely used RCQPs. Currently,
we choose a simple LRU strategy for the reclamation.

Other control path operations. Besides VQP creation and
connection, other control path operations (e.g., memory reg-
istration, MR) have a straightforward implementation: we
forward them to the corresponding verbs API and record the
results in KRCORE. If necessary, we will also return the vir-
tual handler of the recorded results to the user. Due to space
limitations, we omit a detailed description.

4.4 Data path operations

As we have mentioned in §3.1, a key challenge in virtualizing
a physical QP to multiple VQPs is preventing shared QP state
corruption. Specifically, we must consider:

1. Detecting malformed request. An incorrect operation
code or an invalid memory reference would transit a QP
into error states. Since an error states QP cannot handle any
RDMA requests, we must filter out malformed requests
before posting them to the physical QP.

2. Preventing NIC queue overflow. The physical QP has a
limited queue capacity. If the user overflows a QP, the QP
will also enter an error state. Preventing queue overflow is
challenging under sharing because it can overflow even if
all the shared users correctly avoid the queue overflows.

126    2022 USENIX Annual Technical Conference USENIX Association



Algorithm 2: kernel handler of post_send and poll_cq
1: Function post_send_virtualized(Q, wr_list):

/ wr_list: the RDMA requests list

/ Assumption: the size of wr_list is smaller

than Q.qp.sq.max_depth and Q.qp.cq.max_depth

2: while Q.qp.sq.max_depth - Q.qp.uncomp_cnt <
wr_list.length do

3: poll_inner(Q)

4: unsignaled_cnt← 0
5: for req in wr_list do
6: if req has invalid MR or invalid Op then
7: return Error

8: if req is signaled then
9: Q.comp_queue.add(NotReady, req.wr_id)

10: req.wr_id← encode the pointer of Q and
(unsignaled_cnt+ 1)

11: unsignaled_cnt← 0

12: else
13: unsignaled_cnt += 1
14: Q.qp.uncomp_cnt += 1

15: if last_req in wr_list is not signaled then
16: mark last_req as signaled
17: last_req.wr_id← encode NULL and

(unsignaled_cnt+ 1)

18: return post_send(Q.qp, wr_list)

19: Function poll_inner(Q):
20: wc← poll_cq(Q.qp.cq)
21: if wc is ready then
22: V Q, comp_cnt← decode wc.wr_id
23: Q.qp.uncomp_cnt −= comp_cnt
24: if V Q is not NULL then
25: V Q.comp_queue.head()[0] = Ready

26: Function poll_cq_virtualized(Q):
27: poll_inner(Q)
28: if Q.comp_queue.has_head() and

Q.comp_queue.head()[0] is ready then
29: user_wr_id← Q.comp_queue.pop()[1]
30: return READY, user_wr_id
31: return NULL, 0

The queue can be cleared via explicit signaling and polling.
Nevertheless, we should poll as little as possible because
they have overheads [24].

3. Dispatching completion events. The polled results of a
physical QP can be from different VQPs. Therefore, we
must correctly dispatch them to the targets, i.e., software
queues of VQPs.

To this end, KRCORE will (1) check the request integrity
before posting it to a shared QP; (2) inject necessary polls
to the physical QP and (3) encode the VQP information
in the request’s wr_id—that will be returned upon request
completion—to help the dispatch. Specifically, KRCORE
executes post_send_virtualized and poll_cq_-
virtualized after the user calls ibv_post_send and
ibv_poll_cq, respectively. Algorithm 2 shows their sim-
plified pseudocode. For simplicity, we assume the request list
(wr_list) depth is smaller than the QP capacity, which can
be achieved by segmenting the request list before posting it.

post_send_virtualized. It first clears the physi-
cal QP’s send and completion queues to prevent overflows

(line 2−3) via polling the physical completion queue (line 20).
Polling is tricky when considering unsignaled requests—the
requests that don’t generate completion events. Their entries
are freed until a later signaled request is polled. Thus, we
must track how many requests a signaled one is responsible
to clear (line 4 and line 13), and encode the number in wr_id
(line 10). Therefore, after polling a completion we can deter-
mine the left spaces of queues (line 23). Further, if the last
request is unsignaled, we signal it (line 15−17).

For each request, we also check whether it is malformed
(line 6) and record the dispatch information for the signaled
ones (line 9−10). Finally, we can safely post these requests
to the physical QP (line 18).

For two-sided primitive, KRCORE must additionally notify
the receiver the sender information. Otherwise, the receiver
cannot create proper connections in qpop_msgs. Hence,
we piggyback the sender’s address in the message header
(omitted in the algorithm).

poll_cq_virtualized. It first calls poll_inner
to poll the physical QP events and dispatch the events to
the proper VQPs according to the information recorded in
the wr_id (lines 22−25). After the dispatch, it can check
whether the virtualized QP has a completion event. KRCORE
examines the head of the virtualized comp_queue and returns
the head’s wr_id to the application if the head exists.

Due to space reasons, we briefly describe other operations:

ibv_post_recv. This function registers the buffers to
the VQP by recording them in the virtualized recv_queue.

qpop_msgs. It polls the physical QP’s recv_queue and
dispatches the received messages, similar to poll_inner.
To hold in-coming messages, we pre-post message buffers
to physical QP before virtualizing it to the applications. The
challenge of pre-post is that the KRCORE doesn’t know the
exact payloads of the incoming messages. For now, we as-
sume the pre-posted buffers can always hold the incoming
message. §4.5 will describe how we cope with out-of-bound
messages in detail. After receiving a message, we will check
its destination VQP and copy it the user-registered buffer
(from ibv_post_recv).

Besides receiving messages, qpop_msgs also creates a
VQP connected to the sender (§4.1). The creation and connec-
tion follow the control path operations discussed in §4.3. To
prevent the DCT metadata query, we further piggyback the
metadata in the message header. Thus, qpop_msgs doesn’t
involve additional networking requests.

4.5 Zero-copy protocol for two-sided operations

The basic qpop_msgs (§4.4) has two issues. First, it incurs
extra memory copies. Though the copy overhead is negligible
for small messages (e.g., less than 1KB), it is non-trivial for
the large ones (e.g., see results in Figure 9 (b)). Second, it
cannot receive messages with payloads larger than the pre-
posted buffers.

USENIX Association 2022 USENIX Annual Technical Conference    127



To this end, we adopt a zero-copy protocol to overcome the
above issues. Intuitively, for large or out-of-bound messages,
the receiver will use one-sided RDMA READ to read them
to the user-registered buffers, inspired by existing RDMA-
enabled RPC frameworks [48, 17]. Specifically, if the payload
is larger than the kernel’s registered buffer, the sender will
first send a small message containing the destination VQP ID,
the source message address and its size. The receiver can then
use one-sided RDMA READ to read the message directly
to the user-registered buffer in a zero-copy way. The cost of
sending an additional message is trivial for large messages
because the network transfer will dominate the time.

4.6 Physical QP transfer protocol

KRCORE supports seamlessly changing the physical QP vir-
tualized by a VQP to another. The challenge of doing so is
how to preserve the RCQP’s FIFO property [7] of the VQP
during transfer, i.e., after a request completes, all its previous
requests are finished.

To ensure FIFO, upon the transfer starts, we first post a
fake signaled RDMA request to the source QP and wait for
its completion before the change. Meanwhile, we also notify
the remote peers to transfer their physical QP. Otherwise, the
VQP can no longer receive the remote end’s message. For
correctness, we must wait for the remote acknowledgments
before changing the physical QP at the sender.

5 Evaluation
We aim to answer the following questions during evaluations:
1. How fast is the KRCORE control plane (§5.1)?
2. What are the costs to the data plane (§5.2)?
3. How RDMA-aware applications that require elasticity can

benefit from KRCORE (§5.3)?

Implementation. We implement KRCORE from scratch as
a loadable Linux kernel (4.15) module, which has more than
10,000 LoC Rust code. It exports system calls via ioctl with-
out modifying the kernel. To simplify user-kernel interactions,
we further implement a 100 LoC C shim library atop ioctl
to provide the interfaces described in §4.1. Finally, we port
DCT to the kernel-space RDMA driver by adding around 250
LoC C code to the mlnx-ofed-4.9 driver: DCT is currently
only implemented in the user-space RDMA drivers.

Testbed setup. We conduct experiments on a local rack-
scale RDMA-capable cluster with ten nodes. Each node
has two 12-core Intel Xeon E5-2650 v4 processors, 128GB
DRAM and one ConnectX-4 MCX455A 100Gbps Infini-
Band RNIC. All nodes are connected to a Mellanox SB7890
100Gbps InfiniBand Switch. Without explicit mention, we
deploy one meta server for KRCORE.

Comparing targets. We compare KRCORE with user-
space verbs (verbs) and LITE5. Original LITE has an unop-
timized control plane: it uses a centralized cluster manager to
5https://github.com/WukLab/LITE

Fig. 8. The qconnect performance of KRCORE when using
DCQP with DCT metadata uncached. (a) Connecting to a single
server, and (b) establishing connections in a full-mesh fashion.

establish connections between servers and can only connect
tens of RCQPs per second. Therefore, we further optimize
it by enabling a decentralized QP connection scheme via
RDMA’s unreliable datagram (UD). Our optimized version
can achieve an optimal kernel-space RDMA control plane
performance—it is now only bottlenecked by the hardware
limits. §5.1 will describe this in more detail. Note that our
optimization leaves the LITE data plane unchanged.

5.1 Control path performance

The evaluations for the control path focus on creating and
connecting RDMA connections. The costs of the other oper-
ations in KRCORE (and verbs) are typically much smaller.
For example, registering 4MB memory only takes 1.4µs in
KRCORE. Therefore, we omit their results.

We use two synthetic workloads (single and full-mesh con-
nection establishment) to evaluate the control path perfor-
mance. The connection pool and DCCache of KRCORE are
cleared before the evaluations. Otherwise, KRCORE only has
system call overheads and is extremely small (0.9µs).
Single-connection establishment performance. We first
evaluated the latency and throughput of establishing a single
RDMA-capable connection to one server w.r.t. the number
of clients. Figure 8 (a) reports the throughput-latency graph
when increasing the number of clients from 1 to 240. From
the figure we can see that KRCORE can have several orders
of magnitude better performance than verbs and LITE. At
one client, KRCORE can establish a connection in 5.4µs,
while verbs and LITE take 15.7ms and 2ms, respectively.
The performance gain of KRCORE comes from replacing
the costly RDMA control path operations (analyzed in §2.3.1
and §2.3.2 in detail) with fast RDMA data path operations,
i.e., two one-sided RDMA READs to the meta server. For
LITE, it saves the driver loading cost but still needs to create
and configure QP on its control path. At 240 clients, KRCORE
can handle 22 million (M) connections per second, while
verbs and LITE can only establish 712 RCQPs per second.
They are both bottlenecked by the server creating hardware
resources, while KRCORE always reuses existing ones to
prevent these overheads.

Full-mesh connection establishment performance. Be-
sides establishing a single connection, creating full-mesh
connections at a set of workers is common in elastic applica-

128    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/WukLab/LITE


Fig. 9. (a) Performance comparisons of different DCT meta query
methods, and (b) the effects of zero-copy protocol (KRCORE+opt)
of KRCORE two-sided operations.

tions, e.g., burst-parallel serverless workloads [51]. Specifi-
cally, each worker should connect to the others and vice versa.
Figure 8 (b) presents the full-mesh performance by vary-
ing the number of involved workers. In general, KRCORE
can reduce 99% of the full-mesh creation time regardless of
the worker number, thanks to the orders of magnitude faster
single-connection establishment performance (see Figure 8
(a)). For example, KRCORE connected 240 workers in 81
µs, while verbs and LITE used 2.7 secs and 2.3 secs, re-
spectively. These results suggest that KRCORE can handle
complex control path operations well.

Benefit of the meta server. A key design choice of KR-
CORE is to use an RDMA-based meta server to store DCT
meta. Figure 9 (a) illustrates the benefit of this design using
the single-connection establishment workload of Figure 8
(a). The baseline (RPC) uses a kernel-space FaSST [26] RPC
for the querying. FaSST is the state-of-the-art RDMA-based
RPC that builds on RDMA’s unreliable datagram. It also
has no control plane overhead in the kernel because UD is
connectionless. To save CPU resources, we only deploy one
kernel thread to handle the queries. We can see that a meta
server design achieves an 11.8X better throughput and up to
13X query latency compared with RPC. The RPC design is
bottlenecked by the server CPU for handling DCT queries,
while the RDMA-based meta server bypasses the CPU with
one-sided RDMA.

5.2 Data path performance

KRCORE trades data path performance for a faster control
plane. We first use a set of microbenchmarks to evaluate
these overheads using two communication patterns: sync and
async. In the sync mode, each client issues RDMA requests
to one server in a run-to-completion way, aiming to achieve
low latency [17, 47]. For async, each client posts requests in
batches to achieve the peak throughput [57, 24, 25]. Without
explicit mention, the workloads are inbound, i.e., multiple
clients sending RDMA requests to one server. We reported
the aggregated throughput of clients and their average latency.

One-sided operations. Figure 10 presents the one-sided
data path performance of KRCORE when it virtualizes from
DCQP (KRCORE(DC)) and RCQP (KRCORE(RC)), and
compare them to verbs6. During the experiment, each client

6LITE’s data path API is different so we compare to it separately.

Fig. 10. The one-sided RDMA performance.

Fig. 11. The two-sided RDMA performance of KRCORE.

issued 8B random requests to the server, and we varied the
number of clients from 1 to 240.
(1) Sync. For one-sided RDMA READ in Figure 10 (a), the
latency of KRCORE (DC) and (RC) is 27%–46% and is 25%–
41% higher than verbs. The additional latency of KRCORE
under sync mode is dominated by the system call cost. On our
hardware, we measure a ∼1µs overhead communicating with
the kernel. For reference, when using one client, the latency
of KRCORE (RC) is 3.15µs, and the verbs is 2.15µs. Another
observation is that adopting DCQP has little latency overhead
in the sync mode as DC reconnection is extremely fast. For
example, the latency of KRCORE (DC) under one client is
3.24µs. The results of one-sided RDMA WRITE in Figure 10
(c) are similar to the READ.
(2) Async. For one-sided RDMA READ in Figure 10 (b), KR-
CORE (RC) can achieve a similar peak throughput as verbs
(138M reqs/sec) when using 240 clients. With the same con-
figuration, KRCORE (DC) is 14% slower (118 M reqs/sec).
KRCORE (RC) and verbs are both bottlenecked by the server
RNIC, while KRCORE (DC) is slower due to extra DCT
processing at the RNIC. For one-sided RDMA WRITE in Fig-
ure 10 (d), the results are similar: KRCORE (RC) and verbs
achieve a peak throughput of 145M reqs/sec while KRCORE
(DC) is 8.9% lower (132M reqs/sec).

Two-sided operations. Figure 11 presents the two-sided
throughput and latency of KRCORE w.r.t. to the number of
clients (1 to 240). Each client sends an 8B request to the
server in an echo fashion: after receiving a request, the server

USENIX Association 2022 USENIX Annual Technical Conference    129



Fig. 12. (a) A factor analysis of the data path cost introduced by
KRCORE using one-sided RDMA READ. (b) The performance of
KRCORE in data transfer benchmark of serverless computing.

will send the request back, and the client will issue another
request after getting the acknowledgment. The server utilizes
all cores (24 threads) to handle these requests.
(1) Sync. In this mode, the performance comparisons are simi-
lar to one-sided RDMA: compared with verbs, KRCORE (RC)
and (DC) have 4–21% and 14–31% higher latency, respec-
tively. The KRCORE overheads added to two-sided RDMA
are also dominated by the user-kernel interactions. For ex-
ample, at one client, one KRCORE (RC) echo takes 9.6µs
while verbs takes 7.9µs. Compared to one-sided RDMA, the
absolute latency gap is larger. KRCORE two-sided has an
additional system call overhead: the server needs to enter the
kernel to receive a message.
(2) Async. Unlike one-sided RDMA, KRCORE cannot
achieve the same peak inbound throughput (when using 240
clients) as verbs for two-sided RDMA: it is 20% slower than
verbs: which can only achieve 33.7M reqs/sec regardless of
RC or DC. In comparison, verbs can achieve 42.3M reqs/sec.
The extra bottleneck comes from CPU processing costs at the
server due to user-kernel interactions. As a result, KRCORE
cannot saturate the RNIC’s high performance. This also ex-
plains why KRCORE has a similar performance when using
RC and DC.

Effects of zero-copy optimization. We next examine the
costs of memory copy—that KRCORE uses to dispatch mes-
sages between virtual QPs—to the two-sided operations. We
further demonstrate how we mitigate it with a zero-copy pro-
tocol (§4.5). Figure 9 (b) shows the two-sided echo latency
when using one client to communicate with the server w.r.t.
the payload size. We can see that the memory copy cost is
negligible for small transfers (<=16KB) but is significant
for large messages. Specifically, when transferring > 16KB
messages, the latency of KRCORE is 1.45–3.1X higher than
verbs. To this end, the zero-copy optimization (KRCORE+opt)
reduces the overheads to 0.08-0.23X when transferring >=
16KB messages.

Factor analysis. Figure 12(a) conducts a factor analysis
to show the detailed data path costs of KRCORE in a sync
one-sided RDMA READ request. The main observations are:
(1) The biggest cost to data path operations is additional
RDMA requests to check the MR validity when the remote
MR information is not cached locally (+MR miss, takes

Fig. 13. The slowdown of KRCORE compared to verbs on one-
sided RDMA READ (a) and WRITE (b), respectively.

Fig. 14. (a) The impacts of DCQP pool size. (b) The CDF of
latency of sending RDMA requests to different servers.

4.5µs). Note the checks are rare because KRCORE always
caches the checked MR after a miss.
(2) For normal requests without MR checks, system call dom-
inates the overheads (+System call), resulting in 1µs latency
increase (3.15µs vs. 2.14µs). Other costs—including using
DCQP (+DCQP) and KRCORE check to prevent QP state
corruptions (+Checks, see §4.4) are trivial (less than 0.5 µs).

Impacts of payload size to one-sided RDMA. The over-
head of KRCORE becomes smaller for one-sided RDMA
with a larger payload, since transferring data through the net-
work dominates the time. Figure 13 reports the slowdown
compared to verbs on different request payloads. We mea-
sure the latency of sync one-sided RDMA with one client.
For one-sided RDMA READ, the overhead is negligible for
larger than 256KB reads (<7%). For WRITE, the overhead is
negligible for larger than 8KB payloads.

Impacts of DCQP pool size. A larger DCQP pool is typi-
cally better for concurrently sending requests to different ma-
chines (§4.2). Figure 14 (a) reports the latency when sending
a batch of 64 one-sided RDMA READs to different targets at
one client with different pool sizes. The targets are randomly
selected in 10 machines. We can see that when the pool only
has one DCQP, KRCORE (DC) has a 1.32X higher latency
(99 vs. 75 µs) than KRCORE (RC), since requests to the same
QP are processed sequentially with reconnections. Increasing
the pool size can significantly improve the latency. Interest-
ingly, when the pool size is larger than 2, DC outperforms RC
by 28–78%. RC needs 64 different connections to send these
requests, and it has to do 63 additional polls than DC.

Tail latency. Figure 14 (b) reports the tail latency when
using 50 clients sending sync one-sided RDMA READ to 5
servers. Under such a fan-out scenario, KRCORE (DC) has
a higher tail latency than the others due to extra round-trips
caused by DC reconnections. The 99.9% latency of verbs,

130    2022 USENIX Annual Technical Conference USENIX Association



Fig. 15. (a) A comparison of memory usage on connections: KR-
CORE caches all DCT metadata, while LITE caches all RCQPs. (b)
A comparison of data path performance when KRCORE uses DCQP.

KRCORE (RC) and KRCORE (DC) are 2.8µs, 3.8µs and 6µs,
respectively.

Comparison to LITE. Finally, we show that KRCORE
can achieve a similar (or better) data path performance than
LITE with smaller memory usage.
(1) Memory. Figure 15 (a) shows the memory used for caching
RDMA connections. In general, KRCORE consumes orders
of magnitude smaller memory when supporting the same
number of connections. For example, to maintain 5,000 con-
nections, LITE consumes 780MB of memory, even without
counting the memory of message queues (1.5GB if coun-
tered). In comparison, KRCORE only consumes 6.3MB of
memory because it just maintains a (small) constant number
of DCQP (48), and each DCT metadata only consumes 12B.
(2) Performance. Figure 15 (b) further compares the through-
put when issuing 64B random one-sided RDMA READ from
one node to others. We configure both systems to deploy
a pool of 32 connections, preventing LITE from encoun-
tering RCQP scalability issues [26]. KRCORE uses DCQP
for its connections. For sync, we can see that KRCORE is
up to 20% slower than LITE due to performance issues of
DCQP. On the other hand, KRCORE achieves a 3X higher
peak async throughput (15.6M/sec vs. 5.2M/sec) in the async
mode. LITE has a limited peak performance because it fails
to run with more than 6 threads. LITE doesn’t prevent QP
queue overflows (see issue #3 in §2.3.2), so it will trigger QP
errors for more than 6 threads. KRCORE handles overflows
well (§4.4) and can thus, scale to more threads.

5.3 Application performance

5.3.1 Scaling RACE Hashing

Overview and setup. RACE hashing [67] is a production
RDMA-enabled disaggregated key-value store. We chose it
as our case study because it requires elastically—a demand
not commonly found in existing RDMA-based key-value
stores. At a high level, RACE separates the storage nodes
and computing nodes by RDMA, where the computing nodes
execute key-value store requests by issuing one-sided RDMA
requests to the storage nodes. RACE further allocates com-
puting nodes on-demand to cope with various workloads in a
resource-efficient way, where the newly started nodes need dy-
namically establish RDMA connections to memory nodes. To
improve performance, it embraces a set of low-level RDMA-

Fig. 16. Under load spikes, KRCORE can quickly bootstrap com-
puting nodes for RACE Hashing [67].

aware optimizations—e.g., doorbell batching [25] that are
tailed to RDMA’s low-level verbs interface.

Since RACE is not open-sourced, we implement a simpli-
fied version atop of verbs, LITE and KRCORE, respectively.
We have calibrated that the performance is close to their re-
ported ones. For example, RACE reports a peak 24M req/sec
Get throughput on ConnectX-5 under YCSB-C [11]. Our
(verbs) version can achieve 27M req/sec with more machines
(8 vs. 5) on a similar RNIC (ConnectX-4).

Performance under load spikes. Our evaluating workload
contains a load spike commonly found in real-world appli-
cations [8, 28, 2]. Under spikes, RACE allocates more com-
puting processes to increase performance. During process
startups, KRCORE can reduce its bootstrap time thanks to its
fast control plane.

Figure 16 shows the timelines of RACE atop of verbs, LITE
and KRCORE under load spikes, respectively. The spikes
happen at time 0, and RACE forks 180 new processors to
handle it. When using KRCORE, RACE can finish the startup
in 244ms, 83% and 76% faster than verbs (1.4 seconds) and
LITE (1 second), respectively. KRCORE is bottlenecked by
OS creating worker processors. On the other hand, LITE and
verbs are bottlenecked by RDMA’s slow control path (§2.3).
A fast boot further reduces the tail latency: during time 0-3,
KRCORE has a 4.9X lower 99% latency than verbs.

Benefit of virtualizing a low-level RDMA API. KRCORE
virtualizes a low-level RDMA (e.g., ibv_post_send), and
thus, it can transparently apply existing RDMA-aware opti-
mizations (see Issue #3 in §2.3.2). This leads to better perfor-
mance of KRCORE on RACE compared to LITE: as shown
in Figure 16, KRCORE has a 1.73X higher peak throughput
(26M reqs/sec vs. 15M reqs/sec) than LITE after time 3.

Benefit of virtualizing hybrid QPs. As shown in Figure 16,
using RCQP (e.g., after time 3) brought 1.4X (26M vs. 18M
req/sec) throughput improvements to KRCORE, achieving
a similar performance as verbs (26M reqs/sec). This is be-
cause RACE issues RDMA requests asynchronously, and
KRCORE’s RC async peak throughput is similar to verbs (see
Figure 10 (b)). Further, we can see the overhead of switching
from DCQP to RCQP is negligible (at time 2.2). However,
there is a lag for detecting the switch because KRCORE needs
time to collect the necessary information to decide which RC-

USENIX Association 2022 USENIX Annual Technical Conference    131



QPs to create.

5.3.2 Accelerating data transfer in serverless computing

Finally, we show that KRCORE can improve the communi-
cation performance between functions in serverless comput-
ing. We use an RDMA-version of data transfer testcase in
ServerlessBench [62] (TestCase5), a state-of-the-art Server-
less benchmark suite. This testcase measures the data transfer
time between two serverless functions. The experiment runs
on Fn [43], a popular open-source serverless platform.

Figure 12 (b) reports the time to pass a message w.r.t. the
payload size when using verbs and KRCORE, respectively.
The receiver function runs in a separate machine using a
Docker container after the sender finishes execution. We use
warm start to techniques [40] to reduce the control plane
costs of starting containers. From the figure we can see KR-
CORE reduces the data transfer latency of verbs by 99% when
transferring 1KB to 9KB bytes. The performance improve-
ments are mainly due to the reduced RDMA control path of
KRCORE, which we have extensively analyzed in §5.1.

6 Discussion
Trade-offs of a kernel-space solution. KRCORE chooses
kernel-space RDMA for a microsecond-scale control plane
(5,900X faster than verbs). Though it retains most benefits of
RDMA (e.g., zero-copy), we sacrifice kernel-bypassing bene-
fit and thus, result in a slower data path (up to 75% slowdown).
We argue that such cost is acceptable to many elastic applica-
tions. First, the application usually issues a few networking
requests. For example, the functions in ServerlessBench [62]
and SeBS [12] only issue one request to read/write remote
data on average. Second, the control path overhead (ms-scale)
is commonly orders of magnitude higher than the cumulative
data path overhead (µs-scale), see Figure 3. Finally, existing
work (i.e., LITE [53]) also showed that kernel-space RDMA
is efficient for many datacenter applications.

Other RNICs. Our analysis focuses on Mellanox
ConnectX-4 Infiniband RNIC. Nevertheless, we argue the
cost is unlikely to reduce due to hardware upgrades or differ-
ent RDMA implementations (e.g., RoCE) since the cost is
dominated by configuring the NIC resources. For example,
we also evaluate the control path performance on ConnectX-
6, where the user-space driver still takes 17ms for creating
and connecting QP, similar to the ConnectX-4 we evaluated
(15.7ms, see Figure 3).

KRCORE in virtualized environments. We currently fo-
cus on accelerating RDMA control plane with host network-
ing mode. Using RDMA in virtual machines or virtualized
RDMA network [30, 20] is also popular in the cloud. We be-
lieve the principles and methodologies of KRCORE are also
applicable in these environments. For example, Freeflow [30]
is an RDMA virtualization framework designed for container-
ized clouds. It leverages par-virtualization that intercepts vir-
tualized RDMA requests to a software router. We can inte-

grate our hybrid connection pool to the router to support a
fast control plane atop of it. We plan to investigate applying
KRCORE in virtualized environments in the future.

7 Related Work
RDMA libraries. Many user-space RDMA libraries ex-
ist [32, 4, 3, 36, 64], e.g., MPI, UCX [4], rsocket [3]. They
can hardly provide a fast control plane because they are all
based on verbs. LITE [53] is the only kernel-space RDMA
library and is the closest to our work. We have extensively an-
alyzed the issues when deploying LITE in elastic computing
(§2.3.2) and how KRCORE addresses them (§3—§4).

DCT-aware and hybrid-transport systems. Several works
used DCT to improve the performance and scalability of
RDMA-enabled systems [49, 41]. Subramoni et al. [49]
showed that DCT could provide comparable performance
to RC while reducing memory consumption for MPI ap-
plications. Meanwhile, several works leveraged a hybrid-
transport design to overcome the shortcoming of a single
transport [31, 23]. For instance, Jose et al. [23] utilized UD
to reduce the memory consumption of RC in Memcached.

RDMA-enabled applications. KRCORE continues the line
of research on accelerating systems with RDMA, from key-
value stores [38, 55, 67, 24, 13, 39], far-memory data struc-
tures [45, 6, 44], RPC frameworks [48, 26, 9, 27], replication
systems [5, 42, 54, 29], distributed transactions [58, 46, 14,
10, 57, 65, 56], graphs [47, 59, 61, 18] and distributed file
systems [66, 33, 60], just to name a few. Most of these sys-
tems do not target elastic computing, but we believe there
are opportunities for applying them in such a setting. In such
scenarios, they can benefit from KRCORE.

8 Conclusion
This paper presents KRCORE, a µs-scale RDMA control
plane for RDMA-enabled applications that require elastic-
ity. By retrofitting RDMA dynamic connected transport with
kernel-space QP virtualization, we show that it is possible
to eliminate most RDMA control path costs on commod-
ity RNICs. Meanwhile, the data path costs introduced by
KRCORE are acceptable for many elastic applications. Our
experimental results confirm the efficacy of KRCORE.

9 Acknowledgment
We sincerely thank the anonymous shepherd and review-
ers for their insightful suggestions. We also thank Dingji
Li for discussing how to apply KRCORE to virtual ma-
chines, Xiating Xie for improving the figures and Sijie Shen,
Zhiyuan Dong, Rongxin Chen and Yuhan Yang for their valu-
able feedback. This work was supported in part by the Na-
tional Key Research & Development Program of China (No.
2020YFB2104100), the National Natural Science Founda-
tion of China (No. 61732010, 61925206) and Shanghai AI
Laboratory.

132    2022 USENIX Annual Technical Conference USENIX Association



References
[1] Dynamically connected transport. https://www.

openfabrics.org/images/eventpresos/
workshops2014/DevWorkshop/presos/Monday/
pdf/05_DC_Verbs.pdf, 2014.

[2] Daily Deals and Flash Sales: All the Stats You Need to Know.
http://socialmarketingfella.com/daily-
deals-flash-sales-stats-need-know/, 2016.

[3] rsocket(7) - Linux man page. https://linux.die.net/
man/7/rsocket, 2021.

[4] Unified communication x. https://openucx.org, 2021.

[5] AGUILERA, M. K., BEN-DAVID, N., GUERRAOUI, R.,
MARATHE, V. J., XYGKIS, A., AND ZABLOTCHI, I. Mi-
crosecond consensus for microsecond applications. In 14th
USENIX Symposium on Operating Systems Design and Im-
plementation, OSDI 2020, Virtual Event, November 4-6, 2020
(2020), USENIX Association, pp. 599–616.

[6] AGUILERA, M. K., KEETON, K., NOVAKOVIC, S., AND

SINGHAL, S. Designing far memory data structures: Think
outside the box. In Proceedings of the Workshop on Hot Topics
in Operating Systems, HotOS 2019, Bertinoro, Italy, May 13-
15, 2019 (2019), ACM, pp. 120–126.

[7] ASSOCIATION., I. T. Infiniband architecture specifica-
tion. https://cw.infinibandta.org/document/
dl/7859, 2015.

[8] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S.,
AND PALECZNY, M. Workload analysis of a large-scale key-
value store. In ACM SIGMETRICS/PERFORMANCE Joint
International Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS ’12, London, United King-
dom, June 11-15, 2012 (2012), P. G. Harrison, M. F. Arlitt, and
G. Casale, Eds., ACM, pp. 53–64.

[9] CHEN, Y., LU, Y., AND SHU, J. Scalable RDMA RPC on
reliable connection with efficient resource sharing. In Pro-
ceedings of the Fourteenth EuroSys Conference 2019, Dresden,
Germany, March 25-28, 2019 (2019), G. Candea, R. van Re-
nesse, and C. Fetzer, Eds., ACM, pp. 19:1–19:14.

[10] CHEN, Y., WEI, X., SHI, J., CHEN, R., AND CHEN, H. Fast
and general distributed transactions using RDMA and HTM.
In Proceedings of the Eleventh European Conference on Com-
puter Systems, EuroSys 2016, London, United Kingdom, April
18-21, 2016 (2016), C. Cadar, P. R. Pietzuch, K. Keeton, and
R. Rodrigues, Eds., ACM, pp. 26:1–26:17.

[11] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISH-
NAN, R., AND SEARS, R. Benchmarking cloud serving sys-
tems with YCSB. In Proceedings of the 1st ACM Symposium
on Cloud Computing, SoCC 2010, Indianapolis, Indiana, USA,
June 10-11, 2010 (2010), J. M. Hellerstein, S. Chaudhuri, and
M. Rosenblum, Eds., ACM, pp. 143–154.

[12] COPIK, M., KWASNIEWSKI, G., BESTA, M., PODSTAWSKI,
M., AND HOEFLER, T. Sebs: a serverless benchmark suite for
function-as-a-service computing. In Middleware ’21: 22nd In-
ternational Middleware Conference, Québec City, Canada, De-
cember 6 - 10, 2021 (2021), K. Zhang, A. Gherbi, N. Venkata-
subramanian, and L. Veiga, Eds., ACM, pp. 64–78.

[13] DRAGOJEVIC, A., NARAYANAN, D., CASTRO, M., AND

HODSON, O. Farm: Fast remote memory. In Proceedings
of the 11th USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI 2014, Seattle, WA, USA, April
2-4, 2014 (2014), R. Mahajan and I. Stoica, Eds., USENIX
Association, pp. 401–414.

[14] DRAGOJEVIĆ, A., NARAYANAN, D., NIGHTINGALE, E. B.,
RENZELMANN, M., SHAMIS, A., BADAM, A., AND CASTRO,
M. No compromises: Distributed transactions with consistency,
availability, and performance. In Proceedings of the 25th
Symposium on Operating Systems Principles (New York, NY,
USA, 2015), SOSP’15, ACM, pp. 54–70.

[15] DU, D., YU, T., XIA, Y., ZANG, B., YAN, G., QIN, C., WU,
Q., AND CHEN, H. Catalyzer: Sub-millisecond startup for
serverless computing with initialization-less booting. In ASP-
LOS ’20: Architectural Support for Programming Languages
and Operating Systems, Lausanne, Switzerland, March 16-20,
2020 (2020), J. R. Larus, L. Ceze, and K. Strauss, Eds., ACM,
pp. 467–481.

[16] FACEBOOK. Introducing Bryce Canyon: Our next-generation
storage platform. https://engineering.fb.com/
2017/03/08/data-center-engineering/
introducing-bryce-canyon-our-next-
generation-storage-platform/, 2017.

[17] GAO, Y., LI, Q., TANG, L., XI, Y., ZHANG, P., PENG, W.,
LI, B., WU, Y., LIU, S., YAN, L., FENG, F., ZHUANG, Y.,
LIU, F., LIU, P., LIU, X., WU, Z., WU, J., CAO, Z., TIAN,
C., WU, J., ZHU, J., WANG, H., CAI, D., AND WU, J. When
cloud storage meets RDMA. In 18th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2021,
April 12-14, 2021 (2021), J. Mickens and R. Teixeira, Eds.,
USENIX Association, pp. 519–533.

[18] GUO, C., CHEN, H., ZHANG, F., AND LI, C. Distributed join
algorithms on multi-cpu clusters with gpudirect RDMA. In
Proceedings of the 48th International Conference on Parallel
Processing, ICPP 2019, Kyoto, Japan, August 05-08, 2019
(2019), ACM, pp. 65:1–65:10.

[19] GUO, C., WU, H., DENG, Z., SONI, G., YE, J., PADHYE,
J., AND LIPSHTEYN, M. RDMA over commodity ethernet at
scale. In Proceedings of the ACM SIGCOMM 2016 Confer-
ence, Florianopolis, Brazil, August 22-26, 2016 (2016), M. P.
Barcellos, J. Crowcroft, A. Vahdat, and S. Katti, Eds., ACM,
pp. 202–215.

[20] HE, Z., WANG, D., FU, B., TAN, K., HUA, B., ZHANG, Z.,
AND ZHENG, K. Masq: RDMA for virtual private cloud. In
SIGCOMM ’20: Proceedings of the 2020 Annual conference
of the ACM Special Interest Group on Data Communication
on the applications, technologies, architectures, and protocols
for computer communication, Virtual Event, USA, August 10-
14, 2020 (2020), H. Schulzrinne and V. Misra, Eds., ACM,
pp. 1–14.

[21] JIA, Z., AND WITCHEL, E. Boki: Stateful serverless com-
puting with shared logs. In SOSP ’21: ACM SIGOPS 28th
Symposium on Operating Systems Principles, Virtual Event /
Koblenz, Germany, October 26-29, 2021 (2021), R. van Re-
nesse and N. Zeldovich, Eds., ACM, pp. 691–707.

USENIX Association 2022 USENIX Annual Technical Conference    133

https://www.openfabrics.org/images/eventpresos/workshops2014/DevWorkshop/presos/Monday/pdf/05_DC_Verbs.pdf
https://www.openfabrics.org/images/eventpresos/workshops2014/DevWorkshop/presos/Monday/pdf/05_DC_Verbs.pdf
https://www.openfabrics.org/images/eventpresos/workshops2014/DevWorkshop/presos/Monday/pdf/05_DC_Verbs.pdf
https://www.openfabrics.org/images/eventpresos/workshops2014/DevWorkshop/presos/Monday/pdf/05_DC_Verbs.pdf
http://socialmarketingfella.com/daily-deals-flash-sales-stats-need-know/
http://socialmarketingfella.com/daily-deals-flash-sales-stats-need-know/
https://linux.die.net/man/7/rsocket
https://linux.die.net/man/7/rsocket
https://openucx.org
https://cw.infinibandta.org/document/dl/7859
https://cw.infinibandta.org/document/dl/7859
https://engineering.fb.com/2017/03/08/data-center-engineering/introducing-bryce-canyon-our-next-generation-storage-platform/
https://engineering.fb.com/2017/03/08/data-center-engineering/introducing-bryce-canyon-our-next-generation-storage-platform/
https://engineering.fb.com/2017/03/08/data-center-engineering/introducing-bryce-canyon-our-next-generation-storage-platform/
https://engineering.fb.com/2017/03/08/data-center-engineering/introducing-bryce-canyon-our-next-generation-storage-platform/


[22] JONAS, E., SCHLEIER-SMITH, J., SREEKANTI, V., TSAI, C.,
KHANDELWAL, A., PU, Q., SHANKAR, V., CARREIRA, J.,
KRAUTH, K., YADWADKAR, N. J., GONZALEZ, J. E., POPA,
R. A., STOICA, I., AND PATTERSON, D. A. Cloud program-
ming simplified: A berkeley view on serverless computing.
CoRR abs/1902.03383 (2019).

[23] JOSE, J., SUBRAMONI, H., KANDALLA, K. C., WASI-UR-
RAHMAN, M., WANG, H., NARRAVULA, S., AND PANDA,
D. K. Scalable memcached design for infiniband clusters using
hybrid transports. In 12th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, CCGrid 2012, Ottawa,
Canada, May 13-16, 2012 (2012), IEEE Computer Society,
pp. 236–243.

[24] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Using
RDMA efficiently for key-value services. In ACM SIGCOMM
2014 Conference, SIGCOMM’14, Chicago, IL, USA, August
17-22, 2014 (2014), F. E. Bustamante, Y. C. Hu, A. Krishna-
murthy, and S. Ratnasamy, Eds., ACM, pp. 295–306.

[25] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Design
guidelines for high performance RDMA systems. In 2016
USENIX Annual Technical Conference, USENIX ATC 2016,
Denver, CO, USA, June 22-24, 2016 (2016), A. Gulati and
H. Weatherspoon, Eds., USENIX Association, pp. 437–450.

[26] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Fasst:
Fast, scalable and simple distributed transactions with two-
sided (RDMA) datagram rpcs. In 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2016,
Savannah, GA, USA, November 2-4, 2016 (2016), K. Keeton
and T. Roscoe, Eds., USENIX Association, pp. 185–201.

[27] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Data-
center rpcs can be general and fast. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation, NSDI
2019, Boston, MA, February 26-28, 2019 (2019), J. R. Lorch
and M. Yu, Eds., USENIX Association, pp. 1–16.

[28] KHANDELWAL, A., AGARWAL, R., AND STOICA, I. Blow-
fish: Dynamic storage-performance tradeoff in data stores. In
13th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2016, Santa Clara, CA, USA, March 16-
18, 2016 (2016), K. J. Argyraki and R. Isaacs, Eds., USENIX
Association, pp. 485–500.

[29] KIM, D., MEMARIPOUR, A. S., BADAM, A., ZHU, Y., LIU,
H. H., PADHYE, J., RAINDEL, S., SWANSON, S., SEKAR, V.,
AND SESHAN, S. Hyperloop: group-based nic-offloading to ac-
celerate replicated transactions in multi-tenant storage systems.
In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM 2018, Bu-
dapest, Hungary, August 20-25, 2018 (2018), S. Gorinsky and
J. Tapolcai, Eds., ACM, pp. 297–312.

[30] KIM, D., YU, T., LIU, H. H., ZHU, Y., PADHYE, J., RAIN-
DEL, S., GUO, C., SEKAR, V., AND SESHAN, S. Freeflow:
Software-based virtual RDMA networking for containerized
clouds. In 16th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2019, Boston, MA, Febru-
ary 26-28, 2019 (2019), J. R. Lorch and M. Yu, Eds., USENIX
Association, pp. 113–126.

[31] KOOP, M. J., JONES, T., AND PANDA, D. K. Mvapich-
aptus: Scalable high-performance multi-transport MPI over

infiniband. In 22nd IEEE International Symposium on Parallel
and Distributed Processing, IPDPS 2008, Miami, Florida USA,
April 14-18, 2008 (2008), IEEE, pp. 1–12.

[32] LI, B., CUI, T., WANG, Z., BAI, W., AND ZHANG, L. Socks-
direct: datacenter sockets can be fast and compatible. In Pro-
ceedings of the ACM Special Interest Group on Data Com-
munication, SIGCOMM 2019, Beijing, China, August 19-23,
2019 (2019), J. Wu and W. Hall, Eds., ACM, pp. 90–103.

[33] LU, Y., SHU, J., CHEN, Y., AND LI, T. Octopus: an rdma-
enabled distributed persistent memory file system. In 2017
USENIX Annual Technical Conference, USENIX ATC 2017,
Santa Clara, CA, USA, July 12-14, 2017 (2017), D. D. Silva
and B. Ford, Eds., USENIX Association, pp. 773–785.

[34] MA, T., MA, T., SONG, Z., LI, J., CHANG, H., CHEN, K.,
JIANG, H., AND WU, Y. X-RDMA: effective RDMA middle-
ware in large-scale production environments. In 2019 IEEE
International Conference on Cluster Computing, CLUSTER
2019, Albuquerque, NM, USA, September 23-26, 2019 (2019),
IEEE, pp. 1–12.

[35] MELLANOX. https://www.mellanox.com/sites/
default/files/doc-2020/pb-connectx-6-en-
ic.pdf, 2021.

[36] MELLANOX. https://github.com/Mellanox/
libvma, 2021.

[37] MELLANOX. Connect-IB product brief. https:
//www.mellanox.com/related-docs/prod_
adapter_cards/PB_Connect-IB.pdf, 2021.

[38] MITCHELL, C., GENG, Y., AND LI, J. Using one-sided
RDMA reads to build a fast, cpu-efficient key-value store. In
2013 USENIX Annual Technical Conference, San Jose, CA,
USA, June 26-28, 2013 (2013), A. Birrell and E. G. Sirer, Eds.,
USENIX Association, pp. 103–114.

[39] MITCHELL, C., MONTGOMERY, K., NELSON, L., SEN, S.,
AND LI, J. Balancing CPU and network in the cell distributed
b-tree store. In 2016 USENIX Annual Technical Conference,
USENIX ATC 2016, Denver, CO, USA, June 22-24, 2016
(2016), A. Gulati and H. Weatherspoon, Eds., USENIX Asso-
ciation, pp. 451–464.

[40] OAKES, E., YANG, L., ZHOU, D., HOUCK, K., HARTER, T.,
ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H.
SOCK: rapid task provisioning with serverless-optimized
containers. In 2018 USENIX Annual Technical Conference,
USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018 (2018),
H. S. Gunawi and B. Reed, Eds., USENIX Association, pp. 57–
70.

[41] PARK, J., AND YEOM, H. Y. Design and implementation of
software-based dynamically connected transport. In 2018 IEEE
3rd International Workshops on Foundations and Applications
of Self* Systems (FAS*W), Trento, Italy, September 3-7, 2018
(2018), IEEE, pp. 58–64.

[42] POKE, M., AND HOEFLER, T. DARE: high-performance state
machine replication on RDMA networks. In Proceedings of the
24th International Symposium on High-Performance Parallel
and Distributed Computing, HPDC 2015, Portland, OR, USA,
June 15-19, 2015 (2015), T. Kielmann, D. Hildebrand, and
M. Taufer, Eds., ACM, pp. 107–118.

134    2022 USENIX Annual Technical Conference USENIX Association

https://www.mellanox.com/sites/default/files/doc-2020/pb-connectx-6-en-ic.pdf
https://www.mellanox.com/sites/default/files/doc-2020/pb-connectx-6-en-ic.pdf
https://www.mellanox.com/sites/default/files/doc-2020/pb-connectx-6-en-ic.pdf
https://github.com/Mellanox/libvma
https://github.com/Mellanox/libvma
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_Connect-IB.pdf
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_Connect-IB.pdf
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_Connect-IB.pdf


[43] PROJECT, F. https://fnproject.io, 2021.

[44] REDA, W., CANINI, M., KOSTIC, D., AND PETER, S. RDMA
is turing complete, we just did not know it yet! CoRR
abs/2103.13351 (2021).

[45] RUAN, Z., SCHWARZKOPF, M., AGUILERA, M. K., AND

BELAY, A. AIFM: high-performance, application-integrated
far memory. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI 2020, Virtual Event,
November 4-6, 2020 (2020), USENIX Association, pp. 315–
332.

[46] SHAMIS, A., RENZELMANN, M., NOVAKOVIC, S., CHAT-
ZOPOULOS, G., DRAGOJEVIC, A., NARAYANAN, D., AND

CASTRO, M. Fast general distributed transactions with opac-
ity. In Proceedings of the 2019 International Conference on
Management of Data, SIGMOD Conference 2019, Amsterdam,
The Netherlands, June 30 - July 5, 2019 (2019), P. A. Boncz,
S. Manegold, A. Ailamaki, A. Deshpande, and T. Kraska, Eds.,
ACM, pp. 433–448.

[47] SHI, J., YAO, Y., CHEN, R., CHEN, H., AND LI, F. Fast and
concurrent RDF queries with rdma-based distributed graph ex-
ploration. In 12th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2016, Savannah, GA, USA,
November 2-4, 2016 (2016), K. Keeton and T. Roscoe, Eds.,
USENIX Association, pp. 317–332.

[48] SU, M., ZHANG, M., CHEN, K., GUO, Z., AND WU, Y.
RFP: when RPC is faster than server-bypass with RDMA. In
Proceedings of the Twelfth European Conference on Computer
Systems, EuroSys 2017, Belgrade, Serbia, April 23-26, 2017
(2017), G. Alonso, R. Bianchini, and M. Vukolic, Eds., ACM,
pp. 1–15.

[49] SUBRAMONI, H., HAMIDOUCHE, K., VENKATESH, A.,
CHAKRABORTY, S., AND PANDA, D. K. Designing MPI
library with dynamic connected transport (DCT) of infini-
band: Early experiences. In Supercomputing - 29th Interna-
tional Conference, ISC 2014, Leipzig, Germany, June 22-26,
2014. Proceedings (2014), J. M. Kunkel, T. Ludwig, and H. W.
Meuer, Eds., vol. 8488 of Lecture Notes in Computer Science,
Springer, pp. 278–295.

[50] THE TRANSACTION PROCESSING COUNCIL. TPC-C Bench-
mark V5.11. http://www.tpc.org/tpcc/.

[51] THOMAS, S., AO, L., VOELKER, G. M., AND PORTER, G.
Particle: ephemeral endpoints for serverless networking. In
SoCC ’20: ACM Symposium on Cloud Computing, Virtual
Event, USA, October 19-21, 2020 (2020), R. Fonseca, C. De-
limitrou, and B. C. Ooi, Eds., ACM, pp. 16–29.

[52] TSAI, S., SHAN, Y., AND ZHANG, Y. Disaggregating persis-
tent memory and controlling them remotely: An exploration
of passive disaggregated key-value stores. In 2020 USENIX
Annual Technical Conference, USENIX ATC 2020, July 15-17,
2020 (2020), A. Gavrilovska and E. Zadok, Eds., USENIX
Association, pp. 33–48.

[53] TSAI, S.-Y., AND ZHANG, Y. Lite kernel rdma support for
datacenter applications. In Proceedings of the 26th Symposium
on Operating Systems Principles (New York, NY, USA, 2017),
SOSP ’17, ACM, pp. 306–324.

[54] WANG, C., JIANG, J., CHEN, X., YI, N., AND CUI, H.
APUS: fast and scalable paxos on RDMA. In Proceedings
of the 2017 Symposium on Cloud Computing, SoCC 2017,
Santa Clara, CA, USA, September 24-27, 2017 (2017), ACM,
pp. 94–107.

[55] WEI, X., CHEN, R., AND CHEN, H. Fast rdma-based ordered
key-value store using remote learned cache. In 14th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 20) (Nov. 2020), USENIX Association, pp. 117–135.

[56] WEI, X., CHEN, R., CHEN, H., WANG, Z., GONG, Z., AND

ZANG, B. Unifying timestamp with transaction ordering for
MVCC with decentralized scalar timestamp. In 18th USENIX
Symposium on Networked Systems Design and Implementa-
tion, NSDI 2021, April 12-14, 2021 (2021), J. Mickens and
R. Teixeira, Eds., USENIX Association, pp. 357–372.

[57] WEI, X., DONG, Z., CHEN, R., AND CHEN, H. Deconstruct-
ing rdma-enabled distributed transactions: Hybrid is better!
In 13th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2018, Carlsbad, CA, USA, October
8-10, 2018 (2018), A. C. Arpaci-Dusseau and G. Voelker, Eds.,
USENIX Association, pp. 233–251.

[58] WEI, X., SHI, J., CHEN, Y., CHEN, R., AND CHEN, H. Fast
in-memory transaction processing using RDMA and HTM.
In Proceedings of the 25th Symposium on Operating Systems
Principles, SOSP 2015, Monterey, CA, USA, October 4-7, 2015
(2015), E. L. Miller and S. Hand, Eds., ACM, pp. 87–104.

[59] XIE, X., WEI, X., CHEN, R., AND CHEN, H. Pragh: Locality-
preserving graph traversal with split live migration. In 2019
USENIX Annual Technical Conference, USENIX ATC 2019,
Renton, WA, USA, July 10-12, 2019 (2019), D. Malkhi and
D. Tsafrir, Eds., USENIX Association, pp. 723–738.

[60] YANG, J., IZRAELEVITZ, J., AND SWANSON, S. Orion: A
distributed file system for non-volatile main memory and rdma-
capable networks. In 17th USENIX Conference on File and
Storage Technologies, FAST 2019, Boston, MA, February 25-
28, 2019 (2019), A. Merchant and H. Weatherspoon, Eds.,
USENIX Association, pp. 221–234.

[61] YAO, Z., CHEN, R., ZANG, B., AND CHEN, H. Wukong+g:
Fast and concurrent RDF query processing using rdma-assisted
GPU graph exploration. IEEE Trans. Parallel Distributed Syst.
33, 7 (2022), 1619–1635.

[62] YU, T., LIU, Q., DU, D., XIA, Y., ZANG, B., LU, Z., YANG,
P., QIN, C., AND CHEN, H. Characterizing serverless plat-
forms with serverlessbench. In Proceedings of the 11th ACM
Symposium on Cloud Computing (New York, NY, USA, 2020),
SoCC ’20, Association for Computing Machinery, p. 30–44.

[63] ZHANG, H., CARDOZA, A., CHEN, P. B., ANGEL, S., AND

LIU, V. Fault-tolerant and transactional stateful serverless
workflows. In 14th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2020, Virtual Event, Novem-
ber 4-6, 2020 (2020), USENIX Association, pp. 1187–1204.

[64] ZHANG, I., RAYBUCK, A., PATEL, P., OLYNYK, K., NEL-
SON, J., LEIJA, O. S. N., MARTINEZ, A., LIU, J., SIMP-
SON, A. K., JAYAKAR, S., PENNA, P. H., DEMOULIN, M.,
CHOUDHURY, P., AND BADAM, A. The demikernel datapath
OS architecture for microsecond-scale datacenter systems. In

USENIX Association 2022 USENIX Annual Technical Conference    135

https://fnproject.io
http://www.tpc.org/tpcc/


SOSP ’21: ACM SIGOPS 28th Symposium on Operating Sys-
tems Principles, Virtual Event / Koblenz, Germany, October
26-29, 2021 (2021), R. van Renesse and N. Zeldovich, Eds.,
ACM, pp. 195–211.

[65] ZHANG, M., HUA, Y., ZUO, P., AND LIU, L. FORD: Fast one-
sided RDMA-based distributed transactions for disaggregated
persistent memory. In 20th USENIX Conference on File and
Storage Technologies (FAST 22) (Santa Clara, CA, Feb. 2022),
USENIX Association, pp. 51–68.

[66] ZHU, B., CHEN, Y., WANG, Q., LU, Y., AND SHU, J.
Octopus+: An rdma-enabled distributed persistent memory
file system. ACM Trans. Storage 17, 3 (2021), 19:1–19:25.

[67] ZUO, P., SUN, J., YANG, L., ZHANG, S., AND HUA, Y.
One-sided rdma-conscious extendible hashing for disaggre-
gated memory. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21) (July 2021), USENIX Association, pp. 15–
29.

A Artifact Appendix
Abstract. The artifact provides the source code and scripts to
reproduce the experimental results from the USENIX ATC 2022
paper—–"KRCORE: A Microsecond-scale RDMA Control Plane for
Elastic Computing". KRCORE is a kernel-space RDMA solution that
provides fast RDMA connection setups to user-space applications.

Scope. The artifact can be used to reproduce the evaluations in §5.
It can also benefit the development of kernel-space RDMA-enabled
applications.

Contents. The artifact contains the source code, the instructions
for building and installation, and instructions for running the experi-
ments in §5. All the above instructions can be found according to
the steps in the README.md at the root directory of the artifact.

Hosting. The artifact is hosted on https://github.com/SJTU-
IPADS/krcore-artifacts under the main branch with commit version
7ba3bf6.

136    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/SJTU-IPADS/krcore-artifacts
https://github.com/SJTU-IPADS/krcore-artifacts
https://github.com/SJTU-IPADS/krcore-artifacts/tree/7ba3bf620e9ef602d1a8869b3a1c05c05cc4622f

	Introduction
	Background and Motivation
	The case for fast control path in elastic computing
	RDMA and queue pair (QP)
	Analysis of RDMA control path costs
	User-space control path costs
	Existing kernel-space solution is insufficient


	Approach and Overview
	Challenges and solutions
	Execution flow and architecture

	Detailed Design
	Programming interface of KRCore
	Data structures
	Control path operations
	Data path operations
	Zero-copy protocol for two-sided operations
	Physical QP transfer protocol

	Evaluation
	Control path performance
	Data path performance
	Application performance
	Scaling RACE Hashing
	Accelerating data transfer in serverless computing


	Discussion
	Related Work
	Conclusion
	Acknowledgment
	Artifact Appendix

