
Heterogeneous Live Migration of Virtual Machines

Pengcheng Liu, Ziye Yang, Xiang Song, Yixun Zhou, Haibo Chen ∗, and Binyu Zang

Parallel Processing Institute

Fudan University

Abstract
An indispensable feature enabled by system virtualiza-

tion is the live migration of virtual machines (VMs). By

dynamically relocating an entire execution environment in-

cluding the operating system from one machine to another, a

networked system such as data-center and computing grid

can benefit from load balancing, online maintenance and

fault tolerance. Ideally, a virtual machine should be able

to be migrated across any node with similar machine con-

figuration and granted resources. However, as there are

currently a number of VMM vendors, the heterogeneity of

the underlying VMMs makes it hard to live migrate a VM

originally running on one VMM to run on another VMM.

In this paper, we propose Vagrant, a live migration

framework which bridges the heterogeneity among diverse

VMM abstractions and implementations. Vagrant supports

the live migration of VMs across heterogeneous VMMs. We

have implemented a prototype, that supports live VM migra-

tion between the Xen VMM and KVM. Experimental results

indicate that Vagrant achieves acceptable downtime and to-

tal migration time.

1 Introduction

System virtualization has become a disrupting force to

computer systems and is likely to be the new foundation of

system software [7]. Evidences include the wide and rapid

adoption of system virtualization in various usage scenar-

ios, including data-center, grid computing, and recent cloud

computing. One of the key enabling features provided by

system virtualization is the ability of live migrating virtual

machines (VMs) [18, 6, 16, 19, 4] among computing nodes.

By dynamically relocating an entire execution environment

including the operating system from one machine to an-

other, a networked system such as data-center and com-

puting grid can benefit from load balancing, online main-

∗Corresponding author: hbchen@fudan.edu.cn

tenance and fault tolerance.

One spirit of system virtualization should be to bridge

the heterogeneity of underlying resources. By providing

a common abstraction for guest operating systems, virtu-

alization is capable of hiding the heterogeneity of hard-

ware resources. Hence, ideally a virtual machine should be

able to live across any node with granted resources, despite

the heterogeneity of the underlying virtual machine moni-

tors (VMMs). Unfortunately, there are currently a number

of different kinds of VMMs including VMware Worksta-

tion/ESX server [22, 20], Microsoft Virtual PC/Server [14,

15], Microsoft Hyper-V [13], KVM [12], VirtualBox [10],

and Xen VMM [2]. Each VMM usually provides its own

abstraction of the hardware resources, which are usually not

identical. Worse even, different versions of the same VMM

may also have some differences in abstracting resources.

These obstacles make it hard or even impossible to allow

a VM originally running on one VMM to run on another

VMM.

On one hand, the battle among VMM vendors in mar-

ket may not likely have an end and no one may completely

defeat others. On the other hand, the scale of federated com-

puting is now rapidly growing and the computing model

will likely cover more resources. Examples include the Chi-

nagrid computing systems [11], PlanetLab [5] and cloud

computing [9]. The adoption of more resources will in-

evitably introduce resources managed using different vir-

tualization software. It is thus reasonable to see lots of

heterogeneous VMMs running simultaneously within one

federated computing system. This heterogeneity essentially

violates the spirit of virtualization and may cause resource

management problems. Such a violation downgrades the

benefits brought by virtualization, such as platform mobil-

ity, load balancing, utilization and fault tolerance. To still

retain the benefits of system virtualization despite the het-

erogeneity of underlying VMMs, it is desirable to support

the live migration of virtual machines across heterogeneous

VMMs.

This paper describes the design and implementation of

Vagrant, a VM migration scheme aiming at migrating vir-

tual machines among computing nodes even if they are

managed by heterogeneous VMMs. To render it practi-

cal, Vagrant is designed without mandating changes to the

hosted operating systems and its applications. It also re-

quires only minimal changes to the core VMM abstraction.

To support live migration among heterogeneous VMMs,

the key issue is the semantic gap among different resource

abstractions and migration protocols. First, each VMM

provides its own abstraction of the underlying hardware

resources. Second, the migration software for different

VMMs usually has its own format of migration protocols.

Third, there are currently several memory migrating algo-

rithms, including stop-and-copy [17], pre-copy [6], push

and pull. Moreover, there are also different manners in mi-

grating memory pages, including batched [6] and one-by-

one [12] transfer.

To bridge the heterogeneity, we make a detailed analy-

sis of several common VMMs, including Xen VMM, KVM

and VirtualBox. Based on the analysis, we propose an ap-

plicable framework, namely Vagrant, to support heteroge-

neous live VM migration. Vagrant has a common migration

protocol and common virtual machine abstraction. It inter-

cepts the migration control and data issued by the source

VMM (or migration software) and transforms them into the

Vagrant format. On the destination side, the data in Vagrant

format is transformed into the format of the target VMM.

For memory migration algorithms, Vagrant provides a pool

of common algorithms in both VMMs and dynamically se-

lects the migration algorithms according to the types of the

communicating VMMs.

We have implemented a prototype system based on

Xen VMM [2] and KVM [12], two prevalent open-source

VMMs. We measure the performance of Vagrant in terms

of migration time and application performance during mi-

gration. The results show that the downtime and total mi-

gration time in Vagrant is close to Xen and KVM, and the

application performance during migration is also similar.

In summary, we made the following contribution in this

paper:

• The proposal of heterogeneous migration of virtual

machines.

• The design of Vagrant, which aims at bridging the het-

erogeneity of virtual machine abstraction and algorith-

mic difference of different VMMs.

• The implementation and evaluation of our prototype

based on Xen and KVM.

The rest of the paper is structured as follows: Section 2

describes the challenges in heterogeneous live migration as

well as some background information. Section 3 explains

the design choices and architecture of Vagrant. Section 4

describes the implementation issues. Next, the performance

evaluation is presented in section 5. Then, section 6 de-

scribes related work. Finally, this paper ends up with some

concluding remarks and future work in section 7.

2 Background and Challenges

Comparing with homogeneous live VM migration, live

migration across heterogeneous VMMs faces many chal-

lenges due to the heterogeneity of VM abstractions. This

section describes the heterogeneity in abstracting CPU,

memory and I/O devices in common virtualization software.

As migration is usually controlled by migration tools lying

on the hosting VMMs, for simplicity, we use VMM to de-

note all the software components participating in live VM

migration.

2.1 Virtualization of Hardware Resources

2.1.1 CPU Virtualization

Different VMMs may have different ways to virtualize

CPUs. Traditionally, each VMM has its own virtual CPU

module, which provides the abstraction of CPU to guest

OSes. For example, the virtual CPU state in Xen’s HVM

includes general purpose registers, control registers, debug

registers, floating point registers, segment registers, model

specific registers, time stamp counter and information for

pending events. By contrast, the virtual CPU state in Xen’s

para-virtualization includes more information, such as vir-

tual IDT and virtual TSS. KVM’s virtual CPU abstraction

is similar to Xen HVM. Even if the abstraction is simmilar,

the data format of virtual CPU state transferred in live VM

migration is different.

The supported features of virtual processors provided by

each VMM may also be different even for the same hard-

ware platform [8]. In x86 architecture, the CPUID instruc-

tion is used by both applications and operating systems

to obtain the supported features of underline CPU. Some

VMMs present only a generic virtual processor to their VMs

by selectively masking bits in CPUID, while others export

almost all CPU features to VMs. A typical application usu-

ally obtains the set of available CPU features by executing

CPUID only once during its startup time. Therefore, live

migrating a VM to a VMM which exports different CPU

features may cause applications to act unexpectedly [1, 21].

2.1.2 Memory Virtualization

Currently, many existing OSes assume that they have a con-

tinuous address space. In a virtualized environment, VMM

manages the whole physical memory and allocates mem-

ory for each VM. The memory pages allocated for each

VM may not be continuous. A typical memory virtualiza-

tion solution is adding an extra level of address translation:

from guest physical address to machine address(host physi-

cal address). The guest OS may run in two different modes:

direct mode and shadow mode. In direct mode, the page

tables maintained by the guest OS maps guest virtual ad-

dresses to machine addresses directly. Guest OS only has

read access to page tables and special APIs are needed to

do page table update. In shadow mode, VMM maintains a

set of shadow page tables for each VM. Shadow page ta-

bles map guest physical addresses to machine physical ad-

dresses while guest page tables map guest virtual addresses

to guest physical addresses. Para-virtualization can support

both the two modes while full virtualization usually only

support shadow mode. In live VM migration, the machine

pages allocated for the VM may be different in the desti-

nation host. Therefore, if the VM runs in direct mode in

the source host, the machine addresses in guest page tables

must be transformed to guest physical addresses. Further-

more, even if two VMMs implement the same mode (e.g.,

shadow mode), the exposed interface to manage them are

different. For example, Xen maintains a reference count

and type count for each page and requires transferring this

information during memory migration. By contrast, KVM

uses a much simpler way to manage physical memory.

2.1.3 I/O Devices

The device model presented to guest OSes differs signifi-

cantly in para-virtualization and full virtualization. In para-

virtualization, as the source code of the guest OS can be

modified, there is no need to use existing device drivers and

VMM can choose to expose simple devices to guest OSes.

For example, instead of providing a common abstraction of

each specific device, such as SCSI device and IDE device,

Xen’s para-virtualization provides an abstract block device

which supports only two simple operations: read and write

a block. In comparison, full virtualization solutions, includ-

ing binary translation and hardware-based full virtualiza-

tion, have to emulate each I/O device. For example, Virtual-

Box and KVM rely on QEMU [3] to emulate each existing

hardware device, such as RTL8139 and NE2000 network

interfaces. In live VM migration, the state of existing vir-

tual I/O devices is transferred to the target and then loaded

into the device model of the VM. The heterogeneity of de-

vice models poses significant difficulty for heterogeneous

live migration.

2.2 Memory Migration Algorithms

Although moving the contents of a VM’s memory from

one physical host to another is straightforward, different

VMM vendors may use different migration algorithms. By

halting the VM, and copying whole VM state to the des-

tination, pure stop-and-copy [17] minimizes the total mi-

gration time but can lead to unacceptable downtime. De-

manding migration resumes the VM early and relies on

the destination VMM requesting memory pages from the

Table 1: Migration Algorithms of Different VMMs

VMM Algorithm Transfer Manner

Xen pre-copy batched

KVM pre-copy one-by-one

VMware pre-copy & demanding unknown

source VMM on demand. While Demanding migration in-

curs much shorter downtime, it may produce a long total

migration time. By transferring dirty memory pages itera-

tively to the target while the VM is running, pre-copy mi-

gration [6] balances the requirements for minimizing both

downtime and total migration time and is used by many

VMM vendors, including Xen and KVM. VMWare’s VMo-

tion [16] adopts an even more complex algorithm by com-

bining pre-copy and demanding migration. After a period of

memory pre-copy, it pauses the VM and sends non-memory

state to the target after which the VM is resumed. The re-

sumed VM runs by pulling remaining memory pages from

the source machine. Different VMM vendors may also use

different manners for transferring memory pages. For ex-

ample, Xen VMM uses a batched transfer manner while

KVM uses a one-by-one manner. Table 1 shows the mi-

gration algorithms of several mainstream VMMs.

2.3 Migration Protocols

In live VM migration, a set of control commands are

transferred between the source and destination VMMs. One

challenge posed by heterogeneous live migration is that

each VMM issues a different set of control commands to

start and control the migration process. For example, Xen

VMM initiates migration by sending a string ”receive” to

the target. By contrast, KVM sends a special integer to

start migration. The migration of VM’s state can usually

be divided into several stages, such as memory migration

and CPU state migration. For each stage, VMMs may issue

specific commands to mark the beginning and end of the

stage. For example, Xen sends ”0” to indicate that memory

migration has been finished while KVM uses ”1” to mark

the end of pre-copy.

3 Design

To render it practical, we design Vagrant without man-

dating changes to the guest operating systems and VMMs.

To achieve such a goal, vagrant is built within the privi-

leged VM or the hosted operating system. In this section,

we first illustrate the architecture and working flow of Va-

grant. Then we describe how Vagrant bridges the hetero-

geneity among different VMMs.

3.1 Architecture of Vagrant

Figure 1 shows the architecture of Vagrant. Vagrant en-

ables heterogeneous live VM migration using three compo-

Figure 1: The heterogeneous migration framework. The Local Migration Daemon refers to the migration tool implemented in each VMM.

nents. The Vagrant Agency (VA) serves as a middle-man

between two migrating VMM systems. It handles the nego-

tiation between the source and destination VMM. The state

transformer transforms VM state between Vagrant format

and the specific VMM format. The algorithm pool imple-

ments several memory migration algorithms. A simplified

working flow can be expressed as follows:

• VA at the source side intercepts the migration requests

issued by the source VMM and establishes a connec-

tion with the destination VA.

• A memory migration algorithm is chosen from the al-

gorithm pool and memory pages of the VM are trans-

ferred using the chosen algorithm.

• VA at the source side suspends VM and transforms

VM non-memory state into Vagrant format by using

the source side state transformer.

• VA at the source side transfers VM state to the target.

• VA at the destination side transforms the received VM

state into the target VMM’s format and forwards the

data to the target VMM.

• VA at the source side closes the connection when the

migration finishes.

3.2 Bridging the Heterogeneity

One precondition of heterogeneous live VM migration

is the ABI supported by each VMM must be the same.

It is impossible to live migrate a para-virtualized VM to

a VMM which supports another para-virtual ABI or only

supports full virtualization. However, paravirt ops provides

a common ABI for para-virtualization and is adopted by

Xen, VMWare VMI and Lguest. This provides the potential

for live migrating a para-virtualized VM between different

VMMs.

Bridging the heterogeneity of hardware resources ab-

straction of different VMMs is the most important issue in

Vagrant. Vagrant is required to accommodate mainly three

kinds of virtual resources, including CPU, memory and I/O

devices. For memory, traditional live migration requires

that guest page tables should store mappings between guest

virtual address and guest physical address. This is also an

important issue in heterogeneous live VM migration. The

following paragraphs discuss issues related to abstracting

CPU and I/O devices.

CPU The virtual CPU module in each VMM is differ-

ent, especially for VMMs using different virtualization so-

lutions. However, not all virtual CPU state needs to be

transferred in live migration. For example, the informa-

tion of processor features maintained by the KVM virtual

CPU module is not transferred to the target. Vagrant tends

to extract the essential virtual CPU state from each VMM’s

abstraction. After a detailed analysis of several common

VMMs, including Xen (both para-virtualization and HVM),

KVM and VirtualBox, Vagrant proposes a common virtual

CPU format which integrates all essential virtual CPU state

needs to be transferred in heterogeneous live migration.

As each VMM may expose a different set of CPU fea-

tures to guest OSes, live VM migration between different

VMMs may cause applications to act unexpectedly. Live

VM migration between different hardware platforms faces

the same problem. Many VMM vendors solve this prob-

lem by only exposing a set of common processor features

to the guest software, including guest OS and guest appli-

cations. To ensure the proper behavior of guest software

after live migration, VMM has to control the return infor-

mation of CPUID instruction executed by guest software.

For hardware based virtualization, all the CPUID instruc-

tion executed in guest software can be intercepted easily

by the VMM. However, for binary translation and para-

virtualization, VMM needs the ability to control CPUID in-

struction executed in guest applications. The AMD-V TM

extended migration technology [1] provides capabilities to

VMMs for specifying the subset of processor features re-

turned by CPUID instruction. In heterogeneous live migra-

tion, Vagrant requires that the destination VMM must have

the ability to provide a compatible set of processor features.

This is ensured by the migration protocol implemented in

the VA.

I/O Devices Each VMM provides its own device mod-

els to guest OSes. We believe it is generally hard to

bridge the heterogeneity between para-virtualized and em-

ulated I/O device models. As hardware based virtualiza-

tion should be the trend of virtualization, device emulation

is now widely adopted by VMMs. So Vagrant mainly fo-

cuses on emulation-based virtual devices. Currently, many

VMMs rely on an extra device emulation module, such as

QEMU[3], to emulate each I/O device. The device emula-

tion module runs as an independent process in the privileged

domain or host OS. For each VM, there is an instance of the

device models which waits for I/O events from the VM and

dispatches it to the device emulation module. Device em-

ulation provides the potential for bridging the heterogene-

ity of device models in different VMMs. As long as the

emulated device type is the same, the virtual device state

can be easily transformed and reloaded into another device

model. On the source side, the state transformer receives

the local I/O device state from the VA and transforms it into

the Vagrant format. On the destination side, the received

I/O device state of Vagrant format is transformed into target

device emulator’s format and loaded into the target device

model.

Each VMM’s device emulation module may support a

different set of I/O devices. Live migrating a VM to a VMM

which cannot support all the existing I/O devices will cause

the VM to lose state or even crash. Similar to CPU state,

Vagrant requires that destination VMM must have the capa-

bility to support all I/O devices existing in the migrated VM.

Otherwise, it should be able to write a state transformer that

seamlessly transfer state between two virtual devices.

3.3 Memory Migration Algorithms

In Vagrant, the algorithm pool provides different kinds

of memory migration algorithms. During the first stage of

migration, the source side VA negotiates with the destina-

tion side VA and chooses a compatible migration algorithm

from the migration pool. The precondition is the migration

pool on each side has implemented at least one compatible

migration algorithm. If there are more than one candidates,

the algorithm can be specified by the user or is chosen by

VA randomly.

3.4 The Migration Protocol

Migration protocol is used to initiate and control the

whole process of live migration. For each VMM support-

ing live migration, there is always a migration daemon lis-

tening on a port through which the source and destination

VMMs can establish a connection. Once the connection is

established, the source VMM begins migration by sending a

set of control commands. Generally, the source VMM first

sends a signature to ensure the destination VMM is compat-

ible with the source. After that, a configuration file of the

VM will be sent to the destination. On receiving this con-

figuration file, the destination VMM checks whether it has

enough physical resources to host such a VM. If it does, the

destination does some preparation for receiving the state of

the incoming VM, such as memory allocation, and issues

commands to notify the source VMM to begin VM state

transfer. The migration of VM’s state can usually be di-

vided into several stages, such as memory migration, CPU

state migration and I/O device state migration. For each

stage, special commands are issued to mark the beginning

and end of the stage.

As VMM’s migration protocol usually differs from each

other, Vagrant proposes a common migration protocol and

a set of migration commands to initiate and control the het-

erogeneous live VM migration. The VA intercepts all the

migration commands issued by the local VMM and replaces

them with the commands of Vagrant. On receiving a migra-

tion request, VA on the source side issues a special com-

mand to establish a connection with VA on the destination

side. As the VMMs in pre- and post- migration environ-

ment may provide different capabilities, such as processor

features, I/O devices, the source side VA negotiates with the

destination VA to ensure the destination VMM can provide

the same capabilities required by the migrated VM. If the

negotiation succeeds, the source side VA chooses a proper

migration algorithm from the algorithm pool and starts mi-

gration using the chosen migration algorithm.

4 Implementation

We have implemented a working prototype of Vagrant

that supports live migration of VMs between Xen and

KVM. Our current implementation is based on x86 archi-

tecture with VT-x extensions.

The following subsections discuss the specific imple-

mentation issues of Vagrant. We first present the migration

protocol used by Vagrant. Then, we discuss the common

abstraction of hardware resources in Vagrant. Finally, we

present the implementation of the memory migration algo-

rithm in Vagrant.

4.1 Migration Protocol

In live VM migration, a configuration of the VM is usu-

ally sent to destination VMM for resources reservation. The

Table 2: Part of Control Commands in Vagrant

Usage Source Destination

request MIG REQ REQ OK,REQ FAIL

send config MIG CFG CFG OK,CFG FAIL

begin pre-copy MEM BEG no response

send cpu state CPU BEG no response

send I/O devices DEV BEG no response

configuration sent by Xen is very detailed, including mem-

ory size, disk image location, VM name and etc. In compar-

ison, KVM only sends memory size of the VM to the des-

tination. In heterogeneous live migration, a detailed infor-

mation is required to be collected as it must be ensured that

the destination VMM can provide the same capabilities as

the source VMM, otherwise the migration may fail midway.

Vagrant’s format of configuration is based on Xen’s format.

Generally, it specifies the required memory size, general I/O

devices and CPU features requested by the VM. It also in-

cludes a signature which shows the identity of the migrated

VM. On receiving the configuration file, the VA on the des-

tination side checks whether the local VMM can provide the

required capabilities. The migration process proceeds only

when the check of capabilities is successful.

Based on the analysis of the migration protocol of com-

mon VMMs, Vagrant uses a common set of control com-

mands, to initiate and control the whole process of live mi-

gration. Table 2 shows an incomplete list of them. Some

of the commands have corresponding response commands,

while others do not have. For example, the command

”MIG REG”, used by the VA to initiate live migration, may

be responded by a ”REQ OK” or ”REQ FAIL” command.

”REQ OK” means the target VMM is ready for live migra-

tion while ”REQ FAIL” tells the migration can not proceed

any more. The command ”MEM BEG” marks the begin-

ning of memory migration. It does not have any response

command and the source side vagrant agency begins send-

ing memory pages immediately after issuing this command.

During live migration, as the destination VMM may be un-

responsive for various reasons, such as network problems,

the VA sets a 3 seconds timeout for each command that

needs a response.

4.2 Abstraction of Hardware Resources

4.2.1 CPU

In KVM and Xen, most CPU features are exposed to the

guest software, such MMX and SSE. Some of the features

can be configured, such as APIC and ACPI. In our imple-

mentation, we transfer the capability of the KVM and Xen

to support a joint set of both VMMs’ CPU capabilities. That

is, a migration of VM will not downgrade its capability. The

virtual CPU state of Vagrant includes the state of standard

registers, control registers, segment registers, debug regis-

ters, floating point unit, sysenter registers, model specific

registers, time stamp counter and pending events. The vir-

tual CPU state of KVM and Xen VMM to be transferred

in live migration is first transformed into Vagrant’s format

before migration and then transformed back after migration.

4.2.2 I/O Devices

In Vagrant, the migrated VM is configured with keyboard,

mouse, rtc, PIC/APIC/IOAPIC, PIT, IDE disk, NIC, serial

port and VGA. As most virtual I/O devices in KVM and

Xen VMM are emulated by QEMU, the development effort

is significantly reduced.

However, for the sake of performance, both KVM

and Xen VMM have moved some virtual devices out

of QEMU. While KVM has kernel level support for

PIC/APIC/IOAPIC, Xen VMM moves more virtual devices

into the VMM, such as PIC/APIC/IOAPIC and PIT. There-

fore, in the source VMM, Vagrant merges the QEMU and

VMM maintained device state and transforms it into the

common format. In the destination, Vagrant transforms the

device state into target device model’s format.

4.3 Migration Algorithm

Currently, we only implemented a pre-copy based algo-

rithm for the algorithm pool. The algorithm begins by copy-

ing all memory pages of the VM to the destination VMM.

Then it iteratively copies the dirty pages in batched man-

ner. Currently, the maximum batch size is 1024, which is

the same as Xen’s implementation. In each iteration, Va-

grant first sends the batch size and page frame number of

each page, then it sends the contents of the whole batch.

During each iteration, Vagrant also determines whether the

threshold has been reached. At this point, further pre-copy

will make no progress. When the threshold is reached or the

pre-copy is complete, Vagrant halts the VM and copies the

remaining memory pages to the destination.

An important issue should be considered in memory mi-

gration is the tracking of dirty pages. In both KVM and

Xen, there are two types of bitmaps recording the dirty

pages in each iteration. While the dirty bitmap of nor-

mal pages is maintained by KVM kernel module or Xen

VMM, the bitmap for pages used by DMA is maintained by

QEMU. By merging the bitmaps maintained by VMM and

QEMU, Vagrant differentiates the dirty pages from others

at the start of each iteration.

5 Experimental Evaluation

In this section, we measure the performance of Vagrant

to answer the following questions: (1) Whether VM migra-

tions using Vagrant can have an acceptable total migration

time and minimal downtime? (2) Whether applications dur-

ing VM migration using Vagrant can still provide an accept-

able level of performance? (3) Is Vagrant’s performance

comparable to other migration frameworks such as Xen and

KVM?

5.1 Experimental Setup

All tests were performed on a pair of PCs with 2.33GHz

Intel Core(TM)2 Duo CPU with 2GB RAM, an RTL8169

Ethernet NIC, and a single 300GB 7200 RPM SATA disk.

Another PC with a 3.0GHz Pentium IV with 1GB RAM, an

Intel Pro 100/1000 Ethernet NIC and a single 250 GB 7200

RPM SATA disk was used as NFS server. The machines

were connected via switched Gigabit Ethernet. The ver-

sion of Xen VMM was 3.1.0(HVM). The KVM used was

KVM-48 running on Linux 2.6.23. The migrated VM was

provided with 128 MB of RAM and used a 5GB disk image

with installation of Fedora Core 6. In all the evaluations,

there was only one VM running on the source machine and

there were no VMs running on the destination machine(We

do not consider the privileged DOM of Xen as a VM).

5.2 Migration Time

The two metrics usually concerned in live VM migration

are downtime and total migration time (end-to-end time).

To gain a comparison results of Vagrant, four kinds of mi-

grations were performed, including migrating a VM from

KVM to KVM, Xen VMM to Xen VMM, KVM to Xen

VMM and Xen VMM to KVM. All kinds of migrations

were evaluated under different VM workloads, including

idle, kernel-compile, memtest86 and apache ab benchmark.

Downtime In Vagrant, we divide migration downtime

into normal downtime and state transfer time. Normal

downtime consists with the downtime incurred in homo-

geneous live migration and usually consists of the time to

pause the VM on the source, transfer remaining memory

pages and device state to the target, and load the device

state in the target. State transfer time consists of the time

to transform source side device format into Vagrant device

format and then into target device format. In our evaluation,

the state transfer time is less than 1 millisecond.

Figure 2 shows the downtime of all four kinds of mi-

grations on different workloads. The downtime of hetero-

geneous live migration is comparable to homogeneous live

migration. For most workloads, the downtime is less than or

close to 1 second. As shown in the results, the migrations

between Xen VMMs incur a longer downtime than KVM

migration. It is because during live migration, Xen spends

several hundreds of milliseconds to pause the VM and saves

the VM state in a file.

End-to-end Time End-to-end time consists of memory

pre-copy time and downtime. For memory pre-copy, Xen

VMM uses a batched manner while KVM uses a one-by-

one manner. Vagrant’s common algorithm behaves in a

batched manner. Figure 3 shows that after we have changed

the memory pre-copy manner, the migration between KVM

and Xen outperforms the migration between KVMs for all

0.5

1

1.5

2

2.5

3

3.5

idle compile ab memtest

D
o

w
n

 T
im

e
 (

s
e

c
)

Benchmark

kvm-kvm
kvm-xen
xen-xen
xen-kvm

Figure 2: Migration downtime for various workloads.

workloads. The time of Xen-to-KVM migration is also

shorter than Xen-to-Xen migration. This is because Xen-

to-KVM migration requires smaller number of pre-copy it-

erations.

KVM outperforms Xen for all workloads except for

memtest86. memetest86 dirties memory pages so quickly

that several pre-copy iterations are required to migrate the

loaded VM. Xen’s batched memory transfer manner shows

its advantage in this scenario. Nevertheless, Vagrant per-

forms comparably to Xen VMM.

2

4

6

8

10

12

14

16

18

20

22

idle compile ab memtest

T
o

ta
l
T

im
e

 (
s
e

c
)

Benchmark

kvm-kvm
kvm-xen
xen-xen
xen-kvm

Figure 3: Total migration time for various workloads.

5.3 Migrating a Running Web Server

To examine the performance of Vagrant under heavy

workloads, we evaluate the prototype by migrating a VM

running an Apache 2.2.3 web server. The web server con-

tinuously serves a 256 KB file to a remote client. Figure

4 illustrates the throughput during the migration between

KVM and Xen. As shown in the figure, the total migration

is rather small and the downtime is minimal. This exper-

iment shows that Vagrant can successfully live migrate a

heavily-loaded VM between KVM and Xen with very little

performance impact.

 0

 2

 4

 6

 8

 10

 12

 14

0 10 20 30 40 50 60

th
ro

u
g

h
p

u
t(

M
b

it
/s

e
c
)

time(second)

Network Throughput of Web Server During Migration from Kvm to Xen

Migration down time
|--|

Sample over 10ms of live migration
Sample over 20ms of live migration

 0

 2

 4

 6

 8

 10

 12

 14

0 10 20 30 40 50 60

th
ro

u
g

h
p

u
t(

M
b

it
/s

e
c
)

time(second)

Network Throughput of Web Server During Migration from Xen to Kvm

Migration down time

|------|

Sample over 10ms of live migration
Sample over 20ms of live migration

Figure 4: Performance of Apache during VM migrations between

KVM and Xen.

6 Related Work

While live VM migration has been heavily studied in the

past few years, our work differs from previous work in that

it is the first framework to support live migration of virtual

machines among heterogeneous VMMs. The following dis-

cussion only focuses on the most closest work to Vagrant.

Xen VMM [6] can dynamically relocate a VM among

different hosts in a LAN. By pre-copying memory pages it-

eratively before suspending the VM, it achieves a relatively

low downtime. Xen determines the end of the pre-copy

phase based on the analysis of the writable working set be-

havior of several typical server workloads. After suspend-

ing the VM, it transfers CPU and I/O device states to the

target host. To avoid disrupting active services through re-

source contention with the migrating OS, they use dynamic

network rate-limiting to balance network contention against

downtime.

KVM [12] also supports live VM migration within a

LAN. Similar to Xen, it iteratively pre-copies the VM mem-

ory to the target in parallel with normal VM execution.

However, the memory pages are transferred in an one-by-

one manner while a batched manner is used in XEN live

migration. The termination criteria of pre-copy is relatively

simple: the number of copied memory pages is increasing

in each iteration or thirty iterations have elapsed. VMware

VMotion [16] enables live migration of VMs running on

VMware ESX Server. The migration process involves 5

steps which are also similar to XEN live migration.

“VM Turntable” demonstrator [19] shows that VMs can

be live migrated over long-haul networks with negligible

downtime. The long-haul scenario poses new requirements

for live migration. Due to the high round trip times (RTTs)

experienced in a long-haul scenario, the migration process

is required to pack and transfer more state than just mem-

ory pages, such as hard disk state. “VM Turntable” demon-

strator does not solve the problem of migrating disk state,

however, it demonstrated that the goal can be accomplished

by relying on the snapshot capability of a Logical Volume

Manager. Another requirement posed by long-haul live

migration is that the VM can not rely on the usual rout-

ing infrastructure, the use of which would cause the VM

to acquire an new IP address. To accomplish this, “VM

Turntable” demonstrator uses dynamically configured IP

tunnels to retain VM connectivity.

Bradford et al. [4] enables wide-area network (WAN)

migration by not only transferring the in-memory state of

a VM, but also transferring the local disk state. Each

host maintains an immutable template disk image. There-

fore, only the differences between the template and the cus-

tomized disk image are transferred to the target host. As

VM’s IP address is changed in long-haul live migration,

they maintain VM’s ongoing network connections by for-

warding all packets for the VM’s old IP address to the tar-

get. In a short time, the migrated VM seems to have two IP

addresses. The old one is used by existing network connec-

tions while the new one is used by new connections.

7 Conclusion and Future Work

We have presented Vagrant, a heterogeneous live VM

migration framework that enables live VM migrations

among different kinds of VMMs. Based on the study of

heterogeneity of different VM abstractions and migration

algorithms, we designed a common migration framework

that provides general abstraction of VMs and migration pro-

tocols. We have also implemented a working prototype that

supports the live migration of VMs between Xen VMM and

KVM. Performance measurements indicate that the down-

time and end-to-end time in Vagrant are comparable to ho-

mogeneous live VM migration.

In our future work, we plan to extend Vagrant in several

ways. First, we are currently working to make vagrant more

full-fledged by investigating its implementation on other

virtual machines, such as Virtual Boxes and VMware. Sec-

ond, as currently Vagrant relies on network file systems and

only support migration within LAN, we plan to extend it to

support live migration in wide-area network. Third, we plan

to add more desirable features such as QoS control to make

Vagrant more flexible and robust.

References

[1] AMD. Live Migration with AMD-

V TM Extended Migration Technology.

http://whitepapers.theregister.co.uk/paper/view/375/.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,

A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and the

art of virtualization. In Proc. SOSP, pages 164–177, 2003.

[3] F. Bellard. Qemu, a fast and portable dynamic translator. In

Proc. Usenix, Freenix Track, pages 41–46, 2005.

[4] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg.

Live wide-area migration of virtual machines including local

persistent state. In Proc. VEE ’07, pages 169–179, 2007.

[5] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,

M. Wawrzoniak, and M. Bowman. PlanetLab: an overlay

testbed for broad-coverage services. ACM SIGCOMM Com-

puter Communication Review, 33(3):3–12, 2003.

[6] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach,

and A. Pratt, I andWarfield. Live migration of virtual ma-

chines. In Proc. NSDI, 2005.

[7] S. Crosby and D. Brown. The virtualization reality. Queue,

4(10):34–41, 2006.

[8] Y. Dong, S. Li, A. Mallick, J. Nakajima, K. Tian, X. Xu,

F. Yang, and W. Yu. Extending Xen with Intel Virtualization

Technology. Intel Virtualization Technology, 10, 2006.

[9] D. Gannon. Head in the clouds. Nature, 449, 2007.

[10] Innotek. Innotek virtualbox. http://www.virtualbox.org/.

[11] H. Jin. ChinaGrid: Making Grid Computing a Reality. In

Proc. ICADL 2004, 2004.

[12] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori.

kvm: the Linux Virtual Machine Monitor. In Proc. Linux

Symposium, 2007.

[13] Microsoft. Microsoft Hyper-V.

http://www.microsoft.com/virtualization/.

[14] Microsoft. Microsoft Virtual PC.

http://www.microsoft.com/windows/products/winfamily/virtualpc/.

[15] Microsoft. Microsoft virtual server.

www.microsoft.com/windowsserversystem/virtualserver.

[16] M. Nelson, B.-H. Lim, and G. Hutchins. Fast transparent mi-

gration for virtual machines. In Proc. USENIX ATC, 2005.

[17] C. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. Lam, and

M. Rosenblum. Optimizing the Migration of Virtual Com-

puters. In Proc. OSDI, 2002.

[18] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam,

and M. Rosenblum. Optimizing the migration of virtual

computers. In Proc. OSDI, pages 377–390, 2002.

[19] F. Travostino, P. Daspit, L. Gommans, C. Jog, C. de Laat,

J. Mambretti, I. Monga, B. van Oudenaarde, S. Raghunath,

and P. Y. Wang. Seamless live migration of virtual machines

over the man/wan. Future Gener. Comput. Syst., 22(8):901–

907, 2006.

[20] VMware. Vmware esx server.

http://www.vmware.com/products/esx/.

[21] VMware. Vmware vmotion and cpu compatibility.

http://www.vmware.com/resources/techresources/1022.

[22] VMware. Vmware workstation.

http://www.vmware.com/products/ws/.

