
Transformer: A Functional-Driven Cycle-Accurate Multicore Simulator

Zhenman Fang1,2, Qinghao Min2, Keyong Zhou2, Yi Lu2, Yibin Hu2, Weihua Zhang2, Haibo Chen3, Jian Li4, Binyu Zang2

1The State Key Lab of ASIC & System, Fudan University. 2Parallel Processing Institute, Fudan University.
{fangzhenman, minqh, zky, yil, huyibin, zhangweihua, byzang}@fudan.edu.cn

3Institute of Parallel and Distributed Systems, Shanghai Jiaotong University. haibochen@sjtu.edu.cn
4IBM Austin Research Laboratory. jianli@us.ibm.com

ABSTRACT

Full-system simulators are extremely useful in evaluating design
alternatives for multicore. However, state-of-the-art multicore sim-
ulators either lack good extensibility due to their tightly-coupled
design between functional model (FM) and timing model (TM),
or cannot guarantee cycle-accuracy. This paper conducts a com-
prehensive study on factors affecting cycle-accuracy and uncovers
several contributing factors ignored before. Based on the study, we
propose a loosely-coupled functional-driven full-system simulator
for multicore, namely Transformer. To ensure extensibility and
cycle-accuracy, Transformer leverages an architecture-independent
interface between FM and TM and uses a lightweight scheme to de-
tect and recover from execution divergence between FM and TM.
Based on Transformer, a graduate student only needs to write about
180 lines of code and takes about two months to extend an X86
functional model (QEMU) in Transformer. Moreover, the loosely-
coupled design also removes the complex interaction between FM
and TM and opens the opportunity to parallelize FM and TM to
improve performance. Experimental results show that Transformer
achieves an average of 8.4% speedup over GEMS while guarantee-
ing the cycle-accuracy. A further parallelization between FM and
TM leads to 35.3% speedup.

Categories and Subject Descriptors
B.2.2 [Performance Analysis and Design Aids]: Simulation

General Terms
Design, Measurement, Performance

Keywords
Functional-driven, Multicore simulation, Full-system, Extension

1. INTRODUCTION
Full-system simulation is a key tool to evaluate new ideas in

architectural design. Generally, there are two basic models in a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2012, June 3-7, 2012, San Francisco, California, USA.
Copyright 2012 ACM ACM 978-1-4503-1199-1/12/06 ...$10.00.

full-system simulator: functional model (FM), which provides a
full-system execution environment to execute operating system-
s and applications and collects the resulted instruction flow and
data access information; and timing model (TM), which simulates
micro-architectural behavior of the instruction flow generated by
FM. Due to the importance of full-system simulator, researchers
have designed and implemented a number of FMs such as Simic-
s [8], QEMU [2], and COREMU [15], and TMs such as GEMS [9],
MPTLsim [18] and RAMP GOLD [14]. However, FMs and TMs
are usually tightly coupled together in a full-system simulator and
it is usually hard to extend new FMs or TMs in the simulator. For
example, developers have spent years to combine M5 with GEM-
S (i.e., gem5 [4]) or extend QEMU to PTLsim (MARSS [11]). Fur-
ther, such a tightly-coupled design also makes it hard to efficiently
parallelize FM and TM, resulting in inferior performance.

There is actually a good reason to take the tightly-coupled design
in current mainstream full-system multicore simulators. To guaran-
tee cycle-accuracy such as faithful instruction execution behavior
and timing, they usually use TM to drive the execution of FM: in
each cycle, TM advises FM on which instruction FM should ex-
ecute; FM will also report to TM with information regarding the
executed instruction, to let TM maintain correct architecture states
and timing information. Such a tightly-coupled and complex in-
teraction between TM and FM limits both extensibility and perfor-
mance of full-system simulators. Though there have been some
efforts in trying to explore a loosely-coupled design for multicore
simulators [7, 6], their solutions cannot guarantee cycle-accuracy
and there is no implemented prototype for multicore simulators.

In this paper, we first present a comprehensive study on the limit-
ing factors that lead to execution divergence between FM and TM.
We show that besides traditional well-known factors such as branch
misprediction and shared data access order, interrupt/exception
handling and shared page access order also lead to execution di-
vergence and thus cycle-inaccuracy in a loosely-coupled design. To
understand the probability of occurrence of these factors, we profile
the proportions of these events in a set of benchmarks and find that
these events happen very infrequently (less than 1%). This indi-
cates that for most cases, there is no execution divergence between
FM and TM.

Based on the above analysis, we propose Transformer, a loosely-
coupled, functional-driven simulation scheme for full-system mul-
ticore simulation. In Transformer, FM runs ahead and provides
instructions and data access information to TM. TM then uses such
information to simulate the detailed timing of micro-architecture.
Transformer also provides a lightweight scheme to detect and re-
cover from execution divergence, thus ensures cycle-accuracy. Ba-
sically, Transformer rolls back FM to the path indicated by TM.
For branch misprediction and interrupt/exception handling, Trans-

106

former uses an additional simple FM to generate the instruction
flow information in wrong path to feed TM, so as to further re-
duce the interaction between FM and TM caused by the rollback
scheme. Further, to make Transformer extensible, we provide
an architecture-independent instruction and data flow interface be-
tween FM and TM.

In Transformer, the interaction between FM and TM is much
simpler, and thus provides great flexibility to extend with new FMs
or TMs. Further, as FM and TM are now loosely-coupled, it also
opens the opportunity to parallelize FM and TM to improve the
performance.

We have implemented Transformer based on GEMS [9], a
widely-used tightly-coupled simulator, and parallelize FM and TM
to achieve better performance. And we plan to release the source
code of Transformer to the community in future. Based on Trans-
former, a graduate student only needs to write about 180 LOCs and
takes about two months to extend an X86 functional model (QE-
MU) in Transformer. Furthermore, experiments with SPLASH-
2 [17] and PARSEC [3] show that Transformer achieves about
8.4% speedup compared to GEMS while guaranteeing the cycle-
accuracy. And the speedup increases to 35.3% after FM and TM
are parallelized.

In summary, this paper makes the following contributions:
• The first comprehensive analysis on the factors leading to ex-

ecution divergence between FM and TM, which uncovers that
interrupt/exception handling and shared page access are also
limiting factors to cycle-accuracy.
• A loosely-coupled full-system multicore simulation framework

that is extensible, fast, and cycle-accurate, as well as a set of
techniques to detect and recover from execution divergence.
• An experimental evaluation that confirms the effectiveness and

efficiency of Transformer and a case study that extends QEMU
in Transformer to demonstrate the extensibility.

The rest of the paper is organized as follows. Section 2 discuss-
es the motivation of the loosely-coupled design and comprehen-
sively analyzes which factors affect cycle-accuracy. Section 3 pro-
poses the Transformer framework, describes the lightweight cycle-
accurate solutions and discusses the architecture-independent inter-
face. Section 4 demonstrates an example for extending X86 support
and evaluates the performance speedup of Transformer. Section 5
describes related work. Finally, section 6 concludes the paper and
discusses possible future work.

2. MOTIVATION

2.1 Limitations with a Tightly-coupled Design
To achieve cycle-accuracy (e.g., guarantee correct interleaving

in parallel applications), existing full-system multicore simulators
usually exploit a tightly-coupled timing-driven design. As shown
in Figure 1, in each cycle, TM directs FM with which instruction-
s should be executed and FM feeds back the executed results to
TM to maintain correct architecture states and timing. Moreover,
TM has to simulate part of the functional model so as to direct the
execution of FM. Such a tightly-coupled and complex interaction
between FM and TM makes it very difficult to extend a new FM
or TM into those simulator frameworks. For example, the develop-
ers spends years to combine M5 with GEMS (gem5 [4]) or extend
QEMU into PTLsim (MARSS [11]).

In addition, the complex interaction in current tightly-coupled
design limits simulation speed. To illustrate this problem, we pro-
file the execution proportion of FM, TM and their interactions (us-
ing the experiment setup in section 4.1). First, to support TM, FM
has to execute in instruction-by-instruction model instead of fast

Timing
step instr

exec info

for each cycle

Functional

Figure 1: Tightly-coupled Functional and Timing.

binary translation to provide execution information to TM. As a re-
sult, FM occupies about 10% of the whole execution time, which
cannot be neglected any more. However, it is impossible for a
tightly-coupled design to gain performance improvement through
parallelizing FM and TM. Moreover, complex interaction produces
about 26% overhead due to complex control logic and frequent s-
tate transformation with poor locality.

2.2 Factors to Cycle-Accuracy
To gain insight into possible solutions to loosely-coupled cycle-

accurate design, we study the factors leading to execution diver-
gence between FM and TM. Besides traditional well-known fac-
tors such as branch misprediction and shared data access order, we
find that interrupt/exception handling and shared page access order
also lead to execution divergence and thus cycle-inaccuracy in a
loosely-coupled design.
• Branch misprediction: In modern architectures, branch predic-

tion is usually exploited in the pipeline design to avoid stall
caused by branch instructions. The branch could be mispre-
dicted to execute a wrong path in TM. However, FM always
executes the instructions on the correct path, leading to execu-
tion divergence with actual architectural execution (i.e., TM).
• Shared data access order: In parallel applications, not al-

l shared data are protected by lock operations to achieve some
harmless operations, such as user-level synchronization. There-
fore, FM may execute a different write/read order compared
with that of TM, which will diverge the execution path.
• Interrupt/exception handling: Interrupt or exception is similar

to branch misprediction. TM handles the interrupt or excep-
tion (i.e., jumps to the interrupt or exception handling path) in
the commit stage after squashing the pipeline. Before that, T-
M will fetch instructions from the wrong path, i.e., next pro-
gram counter (PC) instead of the interrupt/exception handler
code. However, FM directly simulates the interrupt/exception
handling path, which leads to execution path divergence.
• Shared page access order (i.e., MMU miss order): In full-

system multicore simulation, the system behavior has to be sim-
ulated. Although such a design guarantees cycle-accuracy, it
involves some additional shared data access among differen-
t threads, which would further lead to path divergence between
FM and TM. The divergence will take place under two condi-
tions. First, two memory operations in different threads may
access data within the same page. When this page is not in
memory, the first access will result in a MMU miss and its cor-
responding thread has to include the operations to process the
MMU miss. Second, two pages (suppose A and B) accessed
by two data accesses might be mapped to the same entry in the
page table. Suppose page A is in memory while page B is not
present. If the access to page B is executed first, page A will be
split out. When page A is accessed again, a MMU miss occurs.
However, if page A is executed first, no MMU miss will occur.
Since both of these two conditions are related to MMU miss,
we will also refer to this factor as MMU miss order.

Although these factors would lead to execution divergence be-
tween FM and TM, they occur rarely. To illustrate this problem,

107

Table 1: Proportion of path diversities.

Path divergence Source Proportion
Branch Misprediction 5.3E-3
Interrupt/Exception Handling 1.4E-4
Shared Data Access Order Violation 7.9E-6
MMU Miss 1.6E-5

branch/interrupt/exception wrong path

shared data access order violation, rollback

instr/data flow

Functional Timing

Wrong-path

Functional

instr flow

block when

mmu miss

Figure 2: The Transformer framework.

we profile the occurrence proportion of each divergence factor in
the total execution (using the configuration in section 4.1). As the
data shown in Table 1, branch misprediction occurs most and only
occupies about 0.53%. The total proportion occurs less than 1%.
Therefore, in most cases (more than 99%), there is no execution
divergence between FM and TM. This opens the opportunity to use
a loosely-coupled design that may result in better extensibility to
support other FMs or TMs and superior performance due to possi-
ble parallelization.

3. THE TRANSFORMER FRAMEWORK
This section presents the design of our loosely-coupled frame-

work called Transformer. We first describe a lightweight scheme to
detect and recover from execution divergence to guarantee cycle-
accuracy. Then, we illustrate an architecture-independent instruc-
tion and data flow interface between FM and TM, to make Trans-
former more extensible. The overall Transformer framework works
as follows, as shown in Figure 2.

In Transformer, FM in most cases generates the architecture-
independent instruction and data flow information (e.g., pipeline
dependence, memory access address) to TM. TM simulates the
detailed micro-architecture using instruction and data information
provided by FM. When a divergence factor is detected, different s-
trategies (roll back FM and create a wrong-path FM) are applied to
revise the divergence execution.

3.1 Divergence Detection
To guarantee cycle accuracy in a loosely-coupled design, the first

thing is to detect when and where an execution divergence occurs.
Among the four factors, it is easier to detect branch misprediction
and interrupt or exception handling. For branch misprediction, we
can detect the divergence through checking whether the target ad-
dress of a branch instruction in TM is the same as that in FM. If
they are different, a divergence occurs. For interrupt or exception
handling, whenever it occurs, a divergence happens. Therefore,
we will mainly focus on how to detect the divergences caused by
shared data access order and shared page access order.

3.1.1 Shared Data Access Order
As an important factor affecting cycle-accuracy, prior work [6]

detects violation in shared data access order through checking
whether the loaded values of shared memory between FM and TM
are the same. However, based on such an approach, it is difficult to

W0

R3 W1

R2

W3 W2

addr1 addr2 addr m

access node

address nodeaddr i

Figure 3: Memory Access Table structure.

know where and when the actual thread interleaving violation oc-
curs. Since the loaded value may be affected by a faraway prior s-
tore instruction or two store instructions may have written the same
value, the order violation information may have already been lost
when the loaded value is detected to be violated. To overcome this
problem, we use a more accurate method: when FM executes in-
structions, it records its access order for each shared datum. When
TM commits the memory instruction, it checks whether its access
order is the same as that of FM. If it is different, a divergence oc-
curs. To achieve this, we design a data structure called Memory
Access Table (MAT) to efficiently record and check the shared da-
ta access order. As shown in Figure 3, MAT is a two dimensional
table. The first level is a hashed list of memory addresses and we
will call the node as the memory address node; for each address,
it maintains a list of memory accesses from different cores and the
node in it will be referred as to the memory access node. Each
memory access node records which core it comes from and its op-
eration type (i.e., read or write). The shared data access recording
and checking mechanism works as follows:
• Shared data access order recording: When FM executes a

memory instruction, it first checks whether there is a memo-
ry address node in MAT for the accessing address. If not, a new
address node is created and inserted into the end of memory ad-
dress list. Otherwise, an access node for this operation is added
to the end of the memory access list for its address.
• Shared data access order checking: Order violation is checked

by TM. Since the memory operations in a memory access list
are inserted based on their execution sequence in FM, it is easier
for TM to check the violation. When TM commits a memory
instruction, it only needs to check whether there is no store node
before it in the memory access list. If so, there is no violation
and this node is deleted from MAT. When the memory access
list becomes empty, the memory node of this address is also
deleted from MAT. Otherwise, the violation is reported.

After the order checking, the node of a memory operation will
be deleted from MAT. Therefore, the size of MAT should not be
larger than the number of memory instructions that FM executes ex-
ceeding TM, which makes MAT relatively small and low-overhead.
More detail of MAT design could be found in the appendix sec-
tion B.

3.1.2 Shared Page Access Order
For shared page order, i.e., MMU miss order, it is instinct to still

use MAT to check the divergence. However, the functionality of
MMU is only simulated by FM. In order to check whether the or-
der violates, TM has also to be able to check whether MMU miss or
hit. As a result, the information of entire page table has to be trans-
ferred from FM to TM as well, which will lead to more interactions
between FM and TM.

To simplify the design, our solution is to avoid this type of di-
vergence. Whenever a MMU miss is encountered, we block FM

108

execution until TM directs it to advance, i.e., until the MMU miss
instruction commits in TM. However, this may bring the danger of
draining pipeline in TM, i.e., no instructions are provided by FM.
Actually, the pipeline draining will never happen due to the wrong-
path FM mechanism discussed in section 3.2. In TM, when a M-
MU miss happens, it raises a MMU miss interrupt. As for interrupt
handling, it will fetch instructions from the wrong path until the M-
MU miss instruction commits. Though we block the execution of
FM, we will create a wrong-path FM and provide instruction flow
to TM, which can avoid pipeline draining.

3.2 Divergence Revision
When a path divergence is detected, we need to revise the sim-

ulation to keep the cycle-accuracy. As discussed in [7, 6], we can
always deal with the divergence through rolling back FM when a
divergence is detected. However, since FM runs ahead, it’s difficult
to know when to do a checkpoint. Therefore, it will produce large
overhead to frequently save the states for checkpoint. Moreover,
the rollback strategy can incur double rollback (from right path to
wrong path, and again from wrong path to right path) for branch
misprediction and interrupt or exception handling. Therefore, be-
sides the rollback strategy, we will also exploit some other opti-
mized strategy: to create a wrong-path FM to execute the wrong
path to provide the instruction information to TM for branch mis-
prediction and interrupt or exception handling.

Basic strategy: roll back FM. To roll back FM, we need the
correct architecture states at a rollback point, including registers,
memory values, MMU states and I/O states. The direct solution is
to checkpoint architecture states. For example, SlackSim [5] uses
the fork system call to do checkpoint. However, it is difficult to
know when a checkpoint is required. Moreover, saving all states
will produce large overhead. Therefore, we introduce a lightweight
mechanism to roll back FM states.
• For registers, which are lightweight inherently, TM maintains

a copy of these states for rollback. At initialization, TM reads
these values from FM. Then, when each instruction is executed,
FM transfers the changed registers to TM. Finally, TM updates
the copy when it commits an instruction.
• For memory values, we record the old value before each store

instruction in MAT for rollback. When a divergence is detect-
ed, we only need to restore these old values from MAT, which
greatly reduces memory checkpoint and rollback overhead.
• As discussed in section 3.1, to avoid shared page access order

divergence, we block FM when a MMU miss (note that only
MMU miss changes MMU states) occurs until TM directs it to
advance its execution. Thus, MMU states are always correct in
FM and there is no need for rollback.
• As some I/O operations cannot be rolled back, we simply block

the execution of FM until TM commits all instructions before
it. This mechanism avoids I/O rollback.

Optimized strategy: create a wrong-path FM. One problem
for the rollback strategy is that it would incur double rollback for
branch misprediction and interrupt or exception handling. It first
rolls back FM to execute the wrong path when a branch predicts
a wrong PC or an interrupt or exception instruction is in its fetch
stage. Then, it again rolls back FM to execute the right path when
branch misprediction is finished or interrupt or exception instruc-
tion jumps to the trap handling path in the commit stage.

To further optimize the rollback strategy, we create a wrong-path
FM to execute the wrong path to provide TM with the instruction
information. However, no data information is transferred because
the wrong path instructions actually are not committed to change
architecture states.

When creating a wrong-path FM, we only initialize the register
values for it. During wrong-path execution, it uses its own copy
of registers. For memory values, it reads from the main FM and
MAT, or the values it stores. While for MMU states and I/O states,
it reads directly from the main FM since wrong-path instructions
are not committed and cannot change these states. When branch
misprediction is finished or interrupt/exception jumps to the trap
handling path, Transformer terminates the wrong-path FM and TM
gets instruction and data flow information from main FM again.

3.3 Architecture-Independent Interface
For the sake of extensibility, we design an architecture-

independent interface in Transformer between FM and TM. FM on-
ly needs to map the instructions to the interface and TM only needs
to read the interface to do detailed simulation. As TM mainly sim-
ulates the pipeline dependence and memory behavior, we abstract
each instruction as the following architecture-independent informa-
tion:
• Pipeline dependence: Whether an instruction can issue in the

pipeline depends on two conditions: 1) whether the functional
unit is ready; 2) whether the source operands are ready. The
second type of dependence is maintained by registers for com-
putational instructions and by memory address for memory in-
structions. Thus, we abstract the pipeline dependence of an
instruction as three factors: functional unit for this instruction,
source/destination register ID, and memory address.
• Memory information: For instruction cache simulation, we

need the PC address for each instruction. For data cache sim-
ulation, we need memory address for memory instructions.
Moreover, to detect shared data access order violation, the in-
terface needs to include shared data access order in MAT.
• Rollback information: As discussed in section 3.2, we need

changed register values for each instruction. Also, we need to
save the old memory value for a store instruction.

Such an architecture-independent interface provides Trans-
former with more flexibility to extend the state-of-the-art FMs or
TMs. Since a loosely-coupled design and clear interface, a new
FM only needs to map its instruction information to the interface
and support the rollback or the block strategy. It does not need to
know other details in TM. Moreover, for a new TM, it only needs to
read the interface to do detailed simulation and generate necessary
checking information to direct rollback.

4. EVALUATION RESULTS
This section evaluates the extensibility and performance of

Transformer. As our performance results show that Transformer
guarantees the cycle-accuracy compared with GEMS, we omit the
results for cycle-accuracy and only present the performance results
of Transformer.

4.1 Experimental Setup
Our baseline processor is a 4-core out-of-order SPARC processor

with a MOESI cache coherence protocol. Each core has an out-of-
order pipeline with yags branch predictor. Detailed configuration is
shown in Table 2. We also evaluate an 8-core configuration. Due to
the space constraint, the results are shown in the appendix sections.

We use SPLASH-2 [17] and PARSEC [3] benchmark suites for
evaluation. The benchmarks run on a Solaris 10 operating system
with reference input. The baseline simulator is Simics 3.0.31 +
GEMS 2.1.1 [9], a widely-used tightly-coupled multicore simu-
lator. Our Transformer prototype is constructed based on GEM-
S and it is with about 5.5K LOCs changes in total: about 1.5K
modified LOCs in GEMS to decouple FM and TM, and about 4K

109

Table 2: Baseline 4-core OoO SPARC configuration.

 Pipeline width 4 split I/D cache

 4 Int add/mul, 2 Int div, 2 Load each 64KB

 2 Store, 2 Branch, 4 FP add 2-way set associative

 2 FP mul, 2 FP div/sqrt 64B cache lines

 Integer FU latencies 1 add, 4 mul, 20 div 2 cycle latency

 FPFU latencies 2 default, 4 mul, 12 div, 24 sqrt unified 4MB cache

 Reorder buffer size 128 8-way set associative

 Instruction window size 64 64B cache lines

 Load-store queue 64 20 cycle latency

 Branch predictor yags predictor Memory 200 cycle latency

 Data speculation no Cache coherence MOESI_CMP_directory

 L1 Cache Functional units

 L2 Cache

4-core SPARC configuration

Per-core parameters Memory Hierarchy Parameters

Table 3: Extension efforts comparison.

Simulator Combining Work Extension Efforts
gem5 [4] GEMS + M5 Dozens of person-years
MARSS [11] PTLsim + QEMU 1.5 years by a 4-people group
Transformer GEMS + QEMU About two person-months

added LOCs to guarantee cycle-accuracy and provide architecture-
independent interface between FM and TM. All the experiments
are executed on a 6-core Intel I7 980 CPU (3.33GHz, private L1
and L2 cache, 12M shared L3 cache) with 2GB memory.

4.2 Simulation Extensibility
As Transformer exploits the loosely-coupled design and provides

an architecture-independent interface (e.g., pipeline dependence,
memory information) between FM and TM, the extension becomes
much easier. Extending a FM only needs to map the executed in-
structions into the interface information, which is generally direc-
t available through instrumentation. While extending a TM only
needs to make TM read directly from interface, instead of doing
detailed decode itself. As a result, the extension efforts of con-
structing multicore simulators, measured in man-months, can be
significantly reduced.

To demonstrate the extensibility of Transformer, we have extend-
ed a functional model QEMU [2] into our framework to construct
an X86 simulator. The reason we choose QEMU as FM simula-
tor is that it well supports X86 and plenty of full-system features
and it is open-sourced and widely-used. We first decode X86 in-
structions into RISC-like micro-instructions using the decoder from
PTLsim [11] and then directly map the micro-instructions into the
architecture-independent interface.

This extension only consists about 180 lines of code. The whole
extension work is done by a graduate student, who is familiar with
QEMU but new to GEMS, in about two months. Compared to mul-
tiple person-year efforts cost in prior extension work such as gem5
and MARSS, shown in Table 3, much less efforts are needed to ex-
tend novel models in Transformer to construct a new full-system
multicore simulator.

4.3 Performance Speedup
Speedup of sequential Transformer. We first evaluate the per-

formance of the sequential Transformer framework, i.e., loosely-
coupled Simics and GEMS, against the tightly-coupled baseline
simulator Simics and GEMS. As shown in Figure 4, the sequen-
tial Transformer achieves about 8.4% speedup on average, which is
mainly from simpler interaction: 1) less interactions only for rare
path divergence cases (less than 1%), where TM revises the execu-
tion; 2) TM no longer simulates redundant functional execution.

Speedup of parallel Transformer. Due to the loosely-coupled
design between FM and TM, we can parallelize FM (i.e.,Simics)
and TM (i.e., GEMS) with pipeline parallelism. The parallelized

0%

2%

4%

6%

8%

10%

12%

14%

16%

rad
ix

v
o

lren
d

lu
C

lu
N

w
aterN

w
aterS

ch
o

lesk
y

b
lack

sch
o

les

sw
ap

tio
n

s

av
g

S
p

ee
d

u
p

 o
f

T
ra

n
sf

o
rm

er

8.4%

Transformer-seq

Figure 4: Speedup of sequential Transformer under 4-core configuration.

FM and TM works as two threads: FM thread produces instruction
and data flow information to a buffer; TM thread reads the buffer,
simulates micro-architecture, and revises FM or creates a wrong-
path FM (in the same thread) if necessary.

0%

8%

16%

24%

32%

40%

rad
ix

v
o

lren
d

lu
C

lu
N

w
aterN

w
aterS

ch
o

lesk
y

b
lack

sch
o

les

sw
ap

tio
n

s

av
g

S
p

ee
d

u
p

 o
f

p
ar

al
le

l
T

ra
n

sf
o

rm
er

35.3%

Transformer-par

Figure 5: Speedup of parallel Transformer under 4-core configuration.

As the data shown in Figure 5, parallel Transformer achieves
about 35.3% speedup against the baseline GEMS simulator. The
speedup from parallelizing FM and TM is about 29%. The reason
under this speedup is that the parallelization not only distributes
the computation into two different cores, but also achieves better
instruction and data locality as FM and TM are separated. This
speedup is orthogonal to other acceleration techniques such as par-
allel TM simulation and FPGA-based simulation discussed in sec-
tion 5. We can combine them to other acceleration techniques to
further improve the performance.

5. RELATED WORK
Existing full-system multicore simulators usually exploit a

tightly-coupled FM and TM design to achieve cycle-accuracy. A
good example is the widely-used Simics + GEMS [9] simulator,
which is used in this paper as the baseline simulator. Other main-
stream simulators, such as MARSS [11] and gem5 [4], exploit inte-
grated FM and TM design, even more tightly-coupled than Simics
+ GEMS.

One of the most closest work to Transformer is UT-FAST [7,
6]. UT-FAST exploits a speculative Functional-First simulation de-
sign, in which FM (using QEMU) speculatively executes ahead to
provide TM (implemented in FPGA) the instruction stream, and
TM rolls back FM if branch misprediction. However, UT-FAST
only supports single-core simulation and interrupt/exception han-
dling as well as shared page access are not considered. Though it
further discusses its extension for multicore simulation in [6], it on-

110

ly considers memory value violation between FM and TM. On one
hand, as we discussed in section 2, the factor of shared page ac-
cess order is not discussed in their paper, which leads to that their
solutions cannot achieve cycle-accuracy. On the other hand, they
have not implemented their design in a real simulator. While Trans-
former has done a real implementation with several novel design-
s such as wrong-path FM and architecture-independent interface,
and guarantees cycle-accuracy. To achieve sampling simulation,
Cotson [1] also exploits a functional-directed loosely-coupled de-
sign, where FM executes ahead for most cases and TM gives feed-
back to the FM periodically. However, Cotson does not provide
cycle-accurate solutions to revise those path divergences and only
periodically provides feedbacks to FM.

In contrast, Transformer gives a comprehensive analysis to
which factors will affect cycle-accuracy in loosely-coupled design,
i.e., branch misprediction, interrupt/exception handling, shared da-
ta access order, shared page access order. We further provide sever-
al lightweight solutions to detect and revise the simulation instead
of simply rolling back FM using heavy-overhead checkpoint mech-
anism. Moreover, we design an architecture-independent interface
between FM and TM to make it more extensible.

Another category of related work is simulation acceleration tech-
niques, including parallel simulation [5, 10], FPGA-based simu-
lation [13, 12], sampling techniques [16, 1], and etc. We use a
method orthogonal to the above ones to improve the performance:
simple interaction and parallelization between FM and TM.

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed Transformer, an extensible, fast,

and cycle-accurate loosely-coupled full-system multicore simula-
tor. We first presented a comprehensive analysis to four factors
affecting cycle-accuracy in loosely-coupled design and provided
lightweight solutions to detect and revise these divergence factors
to ensure cycle-accuracy. Then we further designed an architecture-
independent interface between FM and TM, which makes Trans-
former more flexible to extend state-of-the-art FMs and TMs. As
demonstrated, a graduate student only wrote about 180 lines of
code and took about two months to extend an X86 functional model
(QEMU) based on Transformer. Finally, besides the simple inter-
action, we further parallelized FM and TM to improve the perfor-
mance. Experiments showed that it achieved about 8.4% speedup
compared to the widely-used tightly-coupled baseline simulator
GEMS [9] and 35.3% speedup after parallelizing FM and TM.

There are mainly two directions in our future work. First, we
plan to release the source code of Transformer to the public in
the near future. Second, we will extend Transformer to support
System-on-Chip (SoC) simulation by taking advantage of QEMU
and the architecture-independent interface between FM and TM.

7. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful com-

ments. This work was funded by China National Natural Sci-
ence Foundation under grant numbered 60903015, a joint program
between China Ministry of Education and Intel numbered MOE-
INTEL-10-04, Key Project of National 863 Program of China un-
der Grant No. 2009AA012201, National 863 Program of China
under Grant No. 2012AA010905, Key Project of Major Program
of Shanghai Committee of Science and Technology under Grant
No. 08dz501600, Opening Project of Architecture Key Laborato-
ry of Institute of Computing Technology in Chinese Academy of
Sciences under Grant No. ICT-ARCH2009082009, Fundamental
Research Funds for the Central Universities in China and Shanghai

Leading Academic Discipline Project (Project Number: B114).

8. REFERENCES
[1] E. Argollo, A. Falcĺőn, P. Faraboschi, M. Monchiero, and

D. Ortega. Cotson: Infrastructure for full system simulation.
Operating Systems Review, 43(1):249–261, 2009.

[2] F. Bellard. Qemu, a fast and portable dynamic translator.
USENIX ATC 2005.

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec
benchmark suite: Characterization and architectural
implications. PACT 2008, pages 72–81.

[4] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,
S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, , and D. A. Wood. The gem5 simulator. Computer
Architecture News, 2011.

[5] J. Chen, L. K. Dabbiru, M. Annavaram, and M. Dubois.
Adaptive and speculative slack simulations of cmps on cmps.
Micro 2010, pages 523–534.

[6] D. Chiou, H. Angepat, N. A. Patil, and D. Sunwoo. Accurate
functinal-first multicore simulators. Computer Architecture
Letters, 8:64–67, 2009.

[7] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. Reinhart, D. E.
Johnson, J. Keefe, and H. Angepat. Fpga-accelerated
simulation technologies (fast): Fast, full-system,
cycle-accurate simulators. MICRO 2007, pages 249–261.

[8] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and
B. Werner. Simics: A full system simulation platform.
Computer, 35:50–58, 2002.

[9] C. J. Mauer, M. D. Hill, and D. A. Wood. Full-system
timing-first simulation. SIGMETRICS Perform. Eval. Rev.,
30:108–116, 2002.

[10] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald,
N. Beckmann, C. Celio, J. Eastep, and A. Agarwal. Graphite:
A distributed parallel simulator for multicores. HPCA 2010.

[11] A. Patel, F. Afram, S. Chen, and K. Ghose. Marss: a full
system simulator for multicore x86 cpus. DAC 2011, pages
1050–1055.

[12] M. Pellauer, M. Adlery, M. Kinsy, A. Parashary, and J. Emer.
Hasim: Fpga-based high-detail multicore simulation using
time-division multiplexing. HPCA 2011, pages 406–417.

[13] Z. Tan, A. Waterman, R. Avizienis, Y. Lee, H. Cook,
D. Patterson, and K. Asanovic. Ramp gold: An fpga-based
architecture simulator for multiprocessors. DAC 2010, pages
463–468.

[14] Z. Tan, A. Waterman, H. Cook, S. Bird, K. Asanovic, and
D. Patterson. A case for fame: Fpga architecture model
execution. ISCA 2010, pages 290–301.

[15] Z. Wang, R. Liu, Y. Chen, X. Wu, H. Chen, W. Zhang, and
B. Zang. Coremu: a scalable and portable parallel
full-system emulator. PPoPP 2011, pages 213–222.

[16] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki,
B. Falsafi, and J. C. Hoe. Simflex: Statistical sampling of
computer system simulation. IEEE Micro, 26:18–31, 2006.

[17] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The splash-2 programs: characterization and methodological
considerations. ISCA 1995, pages 24–36.

[18] H. Zeng, M. Yourst, K. Ghose, and D. Ponomarev. Mptlsim:
A simulator for x86 multicore processors. DAC 2009, pages
226–231.

111

APPENDIX
The appendix is organized as follows. Section A gives out the de-
tailed data related to the motivation of the loosely-coupled Trans-
former framework. The data include the detailed simulation time
breakdown of current tightly-coupled simulator design and detailed
rate of the factors that would diverge the execution of FM and TM.
Section B discusses detailed design of MAT, which is used to effi-
ciently record and check shared data access order violation as dis-
cussed in section 3.1. Finally, to further validate the performance
of Transformer, section C demonstrates the speedup of sequential
and parallel Transformer under the 8-core configuration.

A. MOTIVATION OF TRANSFORMER
This section illustrates detailed data to support the motivation of

the loosely-coupled Transformer framework. All these data are e-
valuated for each benchmark under two different configurations: a
4-core configuration shown in section 4.1 and an 8-core configu-
ration shown in section A.1. We first give out the breakdown of
the simulation time in current tightly-coupled simulator design to
support that complex interaction produces additional overhead and
FM occupies a proportion of the whole execution time that cannot
be ignored. Then we demonstrate the detailed rate of four FM and
TM path divergence factors, which support that divergences rarely
happen and thus loosely-coupled design could achieve simpler in-
teraction.

A.1 8-core Configuration
This section gives the detailed 8-core configuration, which is

used to further validate our evaluation results. The detailed config-
uration is shown in Table 4. Different to the 4-core configuration,
the L2 cache is 8M size with 25 cycles latency and the pipeline is
simpler: reorder buffer, instruction window and load-store queue
are of half size.

Table 4: 8-core OoO SPARC configuration.

 Pipeline width 4 split I/D cache

 4 Int add/mul, 2 Int div, 2 Load each 64KB

 2 Store, 2 Branch, 4 FP add 2-way set associative

 2 FP mul, 2 FP div/sqrt 64B cache lines

 Integer FU latencies 1 add, 4 mul, 20 div 2 cycle latency

 FPFU latencies 2 default, 4 mul, 12 div, 24 sqrt unified 8MB cache

 Reorder buffer size 64 8-way set associative

 Instruction window siz 32 64B cache lines

 Load-store queue 32 25 cycle latency

 Branch predictor yags predictor Memory 200 cycle latency

 Data speculation no Cache coherence MOESI_CMP_directory

8-core SPARC configuration

Per-core parameters Memory Hierarchy Parameters

 L1 Cache Functional units

 L2 Cache

A.2 Simulation Time Breakdown
This section evaluates the detailed simulation time breakdown of

current tightly-coupled simulator design for each benchmark under
4-core and 8-core configuration. As the data shown in Figure 6,
to support TM, the proportion of FM occupies about 10% of the
whole time on average for both 4-core and 8-core configuration,
which cannot be ignored any more. For interaction time, it occu-
pies about 26% under 4-core configuration and 17% under 8-core
configuration on average. Though the interaction percent decreases
for 8-core configuration as TM occupies more, the percent is still
significant to slowdown the whole performance.

A.3 Rate of Path Divergence Factors
First we illustrate the rate of the four factors for path diver-

gence to validate that they actually occur rarely, thus motivating
our loosely-coupled Transformer design with simple interaction.

 0

 20

 40

 60

 80

 100

rad
ix

-4
rad

ix
-8

v
o

lren
d

-4
v

o
lren

d
-8

lu
C

-4
lu

C
-8

lu
N

-4
lu

N
-8

w
aterN

-4
w

aterN
-8

w
aterS -4

w
aterS -8

ch
o

lesk
y

-4
ch

o
lesk

y
-8

b
lack

sch
o

les-4
b

lack
sch

o
les-8

sw
ap

tio
n

s-4
sw

ap
tio

n
s-8

av
g

-4
av

g
-8

T
im

e
B

re
ak

d
o

w
n

 (
%

)

TM FM Interaction

Figure 6: Detailed simulation time breakdown.

Then we further show the I/O rate which involves FM blocking in
the "roll back FM" path correcting strategy to validate that it in-
deed has little influence. All these rate values are shown for each
benchmark under both 4-core and 8-core configuration.

Branch Misprediction Rate.

0%

0.2%

0.4%

0.6%

0.8%

1%

1.2%

1.4%

rad
ix

v
o

lren
d

lu
C

lu
N

w
aterN

w
aterS

ch
o

lesk
y

b
lack

sch
o

les

sw
ap

tio
n

av
g

B
ra

n
ch

 M
is

p
re

d
ic

ti
o

n
 R

at
e 4-core 8-core

Figure 7: Branch misprediction rate.

Figure 7 shows the branch misprediction rate for each bench-
mark. As the data shown, the rate of the most occurring branch
misprediction factor is only about 0.53% and 0.40% on average
under 4-core and 8-core configuration respectively.

Interrupt/Exception Rate.

0.0E+0

4.0E-5

8.0E-5

1.2E-4

1.6E-4

2.0E-4

2.4E-4

rad
ix

v
o
lren

d

lu
C

lu
N

w
aterN

w
aterS

ch
o
lesk

y

b
lack

sch
o
les

sw
ap

tio
n

av
g

In
te

rr
u
p
t/

E
x
ce

p
ti

o
n
 R

at
e

4.9E-4 1.1E-3

4-core 8-core

Figure 8: Interrupt/exception rate.

Figure 8 shows the total interrupt and exception rate for each
benchmark. As the data shown, the average rate of interrupt and
exception is only about 1.3E-4 and 1.9E-4 under 4-core and 8-core
configuration respectively. Even for the benchmark (cholesky) with
most occurring proportion, it’s less than 0.2%.

112

Shared Data Access Order Violation Rate.

0.0E+0

5.0E-6

1.0E-5

1.5E-5

2.0E-5

2.5E-5

3.0E-5

3.5E-5

rad
ix

v
o

lren
d

lu
C

lu
N

w
aterN

w
aterS

ch
o

lesk
y

b
lack

sch
o

les

sw
ap

tio
n

av
g

V
io

la
ti

o
n

 R
at

e

4-core 8-core

Figure 9: Shared data access order violation rate.

Figure 9 shows the shared data access order rate for each bench-
mark. As the data shown, the average rate of shared data access
order violation is only about 7.8E-5 and 1.7E-5 under 4-core and
8-core configuration respectively.

MMU Miss Rate.

0.0E+0

4.0E-6

8.0E-6

1.2E-5

1.6E-5

2.0E-5

rad
ix

v
o

lren
d

lu
C

lu
N

w
aterN

w
aterS

ch
o

lesk
y

b
lack

sch
o

les

sw
ap

tio
n

av
g

M
M

U
 M

is
s

R
at

e

5.3E-5

4-core 8-core

Figure 10: MMU miss rate.

Figure 10 shows MMU miss rate for each benchmark. As the
data shown, the average rate of MMU miss is only about 1.6E-
5 and 5.2E-6 under 4-core and 8-core configuration respectively.
Even for the benchmark (radix) with most occurring proportion,
it’s only about 5.3E-5.

I/O Rate.

0.0E+0

8.0E-7

1.6E-6

2.4E-6

3.2E-6

4.0E-6

4.8E-6

rad
ix

v
o
lren

d

lu
C

lu
N

w
aterN

w
aterS

ch
o
lesk

y

b
lack

sch
o
les

sw
ap

tio
n

av
g

I/
O

 R
at

e

1.8E-5 2.4E-5 1.3E-5 1.1E-5

4-core 8-core

Figure 11: I/O rate.

Figure 11 shows I/O operation rate for each benchmark. As
shown, the average rate of I/O operation is only about 4.1E-6 and
4.3E-6 under 4-core and 8-core configuration respectively. Even
for the benchmarks (volrend and swaption) with more I/O opera-

tions, the percent is less than 2.5E-5.

address1 (8 bytes)

address2 (4 bytes)

address2 = address1 + 4

Figure 12: Interleaved cases with different memory address.

 0

 20

 40

 60

 80

 100

rad
ix

-4
rad

ix
-8

v
o
lren

d
-4

v
o
lren

d
-8

lu
C

-4
lu

C
-8

lu
N

-4
lu

N
-8

w
aterN

-4
w

aterN
-8

w
aterS -4

w
aterS -8

ch
o
lesk

y
-4

ch
o
lesk

y
-8

b
lack

sch
o
les-4

b
lack

sch
o
les-8

sw
ap

tio
n
-4

sw
ap

tio
n
-8

av
g
-4

av
g
-8

A
cc

es
s

S
iz

e
P

er
ce

n
t(

%
)

1-byte
2-byte

4-byte
8-byte

16-byte
64-byte

Figure 13: Proportion of each address size.

B. MAT DESIGN
There are two more detailed issues in MAT design, which is used

to efficiently record and check shared data access order violation.
First, we need to detect access order violation for shared memory
access with different addresses. Second, to reduce memory access
address list search time in MAT, we hash the memory address.

First, memory accesses with different addresses might access in-
terleaved shared data. As shown in Figure 12, addr1 (access size: 8
bytes) and addr2 (access size: 4 bytes) access 4 bytes shared data.
To detect this interleaving order violation, we can divide each mem-
ory access into several memory accesses where each accesses only
one byte memory. However, this solution is too time-consuming
for recording and checking.

Instead, we find most RISC ISAs align memory address (for CIS-
C ISAs, we can divide an unaligned address into two aligned ad-
dresses), i.e., n-byte access address is n-byte aligned and it provides
us with another opportunity. We have profiled the memory access
address and find that more than 99.9% of memory access size is
smaller than 8 bytes. The data are shown in Figure 13. Therefore,
using 8-byte aligned address can fix in most addresses to avoid di-
viding the address.

• For memory addresses accessing not larger than 8-byte data,
we fixed it into an 8-byte aligned memory address slot and
using a 8-bit bitmap to record which bytes it accesses in the
corresponding 8 bytes. By doing so, we define shared memo-
ry access, i.e., interleaved accesses, as two memory accesses
1) from different cores, 2) fixed into the same 8-byte address
slot, and 3) the and operation result for two bitmaps does not
equal zero, i.e., two addresses are interleaved.
• For memory addresses accessing larger than 8-byte data (e.g.,

16-byte, or 64-byte), we divide the address to several 8-byte
aligned addresses.

Using this solution, we can efficiently detect all interleaved

113

shared data accesses and detect whether there is order violation.
The second issue is to use hash to reduce memory access address

list search time in MAT. The memory address is hashed (e.g., addr
mod m) to be an entry of m-entry address array. If two addresses
are hashed into the same array entry, they are maintained using a
list.

Using these two techniques, to record or check/delete a memo-
ry access node, we first map the address into one or more 8-byte
aligned addresses. Then for each address, we find the hashed ad-
dress array entry and search the corresponding address list (much
smaller than the design without hash) to find the address in MAT.
Finally we record or check the memory access node in the found
memory access node list.

C. SPEEDUP UNDER 8-CORE CONFIGU-
RATION

This section illustrates the speedup of sequential and parallel
Transformer against the baseline GEMS simulator under the 8-core
configuration. The speedup data are shown in Figure 14 and Fig-
ure 15 respectively. As the data shown, the average speedup of
sequential Transformer under 8-core configuration is about 7.0%
while the average speedup of parallel Transformer is about 29.7%.
They are smaller that of 4-core configuration because TM under
the 8-core configuration occupies more proportion of the execution
time, as discussed in section A.2.

0%

4%

8%

12%

16%

rad
ix

v
o

lren
d

lu
C

lu
N

w
aterN

w
aterS

ch
o

lesk
y

b
lack

sch
o

les

sw
ap

tio
n

s

av
g

S
p

ee
d

u
p

 o
f

T
ra

n
sf

o
rm

er

7.0%

Transformer-seq

Figure 14: Speedup of sequential Transformer under 8-core configuration.

0%

8%

16%

24%

32%

40%

rad
ix

v
o
lren

d

lu
C

lu
N

w
aterN

w
aterS

ch
o
lesk

y

b
lack

sch
o
les

sw
ap

tio
n
s

av
g

S
p
ee

d
u
p
 o

f
p
ar

al
le

l
T

ra
n
sf

o
rm

er

29.7%

Transformer-par

Figure 15: Speedup of parallel Transformer under 8-core configuration.

114

