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Abstract

Dynamic information flow tracking (also known as taint

tracking) is an appealing approach to combat various se-

curity attacks. However, the performance of applications

can severely degrade without hardware support for track-

ing taints.

This paper observes that information flow tracking can

be efficiently emulated using deferred exception tracking in

microprocessors supporting speculative execution. Based

on this observation, we propose SHIFT, a low-overhead,

software-based dynamic information flow tracking system

to detect a wide range of attacks. The key idea is to

treat tainted state (describing untrusted data) as speculative

state (describing deferred exceptions). SHIFT leverages

existing architectural support for speculative execution to

track tainted state in registers and needs to instrument only

load and store instructions to track tainted state in mem-

ory using a bitmap, which results in significant performance

advantages. Moreover, by decoupling mechanisms for taint

tracking from security policies, SHIFT can detect a wide

range of exploits, including high-level semantic attacks.

We have implemented SHIFT using the Itanium proces-

sor, which has support for deferred exceptions, and by mod-

ifying GCC to instrument loads and stores. A security as-

sessment shows that SHIFT can detect both low-level mem-

ory corruption exploits as well as high-level semantic at-

tacks with no false positives. Performance measurements

show that SHIFT incurs about 1% overhead for server ap-

plications. The performance slowdown for SPEC-INT2000

is 2.81X and 2.27X for tracking at byte-level and word-

level respectively. Minor architectural improvements to the

Itanium processor (adding three simple instructions) can re-

duce the performance slowdown down to 2.32X and 1.8X

for byte-level and word-level tracking, respectively.

1 Introduction

Software security has become a severe economic and so-

cial problem [1, 2]. Apart from typical low-level attacks

such as buffer overrun, high-level semantic attacks that sub-

vert legitimate uses of resources have emerged recently as a

major security threat. For example, high-level attacks such

as cross-site scripting and SQL injection were ranked the

top 2 in reported vulnerabilities through 2005 to 2006 [4].

One common feature of these viruses and attacks is that

they often hijack the normal control flow of software and/or

cause illegitimate uses of untrusted data.

One effective way to combat these attacks is to dynam-

ically track the information (both control and data) flow to

defend against malicious uses of tainted data [24, 18, 22, 8].

Generally, these approaches mark (taint) data from un-

trusted sources (e.g., network), track it during program ex-

ecution, and detect unsafe usages of the tainted data (e.g.,

being executed or used as system call arguments). Com-

pared to other techniques, dynamic information flow track-

ing (DIFT) can provide precise information (e.g., flow of

tainted data) to detect and reason about various attacks, even

unknown ones, with few or no false positives. Moreover,

the results of such reasoning could be used as feedback to

generate accurate intrusion prevention signatures [6, 18].

A number of systems have been built to employ DIFT to

detect various attacks. Previous systems can be classified

into two categories: software-based systems [22, 18, 27]

that utilize a compiler or a dynamic binary translator to

instrument application code and detect information flow

anomalies; and hardware-based systems [25, 24, 7, 8, 26]

that provide architectural enhancements to improve the ef-

ficiency of information flow tracking. Software-based ap-

proaches can assign various policies to detect a wide range

of attacks including high-level semantic attacks. However,



they come with a heavy performance slowdown ranging

from 4.6X to 37X [22, 18]. Hardware-based systems are

more efficient but they require non-trivial changes to core

processor architectures and are usually less flexible to han-

dle high-level attacks.

In this paper, we propose a low-overhead scheme,

called SHIFT (speculative hardware based information flow

tracking), that leverages existing modern architectural fea-

tures, namely speculative execution [14, 10] and deferred

exceptions [16, 11, 9], to support dynamic information flow

tracking. We observe that dynamic information flow track-

ing is similar to speculative state tracking. To support spec-

ulative state tracking, the processor extends each general-

purpose register with a deferred exception token to track

exceptions (speculative state) during speculative execution.

This token is propagated along the program execution path.

In taint tracking, the tainted information is also maintained

through a tag and the tag must also be propagated along the

program execution path.

SHIFT uses the hardware mechanisms for tracking spec-

ulative state to track information-flow taints within proces-

sors. SHIFT instruments each load and store from/to mem-

ory to track taints in memory using a bitmap. Security poli-

cies can be assigned by changing a configuration file for

the instrumentation compiler. By tracking taints using hard-

ware mechanism but assigning policies in software, SHIFT

can detect a wide range of security exploits (including high-

level semantic attacks) with a relatively small performance

slowdown.

We have implemented a prototype system by modifying

GCC to instrument load and stores. The prototype uses

the Itanium processor’s deferred exceptions to track taints

within the processor. The prototype is complete enough to

run many applications without modifications, but currently

doesn’t support multi-threaded applications.

We have tested several real-world security exploits

against this SHIFT prototype. These tests show that SHIFT

can detect all these attacks with no known false positives.

Performance measurements indicate SHIFT incurs about

1% performance overhead for server applications. The av-

erage slowdown 1 for SPEC-INT2000 is 2.81X (ranging

from 1.32X to 4.73X) and 2.27X (ranging from 1.34X to

3.80X) for tracking at byte-level and word 2-level respec-

tively, which are to date the best performance results for

DIFT systems. We also show that some simple architec-

tural improvements to the Itanium processor can reduce the

performance slowdown notably.

In summary, this paper makes the following contribu-

tions:

• The observation that dynamic information flow track-

1Performance slowdown is calculated by dividing the new execution

time with the original execution time
2In this paper, a word refers to 8 bytes memory.

ing can be emulated using existing hardware mecha-

nism.

• The SHIFT design for information flow tracking,

which is based on the above observation. SHIFT de-

couples detecting mechanisms from security policy as-

signments. Hence, it enjoys the advantages of both

hardware-based (efficiency) and software-based (flex-

ibility) approaches.

• A working implementation of SHIFT. The implemen-

tation shows that SHIFT is effective in defeating real-

world attacks and that SHIFT results in a negligible

performance slowdown for the Apache web server and

a modest slowdown for SPEC-INT2000.

The rest of this paper is organized as follows. In section

2, we provide some background information on speculative

execution and the hardware support for tracking deferred

exceptions. Section 3 presents the design of SHIFT and sec-

tion 4 describes the implementation issues for the Itanium

processor and GCC. Then, section 5 evaluates the detection

ability of SHIFT using a set of real-world security attacks.

Section 6 presents a performance evaluation of SHIFT us-

ing the Apache web server and the SPEC-INT2000 bench-

marks. Finally, we discuss the related work and conclude

the paper with a brief note on our future work.

2 Background

As SHIFT reuses hardware support for speculative exe-

cution for dynamic information flow tracking, this section

provides the necessary background information for both

topics.

2.1 Dynamic Information Flow Tracking

Figure 1 gives a real-world buffer-overflow vulnerability

in qwik-smtpd 0.3 and shows how DIFT defeats the exploit.

As shown in the figure, the server checks the clientIP to

prohibit relaying a mail not from the localhost. However,

as the server doesn’t check the string length of arg2 in line

5, an attacker may supply a long input to overwrite localIP

to clientIP. Afterwards, the attacker can relay any e-mail

through the server.

A program built with DIFT defeats the exploit by mark-

ing the user input (e.g., arg2) as tainted (by setting the

corresponding tags) and propagating the tags through the

program execution path following control and data depen-

dencies. Hence, when the tainted data (arg2) bypasses the

boundary of clientHELO and overwrites localIP, the pro-

gram also marks localIP as tainted. Finally, the program

detects the security exploit when tainted data is used in an

unsafe way. In this example, by specifying a policy that

disallows tainted data to be compared and alter the control

flow, the exploit is detected.
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Figure 1: A buffer overflow vulnerability in qwik-smtpd 0.3 and

how DIFT defeats it.

2.2 Speculative Execution and Hardware
Support

Speculative program execution is a combination of hard-

ware and software techniques to aggressively execute code

as early as possible to hide memory latency, avoid memory

aliasing or improve code scheduling. There are typically

two types of speculations: control speculation, which opti-

mistically executes code before knowing whether the code

should be executed or not in a control path; and data spec-

ulation, which executes code depending on likely correct

operand values. Currently, SHIFT leverages only control

speculation to assist information flow tracking.

Figure 2 gives an example of control speculation. If the

compiler knows that the branch condition (i.e.,“cond ”) is

likely to be true (e.g., from profiling), the load instruction

can be moved up to be speculatively executed (using ld.s)

as early as possible. Since the load operation is moved

away from the subsequent store instruction, its execution

can overlap with others to hide load latency. The overall

critical path can thus be shortened.

However, speculatively executed instructions may cause

exceptions, which may not occur during the normal pro-

gram execution. For example, r13 may contain an invalid

address when cond is not true. In such a case, the exception

should not occur since the instruction “ld.s r14 = [r13]”

needs not be executed. To address this issue, researchers

have proposed deferred exceptions [16, 11] for precise ex-

ception handling during speculative execution. There are

generally three extensions to the processor architecture: (1)

Each general purposed register is extended with an excep-

tion token to record possible exception. Special instructions

are provided to test the token in registers. (2) Instructions

are categorized as either speculative or non-speculative. Ex-

ceptions caused by speculative instructions are recorded in-

stead of being thrown out immediately. (3) The processor

pipeline is modified to propagate the exception token along

ld8.s r14 = [r13];

and r15 = r14,8 ;

...

if(cond) {

chk.s r15, recovery;

Next:

st8 [sp] = r15;

}

...

recovery:

ld8 r14 = [r13];

and r15 = r14,8;

br.cond next;

Optimized Code

if(cond) {

ld8 r14 = [r13]

and r15 = r14, 8

st8 [sp] = r15

}

...

Original Code

Figure 2: An example code of control speculation: the ld instruc-

tion is speculatively moved up so that its execution can overlap

with others. An instruction checking exceptions (chk.s) is inserted

in its initial location to catch speculation failure and jump to the

recovery code.

the program execution path.

If an exception occurs when an instruction is specula-

tively executed, the exception token in the target register

will be set instead of signaling the exception. The token in

that register will then be propagated along the program ex-

ecution path in an OR-based fashion, that is, if one source

register is with an exception token, the token in the target

register will be set. In the example above, if an exception

occurs when “ld r14 = [r13]” is executed, the exception

token in r14 is set. The token is then propagated to r15 and

tested by the chk.s instruction, which examines the excep-

tion token in r15 and redirect the execution to the recovery

code.

Registers with exception tokens cannot be used by non-

speculative operations which may cause possible side ef-

fects such as altering control flows and memory operations,

to prevent bringing irreversible state. Improper uses of the

tokens will trigger an exception.

3 SHIFT Design: From Speculation to DIFT

From the previous section, it can be observed that dy-

namic information flow tracking (DIFT) and deferred ex-

ception propagation (DEP) are similar in nature: DIFT

tracks tags describing untrusted data, while DEP tracks

tokes describing deferred exceptions. Both need to prop-

agate the tags during program execution. They also need

some mechanisms to detect possible violations. Because

of their similarity, DIFT can be implemented mostly in the

same way as DEP if we simply treat tags describing tainted

data as deferred exceptions.

Building on DEP, we consider a DIFT scheme us-

ing hardware-provided mechanisms to track information

in internal processors and accelerate DIFT, while using

software-assigned policies to specify security violations.

Hence, security policies can be cleanly separated from the



tracking and detection mechanisms. This allows developers

to implement both high-level and low-level security poli-

cies. Existing commodity hardware components can be

reused instead of mandating design changes to the core pro-

cessor components or memory systems.

3.1 Tracking Tags within Processors

To support DIFT, we need to extend DEP to include:

Setting and clearing taint tags. In DIFT, setting and

clearing taint tags happen frequently, to contaminate and

purify data according to program semantics. For example,

when loading tainted data, the taint tag in the target regis-

ter should be set accordingly. However, such instructions

are absent in the typical ISA supporting DEP. It is rather

straightforward to add such instructions without touching

the internal processor pipelines.

Taint-aware compare instructions. To survive spec-

ulative failure, compare instructions in DEP usually reset

the flags for both branch targets when the branch condition

contains an exception token. This prevents mis-speculation

from causing irreversible changes to program state. How-

ever, it breaks DIFT since sometimes a branch condition is

allowed to be tainted. Hence, it is necessary to add taint-

aware compare instructions that proceed normally even if

the branch condition is tainted.

Other ways to extend DEP to support DIFT include

adding taint tags to on-chip caches, widening memory buses

and dedicating memory for taint tags in the DRAM, as done

in previous work [7, 24, 8]. These extensions are promising

to improve performance as taint tags can be automatically

managed by hardware. However, as our design goal is to

minimize the changes to standard, commodity processors,

we instead use software approaches to handle tag exchanges

between processors and memory systems.

3.2 Tracking Tags in Memory Systems

One remaining issue is that, in speculative execution,

deferred exception tokens will never be propagated to

the memory system (including caches and main memory).

Thus, it is required to track the taint tags describing tainted

data in memory. Similar to other prior work [22, 18, 27],

SHIFT uses a bitmap to maintain in-memory taint informa-

tion. The bitmap maintains a bit (i.e., tag) for each mem-

ory location indicating whether the location is tainted or not

(”1” for tainted data and ”0” for normal data).

To maintain the coherence of taint tag between memory

and registers, SHIFT instruments memory operations (e.g.,

load and store) in a program. On loading data from mem-

ory/cache to registers, SHIFT inserts code to first consult

the bitmap whether the data is tainted or not. The taint bit

is then set to the exception token in the target register. On

storing data to memory/cache, the inserted code updates the

bitmap according to the exception-token in the source reg-

ister.

Figure 3: The general working flow of SHIFT.

3.3 SHIFT

Figure 3 depicts the working flow of information flow

tracking in SHIFT. First, a program tags tainted data accord-

ing to the predefined policies. Then during program execu-

tion, the processor automatically propagates the tags (i.e.,

exception tokens) in registers and SHIFT uses a bitmap to

maintain the tags in memory. Finally, upon an illegitimate

use of tagged data, the program raises a security alert and

handles it according to a predefined policy engine. The rest

of this section details the design of SHIFT.

3.3.1 Taint Sources

Taint sources determine which data should be marked as

tainted in the bitmap and registers. Since the taint sources

may vary for different applications and diverse attacks,

SHIFT allows customization. Generally, the following

channels can be potential sources of tainted data: (1) net-

work I/O; (2) disk files; (3) keyboard input; (4) return values

of specific functions; (5) specific memory locations. SHIFT

allows users to configure the sources of tainted data by writ-

ing a configuration file. The compiler uses the policies in

the configuration file to set the taint tags for data from un-

trusted sources.

3.3.2 Taint Tracking

SHIFT relies on exception token propagation to track taint

tags in processors. It uses instrumentation code generated

by compilers to maintain taint tags in memory. Similar

to previous work [25, 6, 27, 22], SHIFT tracks only data

dependency and does not track control dependency since

many attacks do not rely on control dependency [22].

Propagation Rules: Generally SHIFT uses the default

exception-token propagation rules in computations. For

memory operations, SHIFT supports a more customizable

policy and allows propagation of tags from/to address reg-

isters and the referenced memory contents. For example,

in a load operation such as “ld r14=[r13]”, the exception

token can be set according to both the address register r13



and the data referenced by r13. This allows flexible taint

policies for pointers, e.g., whether a tainted pointer should

be allowed to reference data and how the tag is propagated

if it is allowed.

Another issue in tag propagation is handling bounds

checking code and translation tables, which is important in

increasing the accuracy of exploits detection and reducing

both false positives and false negatives [8]. SHIFT han-

dles them using two approaches. First, since SHIFT can

access program code and thus has program semantics, it

can identify such code using program analysis. Second, for

specific translation or lookup tables, SHIFT allows users

to write application-specific rules which assist the software

(e.g., compiler)to recognize and instrument such code.

Implicit Information Flow: SHIFT handles corner

cases such as xor r15=r15,r15 and sub r15=r15,r15 by

clearing the taint tag in the register. However, SHIFT cur-

rently does not aim at handling general implicit information

flow, since it is usually of little importance and may incur

many false positives [22, 8]. Moreover, modern compilers

can usually analyze simple implicit information flow and

translate it into explicit information flow to improve perfor-

mance. Simple compiler analysis could also be useful in

handling some specific kinds of implicit information flow,

if desired.

3.3.3 Violation Detection

Naturally, the default policies in DEP prevent the uses of

tainted data tagged with taint tag from being moved into

special-purpose registers or used as branch targets or re-

turn addresses. These policies are normally applicable for

most applications. Moreover, SHIFT can insert instructions

checking for exception token (chk.s) before the use of crit-

ical data. Using chk.s allows handling of security violation

exceptions at the user-level, which can significantly reduce

the overhead of analyzing program behavior or perform fur-

ther security checks to filter out false alarms.

3.3.4 Combining SHIFT with Control Speculation:

Although SHIFT has used the exception-token for taint

tracking, control speculation can still use it when neces-

sary, at the cost of some false positives. The approach is

straightforward: reverting execution to non-speculative ver-

sion of code upon speculation failure, no matter whether

the exception token is caused by tainted data or deferred

exceptions. The reason is that speculatively executed code

fragments should not have any side-effects on memory, e.g.,

storing the pending results into memory system. Thus, the

executed instruction trace does not need information flow

tracking code since there is no committed memory oper-

ation operating on tainted data. The recovery code con-

tains a non-speculative version of the code and follows the

normal information flow tracking policies to propagate the

exception-token.

Since a speculation failure may be caused by tainted data

instead of deferred exceptions, it may introduce false posi-

tives for control speculation. Thus, to preserve program per-

formance, control speculation is effective only when there is

little tainted data involved. Profiling-guided optimizations

could be helpful to decide whether control speculation is

efficient in a specific code fragment.

4 Implementation

We have implemented SHIFT by modifying GCC and

using the Itanium processor. Other than missing a few im-

portant instructions, the Itanium’s deferred exception de-

sign is good enough to allow us to demonstrate applica-

bility and efficiency of applying DEP to DIFT. Implement-

ing SHIFT on a commodity available processor enables us

to run widely-used software with realistic security policies

and measure real performance, instead of using simulation

or emulation. We believe that SHIFT can be similarly im-

plemented on other processors built with deferred exception

mechanisms. This section describes the implementation and

possible future work.

4.1 Implementation Issues on Itanium

Deferred Exception Support in Itanium: Itanium pro-

cessors are built with good support for deferred exception

tracking. Each general purposed register has an additional

NaT bit (NaTVal for floating point registers) to record the

deferred exception token. The NaT-bits are propagated in

parallel with the data or addresses. Itanium also provides

an instruction (chk.s) checking the existence of the NaT-bit

and jumping to recovery code if the NaT-bit is set. There are

also instructions (ld8.spill and st8.fill) to save/load the NaT-

bit to/from a NaT register (UNAT), which is automatically

saved across function calls.

Setting and Clearing NaT-bit: Unfortunately, the Ita-

nium ISA does not include instructions to set and clear the

NaT-bit in a register. In SHIFT, the taint source (i.e., NaT-

bit) for a register is obtained by artificially generating a de-

ferred exception that sets the NaT-bit of the register. The

content of the register is set to zero. Other registers re-

quiring NaT-bits can perform add operations to taint them-

selves. To clear the NaT-bit in a tainted register, SHIFT first

uses a spill instruction (e.g., st8.spill) to spill the register to

memory and then loads it to the register without filling the

NaT-bit. These operations hurt performance since SHIFT

needs to perform such operations frequently.

Relaxing NaT-sensitive Instructions: In Itanium, the

predicate registers for both branch targets are usually

cleared to zero if the condition contains a NaT-bit. Fur-

ther, load or store from an address containing a NaT-bit

will cause a NaT consumption fault. These prohibit the

use of tainted data in compare-related instructions and load

or store addresses. To handle these, SHIFT relaxes the

operands to these instructions when necessary. Specifically,



Figure 4: Mapping the virtual address space to the tag address

space.

SHIFT analyzes the legitimate uses of tainted data and adds

some relaxing code. The relaxing code clears the NaT-bit

before the legitimate uses and restores the NaT-bit after the

use completes.

Tag Space Management: The tag space is the virtual

address space for taint tags. Updating the tag space requires

address translation between the virtual address space and

the tag space. Unfortunately, the translation is more costly

in Itanium than in traditional x86 machines. The virtual

address space in Itanium is usually partitioned into eight

equally-sized regions, with region 0 being reserved for IA-

32 applications. The top three bits in an address indicate

which region the address refers to. The region 0 is not used

by normal applications, and SHIFT reuses it for tag space.

Itanium also uses unimplemented bits to limit the virtual ad-

dress space available to software, by forbidding the use of

a range of bits in a 64-bit address. The unimplemented bits

create holes in a virtual address space. Thus, one cannot use

a simple right-shift operation (e.g., address >> 3) to ob-

tain the tag address from a virtual address. Instead, SHIFT

moves down the region number and combines with it the

implemented bits to obtain the final tag address, as shown

in Figure 4.

4.2 Compiler Implementation Issues

We modified gcc-4.1.1 to implement SHIFT for Itanium.

SHIFT is composed of two main parts: (1) policy specifi-

cation that controls what data should be marked as tainted

and sets the actions when a security alert is raised; and (2)

instruction instrumentation that instruments loads, stores

and compare-related instructions. Users specify policies by

writing a simple configuration file, which is then read by

SHIFT to control the process of instrumentation. At run-

time, the instrumented code checks if the program execu-

tion violates the assigned policies.

Information flow tracking can be implemented in various

software life-cycles, including source-level [27], high-level

intermediate representation (IR), low-level IR, and even at

runtime [22]. Currently, we chose to implement SHIFT

mainly at the low-level IR (RTL in GCC) since with this

choice SHIFT can still extract enough program semantic in-

formation while potentially supporting multiple languages.

And, SHIFT can share the fine-grained control over infor-

mation flow at instruction level. SHIFT is implemented

by adding a phase between the phases “pass leaf regs” and

“pass sched2” in the GCC back-end. In this phase, all regis-

ters have been allocated and the instructions are not sched-

uled yet. Thus, the implementation of SHIFT can avoid

interference with the register allocation algorithm and the

code scheduling algorithm for Itanium, which are two of

the most complicated phases in GCC.

As SHIFT requires accesses to the source code, it cannot

instrument code written directly in assembly code. To over-

come this problem, SHIFT requires users to provide wrap

functions that summarize the taint tag propagation of the

untransformed assembly functions, as done in [27]. In in-

strumenting glibc, we added about 17 such wrap functions.

4.3 An Example of Taint Tracking Code
In SHIFT

Figure 5: An example of instrumenting load and store instructions

for information flow tracking, as well as the generation of a source

register with NaT-bit. The instructions with bold font are the orig-

inal instructions. The numbered ones are the instrumented version

accordingly.

Figure 5 gives an example of instrumenting load and

store instructions for information flow tracking generated

by SHIFT. It includes the code to obtain a NaT-bit. To ob-

tain a source register with the NaT-bit set, SHIFT fakes an

invalid address (Instruction 1) and issues a speculative load

(i.e., ld8.s) from the address. Speculative loading from an

illegal address will set the NaT-bit in the target register in-

stead of raising an exception. The content of the target reg-

ister is cleared to zero so that it can be used as a NaT-bit

source to taint other registers.

For a load operation, instructions 1-4 get the correspond-

ing tag from the bitmap. Instruction 5 tests if it is tainted.

Instruction 6 performs the real load operation and instruc-

tion 7 taints the target register if the tag in the bitmap is

set. Note that SHIFT normally does not allow a load from

a tainted address and permits it only if the analysis (e.g.,

bounds checking) indicates that the load is safe.

For a store operation, instruction 1 tests if the source reg-



ister is tainted or not. Instructions 2-7 update the bitmap

according to the NaT-bit in source registers and the original

value in the bitmap. Instruction 8 performs the real store

operation. Since st8.spill allows storing a register with a

NaT-bit into memory, we choose st8.spill instead of st8 to

omit additional code to save and restore the NaT-bit of the

source register.

4.4 Discussion

Compiler Optimizations: There are many compiler op-

timization opportunities in SHIFT. Sophisticated compiler

optimization could further reduce the performance over-

head of SHIFT. In our future work, we plan to optimize

SHIFT to reduce unnecessary tracking code and enable

adaptive tracking. For example, we intend to use program

analysis and profiling-guided optimizations.

Self-Modifying Code: As a compiler-based instrumen-

tation system, SHIFT has difficulties in handling self-

modifying code that is not aware of SHIFT instrumentation.

This may lose some taint information if tainted data is in-

volved in self-modifying code. Fortunately, self-modifying

code is usually not common, and it is generally rare for self-

modifying code to operate on tainted data.

Multi-threaded Code: Like most previous software-

based systems, our current implementation does not sup-

port multi-threaded applications since accessing the bitmap

is not serialized. In our future work, we intend to extend

SHIFT for multi-threaded applications and investigate the

performance implications.

Possible Minor Architecture Enhancements: As

pointed out before, setting and clearing the NaT-bit in a

register is rather costly on Itanium. In our development pro-

cess, we found that artificially generating a register with the

NaT-bit at the granularity of functions degrades the perfor-

mance by a factor of 3X , compared to generating a NaT-bit

and keeping it for all subsequent uses. Thus, we believe

that adding simple instructions to set and clear the NaT-bit

will largely improve program performance. Further, adding

a compare instruction that works for operands with NaT-

bit will save the cost for spilling and filling a NaT-bit in

relaxing a compare instruction. We present a quantitative

measurement on the performance benefit in section 6.3.

5 Security Evaluation

This section evaluates the detection ability of SHIFT us-

ing a set of real-world attacks, including both high-level and

low-level exploits. We first describe the security policies

used in SHIFT to defend against typical attacks. Then, we

use the described policies to defend against real-world at-

tacks to measure their effectiveness as well as false alarms.

5.1 Attack Detection Policies

The main goal of SHIFT is to detect both low-level mem-

ory corruption exploits and high-level semantic attacks.

Thus, the policies include both high- and low-level policies.

Policies in SHIFT are not fixed and can be easily adjusted

for diverse applications. Table 1 shows an incomplete list

of policies in SHIFT and the corresponding attacks that the

policies are to defend against.

For example, policy H1 and H2 protect applications from

directory traversal attacks, by not allowing tainted data used

as a file path name to be absolute paths (e.g., starting with

“/”) or traversing out of the document root (e.g., using mul-

tiple “..” strings to forge a file path that is out of the doc-

ument root). For low-level policies, policy L1 prevents a

program from de-referencing a tainted pointer and policy

L2 prevents a potentially malicious store instruction from

overwriting critical data (e.g., GOT entry in an ELF file).

Policy L3 guarantees that the important state of CPU can-

not be overwritten by tainted data. Specifically, policy L3

prohibits a program from transferring control to malicious

code, by not allowing tainted data to be moved into branch

registers. The low-level policies are relatively fixed and are

usually turned on as the default policies in SHIFT. Multiple

policies can be combined to detect specific attacks.

5.2 Attack Detection

Table 2 summarizes our security evaluation using sev-

eral real-world vulnerabilities obtained from CVE 3: three

directory traversal exploits of tar, gzip and Qwikiwiki; three

cross-site scriptings with Scry, php-stats and phpsysinfo;

one SQL command injection; and one format string attack

(we made a minor adjustment of Bftpd to make it vulner-

able of arbitrary code execution). We do not provide at-

tacks that overflow function return addresses since Itanium

has already prevented them by using dedicated registers for

function calls and returns.

We compile the applications using SHIFT with the speci-

fied policies. The applications are tracked at both byte-level

and word-level. We first run them normally without attack-

ing them to see if there are any false positives. In our tests,

all applications run normally and no security alert is raised.

Then, we attack the applications using artificially forged in-

put to evaluate the detection ability of SHIFT. All these at-

tacks are successfully detected by SHIFT. Without SHIFT

protection, all attacks succeed.

SHIFT detects these attacks by combining various high-

level and low-level policies. For example, SHIFT marks

data read from disks as untrusted and combines the low-

level policies with policy H1 to detect directory traversal

attacks to GNU Tar. To detect security exploits on Qwiki-

wiki, SHIFT marks the file path as tainted when reading the

http request and tracks the propagation of the tainted string.

When the tainted data is used as an argument of fopen,

SHIFT examines the argument. If the file path traverses out

of the document root, then a security alert is raised. Pol-

3Common Vulnerabilities and Exposures, http://cve.mitre.org/



Policy Attacks to Detects Description

H1 Directory Traversal Tainted data cannot be used
as an absolute file path

H2 Directory Traversal Tainted data cannot be used as a file path
which traverse out of the document root

H3 SQL Injection Tainted data cannot contain SQL meta chars
when used as a part of the SQL string

H4 Command Injection Tainted data cannot contain Shell meta chars
when used as arguments to system()

H5 Cross Site Scripting No tainted script tag

L1 De-referencing tainted pointer Tainted data cannot be used as a load address

L2 Format string vulnerability Tainted data cannot be used as a store address

L3 Modify critical CPU state Tainted data cannot be moved into special registers

Table 1: Security Policies in SHIFT

CVE# Program (Version) Language Attack Type Detection Policies Detected?

2006-6097 GNU Tar (1.4) C Directory Traversal H1 + Low level policies Yes

2005-1228 GNU Gzip (1.2.4) C Directory Traversal H1 + Low level policies Yes

2006-0983 Qwikiwiki (1.4.1) PHP Directory Traversal H2 + Low level policies Yes

2006-2001 Scry (1.1) PHP Cross Site Scripting H5 + Low level policies Yes

2007-4334 php-stats (0.1.9.2) PHP Cross Site Scripting H5 + Low level policies Yes

2005-3347 phpsysinfo (2.3) PHP Cross Site Scripting H5 + Low level policies Yes

2006-6912 phpmyfaq (1.6.8) PHP SQL Command Injection H3 + Low level policies Yes

N/A Bftpd(0.96 prior) C Format string attack L2 Yes

Table 2: Security Evaluation Results of SHIFT.

icy L2 is strong enough to detect exploits on the example

format string vulnerability in Bftpd. The malicious input

causes Bftpd to overwrite the GOT entry for library func-

tion such as “system”. Since the address to store is tainted

and there is no explicitly bounds checking, a security alert

is raised.

False Positives and False Negatives:

As a flexible information flow tracking system, SHIFT

can assign various policies to a protected program. How-

ever, one drawback of the flexibility is that SHIFT may suf-

fer from possible false positives or false negatives due to

overly restrictive or overly permissive policies. Fortunately,

typical security exploits usually have some common and ex-

pressive characteristics. Hence, it is often not difficult to

assign accurate policies to protect a program from typical

security exploits in practice. One possible but rare issue is

the false alarms due to implicit information flow or informa-

tion propagation through control dependency, which SHIFT

currently does not track. Fortunately, they do not seem to

be a serious problem in practice, as pointed out by previous

work [27, 22, 8]. As expected, we did not experience either

false positive or false negative in our security evaluation.

Furthermore, to handle sophisticated security exploits, one

might be able to use machine learning techniques to reduce

or eliminate possible false alarms.

6 Performance Results

In this section, we measure the performance of SHIFT

to answer the following questions: (1) whether applica-

tions using SHIFT can provide an acceptable level of per-

formance? (2) whether adding three instructions can further

reduce the performance slowdown? (3) what contributes to

the remaining overhead and in what proportions?

The tests were performed on an HP Integrity rx1620

server equipped with two 1.6GHz Itanium processors and

4GB of memory running Redhat Linux Enterprise 4. We

test Apache web server and eight SPEC-INT2000 bench-

marks executed with the reference inputs. We compare the

performance of the benchmarks compiled using the origi-

nal GCC-4.1.1 and our enhanced instrumentation compiler

(SHIFT-GCC) at the -O3 optimization level (except -O1 for

176.gcc 4).

6.1 Overhead with Apache

The measurements are performed by using the apache

benchmark (ab) to issue 1,000 requests for a single file with

200 concurrent processes. The requested file size is 4 KB,

8 KB, 16 KB and 512 KB each time. Figure 6 shows that

SHIFT incurs negligible overhead for Apache. The geo-

metric mean of the overhead for throughput and latency at

all file sizes is about 1%. The overhead of SHIFT mainly

comes from the added instrumentation for load and store

instructions. Since Apache is an I/O intensive application,

the instrumentation added by SHIFT has only a little im-

pact on its performance. The overhead for requesting a 4

KB file is a bit larger than that for other file sizes. This is

4GCC-4.1.1 for Itanium cannot successfully build 176.gcc at -O3 opti-

mization level



Figure 7: The relative performance of SHIFT against non-instrumented version for SPEC-2000: the four bars mean tracking at byte/word

level with input data tagged as unsafe/safe.

Figure 6: The relative performance of SHIFT against non-

instrumented version for Apache: the four bars mean the overhead

for latency and throughput at byte/word level.

because the I/O processing time in requesting a 4 KB file

contributes a bit less in the total program execution time

than requesting files in other sizes. Nevertheless, the in-

curred overhead is still low (about 4.2%). The overhead for

tracking at byte-level is a bit more than tracking at word-

level since the former one requires more code to instrument

a single instruction.

6.2 Overhead with SPEC-INT2000

To measure the performance slowdown with the instru-

mented code for benchmarks in SPEC-INT2000 operating

on tainted data, we mark all data read from disk as tainted.

We compare the performance of applications compiled by

unmodified GCC and SHIFT-GCC. Figure 7 depicts the per-

formance slowdown for each individual benchmark as well

as the geometric average of eight benchmarks. As shown in

the figure, the performance slowdown ranges from 1.32X

to 4.73X for byte-level tracking and 1.34X to 3.80X for

word-level tracking. The average slowdown is 2.81X for

byte-level tracking and 2.27X for word-level tracking when

untrusted data is involved. The slowdown mainly comes

from the code to instrument load and store, and to relax

compare-related instructions. The performance slowdown

of SHIFT is significantly smaller than LIFT (4.6X) 5 [22].

6.3 Architectural Enhancements

As there are no simple instructions to set and clear the

NaT-bit in a register on Itanium, the cost is relatively high

for such operations. To get a quantitative result on the im-

pact of minor architectural enhancements, we adjust the in-

strumentation code and test the following configurations:

(1) using two simple instructions to simulate the effect of

setting and clearing the NaT-bit in a register; (2) removing

the relaxing code for compare instructions to simulate the

effect of providing a NaT-aware compare instruction. We

compare the results with the basic data of byte/word level

tracking with tainted data (byte/word-unsafe).

As shown in figure 8, the first architectural enhancement

results in a reduction of 16% performance slowdown for

both byte/word level tracking. Here, the reduction of per-

formance slowdown is the difference between the original

and new performance slowdowns. Combining the two ar-

chitectural enhancements can result in a reduction of 49%

and 47% in total for byte-level and word-level tracking.

The reduction of slowdown ranges from 2% to %173 and

5% to 166% respectively, depending on the amount of in-

volved tainted data in each benchmark. For example, the

reduction of slowdown for gcc is 173% after applying the

two enhancements for byte-level tracking (166% for word-

level tracking). By contrast, the reduction is rather smaller

for applications manipulating relatively little tainted data :

only 2% and 5% for mcf when it is tracked at byte-level and

word-level.

5LIFT uses the notion of “incurred overhead”, which equals (“slow-

down” - 1). Thus, the ”incurred overhead” of 3.6X should be 4.6X slow-

down.
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Figure 8: The impact of minor architectural enhancements. We compare the data for adding instructions for set/clear NaT bits (byte/word-

set/clear) and the data for adding instructions for both the set/clear NaT-bits and NaT-aware comparison (byte/word-both) against the

original SHIFT version (byte/word-unsafe).

6.4 Remaining Overhead

After the architectural enhancements, there is still some

performance overhead for SHIFT, which mainly comes

from the basic costs to instrument each load and store in-

struction. The costs are mainly composed of two parts for

each load and store instruction: (1) computation that trans-

lates a virtual address to a tag address and computes the tag.

(2) memory access that reads or updates the bitmap. To un-

derstand their contributions to the total cost, we measured

a breakdown of the cost for each part. Figure 9 shows the

performance overhead from computation and memory ac-

cess in load and store instructions for each benchmark in

SPEC-INT2000. As shown in the figure, computation in-

curs much more overhead than memory access to tag space.

This is probably because the unimplemented bits in Itanium

make computing a tag more costly than traditional x86 ar-

chitectures. Since most memory accesses actually hit in L1

cache, the cost for memory access is not significant. The

gap between computation and memory access is more sig-

nificant for byte-level tracking since computing a tag for a

byte is more complex than that for a word. The instrumen-

tation for load instructions contributes much more overhead

than that for store instructions, since the number of executed

load instructions is much larger than the number of store in-

structions according to our analysis using PIN [15]. Based

on the fact that computation contributes to the major slow-

down in SHIFT, one possible compiler optimization might

be reusing the computation code for some adjacent data.

6.5 Code Size Expansion

Table 3 shows the impact of compiler instrumentation on

the code size of glibc and SPEC-INT2000. The expansion

in code size is not significant for these applications. The

degree of the code size expansion depends on the propor-

tion of instructions required to be instrumented, including

load, store and comparison instructions. The expansion in

Figure 9: A breakdown of the performance slowdown among com-

putation and memory access in load and store instructions for

tracking at both byte- and word-level.

code size is relatively small (35% and 45%) for glibc. By

contrast, the expansion for benchmarks in SPEC-INT2000

is more notable due to the relatively large proportion of in-

strumented code. Since information flow tracking at byte-

level requires a bit more code than that at word-level, the

code expansion is a bit larger for byte-level tracking than

word-level tracking.

7 Related Work

While there are a number of dynamic information flow

tracking (DIFT) systems, SHIFT differs from existing ef-

forts in that it makes novel uses of existing hardware sup-

ports for speculative execution. The following discussion

will focus on most related work to SHIFT.



Apps. Orig. Word Overhead Byte Overhead
size level level

glibc 11M 15M 36% 16M 45%

gzip 192K 528K 175% 627K 226%

gcc 3.6M 9.0M 150% 9.6M 160%

crafty 541K 1.3M 146% 1.5M 184%

bzip2 164K 531K 223% 637K 288%

vpr 485K 1.1M 132% 1.3M 174 %

mcf 59K 163K 176% 167K 183%

parser 583K 1.6M 181% 1.7M 198%

twolf 851K 2.5M 200% 2.8M 237%

Table 3: The impact of compiler instrumentation on code size.

7.1 Software-based DIFT

Source-level instrumentation [27, 12] is a viable solution

to track dynamic information flow and enforce security poli-

cies. It instruments the source code of software with DIFT

code that propagates security tags and checks security vi-

olations. It shares the high-level semantic information in

the source code, but loses low-level control of the generated

code. It thus has difficulty in taking advantage of the archi-

tectural support to lower the performance overhead. Con-

sequently, it incurs a relatively high performance overhead,

which prevents its wide use in production run.

Dynamic binary translation is an alternative approach

that instruments binary code on-the-fly with security tag

management and detection mechanisms (e.g., LIFT [22]

TaintTrace [3]). In contrast to source-level instrumentation,

it does not require accesses to the source code and can have

fine-grained control of hardware resources. Thus, it is ca-

pable of utilizing hardware features to lower DIFT over-

head. For example, LIFT [22] uses additional 64-bit reg-

isters in x86-64 for security tag propagation. Furthermore,

the runtime information such as execution traces opens the

opportunities to adaptive tracking of security tags to reduce

the performance loss. LIFT heavily uses the information

to lower the performance slowdown from 27.6X to 4.6X.

However, both LIFT and TaintTrace cannot detect high-

level semantic attacks.

Interpretation or emulation [18, 19, 21, 23] tracks dy-

namic information flow by translating the executing instruc-

tions (either high-level or low-level) into lower-level oper-

ations. They then can embed operations to track dynamic

information flow and detect information anomalies. The

advantage of these approaches is that they do not need to

access the source code. The major disadvantage is that the

incurred overhead can be quite significant. It is also hard to

detect high-level attacks that depend on program semantics.

7.2 Hardware-based DIFT

Minos [7] and work done by Suh et al. [24] are two par-

allel and independent efforts aiming at providing efficient

hardware supports to DIFT systems. These supports include

tagging registers and caches, adding tag propagation mech-

anisms in instruction set architectures. Minos targets only

control data attack while the latter handles both control and

data attacks. Both are designed to combat low-level attacks

such as memory corruption attacks but cannot detect high-

level semantic attacks.

Raksha and FlexiTaint[8, 26] are two recent DIFT sys-

tems that try to improve the flexibility and programma-

bility of hardware-based DIFT system. It allows software

to direct hardware analysis and to gain control of secu-

rity violation handlers at the user-level. Thus, it is capa-

ble of detecting high-level attacks as well as multiple con-

current attacks. Moreover, instead of using simulation, it

provides a FPGA-based prototype and supports information

flow tracking through operating systems.

Speck [20] aims to provide a unified framework to ac-

celerate security checks multi-core platform, by paralleliz-

ing computation code and taint tracking code. They use

process-level log and replay to synchronize state between

the computing thread and the security-tracking thread.

Checkpoint and rollback are used to ensure that an appli-

cation can be rolled back to a safe state once an intrusion is

detected. Their idea is orthogonal to SHIFT, which reuses

instruction-level speculation instead of OS-level specula-

tion.

7.3 Other Uses of DIFT Systems

Apart from using DIFT to detect security exploits, there

are efforts in utilizing DIFT for debugging, testing and pro-

gramming understanding [17, 13, 5]. Specifically, Masri et

al. [17] propose using dynamic information flow analysis

to discover and debug unsafe flow in program, to enforce

information flow policies. COMET [13] uses dynamic taint

tracing to improve the coverage of software testing. Fur-

ther, being aware of the importance of DIFT, there are also

efforts trying to implement general DIFT systems that are

customizable to detect security exploits, analyze program

behavior and testing [5, 12]. However, the generality pro-

vided in these systems is usually at the high cost of perfor-

mance overhead. For example, GIFT [12] requires a call to

a function on each taint tracking operation.

8 Conclusion and Future Work

We have presented SHIFT, a low-overhead dynamic in-

formation flow tracking system for improving software se-

curity. SHIFT leverages existing hardware support for de-

ferred exception tracking to lower the runtime overhead. We

have implemented a prototype by modifying GCC and using

the Itanium processor. Our security evaluation shows that

SHIFT can defeat a set of real-world attacks with no false

positives. Performance measurements on SPEC-INT2000

indicate that the performance slowdown due to SHIFT is

modest. Quantitative measurements show that minor ar-

chitectural enhancements can reduce the performance slow-



down further.

As future work, we plan to extend and improve SHIFT in

several directions. First, we are currently exploring various

compiler optimization techniques such as adaptive track-

ing and profiling-guided optimizations to further lower the

incurred performance overhead. Second, we plan to ex-

tend and apply SHIFT to analyze modern security exploits,

generate accurate intrusion-prevention signatures, and de-

tect possible information leakages. Third, as SHIFT is cur-

rently implemented using a compiler and requires accesses

to the source code, we plan to implement SHIFT using a

binary translator and apply various dynamic optimization

techniques to further lower its overhead. Finally, we intend

to extend SHIFT for multi-threaded applications and inves-

tigate this extension’s performance implications.
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