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ABSTRACT

Distributed transaction systems incur extensive cross-node commu-
nication to execute and commit serializable OLTP transactions. As a
result, their performance greatly suffers. Caching data at nodes that
execute transactions can cut down remote reads. Batching transac-
tions for validation and persistence can amortize the communication
cost during committing. However, caching and batching can signifi-
cantly increase the likelihood of conflicts, causing expensive aborts.

In this paper, we develop Hackwrench to address the challenge of
caching and batching. Instead of aborting conflicted transactions,
Hackwrench tries to repair them using fine-grained re-execution by
tracking the dependencies of operations among a batch of transac-
tions. Tracked dependencies allow Hackwrench to selectively invali-
date and re-execute only those operations necessary to “fix” the con-
flict, which is cheaper than aborting and executing an entire batch of
transactions. Evaluations using TPC-C and other micro-benchmarks
show that Hackwrench can outperform existing commercial and re-
search systems including FoundationDB, Calvin, COCO, and Sundial
under comparable settings.
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1 INTRODUCTION

Distributed system supporting serializable OLTP transactions is a
crucial component of the cloud’s storage infrastructure. Over the
past decade, many distributed transaction systems have been pro-
posed and deployed, with notable examples including Spanner [14],
CockroachDB [13], H-Store [29], and FoundationDB [64]. However,
while these systems can scale across many nodes, their achieved
performance still leaves much to be desired.

There are fundamental reasons why distributed transactions tend
to be slow. As data is partitioned across multiple nodes, the system
often must fetch data remotely (aka remote reads) during transac-
tion execution. More importantly, in order to commit a transaction,
the system must also coordinate across multiple nodes to ensure
serializability. Such coordination can show up in the form of dis-
tributed 2PL-style locking [14] or OCC-style [3] validation, followed
by two-phase commit (2PC) [3, 14, 39]. Consequently, executing and
committing a transaction requires multiple round trips of blocking
communication. This is disastrous for performance, resulting in sig-
nificantly reduced throughput, especially for contended workloads.

To substantially boost performance, we aim to drastically cut
down the amount of remote communication needed to execute and
commit a distributed transaction. Caching and batching are promis-
ing techniques for realizing our goal. Caching data at nodes that exe-
cute transactions can reduce remote reads. Batching a group of trans-
actions together for validation and commit can amortize the com-
munication needed across multiple transactions. These techniques
are already used ubiquitously among single-machine databases. The
cloud database Aurora [52, 53] achieves impressive performance us-
ing caching and batching. However, single-master Aurora’s simple
setting of executing transactions on a single database node makes it
much easier to apply caching and batching with good performance.

Caching and batching have seen limited use in a distributed set-
ting where multiple nodes can execute and commit transactions
simultaneously. This is because both techniques can significantly
increase the likelihood of non-serializable interleaving under con-
tention. Sinfonia [3] performs best-effort caching. However, under
contention, cached reads can miss writes recently committed by
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other nodes, causing the corresponding transactions to abort. When
transactions are batched together for validation, the invalidation of a
transaction will cause other transactions in the batch to abort. Thus,
COCO [39] validates transactions individually and only batches
validated transactions for cross-node replication. Addressing these
challenges is critical to enabling the effective use of caching and
batching, but how to do so has remained an open question.

In this paper, we propose Hackwrench, a distributed OLTP transac-
tion system. Hackwrench performs best-effort caching and batched
commit to reduce remote communication while mitigating the harm-
ful effect of increased conflicts. Our key idea is to “repair” non-
serializable transactions by applying a minimal fix rather than abort-
ing an entire transaction batch. Transactions are fixed by re-executing
operations affected by stale and invalidated reads.

To support fine-grained re-execution, Hackwrench transactions
are expressed as a dataflow graph of operations to make their depen-
dencies explicit. Hackwrench uses a tiered commit protocol: transac-
tions first go through a local commit phase to resolve conflicts within
a database node, and then a global commit phase to resolve conflicts
among different database nodes. A database node uses a traditional
local concurrency control mechanism (e.g., 2PL [25]) to execute and
commit transactions locally. Transactions can read uncommitted
data of any locally-committed transaction without waiting for its
global commit, so as not to be blocked. The resulting dependencies
are tracked by the database node and used later during repair.

The global commit protocol validates and commits a batch of
locally committed transactions. It works similarly to the two-phase
commit protocol: in the prepare phase, the database node contacts
all participating storage nodes to validate the reads and persist the
batch’s writes as well as transaction inputs at the storage nodes; in
the commit phase, the database node notifies storage nodes of the
batch’s commit status. Additionally, Hackwrench’s global commit
introduces two variations. First, upon validation failure, the database
node repairs the batch using the updated cache; it re-executes af-
fected operations according to the tracked dependencies within and
among transactions, and includes the delta between the original and
repaired write set in the commit request. Second, Hackwrench relies
on a timestamp server to determine the commit order of batches. Stor-
age nodes validate batches in the order of their commit timestamps,
ensuring that repair only needs to happen at most once.

For a common but restricted class of transactions called one-shot
transactions [29, 44], we optimize the global commit by offloading
the repair to storage nodes. One-shot transactions’ dataflow graphes
can be decomposed into several independent pieces. Hackwrench’s
fast-path optimization leverages this feature to let a storage node
immediately commit a batch of transactions upon receiving its pre-
pare request, repairing if necessary, without waiting for the commit
request. This optimization allows storage nodes to handle prepare
requests without blocking, avoiding two-phase commit costs.

We have implemented Hackwrench as a distributed transaction
system and compared it with a baseline OCC system, Calvin [49],
FoundationDB [64], COCO [39], and Sundial [62]. Our TPC-C eval-
uation shows that Hackwrench’s performance gains over existing
systems in terms of throughput can be up to 730.03% (OCC), 1889.52%
(FDB), 385.57% (COCO), 470.60% (Calvin) and 45.18%(Sundial) when
the fraction of multi-warehouse NewOrder exceeds 89% (§ 5). Further

1931

experiments show that Hackwrench’s fine-grained repair mecha-
nism greatly reduces the abort overhead when commits are batched.
To summarize, the paper makes the following contributions:

We introduce a new distributed OLTP database system design,
Hackwrench, which exploits caching and batching to reduce com-
munication during transaction execution and commit. In particu-
lar, we propose a tiered commit protocol to validate and commit
transactions in two stages, ensuring serializability first within the
local node that has executed the transactions and then across all
nodes globally. To mitigate increased conflicts due to stale cache
and batched commit, we propose fine-grained re-execution to “fix”
stale or invalidated reads instead of doing traditional wholesale
abort-and-retry, greatly lowering the cost of transaction conflicts.
For one-shot transactions [29, 44], we propose the fast-path opti-
mization which performs re-execution at storage instead of data-
base nodes with one fewer round-trip and no 2PC coordination.

We build a prototype of Hackwrench, which outperforms existing
commercial and research systems including FoundationDB [64],
COCO [39], Calvin [49], and Sundial [62] in comparable settings.

2 BACKGROUND AND MOTIVATION
2.1 The Cost of Distributed OLTP Transactions

Distributed OLTP transactions incur heavy costs because of their
intrinsic need for cross-node communication. There are two sources
of communication. The first is remote reads, incurred during trans-
action execution when data are not available locally. For “remote
storage” systems, aka systems that execute transactions on nodes
separate from storage nodes (e.g., Spanner [14], FoundationDB [64],
CockroachDB [13],and MySql NDB Cluster [42]), all reads are remote.
For “co-located” systems, aka systems that execute transactions on
worker threads co-located with storage nodes (e.g. Calvin [49], H-
Store [29], COCO [39], and Sundial [62]), a fraction of the reads in a
“multi-partition” transactions! must contact some remote nodes.
The second is remote synchronization, needed for ensuring seri-
alizability, which can take several forms: i) distributed two-phase
locking [25], e.g., used by Spanner [14]); ii) OCC validation [30], e.g.,
used by COCO [39]; iii) two-phase commit (2PC) [22, 23], which
ensures that a committed transaction’s data is durable on all rele-
vant nodes. To reduce round-trips, many systems also merge OCC
validation with the first phase of 2PC, e.g., Sinfornia [3], Granola [15].
Compared to local execution, remote communication drastically
increases transaction latency and decreases system throughput.
Throughput is affected when a limited number of transactions can
be run concurrently to mask the increased transaction latency. This
could either be due to the lack of sufficiently many transaction-
issuing clients, or due to the workload having inherently limited
concurrency. For example, in the TPC-C workload, only a few transac-
tions can execute concurrently without conflicts in each warehouse.

2.2 Challenges of Caching and Batching

We target a “remote-storage” architecture where database nodes
that execute transactions are separate from storage nodes that store
data. During transaction execution, database nodes read from storage
nodes and buffer writeslocally. To commit a transaction, the database

! Multi-partition transactions access multiple data partitions stored on different nodes.



Table 1: The performance impact of caching and batching, p is the per-
centage of multi-warehouse NewOrder transaction. “Naive OCC” is similar
to COCO [39], except there is no co-location of transaction execution with
storage. “+Caching” adds a local cache at each database node. “+Batching”
further makes database nodes batch transaction validation and commit. Fi-
nally, “+RU” permits reading uncommitted data between different batches.

TPC-C Throughput (Txns/s)
P Naive OCC | +Caching | +Batching | +RU
0% 19.0k 32.3k 103.3k 337.7k
9.6% 18.3k 29.7k 72.6k 442
89.3% 13.7k 21.7k 28.2k 47

node must first validate its reads with the relevant storage nodes.
Below, we discuss how the two common optimizations, caching and
batching, can be applied to reduce cross-node communication and
the challenges in realizing their performance potential.
Caching. Database nodes can keep a local cache of previously ac-
cessed data and read cached data to avoid remote reads to storage
nodes. When only a single database node can process write transac-
tions (e.g. Deuteronomy [32], single-master Aurora [52]), the cache is
always consistent and up-to-date. However, in our setting, different
database nodes can commit transactions that write to the same data,
resulting in stale/inconsistent cache 2 For correctness, one can check
the cached reads’ validity during the commit validation, as done in
Sinfonia [3]. Thus, caching increases transaction aborts, which may
explain why most systems choose not to cache [13, 14, 42, 64].
Batching. To amortize the cost of remote synchronization, data-
base nodes can batch a group of transactions after execution to
validate and commit them together at the storage nodes. Prior works
have proposed batched transaction commits, but not validation. For
example, single-writer Aurora [52, 53] only batches the writes of
transactions for replication to storage nodes. COCO [39] validates
transactions individually and then batches validated transactions for
replication. In our setting, database nodes must validate a transac-
tion’s reads at storage nodes, involving cross-node synchronization.
Therefore, it is imperative to batch the validation of transactions.
Many tough design questions arise. Should we permit a transaction
to read uncommitted writes from those that are still waiting for batch
validation to complete at remote nodes? Does an entire batch need
to be aborted if one transaction in the batch fails the validation?
We conducted experiments on the TPC-C benchmark to quantify
the performance impact, using 18 Amazon EC2 m5.2xlarge instances
(6 database nodes and 12 storage nodes). We increase the multi-
warehouse NewOrder transaction possibility (p) to control cross-
node conflicts. According to Table 1, caching increases throughput
by 58.4% ~ 69.8%. Batching further improves performance by 219.5%
(p=0%) and 144.2% (p=9.6%). However, the improvement drops to
30.3% (p=89.3%), as i) batched validation increases the likelihood of
conflicts between batches, and ii) a single aborted transaction causes
the entire batch of transactions to abort. Basic batching prohibits
transactions from reading uncommitted data of those batches still
being validated by remote storage nodes. We also included a variation

2Traditional cache consistency protocols [21,33] are not robust against failures. Thus, it is
more practical to adopt a best-effort cache that is updated or invalidated asynchronously
in the background with no guaranteed consistency

1932

To To i Tuple
T ?4— - i [Key=Val IV
i( : ) Read
(= 7o QD write
5’ ! Intra-Tx
a i Depencency
—_—

Data Access

T2

1
— :
Figure 1: Fine-grained tracking of operation dependencies within a
batch of transactions, T; and T,.

(+RU) that allows reading from such uncommitted batches. Under
no contention (p = 0%), this design achieves significantly higher
throughput than basic batching (337.7k vs 103.3k Txns/s). However,
contention tanks the performance due to cascading aborts across
batches. This motivates us to address the challenge of sustaining the
high performance of “+RU” in the face of low to moderate contention.

2.3 Our Approach

We develop Hackwrench to exploit caching and batching more ef-
fectively. To enable batched validation and commit, we propose a
two-tier commit protocol in which transactions are first checked lo-
cally for serializability violations before being batched together and
validated globally. At the core of Hackwrench is the mechanism re-
pair through fine-grained re-execution, which can significantly lower
the cost of invalidated transactions compared to wholesale aborts.
Tiered commit. We separate the usual monolithic commit protocol
into two tiers (stages). In the first stage, referred to as “local commit”,
eachnode uses traditional local synchronization (e.g., 2PL) to execute
transactions individually and ensure serializability within a node. In
the second stage, referred to as “global commit”, each node groups
a batch of locally committed transactions and communicates with
storage nodes to validate/persist the batch’s read/write set.
Separating commits into two tiers allows us to handle intra-node
conflicts using inexpensive local synchronization. More importantly,
a locally committed transaction makes its writes visible to other
transactions running on the same node, so they do not block waiting
for the transaction’s distributed global commit. As a result, we can
batch together dependent transactions. Otherwise, we would be re-
stricted to only batching together transactions with non-overlapping
data accesses, which seriously constrains throughput when there
are only a limited number of such concurrent transactions.
Repair via fine-grained re-execution. Caching increases the
chances of aborts due to stale reads. Tiered commit makes this situa-
tion worse because transactions must be aborted if they observed
any aborted writes. To mitigate the abort cost, we need a more ef-
ficient solution than aborting and retrying a batch of transactions.
Our insight is that it is cheaper to repair the transactions batch by
selectively re-executing operations affected by stale or invalid reads.
We implement repair by representing transactions using static
dataflow graphs so that the dependencies between operations are
made explicit. Additionally, dependencies across different transac-
tions are dynamically tracked through the tuples that they access. We
illustrate the main idea of repair using an example. Figure 1 shows the



dependencies among a batch of two locally committed transactions
that access three data tuples A, B, and C. We assume a tuple’s version
is represented by its last writer transaction. Since a locally commit-
ted transaction exposes its writes to other transactions executing
on the same database node, there exist implicit dependencies across
transactions, as exemplified by the edges W5 — R and Wy — R;.
During the global commit, the read set of a batch is validated at
relevant storage nodes. A read can be invalidated if its version does
not match the tuple’s current version due to conflicts or the stale
cache. With the aid of the dataflow graph, we can repair the damage of
the invalidated read by precisely identifying the subset of operations
that need to be re-executed. In Figure 1, the read set consists of tuples
A, B, C, all with version Tp. Suppose the read of tuple C (version Tp)
fails its validation because the version has been changed to Ty, then
operations Ry, Wy of T and Ry, Wig of T, must be re-executed using
the new version of tuple C while all other operations are unaffected.
The idea of fine-grained re-execution is inspired by transaction
healing and repair [16, 57], but has several differences. First, since
repairing is done in abatch of transactions, we need to track operation
dependencies among different transactions in a batch. Second, we
rely on explicit dataflow graphs to expose operation dependencies
instead of static analysis [16] because the latter lacks precision.

3 HACKWRENCH DESIGN

System overview. Figure 2 depicts Hackwrench’s architecture,
which has three components: a set of database nodes, a set of storage
nodes, and a timestamp server. Database nodes execute transactions
and coordinate their commits; storage nodes store data and validate
transactions. We use the term logical storage node to refer to a group
of physical storage nodes that replicate the same data partition (the
default replication level is 3). Reading from (or writing to) a logical
storage node requires contacting the read quorum (or write quorum)
of its constituent physical storage nodes [52]. The size of the read-
/write quorum is configurable and must ensure a non-empty quorum
intersection. Hackwrench’s tiered commit protocol guarantees strict
serializability. It uses the timestamp server to ensure a consistent
ordering of global commits from different database nodes.
Hackwrench relies on a Paxos-replicated configuration service to
maintain the system configuration (aka view), similar to other dis-
tributed storage systems [11, 39, 43]. The view includes the identity
of the timestamp server and the mapping of each data partition to its
logical storage node. Each view is identified with a monotonically
increasing view number. RPC requests contain the highest view
number known to the sender. The timestamp server and storage
nodes reject requests whose view numbers do not match theirs.

3.1 DataOrganization and Caching

Hackwrench partitions data into segments, each of which contains
a set of versioned key-value tuples belonging to a table. Users can
designate a subset of the table’s primary key columns as the partition
key for each table. Each data segment is stored at a logical storage
node. The configuration service maintains the mapping from each
data segment to its logical storage node, which is cached by all the
database nodes. The version of a tuple consists of a 63-bit unique ID
of the last transaction that modifies that tuple and one “repaired” bit,
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whichisneeded to ensure that the writes of a re-executed transaction
have versions different than those of its original execution.

Each database node keeps a large in-memory tuple-level cache.
In the face of a cache miss, a database node reads the tuple from the
corresponding logical storage node. The cache is kept up-to-date
asynchronously with no freshness guarantee.

3.2 Transaction Execution and Local Commit

In Hackwrench, transactions are represented as stored procedures.
For OLTP workloads, stored procedures are commonly used for per-
formance acceleration [44]. Unlike other systems [39, 41, 49, 51, 55,
58] that use C++-based stored procedures, Hackwrench provides a
dataflow-based programming abstraction for users to write store
procedures. Our dataflow APIs are inspired by Tensorflow [2], except
that instead of supporting tensor operators, our API supports primi-
tive operators on different tuple column types, including integers,
strings, and floats, as well operators for reading and writing tuples
in the database. All operators are deterministic, whose outputs only
depend on the input, except for database reads, which depend on
the current cached or database state. With our API, each transaction
is represented by a static dataflow graph. We store one copy of the
static dataflow graph for a given transaction type at each node.

In Hackwrench’s tiered commit protocol, the concurrency control
is decomposed into two parts: local commit for resolving local con-
flicts within the same database node, and global commit for handling
remote conflicts across different database nodes (§ 3.3).

Execution and local commit. To execute transactions, a database
node reads from its data cache whenever possible and buffers writes
locally. It uses two-phase locking [25] (with NO_WAIT for dead-
lock prevention) to ensure strict serializability. Upon finishing, the
database node commits a transaction locally: it directly applies the
transaction’s writes to the database cache, making the writes visible
to other transactions on the same database node. Locally committed
transactions are then appended to one local queue of each database
node, waiting for batched global commit. To ensure that transactions
are enqueued in the local commit order, the database node releases
the locks held by 2PL after the transaction are pushed into the queue.

For performance’s sake, it is crucial to expose a transaction’s
writes upon local commit. The alternative, i.e., holding locks during
global commit, can seriously damage the system throughput because
other transactions could be blocked from execution and local commit.
However, the downside is: if transaction T aborts later during global
commit, any transactions that have read T’s uncommitted writes
must also be aborted. This cascading effect can cause significant
abort overhead, which Hackwrench seeks to mitigate using repair via



fine-grained re-execution. To do so, Hackwrench needs to track the
dependencies of operations among locally-committed transactions;
if a read operation’s output changes during validation, then all its
dependent operations need to be re-executed as part of the repair. In
fact, transactions are executed according to their dataflow graphs,
which contain operation dependencies within the transactions.

3.3 Global Commit

Hackwrench dequeues a batch of locally committed transactions and
tries to globally commit them at logical storage nodes responsible
for the batch’s read set/write set. At the high level, Hackwrench’s
global commit follows the spirit of two-phase commit (2PC) where
a database node coordinates with the set of participating logical
storage nodes to go through a prepare phase followed by commit
phase. Similar to [3], the prepare phase validates the batch’s read set
and persists its write set (in the form of redo log) for crash recovery.
We introduce two crucial variations. First, Hackwrench relies on a
centralized timestamp server to assign the batch of transactions a
consistent commit ordering. Second, Hackwrench repairs conflicted
transactions instead of aborting the whole transaction batch. Next,
we describe the commit timestamp assignment and the global commit
procedure without validation failure. Repair is discussed in § 3.4.
Finally, we propose an optimization that enables certain types of
transactions to be repaired efficiently at storage nodes (§ 3.5).
Commit timestamp assignment. The goal of the centralized com-
mit timestamp assignment is to ensure that all logical storage nodes
agree on a consistent ordering when handling conflicting batches of
transactions. Suppose transaction Ty and T have conflicting accesses
on tuples x,y which are stored at nodes sny and sny, respectively.
With commit timestamping, we aim to guarantee that both servers
sny and sny will validate and commit T; and T in the same order.

One strategy is to impose a total order on commit timestamps,
which is straightforward and adopted by many systems, e.g. Foun-
dationDB [64], Spanner [14], and Deterministic DB [1, 49]. Instead,
we use partial ordering for commit timestamps, which guarantees
the consistent ordering of conflicting transactions while avoiding
unnecessary blocking of non-conflicting batches.

InHackwrench, the timestamp server maintains a counter for each
data segment. The per-segment counter is represented as a pair: <seq,
readers>, where seq tracks the number of batches that have written
the segment and readers tracks the number of batches that have read
the segment’s latest write. When requesting a commit timestamp for
a batch, the database node submits the list of segments in the batch’s
read set and write set to the timestamp server. The timestamp server
locally locks all segments, reads each segment’s current counter
value into the commit timestamp, increments each write segment’s
seq field while zeroing its readers field, and increments each read
segment’s readers field while leaving its seq field unchanged.

Storage nodes handle global commits according to commit times-
tamps’ partial order. Suppose a batch with segment s has commit
timestamp CTS[s] =<seq,readers>.1f s is in the read set, the storage
node must wait for the arrival of the writer batch of s, aka batch with
timestamp CTS[s]=<seq,0>; If s is in the write set, the storage node
must wait for the arrival of all readers batches that have read s, aka
batches with timestamps CTS|[s]=<seq,i>, where 0 <i <readers.
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Our scheme ensures that conflicting batches are handled in a
consistent order at storage nodes. While commit timestamps are
segment-level, storage nodes do tuple-level locking and validation to
minimize false blocking and false conflicts. Thanks to coarse-grained
timestamps and batched timestamp assignment, a single timestamp
server can support high transaction throughput (§ 5.6, Figure 15).
Batched global commit. Hackwrench’s global commit process
works at the batch granularity. The pseudocode of the commit pro-
tocol is shown in Figure 3. To start, the database node dequeues a
batch of transactions from its local queue (Line 1), with the local
commit order of transactions preserved (§ 3.2). The batch’s read set
and write set are merged from its transactions’ read set and write set,
with deduplication. The batch’s read and write set determine the set
of participating logical storage nodes involved in the global commit.

After assembling a batch, the database node fetches a commit
timestamp from the timestamp server (Line 3). The timestamp server
handles the same database node’s requests in order, ensuring that
commit timestamps are consistent with batches’ local commit order.

When receiving the commit timestamp, the database node pro-
ceeds to the prepare phase. It merges the batch’s read set and write set.
Then it sends Prepare requests in parallel to all participating logical
storage nodes (Lines 6,7). The Prepare requests contain the batch’s
commit timestamp, read set, write set, and transactions’ inputs.

Upon receiving a batch’s Prepare request, the storage node ac-
quires tuple-level locks for the batch, following the commit times-
tamp’s partial order. It first checks whether this request must wait
for other batches to finish enqueuing their lock requests (Line 10), by
comparing its responsible segments’ current timestamps with those
from the batch’s commit timestamp. Once the waiting is over, the
storage node enqueues a lock request in a FIFO queue for each tuple
according to the batch’s read set and write set (Line 11) and updates
the accessed segments’ timestamp (Lines 12,13), thereby allowing
subsequent batches to enqueue their lock requests.

Once a batch’s locks have all been acquired (Line 14), the storage
node can validate the batch’s read set (Lines 16,17). If a tuple’s current
version does not match the one in the read set, then the validation
fails (Line 19). When a transaction’s read depends on the write of
other transactions in the same batch, the corresponding validation is
skipped. No matter whether the validation succeeds or fails, the stor-
age node persists the information contained in the Prepare request
(Line 21). For the batch’s read set, only keys are persisted.

If validation succeeds, the storage node replies with PrepareOK
(Line 23). Once the database node receives replies from a write quo-
rum of each participating logical storage node and all the replies
are PrepareOK, it can enter the commit phase to notify clients and
send the commit decision to storage nodes (Lines 32, 33). Finally,
when a storage node receives the Commit request, it knows the
corresponding batch has been committed, applies the batch’s write
set to local storage, and releases its locks (Lines 37, 38).

3.4 Transaction Repair

When validation fails (Line 19) due to conflicts between different
database nodes, the storage node sends back those tuples which have
caused invalid reads in the PrepareNotOK reply (Line 18 and 25) to
help the database node refreshes its local cache. Note that storage
nodes do not release tuple-level locks at this point. After the database



> A storage node (SN) processes a Prepare request.
HandlePrepare(batch):
> Acquire locks for accessed tuples in the timestamp order.

Basic fields of Batch: i fast_opt: whether to use the fast path optimization. | _ _ _ _ _
rset & wset: the. original “?erged tuple-leyel reac} setand | input: the input of transactions in the batch. Control Flow
write set, which can determine the id of and ! ) ) o in Storage Nodes
operation type towards accessed segments. | final_wset: the final write set after repair or the original
. . N write set if the batch is not repaired. —_—
cts: the list of segment-level timestamps which ! Network
assigns global commit orders to batches.  + delta_wset: the delta of write set before and after repairing. Requests
> A database node (DB) starts the global commit. > DB receives the responses from the write quorums of all target
GlobalCommit(local queue, batch_size): logical storage nodes.
> Assemble a batch of locally committed transactions. »128: if at least one PrepareNotOK reply was received:
1: batch := BatchLocalTxns(local_queue, batch_size) | > The repairing transactions directly read from fresh_tuples or
> Fetch the batch’s commit timestamps from the timestamp server, g recorded value in the read set, avoiding reading uncommitted
and these requests are sent in one message. 772) data written by ongoing transactions in DB.
2: foreach segment seg in batch.rset and batch.wset do: oy |29 Repair(batch.input, batch.rset, batch.wset, fresh_tuples)
3:  batch.cts[seg.id] := FetchTimestamp(seg.id, seg.op_type) 2, 30:  RefreshDbCache(fresh_tuples)
» Check whether the batch could commit with fast path. = |31 ApplyToDbCache(batch.delta_wset)
4: batch.fast_opt := AnalyzeFastPathFeasibilityOf(batch) % > Send Commit requests to the target logical storage nodes.
> Send Prepare requests to the target logical storage nodes. o |32: foreach sninsn_locations do:
5: sn_locations := FindSnLocations(batch) ] 33: send Commit(batch) to all physical replicas of sn
6: foreach sn in sn_locations do: £ v
7: send Prepare(batch) to all physical replicas of sn g > SN processes a Commit request.' -

HandleCommit(batch):

34: if batch was repaired:

35: Persist(batch.deleta_wset) > the entire delta_wset.
> The final write set should be reformed as it is not directly

8: foreach seg in batch do: transferred by the Commit request.

9: local_ts := GetLocalTimeStamp(seg.id) 36: ReformFinalWriteSetOf(batch.wset, batch.delta_wset)
10: WaitForPreviousBatch(local ts, batch.cts[seg.id]) 37: ApplyToSnStorage(batch.final wset)
11:  EnqueueTupleLockRequests(batch.rset, batch.wset) > Release the locks to unblock subsequent batches.
12:  foreach seg in batch do: 38: ReleaseTupleLocks(batch.rset, batch.wset)
13: UpdateLocal TimeStamp(seg.id, seg.op_type) —

14:  WaitForAllTupleLocksAcquired(batch.rset, batch.wset)
> Perform the validation on the tuples in the read set. » SN commits the batch in the fast path from line 27. [
15: validation := success r — &{39: Persist(batch.cts, batch.input) > cts and input of all txns.
16: foreach tuple in batch.rset do: ! 40: if validation is fail:

17: if tuple.version != GetCurrentVersion(tuple): : » No concurrent conflicting batches can update tuples required
> Prepare fresh committed data for dirty tuples. I for repair, as they are blocked by locks of conflicting tuples.
18: fresh_tuples.add(tuple) I & |4k Repair(batch.input, batch.rset, batch.wset)

19: validation := fail : o |42 ApplyToSnStorage(batch.final_wset)
20: if batch.fast_opt is false: | ©2 |43: ReleaseTupleLocks(batch.rset, batch.wset)
21: Persist(batch.cts,batch.input, batch.wset, batch.rset.keys) | £ |44: reply <FastPathOK, fresh_tuples,batch.delta_wset> to DB
22: if validation is success: > Validation succeeds l'®
23: reply <PrepareOK> to DB : e_', '
24: else: » Validation fails | g > DB receives FastPathOK from the write quorums of all target
25: reply <PrepareNotOK, fresh_tuples> to DB : L log}cal storage nodes..
26: else: > Use the fast path | 45 if batch was repaired:
27 goto line39 = = === ========——=———-1 L[ s 46: RefreshDbCache(fresh_tuples)

— 47: ApplyToDbCache(batch.delta_wset)

Figure 3: The algorithm for global commit. Procedures in stacked boxes are executed on the storage node.

node receives replies from the write quorums of all participating
logical storage nodes, the database node proceeds to repair the batch
if any PrepareNotOK reply is received (Line 29). We take the example
in Figure 1 and assume R; fails validation. The repair procedure
sequentially processes every transaction in one batch as follows. It
starts with the first transaction in the batch, T;. Checking T;’s reads,
the procedure detects that Ry needs to be re-executed. It re-executes
Ry which results in the write Wy to tuple C being repaired as well.
The procedure then proceeds to the next transaction in the batch, Tp.
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Checking T,’s reads, the procedure detects the change of C, and re-
executes the affected operations R7 and Wy, resulting in a new final
write to tuple C. After all the transactions are checked and repaired if
necessary, the re-execution can finish and the database node notifies
clients of the results. Finally, the database node refreshes its stale
cache (Line 30) and then applies the delta of write set before and
after repair (deltayser) to its cache (Lines 31).

When repair finishes, the database node sends Commit requests to
all participating storage nodes (Lines 32, 33). Instead of transferring



the final write set (final_wset), it saves network I/O by sending the
delta of write set, which can be used to reconstruct the final write
set at the storage node (Line 36). Then, the storage node applies the
final write set to local storage and releases the locks (Lines 37,38).
Our design guarantees the success of repair except for two scenar-
ios. The first scenario is when a read or write operation changes its
key during re-execution. For repair to succeed, tuple-level locks are
held during re-execution to protect the read and write set. However,
as these locks are acquired by storage nodes during the original vali-
dation, they do not cover the changed keys. The second scenario is
when a user-initiated abort is triggered during re-execution. In both
cases, the database node aborts the corresponding transaction and
replaces it with a special NOP transaction, which means its write set
is nullified. Ideally, aborts during repair should be rare. There are no
such aborts in many workloads because their transactions’ read set
and write set are not affected by execution [18, 20, 34, 35, 49, 50, 60].

3.5 Fast-Path Optimization

A common but restricted form of transaction is the so-called one-
shot transaction [29, 44]. In our setting, a one-shot transaction is one
whose dataflow graph be decomposed into subgraphs, each of which
only accesses data within a single data partition and can execute and
reach a commit decision independently. For one-shot transactions,
we can optimize the global commit process to let each storage node
independently commit a batch of transactions without coordinating
with others (aka without waiting for the Commit request of 2PC).
This is possible for one-shot transactions if we offload repair from
database nodes to storage nodes so that each logical storage node can
independently repair (its portion of) the batch successfully.

We use the example in Figure 1 to illustrate fast-path optimization
for one-shot transactions. Let us assume tuples A, B belong to the
same data partition stored at logical storage node snj, and tuple C
belongs to a different partition stored at logical storage node sna. We
can partition each transaction’s dataflow graph into two pieces such
that there are no dependencies between the subgraph accessing A/B
and the subgraph accessing C. Therefore, this batch qualifies for fast
path global commit. The database node sends Prepare requests to
logical storage nodes. Suppose operation Ry fails validation, instead
of returning to and repairing at the database node, sny directly repairs
T1’s piece (R; — Wy) and T’s piece (R7 — Wyp). As these two pieces
only access tuple C and do not have dependencies with the pieces
sent to sny, sny can independently repair and commit Ty and T>.

Figure 3’s bottom right corner shows fast path’s pseudocode. In
this case, every logical storage node persists the commit timestamp
and input of all transactions in the batch (Line 39), which are needed
for failure recovery (§3.6). The storage node repairs the batch locally
if validation fails (Line 41), and commits without waiting for 2PC
Commit requests (Lines 42-44). This can greatly improve commit
throughput under contended workloads because the logical storage
nodes can “pipeline” their handling of batches that conflict on the
same segment, incurring no network delay. Finally, the logical stor-
age node replies to the requesting database node with FastPathOK.
Once the database node receives FastPathOK from the write quo-
rums of all participating logical storage nodes, it can notify the clients.
If the batch has been repaired, the database node then refreshes its
cache with fresh tuples and the delta of the write set (Lines 46-47).
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3.6 Failure Recovery and Correctness

Failure model. We assume that database nodes and the timestamp
server can fail, but replicated logical storage nodes do not fail.
Recovering the database node failures. When handling from
database failures, we must recover all pending transactions from the
failed database node. This is because unfinished transactions can
block conflicting transactions from other database nodes. Our design
uses a replicated configuration service to detect failures and initiate
recovery. Upon detecting a database node failure, the configuration
service notifies all storage nodes to stop processing Prepare and
Commit requests from the failed node. Next, the configuration ser-
vice appoints another database node to be a (recovery) coordinator.
The coordinator contacts the timestamp server to identify pending
transaction batches from the failed node, and the logical storage
nodes to determine what information has been persisted for each
batch. The coordinator then decides whether each pending batch
should be committed (because sufficient information is available to
do s0), or aborted, and we describe both cases below. Recovery ends
once all pending batches have been either committed or aborted.

Apendingbatchisabortedifany ofits participating logical storage
nodes have not persisted its Prepare request. This is because as an
optimization, we only include the part of the batch that is relevant to
a storage node in its Prepare request, and must combine these during
recovery. Similarly, we commit a pending batch if all participating
logical storage nodes have persisted its Prepare requests and no repair
is required. Handling batches that require repair is more complex,
because it requires recomputing the final write set, and consequently,
our handling depends on the state at logical storage nodes.

If the recovering batch has not been committed at any logical stor-
agenode, we use Prepare requests (containing the commit timestamp,
transaction inputs, and read set and write set keys) to recompute the
final write set. We re-execute the transaction using the tuples stored
at the storage nodes, the timestamp, and the transaction input. Simi-
lar to the repair logic, our recovery logic aborts transactions whose
keys in the original read or write set change during re-execution.

On the other hand, if the batch was committed at a logical storage
node, we must make the same decision. However, the transaction
cannot be simply re-executed. Tuples in any logical storage node that
committed the transaction might have been updated subsequently by
batches with later timestamps. To address this problem, Hackwrench
persists the entire delta of a batch’s write set (instead of the relevant
part) before committing the batch. During recovery, the coordinator
reads this delta write set from a logical storage node that committed
the transaction, and combines it with the write set from the persisted
Prepare request to construct the final write set and commit the batch.

Transactions processed with the fast-path optimization are han-
dled slightly differently because storage nodes independently make
commit decisions. Our recovery procedure depends on two design
choices: first, Prepare requests sent to participating logical storage
nodes contains timestamps and transaction inputs for all transac-
tions in the batch; and second, transaction inputs suffice to re-execute
the one-shot transactions in a batch that uses the fast path. There-
fore, recovering these batches requires the recovery coordinator to
re-send the Prepare request to all participating logical storage nodes.
Recovering from timestamp server failures. Handling these
failures requires global quiescence and view changes. To start the



view change, the configuration service informs all storage nodes to
stop processing new batches and finish all pending ones, using the
scheme for recovering database nodes. Once finished, the configu-
ration service is safe to broadcast a new view (containing the new
timestamp server). The new timestamp server assigns timestamps
starting from the initial value. Storage nodes only process batches
with timestamps of the current view. View change can be used to
add or remove storage nodes but we do not implement it currently.
Correctness. Due to space constraints, we leave the proof of correct-
ness of Hackwrench’s design in an extended version of the paper [19].

4 IMPLEMENTATION

Allnodes assign one worker thread per core, which executes an event
loop to process network messages, transaction logic, etc. We use
64MB segments and currently store data and metadata in memory.
Batch splitting. A naive approach to forming batches is combining
all pending transactions into a batch, which has two drawbacks: 1)
it limits parallelism because non-conflicting transactions execute
sequentially, and 2) repairs to a transaction can unnecessarily delay a
non-conflicting transaction’s commit. Therefore, Hackwrench splits
a batch into non-conflicting sub-batches for parallelism. Specifically,
after a batch is formed, the database node constructs an undirected
graph with transactions as nodes and edges connecting transactions
accessing the same segment. A connected component in this graph
represents a set of conflicting transactions which we merge into a
sub-batch. Different sub-batches in a batch access different segments,
and thus can be validated, repaired, and committed independently.
Dependency tracking. Hackwrench tracks dependencies among
transaction operations (the dashed lines in Figure 1). For any read
Opy, it stores the <key,version> pairs of accessed tuples. The version
indicates the last transaction T, that wrote to key’s tuple, it implicitly
records Op,’s dependency on T,,. During execution, Hackwrench
does not record any write dependencies, since these can be inferred
from Hackwrench’s dataflow API statically. Tracking dependency
adds an overhead of 16 bytes per tuple read by a transaction.
Fine-grained re-execution. An intuitive approach for re-execution
is constructing a large dependency graph for all transactions in one
batch and repairing accordingly. However, this approach introduces
runtime overhead for dependency graph construction and traversal.
Hackwrench uses a simple but efficient way instead. As transactions
within the same batch are totally ordered (§ 3.3), Hackwrench repairs
transactions sequentially in the total order. To repair one transaction,
Hackwrench re-executes it according to its static dataflow graph. For
each read, Hackwrench compares the recorded <key,version> pair
with the currentkey and tuple version. If such metadata changes, then
the read is repaired. Writes are repaired if one of their dependent
reads is repaired, according to the dependencies encoded in the
dataflow graph. When a write is repaired, it assigns the tuple a new
version containing the repaired transaction’s ID and sets the repair
bit to true. The complexity of the above repair procedure is O(N),
where N is the number of read operations in one batch.

5 EVALUATION
5.1 Experiment Setup

5.1.1 Comparison targets. We evaluate six systems. Among them,
Hackwrench, an OCC system, and FoundationDB [64] use remote
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storage. COCO [39], Calvin [49], and Sundial [62] use co-located
storage. All systems store data in memory. Three-way replication
is enabled except for Sundial. We used the original implementation
from GitHub [4, 37, 59, 61] for all systems.
Hackwrench. Our default configuration enables fast-path optimiza-
tion. For comparison, Hackwrench-nofast in the evaluation refers to
a version where the fast-path optimization is disabled. In both cases,
we set the read quorum to one and the write quorum to three.
OCC. The OCC system we compare against modifies Hackwrench’s
code, and uses tiered commits. It uses 1) two-phase locking [25]
(with NO_WAIT) to handle local conflicts, 2) optimistic concurrency
control [30] to resolve remote conflicts, and 3) two-phase commit
for global committing. By default we neither cache data, nor batch
transactions. The OCC+Caching results we present represent an
OCC configuration where caching is enabled. Note, this OCC im-
plementation uses tiered commit, and thus differs from the Naive
OCC implementation in Table 1. However, caching, batching, and
uncommitted reads have similar impacts on the performance.
FoundationDB (FDB). FDB uses a centralized sequencer to assign
totally-ordered commit timestamps and performs OCC-style vali-
dation. Unlike FDB, Hackwrench timestamps are partially ordered,
allowing more parallelism. Each FDB component is implemented
by a separate process, and we assign separate cores to each process.
We partition processes across physical nodes as follows: 1) Database
nodes, which run client processes that execute transaction logic, and
one proxy process that acts as the transaction coordinator. 2) Storage
nodes, which run one logging process and data storage processes.
Every two storage nodes share one resolver process, which is used
to validate transactions. 3) One configuration server, which runs
the sequencer (process). Unlike Hackwrench and OCC, FDB cannot
cache data in database nodes. For a fair comparison, we configure
FDB to use its memory storage engine and tmpfs as persistent stor-
age. For all experiments, we use one storage node per database node
because this configuration resulted in the best FDB performance.
Calvin. Calvin is a deterministic database that assigns total order
to batched transactions before execution and avoids 2PC overhead.
Each node has a single thread scheduling transaction execution,
which limits parallelism. Unlike Calvin, Hackwrench assigns commit
order after transaction execution and has better concurrency.
COCO. COCO is a distributed database with OCC and 2PC. When
committing transactions, it validates each transaction individually,
and batches validated transactions together for replication. COCO
does not batch transaction validation to avoid cascading aborts. By
comparison, Hackwrench batches both transaction validation and
replication because it uses fine-grained re-execution.
Sundial. Sundial is a distributed database with caching. It uses
logical leases for cache management and reduces the probability
of OCC validation fails. In contrast to Hackwrench, Sundial locks
remote tuples for write operations, negating the benefits of caching.
Hackwrench instead allows transactions to read uncommitted data
and stale data from caches, and uses fine-grained re-execution for
repair. The Sundial implementation does not support replication.
COCO and Sundial’s design assumes that storage and transac-
tion processing are co-located. Consequently, using their protocols
with remote storage introduces message overheads due to validating
up-to-date tuples stored in remote storage. These systems, unlike



Table 2: Latencies in standard TPC-C (r =1%). “BS” stands for “batch size”. The darker green/red lines have lower/higher latencies.

TPC-C Transaction Types NewOrder Payment OrderStatus Delivery StockLevel

Latencyes (ms) P50 P90 P99 P50 P90 P99 P50 Poo P99 P50 P90 P99 P50 Poo P99
HackWrench(BS=1) 0.75 0.84 0.98 0.66 0.75 0.91 0.65 0.75 0.94 1.10 1.25 1.38 1.37 1.52 1.63
HackWrench(BS=50) 2.56 3.20 3.93 2.55 3.18 3.85 2.55 3.13 3.98 2.78 3.40 3.99 2.77 3.42 4.26
HackWrench-nofast(BS=1) 1.14 1.31 1.63 1.05 1.33 1.64 1.00 1.11 1.27 1.55 1.69 1.90 1.77 1.94 2.16
HackWrench-nofast(BS=50) 2.93 3.52 4.13 291 3.51 4.11 2.90 3.45 4.06 3.12 3.68 4.28 3.19 3.75 4.33
ocCcC 2.65 5.58 10.17 2.10 4.17 8.59 1.70 1.99 2.92 2.93 3.21 5.58 343 5.87 9.50
OCC+Caching 1.33 2.35 4.42 1.20 2.19 3.98 1.06 1.21 1.65 1.69 2.25 3.41 2.04 3.24 5.36
FDB 7.95 10.32 14.37 3.64 4.75 8.4 2.8 3.09 6.77 27.05 31.59 39.25 40.79 46.85 54.08
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Figure 4: Comparison of systems with remote storage on TPC-C. The
multi-warehouse NewOrder transaction percentage is calculated from the
remote access probability.

Hackwrench, don’t implement tiered commits and thus incur the
message overhead even when the transaction is aborted due to local
intra-node conflicts. We measure these overheads using modified
implementations of both (COCO-remote and Sundial-remote in the
graphs) that use remote storage. Our modification forces any single-
node transaction® in COCO or Sundial to do a 2PC procedure with
one remote node. This allows us to simulate a case where the trans-
actions use a local cache (no messages are sent for reads) but are
committed at a remote storage node. To distinguish, We refer to
COCO-colocated and Sundial-colocated as COCO and Sundial’s
original implementation, respectively.

5.1.2  Benchmarks and workloads. We use two benchmarks for our
evaluation: (a) FoundationDB’s FDB-Micro microbenchmark [64];
and (b) the TPC-C benchmark [48].

FDB-Micro. This benchmark has 214M tuples with 8-byte key and
a 24-byte value. The tuples are partitioned evenly across storage
nodes and database nodes, respectively. The workload is a mix of
80% read-only transactions with 20% read-write transactions. Each
read-only transaction reads ten tuples. Each read-write transaction
reads five tuples and updates another five tuples. In this workload, a
local transaction only accesses tuples in the local database node’s
partition, while a distributed transaction is one where an operation
accesses a tuple in a remote database node’s partition. The parameter
d dictates the percentage of distribution transactions, the rest are
local transactions. The tuples are accessed following uniform dis-
tribution (low contention) or Zipfian distribution [24] with §=0.99
(high contention).

TPC-C. We run the standard TPC-C benchmark with five transaction
types. In the benchmark standard, when a NewOrder transaction up-
dates the Stock tuple, there is a 1% probability that the tuple belongs
to a remote warehouse. The higher the remote access probability

3A single-node transaction’s execution and commit can be completed in one node
without waiting for any network delay.
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(r), the more remote distributed NewOrder transactions are. Thus,
we vary r to see how Hackwrench performs. We use warehouse
IDs to route transactions to the responsible database nodes. In our
workload, each database node is associated with 8 warehouses.

5.1.3  Setup. We ran all experiments on a cluster of Amazon EC2
m5. 2x1arge instances, each with eight 3.1 GHz virtual CPUs, 32GB
of RAM, and 10Gbps network bandwidth. We configure the number
of database and storage nodes to saturate database nodes’ processors.
By default, we use 6/8 database nodes, 1/1 timestamp server, and
4/6 logical storage nodes for TPC-C/FDB-Micro. When enabling
replication, each logical storage node consists of 3 physical replicas.

5.2 Comparison to Systems with Remote Storage

Throughput. Figure 4 shows that, on TPC-C, Hackwrench and
Hackwrench-nofast outperform OCC+Caching by up to 9.0x and
6.8%, and outperform FDB by up to 35.8X and 27.8X. They per-
form better than OCC+Caching due to batched transaction commit
and allowing uncommitted read. 88% of TPC-C transactions (45%
NewOrder and 43% Payment) read or write the same tuple in each
warehouse and contention on this per-warehouse tuple limits par-
allel execution. While Hackwrench and Hackwrench-nofast allow
transactions to access tuples that are not globally committed, im-
proving parallelism. In addition, they repair transactions instead of
aborting them. For Hackwrench, the fast-path optimization enables
the storage node to commit the batches without waiting for network
messages. FDB performs worst because it does not cache data and
issues a remote request for each read. Additionally, FDB does not
support batching and reading uncommitted data. Except for FDB,
all systems’ performance drops as the remote access probability in-
creases. It is because FDB does not use caching (which reduces the
chances of stale reads) and has a relatively low throughput.
Latency. Table 2 shows the zero-load latencies on standard TPC-
C. When transactions are batched, Hackwrench and Hackwrench-
nofast exhibit a little higher latency than OCC+Caching. This is
due to time spent forming batches, and indeed, when batch size is
1, Hackwrench and Hackwrench-nofast have lower latency than
OCC+Caching. FDB has the highest latency because it does not cache
data. Although OCC also does not use caching, it reads multiple
tuples in one round trip and thus has lower latency than FDB.

5.3 Factor analysis

Design breakdown. Figure 5 uses TPC-C to measure the impacts of
Hackwrench’s design decisions. We use OCC as the baseline. Caching
improves performance by 76.7% ~ 80.5%. Batching and uncommitted
reads (“+RU”) improve performance by 7.1x for the r =0% case, but
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Figure 5: Design breakdown on TPC-C. The designs are applied incremen-
tally based on OCC. "+Caching": adding local caches. “+Batching”: supporting
batching. “+RU”: permitting uncommitted reads across batches. “+Repair”™:
using repair. “+Fast”: enabling fast-path optimization.
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Figure 7: Message payloads. Figure 8: Scalability (TPC-C).

significantly degrade performance for r > 1%, because increasing
r introduces remote conflicts, leading to aborts. Furthermore, this
configuration is also susceptible to batch-level aborts and cascading
aborts, where one aborted transaction in a batch can lead to future
batches being aborted, further degrading performance.

The timestamp server and database-side repair mitigate these
effects. Repair largely mitigates overheads from cascading aborts,
allowing the resulting system (“+Repair”, or Hackwrench-nofast) to
fully exploit the performance benefits of the previous design choices.
Finally, the fast-path optimization (“+Fast”, or Hackwrench) allows
the storage nodes to commit batches without waiting for network
round-trip, improving performance by 26.5% ~ 108.9% compared to
“+Repair”. These improvements grow with larger r.

Cost of tracking and using dependency. Hackwrench uses run-
time dependency tracking for fine-grained re-execution. We mea-
sured the space utilization for Hackwrench’s dependency tracking
on standard TPC-C. An average TPC-C transaction uses 586 bytes
for dependency tracking and spends 4.1us checking for repairs.
Partial order vs total order timestamp. Figure 6 uses TPC-C to
measure the impact of Hackwrench’s partially ordered timestamps
against FDB’s totally ordered timestamp [64]. Partial ordering im-
proves performance significantly when remote access probabilities
are low. This is because a total-order design requires database nodes
to broadcast any transaction batch to all storage nodes for progress,
on the other hand with partial ordering we only need to send trans-
action batches to relevant storage nodes, reducing overheads.
Latency for determining the commit order. Hackwrench re-
quires anetwork round-trip to determine the commit order, in TPC-C,
we measured the latency to be 0.28ms on average.
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Network I/O cost. Figure 7 shows the breakdown of Hackwrench’s
average message (or request) payloads on standard TPC-C. The Com-
mit requests contain the entire delta of write set (§ 3.6). Note that the
fast path does not send Commit requests, because storage nodes can
commit fast-path transactions without coordination. The average
payload for Prepare requests increases from 38.9kB to 58.0kB (by
49.1%) when fast-path optimization is used. Read set and write set
payloads remain unchanged, while commit timestamps and trans-
action input payloads increase from 0.5kB and 4.1kB to 1.7kB and
12.4kB, respectively. This is because storage nodes must replicate all
commit timestamps and transaction inputs in a batch, not just the
relevant portions. As storage nodes repair transactions in the fast
path, the tracked dependency (9.6kB) is sent in the Prepare requests.

5.4 Scalability

Figure 8 shows Hackwrench’s and Hackwrench-nofast’s scalability
on standard TPC-C. Hackwrench’s 15-database throughput is 771.4k
Txns/s (for r =1%) and 624.2k Txns/s (for r =5%), achieving 10.0X
and 7.8x the throughput of a single database node which does not
incur any cross-node conflict. Meanwhile, Hackwrench-nofast’s 15-
database throughput is 496.0k Txns/s (for r=1%) and 376.8k Txns/s
(for r=5%), achieving 9.7 and 8.5X the single-database throughput.
We found that the timestamp server was not a scalability bottleneck
due to the use of segment-level timestamps and batching (§ 5.6).

5.5 Comparison to Co-located Systems

As COCO’s implementation only supports TPC-C NewOrder and
Payment transactions [39], we use a mixture of 50% NewOrder and
50% Payment transactions to compare against COCO and Calvin.
All systems use 19 nodes and used 48 warehouses. Figure 9(a) shows
that Hackwrench and Hackwrench-nofast outperform the other
systems. We provide a breakdown of throughput and CPU time in
Table 3 and Figure 9(b). “Thread’ refers to the thread for transac-
tion execution. Hackwrench and Hackwrench-nofast have higher
per-thread throughput than both COCO variants. COCO-remote
and COCO-colocated spent only 0.36% and 1.95% of CPU time ex-
ecuting transactions. Their CPUs remain idle for the majority of
the time. It is because COCO does not batch validation and uses
only one ongoing transaction per thread, and COCO’s threads sleep
before retrying aborted transactions. By contrast, Hackwrench and
Hackwrench-nofast use 41.0% and 31.5% of CPU time for execu-
tion, because batching and uncommitted reads allow Hackwrench
to avoid idling. Since Calvin executes each transaction on all node
replicas, it has 7 ([19/3]=7) (replicated) database nodes in total. It
uses 9.17% CPU time for execution, while 19.9% and 26.7% CPU time
are spent by data serialization and synchronization in its TPC-C
benchmark implementation. The ratio of execution time between
different systems does not necessarily correspond to the ratio of
per-thread throughput, as transaction execution latency can vary
across systems. Hackwrench’s throughput is 9.27x COCO-remote’s,
3.9x COCO-colocated’s, and 5.7x Calvin’s.

Our comparison with Sundial uses the standard TPC-C but dis-
ables replication. All systems use 11 nodes and 48 warehouses. Fig-
ure 10(a) shows that Sundial-colocated has the highest through-
put for r = 1% as 77.3% transactions are single-node and benefit
from the co-located architecture. However, because Sundial does
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Figure 10: Performance on standard TPC-C without replication (11 nodes). The legends have been explained in Figure 9.

Table 3: Throughput breakdown for Figure 9(a), r =1%.

Systems Per-thread Tput  #threads/DB #DB  Total Tput
Hackwrench 10708 8 6 514.0k
Hackwrench-nofast 7710 8 6 370.1k
COCO-colocated 1911 5 19 181.5k
COCO-remote 542 5 19 51.5k
Calvin 4079 4 7 114.2k

Table 4: Throughput breakdown for Figure 10(a), r=1%.

Systems Per-thread Tput  # threads/DB #DB  Total Tput
Hackwrench 8709 8 6 418.0k
Hackwrench-nofast 5628 8 6 270.1k
Sundial-colocated 6562 6 11 433.1k
Sundial-remote 2693 6 11 177.7k

not use batching, uncommitted reads or TPC-C’s one-shot property,
its performance declines quicker than Hackwrench as r increases.
Sundial outperforms Hackwrench-nofast for r=20% as 53.4% trans-
actions are single-node. Relatively, Hackwrench-nofast outperforms
Sundial-remote for all r. Table 4 and Figure 10(b) show detailed
throughput and CPU breakdowns. Like COCO, each Sundial thread
allows only one ongoing transaction and sleeps before retrying, wast-
ing CPU time. Only 7.0% and 15.1% CPU times of Sundial-remote and
Sundial-colocated are used for transaction execution, while those of
Hackwrench and Hackwrench-nofast are 52.4% and 37.9%.

5.6 FDB-Micro

Impact of Contention and Distributed Transactions. According
to Figure 11, under low contention, Hackwrench and Hackwrench-
nofast have similar performance. COCO-colocated performs best
for d <20% due to a large fraction of single-node transactions. As
d increases, its performance drops and eventually becomes similar
to COCO-remote’s. Under high contention, COCO-colocated and
COCO-remote have a performance gap of 56.6% for d = 100%, as

1940

COCO-remote involves network overhead for resolving local con-
flict. Hackwrench and Hackwrench-nofast’s performance gap also in-
creases as more batches are repaired (4.4% ~ 27.8% V.. 53.4% ~ 99.7%).

Note that our FDB-Micro implementation for Calvin does not
impose noticeable serialization and synchronization overheads. The
bottleneck is the single-threaded scheduler under low contention.
In the high-contention setting, Calvin achieves 92.5% ~ 98.7% of
its low-contention throughput and has performance comparable to
Hackwrench-nofast, because it orders transactions before execu-
tion, avoiding aborts. OCC+Caching performs badly due to frequent
aborts caused by its use of local 2PL with NO_WAIT, and policy of
reading committed data. Lastly, FDB outperforms OCC+Caching due
to the use of more database nodes (12 vs 6) and its implementation of
FDB-Micro, which retrieves all tuples in a single network round trip.

In Figure 12, Hackwrench’s and Hackwrench-nofast’s perfor-
mance is higher than that in Figure 11 because disabling replication
saves CPU time for replication and the number of database nodes
remains unchanged. Sundial’s trends are similar to those of COCO.
Impact of Batching. Figure 13 varies batch size from 1 to 160.
Increasing batch sizes allow Hackwrench to support a higher offered
load at the cost of increasing latency. As the batch size increases, the
zero-load latency also increases (e.g., from 0.56ms to 3.83ms under
low contention). When contention is low, peak throughput improves
by 1.95X.In the high-contention case, the peak throughput improves
by 81.7%, with a batch size of 40. The performance decreases with
larger batch sizes, as the possibility of remote conflicts between
batches also increases. We also measure cascading repairs due to
batching under high contention. On average, one remote conflict
causes 2.23 to 441.4 transactions to repair with increasing batch sizes.
Impact of Caching. Figure 14 controls the cache miss rate c for each
data access. As ¢ decreases, Hackwrench’s performance improves by
up to 2.1x. Hackwrench and Hackwrench-nofast perform similarly
asthe contention islow. By contrast, OCC+Caching can only improve
performance by up to 87.3%. These results show that batching with
fine-grained re-execution is crucial in reaping the benefits of caching.
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Figure 15: Peak timestamp server
throughput under different batch
sizes.

The Peak Performance of Timestamp Server. We conducted a
simulated FDB-micro workload, where database nodes send requests
to the timestamp server without transaction execution and commit.
Figure 15 shows that the peak throughput is 11.2M Txns/s when
the batch size is 20. Peak throughput reduces as batch sizes increase
because larger batches are more likely to contend with each other.

6 RELATED WORK

Transactions with co-located computation and storage. Be-
yond COCO [39] and Sundial [62] discussed in § 5.1.1, several other
systems use co-located storage [13-15, 29, 39, 42, 49]. Spanner, Cock-
roackDB, and MySQL Cluster use 2PL and 2PC for transaction exe-
cution and commit. Granola [15], H-Store [27, 29], and Rococo [40]
leverage transactions’ one-shot property to execute independent
stored procedure fragments at remote partitions. Compared to Hack-
wrench, they do not support caching and batching. Speculative
2PC [28] allows reading distributed transactions’ uncommitted data
without waiting for the commit. It suffers from cascading abort over-
heads, which can be reduced by Hackwrench’s repair mechanism.

1941

Transactions with separate computation and storage nodes.
Beyond FoundationDB discussed in § 5.1.1, several other systems
use remote storage [3, 17, 64, 65]. Some designs [5-9, 56] use a
distributed shared-log as the storage layer. Sinfonia [3] supports
mini-transactions with client-side caching and uses a modified OCC
protocol. However, it aborts invalid transactions due to cache stale-
ness or conflicts. AWS Aurora [52, 53] extends the storage nodes to
support log processing, allowing database nodes to broadcast redo
logs to storage nodes for parallel processing. Both single-master Au-
rora and Deuteronomy [32] cache data at the single database node
and batch transaction commit. Single-master PolarDB [10] leverages
PolarFS as the storage layer but does not cache data. Multi-master
Aurora [31] processes read-write transaction at multiple database
nodes. Although its design is not published, existing documentation
suggests not simultaneously modifying the same tuple from different
database nodes. Hackwrench does not impose such a limitation.

Mitigating aborts in distributed databases. Many systems aim
to reduce or eliminate conflict-induced aborts in distributed transac-
tions. Granola [15] uses timestamps obtained from loosely synchro-
nized clocks to serialize transactions and reduce aborts. Determinis-
tic databases [18, 20, 34-36, 38, 49, 50] eliminate aborts by ordering
transactions before execution. Rococo [40] and Janus [41] avoid
aborts by deferring execution until the serialization order is deter-
mined. Callas [58] and Tebaldi [45] partition transactions into groups,
allowing different concurrency controls (e.g., 2PL or OCC) to be used
across groups to reduce aborts. Callas [58] also introduces runtime
pipelining for the high-contention workload, which requires remote
synchronization for each transaction, limiting the benefits of caching
and batching. ACC [47] and CormCC [46] partition data and select
appropriate concurrency controls for each partition. Finally, other
works have suggested co-locating hot data [63] or prioritizing dis-
tributed transactions [26], and they are orthogonal to Hackwrench.
Mitigating aborts in single-machine databases. Transaction
Healing [57] and Transaction Repair [16] use repair to reduce single-
node databases’ abort cost. IC3 [55] leverages static analysis to elim-
inate aborts; Plor [12] uses pessimistic locking and optimistic reads
to reduce tail latency for contended workloads; Bamboo [26] reduces
blocking time by “retiring” row locks after the last writes and allow-
ing dirty reads; and MOCC [54] avoids OCC validation failures by
using read locks for reads likely to cause conflicts. Hackwrench can
adapt these protocols to coordinate database nodes’ local execution.

7 CONCLUSION

We describe Hackwrench, a design for distributed databases using
best-effort caching and batched commit for transactions execution at
multiple database nodes with remote storage. Hackwrench uses fine-
grained repair to mitigate the harmful effect of increased transaction
conflicts due to stale cache reads and batched validation. TPC-C
results show that Hackwrench achieves much higher throughput
than an OCC system, FoundationDB, Calvin, COCO, and Sundial.
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