
Schedule Processes, not VCPUs∗

Xiang Song, Jicheng Shi, Haibo Chen, Binyu Zang

Institute of Parallel and Distributed Systems

School of Software, Shanghai Jiao Tong University

Abstract

Multiprocessor virtual machines expose underlying

abundant computing resources to applications. This,

however, also worsens the double scheduling problem

where the hypervisor and a guest operating system will

both do the CPU scheduling. Prior approaches try to

mitigate the semantic gap between the two levels of

schedulers by leveraging hints and heuristics, but only

work in a few specific cases. This paper argues that in-

stead of scheduling virtual CPUs (vCPUs) in the hyper-

visor layer, it is more beneficial to dynamically increase

and decrease the vCPUs according to available CPU re-

sources when running parallel workloads, while letting

the guest operating system to schedule vCPUs to pro-

cesses. Such a mechanism, which we call vCPU balloon-

ing (VCPU-Bal for short), may avoid many problems in-

herent in double scheduling. To demonstrate the poten-

tial benefit of VCPU-Bal, we simulate the mechanism in

both Xen and KVM by assigning an optimal amount of

vCPUs for guest VMs. Our evaluation results on a 12-

core Intel machine show that VCPU-Bal can achieve a

performance speedup from 1.5% to 57.9% on Xen and

8.2% to 63.8% on KVM.

∗This work was supported by China National Natural Science Foun-

dation under grant numbered 61003002 and a Foundation for the Au-

thor of National Excellent Doctoral Dissertation of PR China.

1 Introduction

System virtualization has been widely used in many

commercial usage scenarios such as server consolida-

tion, multi-tenant cloud and virtual appliances. With

virtualization, individual workloads can be deployed on

separate virtual machines (VM) hosted on the same ma-

chine for performance isolation and resource sharing.

With the increasing computing capability of underlying

processors by adding more cores, a single VM can be

configured with multiple virtual CPUs (vCPU) to take

advantage of such abundant computing resources.

In virtualized environments, there is a double schedul-

ing phenomenon: 1) the OS schedules processes on vC-

PUs and 2) the hypervisor schedules vCPUs on physi-

cal CPUs (pCPU). Due to the semantic gap between the

two schedulers (i.e., most operations inside a guest OS

are opaque to the hypervisor), double scheduling intro-

duces new problems that not exist in no-virtualized en-

vironments. For example, a spinlock holder will be pre-

empted even after disabling the kernel preemption (e.g.,

use spin lock irq in Linux kernel) in a virtualized envi-

ronment [16]. This will significantly increase the syn-

chronization latency as another vCPU may wait for the

same lock at the same time. Such a problem can be se-

vere for SMP VMs running parallel applications, result-

ing in significant performance degradation.

Unfortunately, state-of-the-art vCPU schedulers, such

as completely fair scheduler (CFS) in KVM [1] and

credit scheduler in Xen [4], are oblivious to the dou-

ble scheduling problem. To this end, researchers have

proposed a number of approaches to bridging this se-

mantic gap, including relaxed co-scheduling [2, 17], bal-

ance scheduling [15], and demand-based coordinated

scheduling [9]. However, these approaches either intro-

duce other problems when reducing the synchronization

latency (e.g., co-scheduling and demand-based coordi-

nated scheduling) or do not solve the problem completely

(e.g., balance scheduling).

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
APSys ’13, July 29-30 2013, Singapore, Singapore
Copyright 2013 ACM 978-1-4503-2316-1/13/07 ...$15.00.

This paper argues that instead of trying to bridge the

semantic gap using some specific heuristics and hints, it

would be more beneficial to eliminate this gap by min-

imizing the vCPU number of each VM to exclude the

hypervisor from vCPU scheduling as much as possible.

To this end, we propose VCPU-Bal, a vCPU ballooning

scheme that dynamically adjusts the number of runnable

vCPUs of each VM according to its VM weight to mini-

mize the runnable vCPUs. With the minimal number of

runnable vCPUs, the hypervisor can assign each vCPU

to an exclusive physical CPU in many cases, which may

eliminate the double scheduling problem. Besides, even

when there is more vCPUs than available pCPUs, by

minimizing number of runnable vCPUs, VCPU-Bal can

help other schedule schemes such as co-scheduling and

balanced scheduling minimize the overhead of double

scheduling. Further, as commodity operating systems

and some applications do not scale well with a large

number of cores [6, 7], especially on the virtual envi-

ronments [14, 13] where the vCPUs are asymmetric in

essence, reducing the amount of runnable vCPUs in a

VM can help avoid reaching the scalability bottleneck.

As currently a complete implementation of the pro-

posed scheme is still on the way, we simulate VCPU-Bal

by assigning an optimal amount of vCPUs and evalu-

ate it against the default and an affinity-based schedul-

ing using four applications from PARSEC and two ap-

plications from the Phoenix benchmark suite. On a

12-core machine, the average performance improvement

for PARSEC applications over the state-of-the-art sched-

ule scheme is 13.6% ranging from 1.5% to 25.9% on

Xen and 25.5% ranging from 8.4% to 49.2% on KVM.

The average performance improvement of histogram and

wordcount from Phoenix test suite is 52.7% and 57.9%

respectively on Xen and 54.4% and 63.8% respectively

on KVM.

The rest of this paper is organized as follows. The

next section discusses the scheduling trap at the presence

of double scheduling and examines existing proposals,

which motivate the design of VCPU-Bal. Section 3 de-

scribes the design the VCPU-Bal mechanism, followed

by the evaluation in section 4. Section 5 relates VCPU-

Bal with previous work. Finally, we conclude this paper

with a brief description of our future work.

2 VCPU Scheduling Trap

Double scheduling can cause significant performance

degradation of parallel applications running on a guest

VM. To illustrate such an overhead, we have conducted

a simple performance evaluation using the streamcluster

application from PARSEC on an Intel machine with 12

cores. We evaluate its performance under two settings:

1) Single-VM case: we launch a guest VM with 8 GByte

memory and 12 vCPUs, which runs a streamcluster in-

stance; and 2) Two-VM case: we launch two guest VMs

each configured with 8 GByte memory and 12 vCPUs,

each of which runs a streamcluster instance. In the two-

VM case, there are 24 vCPUs in total, which is twice the

number of physical cores that may cause serious dou-

ble scheduling problem. Figure 1 shows the result. Al-

though the computing resource of the each guest VM in

the two-VM case is 50% of the computing resource of

the guest VM in the single-VM case, the execution time

of streamcluster in two-VM case is 2.6X longer than that

in single-VM case on KVM and 2.1X longer on Xen.

This is because double scheduling introduces extra per-

formance overhead on synchronization operations inside

the kernel. As shown in the figure, the accumulated time

spent in guest kernel in the two-VM case is 5.2X longer

than that in single-VM case on KVM and 16.7X longer

on Xen.

 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

KVM Xen
 0

 50

 100

 150

 200

 250
T

ot
al

 E
xe

cu
tio

n
T

im
e

(s
)

T
ot

al
 K

er
ne

l T
im

e
(s

)

Single-VM Total
Two-VM Total
Single-VM Kernel
Two-VM Kernel

Figure 1: Performance of streamcluster in single-VM

and two-VM cases.

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12
 0

 50

 100

 150

 200

H
is

to
gr

am
 E

xe
cu

tio
n

T
im

e(
s)

W
or

dc
ou

nt
 E

xe
cu

tio
n

T
im

e
(s

)

Number of cores

Histogram-Xen
Wordcount-Xen
Histogram-KVM

Wordcount-KVM

Figure 2: Scalability of histogram and wordcount on Xen

and KVM.

Further, many operating systems and applications do

not scale well with large number of cores, especially on

virtual environments [14, 13]. Actually Amdahl’s law [8]

has limited the speedup of increasing the number of CPU

cores at the presence of serial sections. Figure 2 shows

a simple evaluation on the scalability of histogram and

wordcount on both Xen and KVM. It can be seen that

both histogram and wordcount start to encounter scala-

bility problem when the number of cores exceeds 3.

2

2.1 Issues with Existing VM Scheduling

Due to the semantic gap between the OS scheduler and

the hypervisor scheduler, double scheduling introduces

many problems. Table 1 summarizes the problems of dif-

ferent scheduling strategies in virtualized environments.

State-of-the-art scheduling schemes, such as CFS used

by KVM and credit scheduler used by Xen, are usually

oblivious of synchronization operations inside an SMP

VM. Hence, it may preempt a vCPU regardless of what

it is running. This results in two basic problems in-

troduced by double scheduling: VCPU preemption and

VCPU stacking.

VCPU Preemption: Whenever a lock holder vCPU

is preempted by the hypervisor and switched to another

vCPU, the synchronization time spent by another vCPU

waiting for the lock will be extended significantly. Fig-

ure 3 shows an example. The lock holder vCPU0 on

pCPU0 is preempted after it enters the critical section

at T1. Meanwhile, vCPU1 on pCPU1 is waiting for

the lock holder to exit the critical section. However,

vCPU0 is rescheduled on pCPU0 on T2 only after the

execution of another VM finishes. Thus, vCPU1 has

to wait Tlock wait to enter the critical section. Here,

the synchronization time spent by vCPU1 is extended by

Tpreempt. Further, during this period, vCPU1 may oc-

cupy pCPU1 busy-waiting for the lock holder, which will

waste lots of CPU cycles.

VCPU Stacking: Normally, a scheduler allows vCPUs

to be scheduled on any pCPUs. This will cause the vCPU

stacking problem that the lock waiter is scheduled before

the lock holder on the same pCPU. Figure 4 shows an

example. The lock holder on vCPU0 is preempted when

it enters the critical section at T1. Unfortunately, the

lock waiter on vCPU1 is scheduled before vCPU0 on the

same pCPU (pCPU0) until T2. Thus, vCPU1 has to wait

Tlock wait to enter the critical section. Here, the syn-

chronization time spent by vCPU1 is extended by Ttask1

plus Ttask2.

������ �	
���
� ������������

������ ������
�������	

���������	

���	��������	���������	
�� ��

Figure 3: Synchronization latency caused by vCPU Pre-

emption.

Co-scheduling: To solve these two problems,

researchers proposed relaxed co-scheduling [2, 17]

schemes. It schedules vCPUs of the same SMP VM si-

multaneously. A simple way is to find a time slice that

has a sufficient number of available pCPUs to run all

�	
��������

������ ������������

������ ������
��	����

���������	

������ ������

������
��	����

�� ��

Figure 4: Synchronization latency caused by vCPU

stacking.

������ ������������

������ ������
�������	

���������	

������

�� ��
�	
���
�

������	 ��	!�	���������

�	
���
�

��

Figure 5: Synchronization latency in co-scheduling.

tasks. This can help avoid the vCPU stacking problem

and reduce the computing resources wasted due to vCPU

preemption. However, it introduces CPU fragmentation

and priority inversion.

CPU Fragmentation: Figure 5 shows an example of

CPU fragmentation. When the lock holder vCPU0 is pre-

empted at T1, the lock waiter will also be preempted at

T1. Although vCPU1 is runnable on pCPU1 at T2, it

cannot be scheduled until T3. Thus, the computing re-

sources between T2 and T3 are wasted.

Priority Inversion: Priority invention is where a vCPU

with higher priority is scheduled after a vCPU with lower

priority. For example, co-scheduling vCPUs may occupy

all pCPUs at the current time slice, when an emergent

vCPU comes to the run queue. The emergent vCPU has

to wait until the end of this time slice.

Balance Scheduling: Balance scheduling [15] tries

to spread vCPUs of a VM on different pCPUs without

scheduling the vCPUs at the same time. By avoiding

placement of sibling vCPUs on the same pCPU run-

queue, it can avoid the vCPU stacking problem. How-

ever, it still has vCPU preemption problem.

Demand-based Scheduling: Demand-based schedul-

ing [9] bridges the semantic gap between the double

schedulers by taking inter-processor interrupts (IPIs) as

a guidance of coordination demands 1 and proposing a

IPI-driven co-scheduling and delayed preemption sched-

ule scheme. However, it may cause priority inversion

problem due to its urgent-vCPU-first scheduling mech-

anism which may preempt a high priority vCPU for an

urgent vCPU. Further, this scheme is specific to the IPI-

based coordination implementation of the guest OS, and

it lacks support of spin-based synchronization detection.

1Most coordination demands in kernel such as TLB shootdowns and

synchronization operations are followed by IPIs.

3

Credit CFS Co-schedule Balance Demand-based VCPU-Bal

vCPU Preemption yes yes no yes no no

vCPU Stacking yes yes no no no no

CPU Fragmentation no no yes no no no

Priority Inversion no no yes no yes no

Sync. Impl. Sensitive no no no no yes no

Spinlock yes yes no yes yes no

Table 1: A summary of possible issues with different VM schedulers.

2.2 Motivating VCPU ballooning

Although there is a semantic gap between the OS sched-

uler and the hypervisor scheduler, double scheduling is

not necessary in many cases, where we can let the guest

OS schedule its processes and exclude the hypervisor

from vCPU scheduling. Instead, the hypervisor coop-

erate with the guest OS to decide an optimal amount of

vCPUs assigned to guest OS. By dynamically adjusting

the total number of runnable vCPUs, we may directly as-

sign each vCPU to a pCPU exclusively. To do so, we

should minimize the number of runnable vCPUs of each

VM, and instead rely on the process scheduler in guest

OS to do the scheduling. Here, we propose VCPU-Bal,

a vCPU ballooning scheme, to achieve this. VCPU-Bal

has the following benefits:

• In many cases, when each pCPU has only one vCPU

scheduled on it, there will be no vCPU preemption

and vCPU stacking problems for VCPU-Bal. Fur-

ther, it neither introduces problems as shown in Ta-

ble 1.

• VCPU-Bal can work for any kinds of guest VMs

and is applicable to most virtual environments. Fur-

ther, it can work in collaboration with other sched-

uler schemes such as co-scheduling and balanced

scheduling and help them ease the overhead of dou-

ble scheduling.

• By minimizing the runnable vCPUs of a VM,

VCPU-Bal can help the VM avoid reaching the

scalability bottleneck.

3 Design of VCPU-Bal

This section describes a general design of VCPU-Bal,

which is composed of three parts: 1) a manager inside the

hypervisor or the management VM makes vCPU balloon

and schedule decisions; 2) a kernel module inside the

guest OS dynamically adjusts runnable vCPUs according

to the ballooning commands from the manager; and 3)

a VCPU-Bal scheduler inside the hypervisor schedules

vCPUs according to the schedule decisions.

VCPU-Bal Manager: VCPU-Bal manager makes

vCPU balloon and schedule decisions based on the

runnable guest VMs and the underlying hardware re-

source statistics. VCPU-Bal manager decides the num-

ber of pCPUs assigned to a VM according to its weight

share. The following expression shows how the number

of pCPUs of VMa, NpCPU , is calculated. In the expres-

sion, WV Mi means the weight of VMi and TpCPU means

the total number of pCPUs.

NpCPU =

WVMa ∗TpCPU

∑
n
0 WVMn

Suppose we have two running VMs, VM1 and VM2,

with the weight of 512 and 256 respectively. The un-

derlying hardware has 12 pCPUs. The VCPU-Bal man-

ager will assign VM1 8 pCPUs and VM2 4 pCPUs, and

tell VM1 and VM2 to balloon their runnable vCPUs to

8 and 4 respectively. Then, VCPU-Bal manager will try

to schedule vCPUs from different VMs to different pC-

PUs and tell this scheduling decision to the VCPU-Bal

scheduler. For example, it will assign vCPUs of VM1 to

pCPU 0-7 and vCPUs of VM2 to pCPU 8-11.

VCPU Balloon Module: The vCPU balloon module

inside the guest OS is responsible to dynamically online

or offline vCPUs according to the ballooning commands.

The simplest way to realize the ballooning is to HLT the

victim vCPU when it is offline and reactivates it when

it is online. When a vCPU is set offline, it will first

clear its runqueue and then invoke the HLT instruction

to enter into deep sleep, which will cause the hypervisor

to schedule it off the runnable vCPU list. The sleeping

vCPU will only be responsive to virtual hardware events,

such as IPIs or timer interrupts. To reactivate it, an inter-

rupt can be used to exit this vCPU from the HLT state.

Although this method is simple, its implementation re-

quires some modifications to the existing OS scheduler.

Further, the offline vCPU is still available to the guest

OS that it can be the target of IPIs and other hardware

events. Thus, an offline vCPU can be accidentally wo-

ken up by events, such as global TLB shotdowns, re-

sulting unnecessary schedule requirements of this vCPU

and even causing double scheduling problems, such as

the CPU initiating the TLB shotdown command should

busy-wait until its all recipient CPUs acknowledge the

IPI for the sake of TLB consistency.

Another way to realize the ballooning is to use the

4

CPU hotplug mechanism provided in existing OSes.

However, there is no need to send commands to the un-

derlying bus to actually offline the victim vCPU. When

a vCPU is set offline, its runqueue and the events regis-

tered on it will be cleared; all hardware interrupts will be

masked for it; and it will be masked as invisible to the

OS. When a vCPU is set online, it will be set available to

the OS again. Its runqueue will be activated and the inter-

rupt mask will be cleared. Although this method seems

more complicated than the “HLT” solution, it can be re-

alized by reusing most functions provided by CPU hot-

plug mechanism and the offline vCPU is unavailable to

the guest OS, which will not be the target of IPIs or other

events. However, as the hot-plug operation is relatively

heavyweight compared to “HLT”, a more lightweight ap-

proach to hotplugging a vCPU is necessary to reduce the

ballooning overhead. Fortunately, recent research has

provided operating system support for fast CPU hotplug-

ging, with a reduction of latency from hundreds of mil-

liseconds to several microseconds [12]. This can greatly

help reduce the cost of VCPU ballooning.

VCPU-Bal Scheduler: VCPU-Bal scheduler is re-

sponsible to schedule vCPUs according to VCPU-Bal

manager’s schedule decision. It can be built upon the

vanilla hypervisor scheduler by simply pinning each

vCPU on its dedicated pCPUs. As each pCPU will usu-

ally have only one vCPU scheduled on it, the hypervisor

is excluded from scheduling only when the guest VM

explicit relinquish the control by yielding the CPU (e.g.,

calling hlt). When there are two or more vCPUs assigned

to a pCPU, it will schedule the vCPUs using the vanilla

hypervisor scheduler.

Challenges and Solutions: One problem VCPU-Bal

faces is that most applications do not take CPU hotplug

into design consideration and assume that the number

of available CPUs does not change during execution. If

the number of vCPUs changes dynamically, such appli-

cations may not make use of all available CPUs when

the number of vCPUs is increased or they have too many

threads when vCPUs are decreased. Here, we believe

VCPU ballooning does not happen frequently, as the cre-

ation, deletion and migration of a VM do not happen fre-

quently in multi-tenant clouds. Thus, we depend on ap-

plication itself to adapt to the number of vCPU changes.

We can categorize most applications into two types: 1)

server applications that will spawn more threads than

available CPUs (e.g., web server, database); and 2) com-

putational applications that will check the number of

available CPUs before its execution and spawn appro-

priate number of threads to make good use of CPU re-

sources (e.g., PARSEC). For applications from the first

category, they are usually long running and spawn more

threads than CPUs in case of asynchronous I/O. They

can tolerant changes with the number of vCPUs as when

vCPUs decreases they can act as usual and when vCPUs

increases they still have more threads than available vC-

PUs. For applications from the latter one, they are usu-

ally short running and spawns as many threads as CPUs.

When the number of vCPUs changes, the mismatch be-

tween the number of threads and vCPUs will not last

long.

The other problem VCPU-Bal faces is that NpCPU may

be a fraction. In the ideal cases, NpCPU of each VM

can be an integer and it is possible to find a one-on-

one mapping between vCPUs and pCPUs. In such cases,

only the process scheduler in guest OS is needed to do

the scheduling, which eliminates the double scheduling

problem. On other cases, when NpCPU of a VM is a frac-

tion, where there will be more than one vCPUs assigned

to a pCPU, VCPU-Bal can still optimize the overall per-

formance by minimizing the number of runnable vCPUs

in collaboration with other existing schedule schemes.

For example, for balanced scheduling, with less vCPUs

in each VM, a lock holder vCPU is less likely to be pre-

empted. For co-scheduling, there will be less CPU frag-

ments, as it is easier to find a time slice for a VM with

less vCPUs.

4 Evaluation

To illustrate the potential benefit of VCPU-Bal, we sim-

ulate VCPU-Bal by assigning an optimal amount of

vCPUs and comparing its performance with the CFS

scheduler on KVM and the credit scheduler on Xen as

well as an affinity-based scheduler. The affinity-based

scheduling has similar performance of balanced schedul-

ing when vCPUs from the same VM are pinned on dif-

ferent pCPUs. All evaluations were conducted on an In-

tel machine with two 1.87 Ghz Six-Core Intel Xeon E7

chips equipped with 32 Gbyte memory. We use Debian

GNU/Linux 6.0, Xen 4.1.2 and the management VM

with Linux kernel version 3.2.6. The KVM version is

kvm-qemu 1.2.0 with the host VM kernel version 3.2.6.

We launched two guest VMs using hardware-assisted

virtualization each configured with 8 Gbyte memory.

Both VMs have the same weight. When evaluating the

CFS and credit schedulers, both VMs are configured with

12 vCPUs. For the affinity-based scheduler, both VMs

are also configured with 12 vCPUs with each vCPU from

the same VM pinned on a different pCPU. When evalu-

ating VCPU-Bal, each VM is configured with 6 vCPUs

(each is pinned on a different pCPU). We use four appli-

cations (canneal, dedup, swaptions, streamcluster) from

PARSEC with the native input set and two applications

(histogram and wordcount) from Phoenix with the input

size of 2 GByte to compare the performance of different

schedulers.

5

 0

 0
.5

 1

 1
.5

 2

canneal dedup swaptions streamcluster

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

(s
) vCPU-12

vCPU-12-affinity
vCPU-VCPU-Bal

 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

canneal dedup swaptions streamcluster

K
er

ne
l T

im
e

(s
)

vCPU-12
vCPU-12-affinity
vCPU-VCPU-Bal

 0

 0
.5

 1

 1
.5

 2

canneal dedup swaptions streamcluster

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

(s
) vCPU-12

vCPU-12-affinity
vCPU-VCPU-Bal

Figure 6: Performance of four applica-

tions from PARSEC on Xen.

Figure 7: Kernel time of four applica-

tions from PARSEC on Xen.

Figure 8: Performance of four applica-

tions from PARSEC on KVM.

 0

 5
0

 1
00

 1
50

 2
00

canneal dedup swaptions streamcluster

K
er

ne
l T

im
e

(s
)

vCPU-12
vCPU-12-affinity
vCPU-VCPU-Bal

 0

 0
.5

 1

 1
.5

 2

histogram wordcount

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

(s
) vCPU-12

vCPU-12-affinity
vCPU-VCPU-Bal

 0

 0
.5

 1

 1
.5

 2

histogram wordcount

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

(s
) vCPU-12

vCPU-12-affinity
vCPU-VCPU-Bal

Figure 9: Kernel time of four applica-

tions from PARSEC on KVM.

Figure 10: Performance of histogram

and wordcount on Xen.

Figure 11: Performance of histogram

and wordcount on KVM.

PARSEC applications: Figure 6 shows the normal-

ized execution time of four applications on Xen using

the credit scheduler, affinity-based scheduler and VCPU-

Bal. It can be seen that VCPU-Bal improves the perfor-

mance of dedup, swaptions and streamcluster by up to

25.9% compared to credit scheduler with an average of

17.6% speedup. This is mainly due to the reduced execu-

tion time spent in kernel for synchronization operations,

as shown in Figure 7. VCPU-Bal reduces the kernel time

of these three applications by 3.3X, 458.1X and 27.9X

respectively over credit scheduler. For canneal, as it em-

ploys lock-free synchronizations for its synchronization

strategy [5], it does not suffer from double scheduling

problem in Xen. Thus, VCPU-Bal introduces only a

small amount of performance improvement for it. On

the other side, affinity-based scheduler introduces more

performance overhead than improvements for three out

of four applications over credit scheduler.

Figure 8 shows the normalized execution time of four

applications on KVM using CFS, affinity-based sched-

uler and VCPU-Bal. It can be seem that VCPU-Bal

improve the application performance by up to 49.2%

compared to CFS with an average of 25.5% speedup.

The performance improvement of dedup, swaptions and

streamcluster are mainly due to the reduced execution

time spent in kernel for synchronization operations as

shown in Figure 9. VCPU-Bal reduces the kernel time

of these three applications by 6.5X, 241.8X and 6.5X re-

spectively. While, for canneal, as it encounter the scala-

bility problem when the number of underlying cores ex-

ceeds 6, VCPU-Bal improves its performance by help-

ing it avoid the scalability bottleneck. On the other side,

affinity-based scheduler can only improve the perfor-

mance of streamcluster compared to CFS, but reduce the

performance of other three applications.

Histogram and Wordcount:Figure 10 and Figure 11

shows the normalized execution time of histogram and

wordcount on Xen and KVM using vanilla scheduler

(credit scheduler for Xen and CFS for KVM), affinity-

based scheduler and VCPU-Bal. VCPU-Bal reduces the

execution time of histogram and wordcount by 52.7%

and 57.9% respectively compared to credit scheduler on

Xen and reduces execution time of histogram and word-

count by 54.4% and 63.8% respectively compared to

CFS on KVM. The performance improvement is due

to two reasons: 1) the execution time of histogram and

wordcount spent in kernel is reduced by 3.0X and 10.4X

respectively on Xen and 4.0X and 7.3X respectively on

KVM; and 2) VCPU-Bal helps both histogram and word-

count avoid reaching the scalability bottlenecks, as they

perform worse with 12 cores than 6 cores on both Xen

and KVM, as shown in Figure 2. On the other side,

affinity-based scheduler cannot improve the performance

of histogram and wordcount on Xen and KVM.

Discussion: It should be acknowledged that the above

results are still quite preliminary yet. On one hand, the

startup cost of CPU hotplugs is not included when run-

ning the parallel workloads. In our future work, we

6

plan to design and implement a lightweight CPU hotplug

mechanism to let the OS be friendly to VCPU-Bal. On

the other hand, we currently only test the performance on

a 12-core machine, where the performance gap in a larger

scale multicore machine would be larger as the parallel

workload will experience more severe scalability prob-

lem.

5 Related Work

In the past, lots of work tries to mitigate the semantic gap

between multiprogrammed parallel applications and the

OS scheduler [10, 11, 3] that is similar to the semantic

gap between VM and VM scheduler. However, the in-

terface between VM and hypervisor is more transparent

than that between application and OS. Further, there ex-

ists a double scheduling problem in virtual environments.

Scheduler activation [3] tries to mitigate this semantic

gap by allowing user-level application to positively re-

quire or delete CPUs assigned to it. Although VCPU-Bal

can take the same idea of scheduler activations by letting

the guest VM require or delete its CPUs positively, there

are three problems: 1) as most applications are not de-

signed to explicitly require or delete CPUs from the OS,

it is hard for a VM to decide whether it needs to increase

or decrease its vCPUs; 2) the schedule activation inter-

faces are too complex to integrate into virtual environ-

ments; and most importantly 3) the computing resources

a guest VM get is decided by its service level agreement

(SLA) not its requirement. Thus, VCPU-Bal let the hy-

pervisor to decide the pCPU assignment.

The semantic gap between the OS scheduler and the

hypervisor scheduler introduces the double scheduling

problem. Uhlig et al. [16] identifies this problem as

the lock-holder preemption problem. They proposed a

locking-aware scheduler to mitigate the semantic gap,

which requires the guest OS to provide hits on whether

a vCPU is holding a spinlock. However, this technique

requires a guest OS being full knowledge of all lock-

holders in kernel and user space which requires argu-

menting the guest OS as well as user applications which

may not be feasible in commodity OSes. Other work

tries to mitigate the problem without the intervention

of the guest OS through co-scheduling [2, 17], balance

scheduling [15] and demand-based scheduling [9]. How-

ever, these approaches either cause other problems or do

not solve the problem completely.

6 Conclusion and Future Work

This paper argued to avoid hypervisor scheduling as

much as possible by dynamically adjusting the amount

of vCPUs to a guest VM according to its weight and

available physical CPUs. Experiments using simulated

scenarios confirmed the potential benefits of such an ap-

proach. In our future work, we plan to fully implement

the approach on both Xen and KVM and evaluate the

performance benefit in a more realistic setting.

References

[1] Kvm. kernel based virtual machine. http://www.linux-kvm.org/.

[2] The CPU Scheduler in VMware ESX 4.1.

http://www.vmware.com/files/pdf/techpaper/

VMW vSphere41 cpu schedule ESX.pdf.

[3] ANDERSON, T. E., BERSHAD, B. N., LAZOWSKA, E. D., AND

LEVY, H. M. Scheduler activations: Effective kernel support for

the user-level management of parallelism. ACM Transactions on

Computer Systems (TOCS) 10, 1 (1992), 53–79.

[4] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,

HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND

WARFIELD, A. Xen and the art of virtualization. In Proc. SOSP

(2003).

[5] BIENIA, C., KUMAR, S., SINGH, J. P., AND LI, K. The parsec

benchmark suite: Characterization and architectural implications.

In Proc. PACT (2008).

[6] BOYD-WICKIZER, S., CLEMENTS, A. T., MAO, Y.,

PESTEREV, A., KAASHOEK, M. F., MORRIS, R., AND ZEL-

DOVICH, N. An analysis of linux scalability to many cores. In

Proc. OSDI (2010).

[7] CLEMENTS, A. T., KAASHOEK, M. F., AND ZELDOVICH, N.

Scalable address spaces using rcu balanced trees. In Proc. ASP-

LOS (2012).

[8] HENNESSY, J. L., AND PATTERSON, D. A. Computer architec-

ture: a quantitative approach. Morgan Kaufmann, 2011.

[9] KIM, H., KIM, S., JEONG, J., LEE, J., AND MAENG, S.

Demand-based coordinated scheduling for smp vms. In Proc.

ASPLOS (2013).

[10] KONTOTHANASSIS, L. I., WISNIEWSKI, R. W., AND SCOTT,

M. L. Scheduler-conscious synchronization. ACM Transactions

on Computer Systems 15, 1 (1997), 3–40.

[11] OUSTERHOUT, J. K. Scheduling techniques for concurrent sys-

tems. In Proc. ICDCS (1982), pp. 22–30.

[12] PANNEERSELVAM, S., AND SWIFT, M. M. Chameleon: oper-

ating system support for dynamic processors. In Proc. ASPLOS

(2012).

[13] SONG, X., CHEN, H., CHEN, R., WANG, Y., AND ZANG, B. A

case for scaling applications to many-core with os clustering. In

Proc. EuroSys (2011).

[14] SONG, X., CHEN, H., AND ZANG, B. Characterizing the per-

formance and scalability of many-core applications on virtualized

platforms. Tech. rep., 2011.

[15] SUKWONG, O., AND KIM, H. S. Is co-scheduling too expensive

for smp vms? In Proc. Eurosys (2011).

[16] UHLIG, V., LEVASSEUR, J., SKOGLUND, E., AND DAN-

NOWSKI, U. Towards scalable multiprocessor virtual machines.

In Proc. Virtual Machine Research and Technology Symposium

(2004).

[17] WENG, C., WANG, Z., LI, M., AND LU, X. The hybrid schedul-

ing framework for virtual machine systems. In Proc. VEE (2009).

7

