
Microsecond-scale Preemption for Concurrent GPU-accelerated DNN Inferences

Mingcong Han1,2, Hanze Zhang1,4, Rong Chen1,2, and Haibo Chen1,3

1Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University 2Shanghai AI Laboratory
3Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

4MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, China

Abstract
Many intelligent applications like autonomous driving and
virtual reality require running both latency-critical and best-
effort DNN inference tasks to achieve both real time and
work conserving on GPU. However, commodity GPUs lack
efficient preemptive scheduling support and state-of-the-art
approaches either have to monopolize GPU or let the real-
time tasks to wait for best-effort tasks to complete, which
causes low utilization or high latency, or both.

This paper presents REEF, the first GPU-accelerated DNN
inference serving system that enables microsecond-scale ker-
nel preemption and controlled concurrent execution in GPU
scheduling. REEF is novel in two ways. First, based on the
observation that DNN inference kernels as mostly idempo-
tent, REEF devises a reset-based preemption scheme that
launches a real-time kernel on the GPU by proactively killing
and restoring best-effort kernels at microsecond-scale. Sec-
ond, since DNN inference kernels have varied parallelism
and predictable latency, REEF proposes a dynamic kernel
padding mechanism that dynamically pads the real-time ker-
nel with appropriate best-effort kernels to fully utilize the
GPU with negligible overhead. Evaluation using a new DNN
inference serving benchmark (DISB) with diverse workloads
and a real-world trace on an AMD GPU shows that REEF
only incurs less than 2% overhead in the end-to-end latency
for real-time tasks but increases the overall throughput by up
to 7.7×, compared to dedicating the GPU to real-time tasks.
To demonstrate the feasibility of our approaches on closed-
source GPUs, we further ported and evaluated a restricted
version of REEF on an NVIDIA GPU with a reduction of the
preemption latency by up to 12.3× (from 6.3×).

1 Introduction
Deep Neural Network (DNN) inference has been widely
adopted by modern intelligent applications, such as au-
tonomous driving [2, 37, 41, 80], virtual reality [58, 83],
speech/image recognition [32, 75], and healthcare [19, 24],
just to name a few. Many of them demand real-time infer-
ence serving in mission-critical tasks, where GPUs have
emerged as a popular accelerator to serve DNN infer-
ences [15, 33, 47, 89].

Although the low-latency demand of DNN inferences can
be fulfilled by dedicating the whole GPU to sequentially serve

 0

 60

 120

 180

 240

 300

0 1 2 4 8

T
h

ro
u

g
h

p
u

t
(r

e
q

s
/s

)

Number of Best-effort Tasks

Real-time Task

Best-effort Task

 0

 12

 24

 36

 48

 60

0 1 2 4 8

T
a

s
k
 L

a
te

n
c
y
 (

m
s
)

Number of Best-effort Tasks

Real-time Task

BE1

BE2

BE4

BE8

 0

 2

 4

 6

 8

 10

0 1 2 4 8

T
a

s
k
 L

a
te

n
c
y
 (

m
s
)

Number of Best-effort Tasks

Execution

Preemption

 0

 20

 40

 60

 80

 100

 0 60 120 180 240 300

T
h

ro
u

g
h

p
u

t
(r

e
q

s
/s

)

Frequency (reqs/s)

Concurrent

Preemptive

Fig. 1: (a) The overall throughput of DNN inferences (both real-
time and best-effort tasks) and (b) the end-to-end latency of real-time
tasks when using concurrent GPU scheduling (i.e., multiple GPU
streams [46, 49, 60]), (c) the end-to-end latency of real-time tasks
when using preemptive GPU scheduling (i.e., wait-based preemp-
tion [12, 77, 90]), and (d) the throughput of best-effort tasks as
the frequency of real-time tasks increases. Workload: VGG [68]
(real-time) and ResNet [30] (best-effort). Testbed: one AMD Radeon
Instinct MI50 GPU with 16 GB of memory (see §7 for details).

requests from a single DNN application [10, 80, 91], it is
hard to fully exploit the massive parallelism of the GPU [47].
Hence, it is a common practice to share a GPU among mul-
tiple applications with different timing constraints in emerg-
ing intelligent systems [41, 78], which can greatly improve
overall throughput, as shown in Fig. 1(a). For example, au-
tonomous vehicles use DNNs to recognize obstacles and traf-
fic lights [9, 59], which are latency-critical tasks (called real-
time tasks in this paper). Meanwhile, other tasks with no hard
real-time requirement [78] (called best-effort tasks in this pa-
per), such as monitoring human driver’s emotion and fatigue,
are also served within the GPU using DNNs [19, 48, 84].

Typically, DNN inferences have two potentially conflicting
goals for GPU scheduling. First, the real-time tasks should be
treated as first-class citizens on the GPU without interference
from other tasks to achieve low end-to-end latency. Second,
both real-time tasks and best-effort tasks should be served
concurrently on the GPU to achieve high overall throughput
(work-conserving).

State-of-the-art GPU libraries (e.g., CUDA [52] and
ROCm [3]) commonly provide multiple GPU streams (e.g.,
CUDA Streams [60]) to concurrently execute multiple tasks
on the same GPU. However, as shown in Fig. 1(b), although
the end-to-end inference latency of real-time tasks is low
(about 4 ms) and stable when monopolizing the GPU, the tail
latency of real-time tasks significantly increases by over an or-
der of magnitude (close to 50 ms) when running concurrently
with best-effort tasks. This, unfortunately, is unacceptable for
real-time scenarios [85].

Similar to operating systems using preemptive scheduling
to provide real-time guarantees, an intuitive approach is to pro-
vide preemption for GPU scheduling, which is unfortunately
missing in commodity GPUs [70]. Prior work [12, 77, 90]
proposed a wait-based approach to passively waiting until
the completion of running blocks, which may cause a pre-
emption delay of several milliseconds. Although it may be
sufficient for traditional GPU workloads, this approach is still
far from optimal for DNN inference tasks since the preemp-
tion latency is non-trivial compared to the execution time of
real-time inference tasks, as shown in Fig. 1(c). Further, when
the real-time inference requests arrive at a high frequency
(e.g., camera (120 reqs/s) [16] or multiple sensors [41]), the
best-effort tasks may even get starved, as shown in Fig. 1(d).

This paper presents REEF, the first DNN inference serving
system for commodity GPUs with microsecond-scale ker-
nel preemption and controlled concurrent execution in GPU
scheduling to achieve both real time and work conserving.
Specifically, the arriving real-time task should instantly pre-
empt the GPU from the running best-effort kernels without
waiting for their completion. Meanwhile, the best-effort ker-
nels should be executed concurrently by using GPU resources
leftover from the real-time kernels.

A key insight of REEF is that each kernel in DNN inference
is mostly idempotent. This implies that the running best-effort
kernels can be proactively killed and restored without saving
contexts. Based on this, REEF proposes a reset-based preemp-
tion scheme. To thoroughly flush hundreds of outstanding
kernels in both GPU runtime and devices, REEF designs
different approaches to resetting different software queues
and retrofits the GPU driver to exactly use existing hardware
mechanisms to reset compute units while preserving device
memory of the GPU. It can improve both kernel preemption
and restore. Therefore, REEF can launch a real-time task on
the GPU in tens of microseconds, regardless of the number
of preempted kernels and their execution time.

REEF further proposes a dynamic kernel padding mech-
anism based on the observation that the execution time of
GPU kernels in DNN inferences is deterministic and pre-
dictable. This implies that the pending best-effort kernels
can be carefully selected to pad the real-time kernel with-
out performance interference, based on offline profiling in
advance. REEF extended GPU compiler to construct a tem-
plate of padded kernels by using function pointers. Further, to

eliminate the overhead of indirect function calls on the GPU,
REEF introduces proxy kernels to address register allocation
problem and avoid unnecessary context saving at runtime.
Therefore, REEF can concurrently execute the real-time task
with best-effort tasks at the expense of negligible performance
and memory overhead (less than 1% and about 10 KB).

We have implemented REEF by extending Apache
TVM [73] (a compiler for deep learning) and AMD ROCm [3]
(an open-source GPU computing platform). We evaluate
REEF using a new DNN Inference Serving Benchmark
(DISB) with diverse workloads and models, as well as a
real-world trace from Apollo [7] (an open autonomous driv-
ing platform). Our experimental results show that REEF only
incurs less than 2% of the end-to-end latency overhead for
real-time tasks but increases overall throughput by up to 4.3×,
compared to dedicating the GPU to real-time tasks. Our ap-
proach further reduces the preemption latency by over one
order of magnitude against the state-of-the-art, less than 40
microseconds for all models. To demonstrate the feasibility
of our approaches on closed-source GPUs, we further ported
and evaluated a restricted version of REEF on an NVIDIA
GPU with a reduction of the preemption latency by up to
12.3× (from 6.3×).

Contributions. We summarize our contributions as follows.

• An in-depth understanding on the characteristics of
GPU-accelerated DNN inferences such as idempotence and
the issues of state-of-the-art GPU scheduling schemes (§2).

• A new reset-based preemption scheme that can launch
a real-time kernel on the GPU in a few microseconds,
regardless of the number of preempted kernels (§4).

• An elegant mechanism that can dynamically pad the
real-time kernel with best-effort kernels to fully exploit the
massive parallelism of the GPU (§5).

• An implementation (§6) on both AMD and NVIDIA GPUs
and an evaluation that demonstrates the advantage and effi-
cacy of REEF over state-of-the-art (§7).

The source code of REEF is publicly available at https:
//github.com/SJTU-IPADS/reef. The DNN Inference
Serving Benchmark (DISB) framework can be obtained sepa-
rately from https://github.com/SJTU-IPADS/disb.

2 Background and Motivation
2.1 Characterizing GPU-Accelerated DNN Inference
Deep neural network (DNN) comprises multiple instances
of versatile layers, such as convolutional, pooling and fully-
connected layers. GPUs have been widely exploited to ac-
celerate DNN inference serving [20, 28, 64]. To serve infer-
ence requests on GPUs, the pre-trained DNN model (e.g.,
ResNet [30]) is loaded into GPU memory ahead of time.
Fig. 2 outlines the implementation of GPU-accelerated DNN
inference. For each arriving request, all kernels of the DNN

https://github.com/SJTU-IPADS/reef
https://github.com/SJTU-IPADS/reef
https://github.com/SJTU-IPADS/disb

device codes

__global__ void conv_relu(in, weight, out):

1 sum = 0;

2 for i in range(0,3)

3 for j in range(0,3)

4 sum += in[..] weight[..]

5 out[..] = ReLU(sum)

__global__ void dense(in, weight, bias, out):

6 sum = 0;

7 for i in range(0,512)

8 sum += in[..] weight[..]

9 out[..] = sum + bias[..]

host codes

void inference(...):

10 memcpyH2D(in, in_host, in_sz) # copy in to GPU

11 conv_relu <<<dim(32), ..>>> (in, .., buf_conv)

12 ... # launch other kernels

13 pooling <<<dim(64), ..>>> (.., buf_pool)

14 dense <<<dim(10), ..>>> (buf_pool, .., buf_dense)

15 softmax <<<dim(1), ..>>> (buf_dense, .., out)

16 memcpyD2H(out_host, out, out_sz) # copy out to CPU

Fig. 2: An example of DNN inference using a model like ResNet.

model are executed in turn with the input, and the resulting
output is returned to the DNN application.

DNN inference is now used by both real-time (RT) tasks,
such as obstacle and traffic lights recognition [9, 59], and
best-effort (BE) tasks, such as emotion and fatigue moni-
toring [19, 48, 84]. The real-time tasks are latency-critical,
because violating the end-to-end latency requirement may
cause system failures or even safety problems. In addition,
such requests are usually issued periodically at various fre-
quencies by input sensors (e.g., camera and LiDAR [7, 41]).
On the contrary, the best-effort tasks have no hard timing
requirement, but are repetitively executed in the background.

Idempotence. The GPU-accelerated DNN model for infer-
ence tasks consists of a sequence of kernels, which implement
one or several DNN layers. We observe that GPU kernels in
DNN models are mostly idempotent as they consist of almost
only dense linear algebra computations without side effects.1

Hence, the kernel can always produce the same output with
the same input no matter it has been retried or not. Meanwhile,
in the DNN model, the (k)-th kernel always uses the outputs
of the (k-1)-th kernel and static arguments (e.g., weight) as
inputs, e.g., conv_relu and dense kernel in Fig. 2. There-
fore, the execution of DNN inference task can be restored
from any kernel before the interrupted kernel and will not
change the inference results.

Massive kernels. Unlike traditional GPU applications that
only contain a few kernels (e.g., at most 14 kernels in Ro-
dinia [11]), it is common to see hundreds of kernels in modern
DNN models (see Table 1). In response, large amounts of
kernels—usually hundreds or more—would be submitted in

1We validated using our tool that all 320 GPU kernels of the 11 DNN models
from Apache TVM’s test suite [72] are idempotent.

Table 1: The amount of GPU kernels in DNN models evaluated in
§7 and the execution time (in millisecond). The codes are generated
by TVM [15] and run on AMD Radeon Instinct MI50 GPU.

Model ResNet DenseNet VGG Inception Bert

#Kernels 307 207 55 146 205
Exec. Time 13.6 3.5 4.4 8.3 5.4

advance to hide the lengthy kernel launching time. Further, to
fully exploit the GPU, the serving system may concurrently
execute multiple kernels from different inference tasks using
the same or different DNN models. Therefore, the perfor-
mance penalty of preempting the GPU would be significant
(a few milliseconds) and even comparable to the execution
time of hundreds of kernels.

Latency predictability. We observe that the execution time
of GPU kernels in DNN inferences is deterministic and pre-
dictable when running individually on the GPU (no interfer-
ence). The reasons are two-fold. First, the kernel is mostly
linear algebra computations such as matrix multiplication and
convolution, which contains neither conditional branches nor
inconstant loops. Second, all kernel arguments (e.g., input
and weights) and the output are fixed-size arrays. Therefore,
the execution time of such kernels is independent of the input
of inference request and can be measured and accurately pre-
dicted in advance. In practice, we observe that the variance in
kernel execution time of DNN models is typically only a few
microseconds (see Fig. 3(a)). This is also confirmed in recent
literature [6, 28, 47].

99.99

99.9

99

90

0
 0 50 100 150 200 250

P
e

rc
e

n
ti
le

Execution Time (µs)

softmax

dense

conv64

conv128

conv256

conv512

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

86.7%

 6.7%

71.7%

53.3%

13.3%

26.7%C
U

 u
s
a

g
e

 (
%

)

Time (ms)

VGG

Fig. 3: (a) The CDF of execution time of several typical kernels in
VGG, and (b) the timeline of CU usage during VGG execution on a
GPU with 60 CUs. Note that the execution time of GPU kernels in
VGG covers a fairly wide range from 10µs to 255µs (see Fig. 10).

Varied parallelism. The GPU kernels in DNN inferences
usually exhibit completely different parallelism due to varied
input scales. For example, as shown in Fig. 2, the pooling
kernel uses 64 thread blocks, while the softmax kernel just
uses 1 thread block. Consequently, the computational demand
for DNN inferences, namely the number of compute units
(CUs), is ever-changing during the execution. As an example,
Fig. 3(b) shows the CU usage during VGG execution varies
between 6.7% and 86.7%. Therefore, to efficiently exploit the
GPU, it is indispensable to leverage a dynamic mechanism
to select and execute multiple kernels from different DNN
inference tasks at runtime.

block

kernel

task

(a)

(b)

(c)

Fig. 4: An example of GPU task scheduling with different kernel
preemption and parallelism schemes for a hybrid workload, which
contains two best-effort and one real-time DNN inference tasks. The
GPU has four compute units (CUs).

2.2 State-of-the-art GPU Scheduling
As stated before, DNN inference serving system relies on
GPU scheduling to meet two potentially conflicting perfor-
mance goals: low latency and work conserving. Although
GPU scheduling has been widely studied in the HPC com-
munity [1, 8, 12, 13, 27, 43, 77, 82, 88], the unique charac-
teristics of DNN inferences and the two performance goals
introduce new challenges for GPU scheduling. We review the
state-of-the-art schemes of GPU scheduling and discuss the
performance issues when serving various DNN inferences
through a brief example, as shown in Fig. 4.

Sequential execution. Most existing DNN serving systems,
such as Clockwork [28], use sequential execution to avoid in-
terferences among tasks. Thus, each task can achieve optimal
execution latency, as shown in Fig. 4(a). However, the end-to-
end latency of RT tasks might be significantly extended due to
lengthy preemption latency (red dimension line), since it has
to wait for the completion of previous tasks (no preemption).
Further, this scheme has a poor overall throughput, due to
sequentially serving inference tasks (i.e., no concurrency).

Block-level preemption. To reduce end-to-end latency for
real-time tasks, it is necessary to preempt the GPU from run-
ning best-effort tasks. However, it is difficult to implement
preemptive scheduling on the GPU due to the large context
(e.g., a large amount of registers) [56, 70]. Meanwhile, com-

modity GPUs also lack hardware support for the preemption
mechanism.2 As a compromise, prior work [8, 90] proposes
wait-based approaches to implementing block-level preemp-
tion for GPU scheduling. The real-time task still needs to
passively wait until the completion of running blocks, as
shown in Fig. 4(b). Further, the preemption latency will in-
crease with the number of preempted kernels (see Fig. 1(c)).
As a compromise, prior work [8, 90] has to limit the num-
ber of kernels submitted to the GPU, which is impractical
for DNN inferences. Further, a high-frequency real-time task
will break the execution of best-effort tasks, even leading to
starvation (see Fig. 1(d)).

Multiple GPU streams. To improve overall throughput,
modern GPU libraries (e.g., CUDA [52] and ROCm [3])
commonly provide multiple GPU streams (e.g., CUDA
Streams [60]) to concurrently execute kernels from indepen-
dent tasks. The runtime scheduler dispatches kernels from
GPU streams on demand to keep all compute units (CUs)
busy, as shown in Fig. 4(c). Although leveraging multiple
GPU streams can improve throughput (see Fig. 1(a)), the
latency of real-time tasks can be significantly degraded by
concurrent tasks, e.g., the last kernel of RT Task#1 in Fig. 4(c).
Even worse, the latency overhead will increase with the num-
ber of concurrent tasks (see Fig. 1(b)).

3 REEF Overview
3.1 System Architecture
The goal of REEF is to provide preemptive GPU scheduling to
achieve real time for latency-critical tasks and work conserv-
ing for best-effort tasks (see ideal scheduling for the example
in Fig. 4). Based on the insight that DNN inference kernels
are mostly idempotent and there are a massive number of
kernels with varied parallelism and predictable latency, REEF
provides two novel designs called reset-based preemption and
dynamic kernel padding.

Fig. 5 illustrates an overview of REEF’s architecture. REEF
consists of (a) an offline part, which compiles and loads user-
provided DNN models, and (b) an online part, which sched-
ules and serves DNN inference requests.

DNN model preparation (offline). Typically, DNN models
are first compiled and optimized for accelerator back-ends
(e.g., GPU) and then loaded into the model pool. Inspired by
prior work [12, 36, 77], REEF extends the model compiler
(e.g., TVM [15]) with a code transformer module, which first
validates the idempotence of kernels in DNN models and then
transforms the source code to assist GPU scheduling in REEF.
Moreover, REEF develops a kernel profiler to measure the
computational requirements and the execution time for each
kernel of the model, which is accurate and practical for DNN
models (see §2).
2Although NVIDIA claims that their GPUs have been equipped with pre-
emption support since Pascal architecture [51], there is no public available
information or a software controllable interface [12, 39, 77].

Fig. 5: Architecture of REEF. Modules in boxes with dashed border
are on the critical path of serving DNN inference requests. Other
modules do not directly impact serving latency and throughput.

DNN inference serving (online). REEF extends a state-of-
the-art GPU runtime (e.g., ROCm [3]) with four major com-
ponents for DNN inference serving.

Task Queues. REEF maintains one real-time task queue and
several best-effort task queues. Each queue is bound to a GPU
stream for launching GPU kernels, where inference requests
are served in a FIFO order. For simplicity, REEF executes
real-time requests one at a time. Note that any scheduling
policy that treats the whole GPU as a single device, such as
EDF [10], can be adopted by REEF for real-time requests.
Further, REEF offers an RPC-based interface for DNN-based
applications to deliver inference requests to task queues.

Scheduler. The scheduler in REEF uses busy polling on task
queues and assigns tasks to the associated GPU streams. Cor-
responding to whether there are real-time tasks, REEF pro-
vides two execution modes, namely real-time mode and nor-
mal mode. The scheduler will switch from normal mode to
real-time mode when encountering real-time tasks, and switch
back to normal mode when the real-time task queue is empty.

Preemption module. In normal mode, REEF concurrently
serves best-effort tasks from different task queues using mul-
tiple GPU streams [3, 60] provided by GPU runtime. In real-
time mode, REEF first uses the preemption module to instantly
preempt the GPU from all running best-effort tasks (§4) and
then launches the real-time task on the GPU immediately.

Dynamic kernel padding (DKP). In real-time mode, before
launching a real-time kernel, the DKP module will select
appropriate best-effort kernels and dynamically pad them to
the real-time kernel (§5). REEF will execute the padded kernel
on the GPU to achieve high throughput. Note that the best-
effort kernels will only use GPU resources leftover from the
real-time kernel.

G
P

U

real-time mode

reset-based preemption (§4)

Block of BE Task Block of RT Task Task Arriving

Time

dynamic kernel padding (§5)

Fig. 6: An example of timeline in REEF. The DNN inference tasks
here are the same as that in Fig. 4.

3.2 An Illustrative Example

Fig. 6 illustrates the timeline of scheduling five DNN infer-
ence tasks in REEF. Upon receiving the first two best-effort
requests r1 and b1, REEF runs in normal mode, and the ker-
nels of two different tasks are scheduled to two different
GPU streams. The GPU runtime will concurrently execute
the kernels on the GPU. While r1 and b1 execute, a real-
time request v1 arrives. The scheduler immediately switches
to real-time mode, and GPU runtime instantly preempts the
GPU by killing all running kernels of best-effort tasks (i.e.,
r1 and b1). Meanwhile, the DKP module selects appropriate
kernels from restored tasks to dynamically pad the kernels of
real-time task v1. After that, the padded kernel will be exe-
cuted on the GPU alone. While v1 is completed, the scheduler
switches back to normal mode. All running and later best-
effort tasks (i.e., r1, b1, b2, and r2) will concurrently execute
on the GPU through two GPU streams.

4 Reset-based Preemption
The key insight behind our idea, namely reset-based preemp-
tion, is that the GPU kernels in DNN models are mostly
idempotent, which enables proactive preemption—killing all
running kernels on the GPU immediately and restoring them
later. The benefits are two-fold. First, it avoids saving and
restoring the large context of the GPU (e.g., a 256 KB reg-
ister file per CU) [70]. Second, there is no need to wait for
all running kernels to complete, which can take hundreds of
microseconds.

However, there are still new challenges before making our
reset-based preemption come true on commodity GPUs. Ex-
cept for the kernels running on the GPU, hundreds of launched
kernels are buffered in multiple queues maintained by GPU
runtime. This is necessary to hide the kernel launch time and
fully exploit the massive parallelism of GPU. Whereas, evict-
ing all launched kernels makes it indeed difficult to preempt
the GPU in tens of microseconds.

Fig. 7 illustrates the lifetime of launched kernels in the
GPU runtime and devices. First, the scheduler launches all
kernels of an inference task and specifies a GPU stream for
each task. The GPU runtime maintains a linked list, called

Device
Memory

Host Queue

Device Queue

GPU

Reset DQs

Reset CUs

Preemption
Module

Scheduler

Reset HQs

GPU Runtime
GPU Streams API

block

kernel

Command Processor

Fig. 7: Extended GPU runtime in REEF for instant preemption.

host queue, for each GPU stream to buffer launched kernels.
Each host queue has a background thread that transmits the
buffered kernels asynchronously to a ring buffer, called device
queue, which is accessed by CPU and GPU simultaneously.
The command processor of GPU will poll all device queues
to fetch the buffered kernels and eventually dispatches them
to compute units. Therefore, launched kernels of an inference
task may exist in three places, namely host queues (HQs),
device queues (DQs), and compute units (CUs). To achieve
instant preemption, kernels in all three places must be evicted.

4.1 Evicting Buffered Kernels
The reset-based approach requires proactively evicting all
buffered kernels from both host queues and device queues.
For host queues, it is straightforward to reset them (Ê in
Fig. 7), dequeuing all buffered kernels and reclaiming mem-
ory, as they are fully controlled by the GPU runtime. For de-
vice queues, however, the GPU runtime cannot evict buffered
kernels from device queues, because the command processor
of GPU can directly fetch kernels from device queues [23],
resulting in data races and unpredictable results. In addition,
the CPU also does not provide a way to safely evict kernels
from device queues. A potential solution is to notify the GPU
to re-register a new device queue [62]. However, it would
incur an unacceptable latency overhead (e.g., about 1 ms on
our testbed).

Inspired by evictable kernels [12], we propose lazy eviction
to reset device queues without extending GPU runtime and
hardware. The code transformer of REEF injects a piece of
code at the beginning of each kernel in advance, which checks
the preemption flag to realize whether it has been evicted.
When the preemption flag is true, the kernel will voluntarily
terminate itself. Therefore, when a preemption occurs, the
preemption module will immediately set the preemption flag
to true in GPU memory (see Ë in Fig. 7). The kernels buffered
in device queues will be fetched and dispatched to the CUs
as usual, but will terminate themselves immediately.

Our initial queue eviction mechanism imposes a non-trivial

overhead on the preemption process, taking more than 500µs
to preempt a single task (see §7.3). An in-depth analysis shows
that the overhead comes mainly from (a) reclaiming memory
from the host queue and (b) waiting to fetch kernels from the
device queue. Therefore, we propose two optimizations to
mitigate overheads.

Asynchronous memory reclamation. The preemption la-
tency is proportional to the host queue length when using syn-
chronous memory reclamation for evicted kernels in the host
queues. Therefore, the performance penalty of preempting
a DNN inference task would be significant, since it requires
buffering hundreds of kernels in the host queue. To instantly
evict GPU kernels from the host queue, REEF leverages a
background GC thread to reclaim memory asynchronously.
Specifically, REEF resets the host queue by simply nullifying
the head pointer first and then notifying the GC thread to
reclaim memory in the background.

Device queue capacity restriction. Although using lazy
eviction can terminate kernels in the device queue imme-
diately at the beginning of execution, the kernels still have
to be fetched and dispatched to the CU, which takes around
20µs per kernel. It is common to buffer hundreds of ker-
nels in a device queue, since it can reduce the frequency of
context switches by filling up the device queue with a large
number of kernels from host queues at a time. However, it
may also increase the preemption delay to even more than
1 ms. Therefore, REEF restricts the capacity of the device
queue to achieve microsecond-scale kernel preemption. Tun-
ing the device queue capacity provides a tradeoff between
preemption latency and execution time. As the queue capac-
ity decreases, the preemption latency also decreases because
fewer kernels need to be evicted, but normal execution time
increases because the GPU has more idle time waiting for
the runtime to fill device queues with the kernels from host
queues. We empirically choose a device queue capacity to 4
on our testbed, since it is sufficient to reset the device queue in
30µs with negligible overhead on normal execution time (i.e.,
less than 0.3%). Furthermore, using a smaller device queue
also produces slightly higher CPU utilization (e.g., about 15%
increase) due to more frequent filling of the device queue.

4.2 Killing Running Kernels
To avoid waiting for the completion of running kernels, the
reset-based preemption proactively kills the running kernels
in the GPU. Unfortunately, there is neither an API provided by
GPU runtime nor a functionality exposed by GPU driver that
can kill the running kernels from the host side. We observed
that GPU driver has the ability to terminate CPU process and
also kill associated GPU kernels, even when the kernel stucks
in an infinite loop. It implies that GPU driver can indeed
kill an uncompleted kernel. However, this function will also
reclaim GPU memory allocated by the process and GPU
kernels. Thus, the preempted kernel has to reload DNN model
parameters to GPU memory, taking even a few seconds.

To remedy it, REEF retrofits the kernel killing function
of GPU driver and exposes it to the preemption module in
GPU runtime. The new function will instruct the command
processor to kill all running kernels on the CUs but preserve
their running state in GPU memory. The preemption module
will use it to kill all running kernels (see Ì in Fig. 7) after
evicting host queues and device queues.

4.3 Restoring Preempted Tasks
The best-effort tasks should be restored after being preempted.
In general, the task has to be re-executed from the beginning,
and is assumed to have no side effects. Fortunately, the idem-
potence characteristic of kernels in the DNN model ensures
that the execution of DNN inference task can be restored from
any kernel before the interrupted kernel. This implies that the
scheduler can safely re-execute the preempted best-effort
tasks. However, this may incur severe additional overhead
because DNN models commonly have massive kernels (usu-
ally hundreds or more). Therefore, it is important to restore
the preempted task from the kernel close to where it was in-
terrupted. Unfortunately, it is almost impossible to precisely
identify the interrupted kernel, because the kernel running on
the CUs is killed directly by the command processor of GPU.

To remedy this problem, REEF adopts an approximation
approach to ensure that the preempted task is restored from
at most a constant number (c) of kernels before the inter-
rupted kernel. More specifically, the preemption module first
records the last kernel (kl) transmitted to the device queue
when it starts resetting the task queue, and then restores the
preempted task from c kernels before kl, where c denotes the
device queue capacity. We observe that the command proces-
sor sequentially fetches a kernel from the device queue and
runs it on the CUs. This implies that the interrupted kernel
will not be earlier than c kernels before the last kernel (kl) in
the device queue. Furthermore, REEF will redundantly exe-
cute at most c+1 kernels. Since c is configured to be relatively
small (i.e., 4), the restore overhead is negligible (about 30µs).

4.4 Preemption on closed-source GPUs
Many commodity GPUs (e.g., NVIDIA GPUs) are still closed
source. This poses new challenges to our reset-based preemp-
tion scheme, which has to treat the GPU runtime as a black
box. The primary limitation is that we cannot reset CUs to
proactively kill running kernels (Ì in Fig. 7). Apart from that,
REEF is also unable to manipulate host queues and device
queues directly outside of the GPU runtime. But fortunately,
the lazy eviction scheme proposed by REEF for resetting DQs
(Ë in Fig. 7) does not require any modification to the GPU
runtime.

We propose a restricted version of reset-based preemption,
called REEF-N, for closed-source GPUs. REEF-N first wraps
each GPU stream, the general abstraction provided by GPU
runtime, into a virtual host queue (vHQs), which intercepts
and buffers all launched kernels. Similar to the (physical) HQ
inside the GPU runtime, each vHQ also has a background

Time
dynamic kernel padding

inter-stream barrier

G
P

U
G

P
U

Block of BE Task

Block of RT Task

(RT)Task Latency

dispatch delay

Fig. 8: An example of serving multiple kernels in parallel with
different approaches.

thread to transmit buffered kernels asynchronously to the
GPU runtime. After that, REEF-N treats the whole GPU
runtime as several device queues (one for each GPU stream),
such that REEF can easily reset vHQs to evict buffered kernels,
instead of resetting HQs directly (Ê in Fig. 7). REEF-N still
follows the lazy eviction to reset DQs, and then waits for all
running kernels to complete. Finally, to simulate DQ capacity
restriction, REEF limits the number of outstanding kernels in
the GPU runtime; the background thread of vHQ transmits a
fixed number of kernels to the GPU runtime in a closed loop.

5 Dynamic Kernel Padding
To achieve high throughput, both real-time and best-effort
tasks should be concurrently executed on the GPU to achieve
work conserving. However, to avoid interference with real-
time tasks, the best-effort tasks should be only served by using
GPU resources leftover from the real-time tasks. Regrettably,
none of the existing approaches can provide such controlled
concurrent execution on the GPU.

First, using different GPU streams to launch real-time and
best-effort tasks cannot avoid interfering with each other. As
shown in Fig. 8, the dispatch delay between GPU streams
(20–40µs) might postpone the execution of real-time kernels
or limit the available resources (e.g., CUs) to them. Using
additional inter-stream barriers to synchronize kernel dispatch
among CUs will also cause performance overhead.

Second, static kernel fusion [74] can merge multiple ker-
nels from different tasks into a single one at compile time
and then launch the fused kernel on the GPU using a single
stream. It can avoid interference between real-time tasks and
best-effort tasks in advance. However, static kernel fusion
has to pre-compile all possible combinations of all kernels in
DNN models to enable scheduling at runtime. As mentioned
above, DNN inferences have hundreds of kernels in common
(see Table 1), which makes it impractical for static kernel
fusion. For example, it requires more than 35 GB of GPU
memory to store the fused kernels for five DNN models in
Table 1—considering only all combinations of no more than
three kernels.

device codes

__device__ void dense(in, weight, bias, out): ...

__global__ void dkp(rt_kern, rt_args,

be_kerns, be_argss):

1 ncus = rt_kern.ncus # number of CUs

2 if (cu_id() < ncus) then

3 rt_kern(rt_args) # run RT/kernel

4 else

5 ncus += be_kerns[i=0].ncus

6 while (cu_id() >= ncus)

7 ncus += be_kerns[++i].ncus

8 be_kerns[i](be_argss[i]) # run BE/kernel

host codes

void inference(...):

set the real-time kernel w/ its args (e.g., dense)

9 rt_kern, rt_args = ...

select a set of best-effort kernels w/ their args

10 be_kerns, be_argss = kern_select(rt_kern)

11 dkp <<<..>>> (rt_kern, rt_args, be_kerns, be_argss)

12 ... # launch other dynamic padded kernels

Fig. 9: Pseudocode for dynamic kernel padding in REEF.

Our approach: dynamic kernel padding. Inspired by ker-
nel fusion, our approach also combines real-time kernels and
best-effort kernels into a single one and launches it using a
single GPU stream, as shown in Fig. 8. Differently, we con-
struct a template (called dkp kernel) at compile time and use
function pointer to fill and execute kernels at runtime. Further,
we dynamically select best-effort kernels to avoid interference
with the real-time kernel.

Fig. 9 shows an example of a dkp kernel (dkp) for dy-
namic kernel padding, declared as a global function (i.e.,
kernel entry). Instead of being statically inlined into the dkp
kernel, candidate kernel functions (e.g., dense) are declared
as individual device functions, which can be passed as dkp
kernel arguments and called by function pointers (line 3 and
8). The dkp kernel partitions the CUs to execute one real-
time candidate kernel (rt_kern) and a set of best-effort
candidate kernels (be_kerns) in parallel. It first allocates
sufficient CUs for the real-time kernel (line 1–3) and then
assigns the leftover CUs to the best-effort kernels (line 5–8).
When launching a real-time kernel, the DKP module selects
appropriate best-effort kernels to concurrently execute with
the real-time kernel (line 10, see also §5.2).

5.1 Efficient Function Pointers
Without specific optimizations, the naive design would sig-
nificantly decrease the performance of real-time kernels, due
to the unique characteristics of function pointers on the GPU.
We summarize the two key performance issues of the default
function pointer mechanism on the GPU.

Limited register allocation. Unlike CPU programs, GPU pro-
grams require a diverse yet fixed amount of registers, which
is counted at compile time and encoded into the model exe-
cutable. Such an attribute prohibits the direct use of function
pointers in GPU kernels, as the number of registers used by

the indirectly called function cannot be determined statically.
The default behavior of the GPU compiler is to assign a pre-
defined static upper bound to limit the callee’s register usage,
which may force the callee to save variables on the stack
due to the insufficient registers, leading to poor performance
compared to purely using registers [43].

Expensive context saving. Indirect function calls on GPUs
are much more expensive than CPU programs, due to the
enormous context (e.g., dozens of registers) that needs to
be saved and restored before and after the function call. For
thousands of threads, there might be MB-sized registers saved
and restored, introducing significant overheads. Although the
compiler will inline as many functions as possible to avoid
this overhead, indirect function calls via function pointers
cannot be inlined, which may impose significant performance
penalty on dynamic kernel padding.

REEF tackles the two above issues by introducing global
function pointer as a substitution of the default function
pointer mechanism. Since global functions are treated as ker-
nel entries, the compiler neither applies register limitations
nor adds context saving/restoring code to them. Thus, declar-
ing candidate kernels as global functions instead of device
functions can solve both issues. According to our observation,
context saving in candidate kernels is actually unnecessary, as
the dkp kernel exits immediately after calling rt_kern or
be_kerns[i] (see Fig. 9). Therefore, the lack of context
saving code in candidate kernels does not affect the execution
correctness.

However, as the kernel entry, a global function cannot be
called by another global function (e.g., dkp kernel). To bypass
this restriction, we replace indirect function calls with jump
instructions in assembly code, and manually prepare the initial
state of candidate kernels by following the conventions [45].
This approach makes no changes to the compiler and only
incurs a trivial function call overhead (around 1%).

Dynamic register allocation. The real-time kernel perfor-
mance is still not ideal after applying the global function
pointer technique because of the over-allocation problem. To
meet the varied register demands of candidate kernels, the
dkp kernel has to allocate as many registers as possible (i.e.,
over-allocation), which may decrease the CU occupancy3,
and thus increase the execution time. An intuitive solution is
to overwrite the register count of the dkp kernel just-in-time
before it is launched, making it adaptive to selected candidate
kernels. Unfortunately, the kernel’s register count has been
loaded to the GPU memory with the model in the off-line
phase (§3), which means overwriting its value requires a CPU-
to-GPU memory copy before every kernel execution, severely
affecting the execution performance.

REEF addresses the dynamic register allocation problem

3The CU occupancy implies how many blocks can be executed on a CU
simultaneously. It depends on how many resources (e.g., register) each
block demands. Higher CU occupancy can lead to better performance.

 0

 100

 200

 300

ResNet DenseNet VGG Inception Bert

T
im

e
 (

µ
s
)

Fig. 10: The measured execution time of kernels in five DNN models.
The details of DNN models can be found in Table 1.

by introducing a set of proxy kernels. Proxy kernels share
the same source code as the dkp kernel in Fig. 9, but allo-
cate different number of registers, allowing the scheduler to
dynamically pick the proper proxy kernel according to each
candidate kernel’s register demand. Unfortunately, generat-
ing proxy kernels for every possible register count faces the
kernel amount explosion problem. For example, on AMD
Instinct MI50 GPU with at most 128 scalar registers and 256
vector registers for each thread, it will generate 32,768 proxy
kernels to cover all possible register configurations.

To reduce the proxy kernel amount, we generate proxy
kernels to cover all possible CU occupancies rather than reg-
ister counts. Since proxy kernels are introduced to prevent
over-allocation from decreasing the CU occupancy, proxy
kernels that have different register count yet share the same
CU occupancy are actually redundant and can be merged to-
gether. More specifically, there are 10 CU occupancy levels
on AMD Instinct MI50 GPU we use, corresponding to 10
register count ranges, which allows us to generate only 10
proxy kernels, each allocating the maximum amount of reg-
isters allowed in a CU occupancy level. For each candidate
kernel, the scheduler picks the proxy kernel with the fewest
allocated registers that fulfill the candidate kernel’s demand,
which achieves the highest CU occupancy possible. This way,
the amount of proxy kernels is narrowed down from 32,768
to 10 without affecting the candidate kernel’s performance.

Dynamic shared memory. In addition to registers, over-
allocation of shared memory may also decrease the CU oc-
cupancy of proxy kernels. Fortunately, the kernel is enabled
to dynamically allocate shared memory by setting a property
(i.e., “dynamic shared memory”) when launching the kernel.
During model compilation, REEF converts the declaration of
variables from fixed-size shared memory to dynamic shared
memory (i.e., adding extern before __shared__). Conse-
quently, the amount of shared memory used by proxy kernels
can be set at runtime, depending on the maximum demand of
candidate kernels.

5.2 Kernel Selection

For dynamic kernel padding, the kernel selection policy is
important to avoid latency interference with real-time tasks,
which selects a set of blocks from candidate best-effort ker-
nels to share the GPU with the arriving real-time kernel.
REEF proposes a greedy heuristic to ensure that the best-

effort blocks will only use GPU resources (i.e., CUs) leftover
from the real-time kernel. Specifically, it first reserves enough
CUs for the real-time kernel, and then checks best-effort task
queues to select appropriate blocks for the remaining CUs,
until there are no free CUs or candidate tasks. The selected
best-effort blocks should meet the following two rules.

Rule 1. The execution time of best-effort kernels must be
shorter than that of the real-time kernel, since the execu-
tion time of the dkp kernel is determined by the slowest block.
Based on the observation of latency predictability for GPU
kernels in DNN models (see §2.1), we develop an offline ker-
nel profiler to measure the computational requirements and
the execution time for each kernels of loaded models.

Rule 2. The CU occupancy of best-effort kernels must be
higher than that of the real-time kernel, since the CU occu-
pancy of the dkp kernel is determined by the minimum of
kernels. Note that the CU occupancy of kernels can be directly
obtained from the source code of DNN models.

The kernel selection policy fully meets the design goal of
treating the real-time tasks as first-class citizens on the GPU.
It is not only efficient, selecting best-effort kernels in less
than 1µs, but also effective, limiting the latency overhead
of real-time kernels to less than 1% on average, see §7.4 for
details. However, the policy is also conservative, so the con-
straint may limit room for improvement in overall throughput.
For example, when the execution time of best-effort kernels
is often longer than that of real-time kernels (e.g., VGG and
DenseNet in Fig. 10), the throughput improvement of dy-
namic kernel padding may be trivial, even if the real-time
tasks only use a few CUs.

6 Implementation
We first implemented and deployed REEF on AMD GPUs
because of its open-source platform and ISA [26, 54], which
can fully demonstrate the efficacy of reset-based preemption
and dynamic kernel padding. REEF was implemented by ex-
tending Apache TVM [73] and AMD ROCm [3], with about
5,500 lines of C++ code. Beyond that, to further show the
feasibility of REEF on closed-source GPUs, we also ported
REEF-N, a restricted version of reset-based preemption, on
NVIDIA GPUs with CUDA [52].

Model compiler. REEF extends Apache TVM [15], a ma-
chine learning compiler framework, with a code transformer,
which mainly adds two modifications to the source code of
DNN inference: (1) a preemption flag, which is injected into
kernel arguments to lazily evict the kernel; (2) a set of proxy
kernels, which is constructed for the padded kernels.

GPU runtime. For AMD GPUs, REEF builds the preemp-
tion module on HIP [63] of ROCm, a portable GPU runtime
and programming library. similar to NVIDIA CUDA [52].
Specifically, REEF adds three new APIs to GPU runtime:
(1) hip_reset_hq, which resets host queues and moves

commands to the GC thread; (2) hip_set_stream_cap,
which limits the capacity of the device queue used by a GPU
stream; (3) hip_reset_kern, which resets the compute
units by using hardware mechanisms via the GPU driver in
Linux [61].

For NVIDIA GPUs, REEF-N intercepts three CUDA APIs
related to kernel launch and stream management, and adds
the following operations: (1) cuStreamCreate, which cre-
ates a vHQ and links it to the created CUDA stream; (2)
cuKernelLaunch, which buffers the launched kernel in
the vHQ and transmits it to GPU runtime (i.e., CUDA [52])
in the background; (3) cuStreamSynchronize, which
waits for GPU runtime to complete all launched kernel of
the CUDA stream. Finally, REEF-N provides a new API
cuResetHQ to reset vHQ by dequeuing all buffered kernels.

7 Evaluation
7.1 Experimental Setup

Testbed. The experiments were mainly conducted on a GPU
server that consists of one Intel Core i7-10700 CPU (to-
tal 8 cores), 16 GB of DRAM, and one AMD Radeon In-
stinct MI50 GPU (60 CUs and 16GB of memory). The soft-
ware environment of the server was configured with ROCm
4.3.0 [3], Apache TVM [73] 0.8.0, and Ubuntu 18.04. The
hardware platform resembles the computational resources of
autonomous vehicles [4, 71]. We further evaluate REEF-N on
a closed-source GPU (NVIDIA V100 GPU) to demonstrate
the generality of our approach, using the same server with
CUDA 10.2 [52] installed.

Workloads. Inspired by YCSB [17, 18], we build a new DNN
inference serving benchmark (DISB) that contains a suite of
tools and five workloads: (A) low load, (B) high RT load,
(C) high BE load, (D) multi-RT load, and (E) random load,
summarized in Table 2. The real-time (RT) clients in DISB
A–D uniformly send inference requests at a given frequency,
which simulates real-time DNN applications in autonomous
driving (e.g., obstacle recognition with cameras [7]), while the
clients in DISB E send 20 requests per second with a Poisson
arrival distribution, which simulates event-driven real-time
DNN applications (e.g., speech recognition [32, 75]). Note
that serving 220 RT requests per second sequentially for VGG
model would saturate our testbed (see Fig. 1(d)). On the other
hand, the closed-loop best-effort (BE) client continuously
issues inference requests, which simulates a contention load
on the GPU (e.g., driver monitoring).

Five representative DNN models are deployed in DISB,
including ResNet-152 [30] (RNET), DenseNet-201 [35]
(DNET), VGG-19 [68] (VGG), Inception v3 [69] (IN3), and
DistilBert [66] (BERT), all generated by Apache TVM [15].
Each client always submits inference requests for a certain
DNN model. Specifically, VGG is used by DISB A–C for
their RT clients, and RNET is used by DISB A and B for their
BE clients. Workloads with 5 RT/BE clients deploy all five

Table 2: DISB workload description. #/model denotes the number
of clients and their DNN models. [U/P] denotes an arrival distribu-
tion (i.e., Uniform or Poisson).

DISB A B C D E

Num. of RT clients 1/VGG 1/VGG 1/VGG 5/ALL 5/ALL
Frequency (reqs/s) 100 [U] 220 [U] 100 [U] 20 [U] 20 [P]

Num. of BE clients 1/RNET 1/RNET 5/ALL 5/ALL 5/ALL

DNN models in their clients separately, which simulates mul-
tiple DNN applications in a single scenario (e.g., autonomous
vehicles [7, 41]).

Furthermore, we use a real-world trace from an open au-
tonomous driving platform (i.e., Apollo [7]) as the real-time
workload, which provides a realistic arrival distribution of
real-time tasks in autonomous driving. The trace was col-
lected from the logs of the perception module [5] when run-
ning Apollo with SVL simulator [42, 65], and we selected
the closest DNN models in terms of execution time from the
above five models for the inference requests. Meanwhile, the
same best-effort workload as DISB C–E is used, where five
clients continuously issue different DNN inference requests.

Currently, each workload in DISB represents a particular
mix of real-time and best-effort DNN inference tasks, the
number of clients, and request frequency, which focuses on a
particular point in the performance space. Users can further
extend DISB with new workloads, or even some production
traces from specific applications, to model more different
scenarios.

Comparing targets. We compare REEF with typical schedul-
ing approaches. SEQ sequentially runs each DNN inference
task on the GPU with passive task preemption, which is
adopted by Clockwork [28]. Specifically, when there are mul-
tiple tasks waiting in the queue, it prioritizes real-time tasks,
but still needs to wait for the completion of launched best-
effort tasks. GPUStreams runs both real-time and best-effort
tasks simultaneously on the same GPU through multiple GPU
streams, which is adopted by TensorRT [50]. As a reference,
we further provide RT-Only, which represents the optimal
end-to-end latency for real-time tasks, as it dedicates the GPU
to real-time tasks.4

7.2 Overall Performance
We first compare the end-to-end latency of real-time tasks and
the overall throughput of REEF with other approaches using
DISB workloads and a real-world trace, as shown in Fig. 11.

Single BE Client (DISB A and B). For workloads with a
single BE client, the performance impact of using SEQ or
GPUStreams is relatively low, since GPU contention from
best-effort tasks is not severe, either in terms of wait time
(SEQ) or concurrent interference (GPUStreams). For DISB

4In this case, additional GPUs are dedicated to best-effort tasks, which also
result in extra cost and energy consumption, as well as low GPU utilization.

 0

 10

 20

 30

 40

DISB A DISB B DISB C DISB D DISB E

L
a

te
n

c
y
 (

m
s
)

RT-Only

SEQ

GPUStreams

REEF

 0

 10

 20

 30

 40

REAL

 0

 150

 300

 450

 600

DISB A DISB B DISB C DISB D DISB E

T
h

ro
u

g
h

p
u

t
(r

e
q

s
/s

)

RT-Only

SEQ

GPUStreams

REEF

 0

 150

 300

 450

 600

REAL

Fig. 11: Comparison of (a) end-to-end real-time task latency, and
(b) overall throughput (including both real-time and best-effort tasks)
using different scheduling approaches.

A, compared with RT-Only, SEQ and GPUStreams improve
overall throughput by 1.46× and 1.66×, but also amplify
real-time task latency by 1.95× and 1.84×, respectively. In
contrast, REEF incurs negligible (0.5%) overhead on real-
time task latency, but improves overall throughput by 1.60×,
comparable to GPUStreams.

For DISB B, due to running real-time tasks more fre-
quently, SEQ suffers 1.12× slowdown on real-time task la-
tency, slightly better than DISB A, as it only has to wait for
fewer best-effort tasks. However, its throughput only achieves
96% of RT-Only, since real-time tasks saturate the GPU and
best-effort tasks have little chance to run. For similar reasons,
the overall throughput of GPUStreams also drops to 76% of
RT-Only, while its real-time task latency is still 1.70× higher
than RT-only. Conversely, REEF can still limit the overhead
on real-time task latency to 1% (about 60µs) and provides
a 1.14× speedup on overall throughput, thanks to our reset-
based kernel preemption and dynamic kernel padding.

Multiple BE Clients (DISB C, D, and E). With the increase
of best-effort workloads, the overall throughput of all ap-
proaches improve to varying degrees over RT-Only by sharing
the GPU between two types of tasks. However, they have very
different performance in terms of real-time task latency. Both
SEQ and GPUStream make the same tradeoff between real-
time task latency and overall throughput, differing only in the
magnitude of the performance impact. For three workloads,
SEQ improves overall throughput by 1.34× to 2.10×, but
also amplifies real-time task latency by 1.51× to 1.86×. For
GPUStreams, the above numbers become 3.94× to 8.19×
and 2.65× to 3.31×.

Differently, REEF improves overall throughput as much as
possible, based on the premise that real-time tasks should not
be affected in any way. As a result, REEF offers almost the
same real-time task latency as RT-Only in all workloads, with
less than 1.5% overhead (0.1 ms). For overall throughput,

10
1

10
2

10
3

10
4

A B C D E

L
a

te
n

c
y
 (

µ
s
)

DISB

Wait-based

Reset-based

10
1

10
2

10
3

10
4

RNET DNET VGG IN3 BERT

L
a

te
n

c
y
 (

µ
s
)

DNN Models

Wait-based

Reset-based

Fig. 12: Comparison of preemption latency between reset-based
and wait-based approaches (a) on DISB workloads, and (b) when
preempting one DNN inference task of different DNN models.

REEF provides a close result of GPUStreams on DISB C,
since VGG is easy to be padded with most DNN models (see
§5.2). On DISB D and E, the throughput of REEF is about
25% lower than that of GPUStreams, due to using a mix of
five DNN models for real-time tasks, while DKP does not
always work well on a few combinations of real-time and
best-effort tasks (see §7.4 for details). However, REEF still
outperforms RT-Only by 3.00× and 2.96×, respectively.

Real-world workload from Apollo (REAL). For the real-
world workload, compared to RT-Only, SEQ and GPUStreams
increase overall throughput by 3.6× and 8.3×, while ampli-
fying the latency of real-time tasks by 1.35× and 3.35×,
respectively. Due to the low load of real-time tasks in the real-
world trace (about 43 reqs/s), REEF stays in normal mode
to execute best-effort tasks concurrently most of the time,
similar to GPUStreams. Therefore, compared to RT-Only,
REEF achieves 7.7× throughput improvement with less than
2% latency overhead for real-time tasks, thanks to our reset-
based preemption, which can preempt the GPU within tens
of microseconds after the real-time task arrives.

7.3 DNN Inference Preemption

The vanilla wait-based preemption approach proposed in prior
work [12] is not practical for DNN inference serving, since
it only allows executing tasks one by one. Therefore, we ex-
tended it to allow concurrent inference serving by removing
the limit on the amount of launched kernels and also imple-
menting lazy eviction. This version is used as the baseline to
demonstrate the efficiency of our reset-based preemption.

Preemption latency. Fig. 12(a) compares the preemption
latency of two approaches. The reset-based preemption out-
performs the wait-based approach by more than an order of
magnitude for all DISB workloads, from 15.3× (DISB E)
to 18.5× (DISB C). The main reason is that the wait-based
approach has to passively wait for the completion of running
kernels in CUs and the eviction of massive kernels in host
and device queues, while the reset-based approach is able
to proactively kill all kernels (usually much less) in these
three places. As expected, both approaches take more time
to handle multiple concurrent BE clients (DISB C, D, and E)
than a singel BE client (DISB A and B).

Furthermore, we evaluate the preemption latency for di-

 0

 300

 600

 900

 1200

 50 100 200 300 400 500

L
a

te
n

c
y
 (

µ
s
)

Number of Kernels

Wait-based

Reset-based

 0

 300

 600

 900

 1200

20 100 200 300 400 500

L
a

te
n

c
y
 (

µ
s
)

Execution Time (µs)

Wait-based

Reset-based

Fig. 13: Comparison of preemption latency with the increase of (a)
launched kernels and (b) kernel execution time.

10
1

10
2

10
3

10
4

1 2 4 6 8

L
a

te
n

c
y
 (

µ
s
)

Number of BE Tasks

Wait-based

Reset-based w/o OPT

Reset-based

 0

 300

 600

 900

w/o w/

L
a

te
n

c
y
 (

µ
s
)

Optimization

Reset CUs

Reset DQs

Reset HQs

Fig. 14: (a) Comparison of preemption latency with the increase
of BE clients, and (b) the latency breakdown of the reset-based
approach w/o and w/ optimizations.

verse DNN models, where we use a single BE client to send
inference requests for a given model and send a real-time
request after a random time interval to preempt the GPU. As
shown in Fig. 12(b), the wait-based preemption latency highly
depends on the type of models, from 268µs (VGG) to 790µs
(RNET), due to the difference in the number of kernels and
the execution time (see Table 1). In contrast, the reset-based
approach is not sensitive to DNN models and can preempt the
GPU in the range of 35µs to 38µs for all five models.

To further investigate the impact of different model prop-
erties on the preemption latency, we simulate DNN models
with different number of launched kernels and kernel execu-
tion times. By default, we set the number of launched kernels
and the kernel execution time to 100 and 100µs, respectively.
As shown in Fig. 13, the preemption latency of wait-based
approach raises linearly, while our reset-based preemption
approach remains stable at very low latency (less than 40µs).
For wait-based approach, the preemption latency is signifi-
cantly positively correlated with as number of launched ker-
nels and the kernel execution time, since it has to wait for the
eviction of launched kernels and the completion of running
kernels. In contrast, the reset-based approach proactively re-
sets the host and device queues in GPU runtime, as well as
the CUs, where the cost is independent of model properties.

Optimizations. We propose two optimizations on the reset-
based preemption approach, namely asynchronous memory
reclamation and queue capacity restriction. To demonstrate
the effect of optimizations, Fig. 14 shows the preemption la-
tency with the increase of BE clients (RNET), and the latency
breakdown for a single BE client. By enabling two optimiza-
tions, the preemption latency significantly drops by up to 92%
(from 87%), as shown in Fig. 14(a). As a reference, even with-

 0

 200

 400

 600

 800

 1 4 16 64 256

 10

 12

 14

 16

 18

P
re

e
m

p
t.

 L
a

te
n

c
y
 (

µ
s
)

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

DQ Capacity

Preemption

Execution

[42%] [31%] [22%] [19%] [17%]

 0

 2

 4

 6

 8

RNET DNET VGG IN3 BERT

O
v
e

rh
e

a
d

 (
%

)

DNN Models

245 70

224

224
102

Restore
Time: µs

Fig. 15: (a) The preemption latency and execution time with the
increase of device queue capacity, where [%] shows the CPU uti-
lization during normal execution, and (b) the restore overhead for
different DNN models, where labels show the restore time (in µs).

out optimization, the reset-based approach still outperforms
wait-based approach by up to 3.0× (from 1.7×).

Since the two optimizations are used when resetting host
and device queues, respectively, Fig. 14(b) breaks down the
preemption latency to show the contribution of two optimiza-
tions separately. For a single BE client, using asynchronous
memory reclamation reduces the latency of resetting host
queue from 17µs to 3µs. Meanwhile, using queue capac-
ity restriction further reduces the latency of resetting device
queue from 424µs to 31µs. Note that using command pro-
cessor to reset CUs is extremely fast (less than 3µs).

Queue capacity. We restrict the device queue capacity to mit-
igate the overhead incurred by lazily evicting the remaining
kernels in the queue (see §4.1 for details). However, reduc-
ing queue capacity also increases normal execution time and
CPU utilization. Fig. 15(a) shows the preemption latency and
normal execution time when serving RNET inferences as the
queue capacity increases. When the device queue capacity in-
creases from 1 to 4, the execution time reduces from 14.3 ms
to 12.3 ms. However, when the capacity further increases, the
change in execution time becomes trivial (less than 0.3%).
Conversely, the preemption latency increases linearly with the
queue capacity. Therefore, as a reasonable tradeoff between
preemption latency and normal execution time, REEF adopts
a default capacity of 4 for the device queue on our testbed,
which has almost zero overhead for normal execution and
provides acceptable preemption performance (about 30µs).
Finally, using a smaller device queue also results in higher
CPU utilization. For instance, reducing the queue capacity
from 256 to 4 increases CPU utilization from 17% to 31%.

Task restore. We further evaluate the execution time over-
head of preempted tasks due to task restore. We use a single
BE client to send inference requests; for each task, we ran-
domly preempt and restore it. As shown in Fig. 15(b), the
restore time for all DNN models is low, ranging from 70µs to
245µs, which mainly depends on the kernel execution time
of DNN models (see Fig. 10). Note that REEF redundantly
executes at most five kernels for restoring preempted tasks,
thanks to the queue capacity restriction. Further, the execution
time overhead is about 2% for all DNN models, except for
VGG (5.1%), as it has the fewest kernels (55), and its kernel

 0

 6

 12

 18

 24

R D V I B R D V I B R D V I B R D V I B R D V I B

L
a

te
n

c
y
 (

m
s
)

RT-Only/RT

GPUStreams/RT

DKP/RT

RNET DNET VGG IN3 BERT

BE:

RT:

 0

 200

 400

 600

 800

R D V I B R D V I B R D V I B R D V I B R D V I B

T
h

ro
u

g
h

p
u

t
(r

e
q

s
/s

)

RT-Only/BE

GPUStreams/BE

DKP/BE

RT-Only/RT

GPUStreams/RT

DKP/RT

RNET DNET VGG IN3 BERT

BE:

RT:

Fig. 16: Comparison of (a) end-to-end latency of RT tasks and (b)
overall throughput using different concurrent execution schemes.

 0

 25

 50

 75

 100

R D V I B R D V I B R D V I B R D V I B R D V I B

C
U

 U
s
a

g
e

 (
%

)

RT BE

RNET DNET VGG IN3 BERT

BE:

RT:

Fig. 17: The average CU usage for running real-time and best-effort
kernels with different combinations of DNN models using dynamic
kernel padding.

execution time is longer (see Fig. 10).

7.4 Dynamic Kernel Padding

To study the efficacy of dynamic kernel padding, we use
a high contention workload, where one RT client and one
BE client simultaneously send requests at a high-enough fre-
quency to keep the GPU busy. RT-Only serves only real-time
tasks to ensure optimal (real-time) task latency, while GPUS-
treams serves both types of requests concurrently to achieve
the highest overall throughput. Differently, dynamic kernel
padding also serves only real-time tasks but pads best-effort
tasks to avoid starvation and improve overall throughput.

Performance. Fig. 16 reports the experimental results for
one-to-one combinations among five DNN models using
above workload. As expected, GPUStreams significantly am-
plifies real-time task latency by an average of 1.35×, ranging
from 1.04× to 1.70×, due to severe interference from con-
current best-effort tasks. However, REEF is able to provide
almost optimal latency to real-time tasks, with an average
overhead of just 1% (up to 3%).

For overall throughput, we separately report the throughput
of real-time tasks and the normalized throughput of best-effort

 0

 50

 100

 150

 200

RNET DNET VGG IN3 BERT

O
v
e

rh
e

a
d

 (
%

)

DNN Models

Default

+GlobalPtr

+ProxyKernel

0
.7

2

0
.6

0

0
.7

3

1
.2

1

1
.1

8

503%

10
0

10
3

10
6

10
9

M
e

m
o

ry
 (

K
B

)

Methods

Kernel Fusion

DKP w/o OPT

DKP w/ OPT

10KB

32MB

35GB

Fig. 18: Comparison of (a) execution time overhead and (b) mem-
ory overhead for padded kernels using different optimizations.

tasks.5 For RT-Only, the GPU is busy serving real-time tasks,
so the throughput of best-effort tasks is zero (even if RT-Only
is willing to serve them). Although GPUStreams increases
overall throughput by an average of 1.52×, the throughput
of real-time tasks drops by 24.4% on average, due to severe
interference in concurrent execution. Conversely, REEF first
guarantees throughput for real-time tasks and then leverages
dynamic kernel padding to increase overall throughput. The
performance improvement mainly depends on two conditions.
First, the execution of real-time tasks on the GPU leaves
room for improvement. As shown in Fig. 17, the real-time
kernels in IN3 and BERT use an average of 85% and 70% of
CUs, respectively. Therefore, dynamic kernel padding hardly
improves such cases, increasing just 6% on average. Note
that GPUStreams can still improve overall throughput of
them, but also greatly sacrifices the performance of real-time
tasks. Second, the execution time of best-effort kernels must
be shorter than that of the padded real-time kernels. This
explains why REEF can achieve large improvement (1.41×)
by padding VGG with RNET, but not vice versa, which is
also confirmed by the increase of CU usage (BE) in Fig. 17

Optimizations. To investigate the impact of optimizations
on both performance and memory usage, we first evaluate
the overhead using different implementations of the function
pointer on the GPU. We measured such overhead by launch-
ing real-time kernels through the dkp kernel without padding
any best-effort kernels. As shown in Fig. 18(a), the default
function pointer implementation (Default) incurs execution
time overhead from 78% up to 503% for real-time tasks with
different DNN models. By using the global function pointer
(GlobalPtr), the overhead is significantly reduced to 46.4%
on average (from 11.5% to 120%), as it eliminates the limit
on the number of registers for device function pointers and
avoids additional register saving and restoring during the
function call. Finally, the overhead drops to 0.8% on average
(1.21% at most) by using proxy kernel (ProxyKernel), which
can dynamically allocate registers to each kernel and maxi-
mize CU occupancy. The minimal overhead comes from the
logic branch of CU partition and the initial state preparation
for global function pointers.

We further evaluate the impact of optimizations on reduc-

5The throughput of best-effort tasks is normalized to that of real-time tasks,
following the formula: throughputBE × (latencyBE / latencyRT).

0.0

0.2

0.4

0.6

0.8

1.0

A B C D E

L
a

te
n

c
y
 (

µ
s
)

DISB

Kernel Selection

 0

 25

 50

 75

 100

 0 10 20 30

37.8%

26.4 µs

C
D

F
 (

%
)

Overhead (µs)

Fig. 19: (a) The execution time of kernel selection for DISB A-E
and (b) the CDF of execution time overhead for real-time kernels
using dynamic kernel padding.

10
1

10
2

10
3

10
4

DISB-A DISB-B DISB-C DISB-D DISB-E

L
a

te
n

c
y
 (

µ
s
)

Wait-based on NVIDIA

REEF-N on NVIDIA

REEF-N on AMD

REEF on AMD

Fig. 20: Comparison of preemption latency on NVIDIA and AMD
GPUs using different preemption schemes with DISB workloads.

ing GPU memory usage. As shown in Fig. 18(b), using static
kernel fusion (Kernel Fusion) requires over 35 GB of GPU
memory to store the fused kernels for five DNN models—all
combinations of no more than three kernels, which even ex-
ceeds the memory capacity of most commodity GPUs. REEF
proposes proxy kernels (DKP w/o OPT) to reduce GPU mem-
ory usage to about 32 MB. Finally, generating proxy kernels
to cover all possible CU occupancies (DKP w/ OPT), instead
of all possible register configurations, can dramatically reduce
GPU memory usage to only 10 KB.

Kernel selection. Fig. 19(a) shows the average time of kernel
selection for DISB A-E during dynamic kernel padding. For
workloads with a single BE client (DISB A and B), REEF
takes about 0.2µs to select best-effort kernels for the given
real-time kernel. The selection time increases to 0.4µs for
workloads with multiple BE clients (DISB C, D, and E) due
to more candidates. In general, the cost of kernel selection is
quite trivial and can be easily hidden by kernel execution.

To further study the accuracy of kernel selection, we evalu-
ate the execution time overhead for the real-time kernel due to
padding best-effort kernels on all DISB workloads. As shown
in Fig. 19(b), over 37% of real-time kernels are not negatively
impacted by concurrent execution with best-effort kernels,
and the overhead of more than 90% real-time kernels is still
less than 4µs. The increase of execution time is mainly due
to the contention on GPU memory and shared L2 cache.

7.5 Closed-source GPUs
Finally, we evaluate REEF-N, a restricted version of reset-
based preemption using DISB workloads on both NVIDIA
and AMD GPUs, and compare it to the wait-based approach
and REEF, respectively. As shown in Fig. 20, even if REEF-N

does not reset CUs to proactively kill running kernels, the
preemption latency just ranges from 71µs to 288µs, which
still outperforms the wait-based approach by up to 12.3×
(from 6.3×) on the NVIDIA GPU. By comparing REEF-N
and REEF on the AMD GPU, we observe that killing running
kernels proactively further contributes to an average speedup
of 2.0× in preemption latency, especially for preempting
concurrent tasks (e.g., 2.3× for DISB C). In addition, the
performance of REEF-N is close on two GPUs.

8 Discussion
Assumption of idempotence. The reset-based preemption in
REEF is based on the assumption that each kernel in DNN
inference should be idempotent. Currently, all DNN inference
kernels we encountered, a total of 320 kernels from 11 mod-
els [72], are shown to be idempotent. However, readers might
be interested in whether our approach still works with kernels
without the idempotence assumption. Strictly speaking, the
reset-based preemption demands that the kernel always pro-
duces the same output for the same input no matter it has been
retried or not. Therefore, a transactionization approach [40]
can be used to transform non-idempotent kernels into idem-
potent ones if necessary. Furthermore, since only best-effort
kernels may be preempted in REEF, this transformation only
sacrifices the performance of transformed kernels (i.e., best-
effort kernels) to ensure that real-time kernels can be instantly
executed upon arrival with no performance penalty. We leave
the incorporation of this technique to future work until we
actually encounter non-idempotent DNN kernels.

Restrictions on kernel selection. The current kernel selec-
tion policy is effective but conservative, since the primary
goal of REEF is to avoid performance interference with real-
time tasks. An obvious limitation is the constraint that the
execution time of best-effort kernels must be shorter than
that of the padded real-time kernel, which limits room for
improvement in overall throughput. We found that the GPU
kernel can be tailored towards shorter execution time per
block by using more thread blocks during model compilation.
For example, Apache TVM automatically tunes the number of
thread blocks for overall performance, but also allows devel-
opers to customize it [38]. Currently, the overall throughput
improvement of REEF is largely attributed to enabling instant
kernel preemption, which allows the idle GPU to perform
best-effort tasks. Thus, we leave it to future work to overcome
the restriction on kernel selection. Furthermore, the policy
does not consider the contention for GPU memory between
real-time and best-effort kernels, since it is still sufficient for
running multiple DNN inference tasks. We also leave it to
future work.

Future GPU APIs and runtime. We leverage several subtle
hacks on the GPU runtime to enable µs-scale reset-based
preemption on commodity GPUs. Our work also informs the
design of future GPU APIs and runtime. First, given that com-

modity GPUs are generally capable of resetting compute units
(CUs), a separate GPU API to precisely reset CUs is feasible
and would be useful to kill and restore all running kernels. Sec-
ond, we propose a new GPU API that instructs the command
processor to discard fetched kernels and stop fetching more
kernels from the device queue (DQs). Based on it, DQs can be
proactively reset with a hardware-software co-design, replac-
ing our software-only solution (i.e., lazy eviction). Finally, the
GPU runtime could provide a high-level API for developers
to reset the GPU stream, by discarding kernels buffered in
internal data structures (e.g., host queues) and resetting the
GPU via two new APIs. We believe that these extensions can
greatly simplify implementation, even fully implementing
reset-based preemption on closed-source GPUs, and further
improve performance, for example instantly preempting the
GPU in 10µs.

9 Related Work

DNN inference serving systems. Prior model serving sys-
tems [21, 25, 29, 53, 79] mainly focus on meeting service-
level objectives (SLO), typically in the tens of millisec-
onds [22, 31, 81], and improving overall throughput of dat-
acenter applications. Clockwork [28] leverages the latency
predictability of DNN inference to achieve low tail latency.
It runs inferences sequentially on dedicated GPUs to provide
predictable performance. Clipper [20] and Nexus [67] en-
ables batching inferences on the same model to improve GPU
utilization and inference throughput. Abacus [22] enables
simultaneous DNN inferences by accurately predicting the
latency of the overlapped operators. INFaaS [64] can automat-
ically select the right variant with different optimizations for
each inference to meet diverse SLOs. However, the latency
SLOs for datacenter applications are much more relaxed than
those for real-time systems, for example 2× of their solo-run
latencies [22]. Therefore, using non-preemptive scheduling
or batching scheme is effective for datacenter applications,
but not for real-time scenarios (e.g., autonomous vehicles).
Furthermore, the design of REEF is orthogonal to the above
distributed serving systems. Two key mechanisms in REEF
can also be integrated into them to improve per-GPU through-
put and preserve low latency for real-time inferences.

GPU kernel preemption. Apart from the software pre-
emption techniques, prior work also has proposed hard-
ware enhancement to support preemptive GPU schedul-
ing [44, 56, 70]. An intuitive solution is to support context
switch on GPUs [70]. However, it is far more expensive on
GPU than CPU due to the large context (e.g., a large amount
of registers). Zhen et al. [44] proposed lightweight context
switching to avoid unnecessary register saving. Tanasić et
al. [70] extended the hardware to passively preempt a stream-
ing multiprocessor (SM) of GPU by stopping issuing new
thread blocks. Chimera [56] further proposed SM flushing
to instantly preempt an SM when detecting idempotent exe-

cution. Differently, our approach retrofits existing hardware
mechanism and requires no modification on the GPU to im-
plement instant preemption.

GPU multitasking. There have been many efforts to con-
currently execute multiple GPU kernels for high through-
put [27, 43, 55, 57, 74, 76]. For DNN computation, Ram-
mer [47] takes a holistic approach to exploit both inter- and
intra-kernel parallelisms at compile time, which uses static
kernel fusion [74] to enforce the CU assignments of the con-
current kernels. However, static kernel fusion requires the
fused kernels to be known at compile time, which is not appli-
cable for dynamic task scheduling in REEF. REEF proposes
dynamic kernel padding to allow making scheduling deci-
sions at runtime. Prior work has also proposed approaches
to model and predict the slowdown of concurrent kernel ex-
ecution [13, 14, 86, 88]. DASE [34] models the memory
contention of concurrent kernels. Themis [87] uses a neural
network to predict the performance interference. The predic-
tion can help make scheduling decisions to match the latency
requirements of real-time kernels. However, the prediction
cannot always be accurate, and the slowdown actually hap-
pens. Differently, dynamic kernel padding in REEF enforces
concurrent kernels to use only GPU resources leftover from
the real-time kernel. Currently, REEF mainly focuses on GPU
computational resources (i.e., CUs) and assumes that other
resources are sufficient (e.g., GPU memory and bandwidth).
We leave it as future work.

10 Conclusion
This paper presented REEF, the first DNN inference serv-
ing system for commodity GPUs. It enables microsecond-
scale kernel preemption and controlled concurrent execu-
tion in GPU scheduling to achieve real time and work con-
serving. First, REEF can launch a real-time kernel on the
GPU by proactively killing and restoring best-effort kernels
at microsecond-scale. Second, REEF can dynamically pad
the real-time kernel with appropriate best-effort kernels to
fully exploit the GPU with negligible overhead. In addition,
we built a new benchmark (DISB) for DNN inference serv-
ing that contains diverse workloads and a real-world trace.
Evaluation using DISB and microbenchmarks confirmed the
efficacy and efficiency of REEF on AMD and NVIDIA GPUs.

11 Acknowledgment
We sincerely thank our shepherd Dejan Kostić and the anony-
mous reviewers for their insightful comments and feedback,
and Xiaoniu Song for sharing his experience in prepar-
ing the Artifact Evaluation. This work was supported in
part by the National Natural Science Foundation of China
(No. 61925206, 62132014), the HighTech Support Program
from Shanghai Committee of Science and Technology (No.
19511121100), and Shanghai AI Laboratory. Corresponding
author: Rong Chen (rongchen@sjtu.edu.cn).

rongchen@sjtu.edu.cn

References
[1] Jacob Adriaens, Katherine Compton, Nam Sung Kim, and

M. Schulte. The Case for GPGPU Spatial Multitasking. IEEE
International Symposium on High-Performance Comp Archi-
tecture, pages 1–12, 2012.

[2] Miguel Alcon, Hamid Tabani, Leonidas Kosmidis, Enrico
Mezzetti, Jaume Abella, and Francisco J. Cazorla. Tim-
ing of Autonomous Driving Software: Problem Analysis and
Prospects for Future Solutions. IEEE Real-Time and Embed-
ded Technology and Applications Symposium, pages 267–280,
2020.

[3] AMD ROCm. AMD ROCm Platform Documentation. https:
//rocmdocs.amd.com/, 2022.

[4] Apollo Auto. Apollo: Architecture/Hardware Connection.
https://github.com/ApolloAuto/apollo, 2022.

[5] Apollo Auto. Apollo Perception Module. https:
//github.com/ApolloAuto/apollo/tree/
master/modules/perception, 2022.

[6] Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin. PipeSwitch:
Fast Pipelined Context Switching for Deep Learning Appli-
cations. In 14th USENIX Symposium on Operating Systems
Design and Implementation, OSDI’20, pages 499–514, Novem-
ber 2020.

[7] Baidu. Apollo. https://apollo.auto/, 2022.

[8] C. Basaran and K. Kang. Supporting Preemptive Task Exe-
cutions and Memory Copies in GPGPUs. In 24th Euromicro
Conference on Real-Time Systems, ECRTS’12, pages 287–296,
2012.

[9] Karsten Behrendt, Libor Novak, and Rami Botros. A Deep
Learning Approach to Traffic Lights: Detection, Tracking, and
Classification. IEEE International Conference on Robotics
and Automation, pages 1370–1377, 2017.

[10] N. Capodieci, R. Cavicchioli, M. Bertogna, and Aingara Para-
makuru. Deadline-Based Scheduling for GPU with Preemption
Support. IEEE Real-Time Systems Symposium, pages 119–130,
2018.

[11] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan,
Jeremy W. Sheaffer, Sang ha Lee, and Kevin Skadron. Rodinia:
A Benchmark Suite for Heterogeneous Computing. IEEE In-
ternational Symposium on Workload Characterization, pages
44–54, 2009.

[12] Guoyang Chen, Yue Zhao, Xipeng Shen, and Huiyang Zhou.
EffiSha: A Software Framework for Enabling Efficient Pre-
emptive Scheduling of GPU. 22nd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, 2017.

[13] Quan Chen, Hailong Yang, Minyi Guo, Ram Srivatsa Kannan,
Jason Mars, and Lingjia Tang. Prophet: Precise QoS Predic-
tion on Non-Preemptive Accelerators to Improve Utilization
in Warehouse-Scale Computers. Twenty-Second International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, 2017.

[14] Quan Chen, Hailong Yang, Jason Mars, and Lingjia Tang.
Baymax: QoS Awareness and Increased Utilization for Non-
Preemptive Accelerators in Warehouse Scale Computers.
Twenty-First International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
2016.

[15] T. Chen, T. Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Q.
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei
Hu, L. Ceze, Carlos Guestrin, and A. Krishnamurthy. TVM:
An Automated End-to-End Optimizing Compiler for Deep
Learning. In 13th USENIX Symposium on Operating Systems
Design and Implementation, OSDI’18, 2018.

[16] Green Car Congress. New ultrafast camera for self-driving ve-
hicles and drones. https://www.greencarcongress.
com/2017/02/20170217-ntu.html, 2017.

[17] Brian F. Cooper. YCSB Core Workloads. https:
//github.com/brianfrankcooper/YCSB/wiki/
Core-Workloads, 2022.

[18] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ra-
makrishnan, and Russell Sears. Benchmarking Cloud Serving
Systems with YCSB. In 1st ACM Symposium on Cloud Com-
puting, SoCC’10, pages 143—-154, 2010.

[19] Alexander Craik, Yongtian He, and José Luis Contreras-Vidal.
Deep Learning for Electroencephalogram (EEG) Classification
Tasks: A Review. Journal of neural engineering, 16(3), 2019.

[20] D. Crankshaw, Xin Wang, Giulio Zhou, M. Franklin, Joseph E.
Gonzalez, and I. Stoica. Clipper: A Low-Latency Online Pre-
diction Serving System. In 14th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI’17, 2017.

[21] Weihao Cui, Mengze Wei, Quan Chen, Xiaoxin Tang, Jingwen
Leng, Li Li, and Ming Guo. Ebird: Elastic Batch for Improving
Responsiveness and Throughput of Deep Learning Services.
IEEE 37th International Conference on Computer Design,
pages 497–505, 2019.

[22] Weihao Cui, Han Zhao, Quan Chen, Ningxin Zheng, Jingwen
Leng, Jieru Zhao, Zhuo Song, Tao Ma, Yong Yang, Chao Li,
and Minyi Guo. Enable Simultaneous DNN Services Based
on Deterministic Operator Overlap and Precise Latency Pre-
diction. International Conference for High Performance Com-
puting, Networking, Storage and Analysis, 2021.

[23] ROCm documentation. GCN Native ISA LLVM Code Gener-
ator: Kernel Dispatch. https://rocmdocs.amd.com/
en/latest/ROCm_Compiler_SDK/ROCm-Native-
ISA.html, 2022.

[24] Andre Esteva, Alexandre Robicquet, Bharath Ramsundar,
Volodymyr Kuleshov, Mark DePristo, Katherine Chou, Claire
Cui, Greg Corrado, Sebastian Thrun, and Jeff Dean. A Guide
to Deep Learning in Healthcare. Nature medicine, 25(1):24–29,
2019.

https://rocmdocs.amd.com/
https://rocmdocs.amd.com/
https://github.com/ApolloAuto/apollo
https://github.com/ApolloAuto/apollo/tree/master/modules/perception
https://github.com/ApolloAuto/apollo/tree/master/modules/perception
https://github.com/ApolloAuto/apollo/tree/master/modules/perception
https://apollo.auto/
https://www.greencarcongress.com/2017/02/20170217-ntu.html
https://www.greencarcongress.com/2017/02/20170217-ntu.html
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://rocmdocs.amd.com/en/latest/ROCm_Compiler_SDK/ROCm-Native-ISA.html
https://rocmdocs.amd.com/en/latest/ROCm_Compiler_SDK/ROCm-Native-ISA.html
https://rocmdocs.amd.com/en/latest/ROCm_Compiler_SDK/ROCm-Native-ISA.html

[25] Jiarui Fang, Yang Yu, Chen liang Zhao, and Jie Zhou. Tur-
boTransformers: An Efficient GPU Serving System for Trans-
former Models. 26th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, 2021.

[26] AMD GPUOpen. AMD GPU ISA documentation.
https://gpuopen.com/documentation/amd-
isa-documentation, 2021.

[27] Chris Gregg, Jonathan Dorn, K. Hazelwood, and K. Skadron.
Fine-grained resource sharing for concurrent GPGPU kernels.
In 4th USENIX Workshop on Hot Topics in Parallelism, Hot-
Par’12, 2012.

[28] A. Gujarati, Reza Karimi, Safya Alzayat, Antoine Kaufmann,
Ymir Vigfusson, and Jonathan Mace. Serving DNNs like
Clockwork: Performance Predictability from the Bottom Up.
In 14th USENIX Symposium on Operating Systems Design and
Implementation, OSDI’20, 2020.

[29] Johann Hauswald, Yiping Kang, Michael Laurenzano, Quan
Chen, Cheng Li, Trevor N. Mudge, Ronald G. Dreslinski, Ja-
son Mars, and Lingjia Tang. DjiNN and Tonic: DNN as A
Service and Its Implications for Future Warehouse Scale Com-
puters. ACM/IEEE 42nd Annual International Symposium on
Computer Architecture, pages 27–40, 2015.

[30] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep
Residual Learning for Image Recognition. IEEE Conference
on Computer Vision and Pattern Recognition, pages 770–778,
2016.

[31] Jeremy Hermann and Mike Del Balso. Meet
Michelangelo: Uber’s Machine Learning Platform.
https://eng.uber.com/michelangelo-
machine-learning-platform/, 2017.

[32] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-
rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent
Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep Neu-
ral Networks for Acoustic Modeling in Speech Recognition:
The Shared Views of Four Research Groups. IEEE Signal
Processing Magazine, 29(6):82–97, 2012.

[33] Connor Holmes, Daniel Mawhirter, Yuxiong He, Feng Yan,
and Bo Wu. GRNN: Low-Latency and Scalable RNN Inference
on GPUs. 14th European Conference on Computer Systems,
2019.

[34] Qingda Hu, J. Shu, Jie Fan, and Youyou Lu. Run-Time Per-
formance Estimation and Fairness-Oriented Scheduling Policy
for Concurrent GPGPU Applications. 45th International Con-
ference on Parallel Processing, pages 57–66, 2016.

[35] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely
Connected Convolutional Networks. IEEE Conference on
Computer Vision and Pattern Recognition, pages 2261–2269,
2017.

[36] Saksham Jain, Iljoo Baek, Shige Wang, and R. Rajkumar. Frac-
tional gpus: Software-based compute and memory bandwidth
reservation for gpus. IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium, pages 29–41, 2019.

[37] Won-Seok Jang, Hansaem Jeong, Kyungtae Kang, Nikil D.
Dutt, and Jong-Chan Kim. R-TOD: Real-Time Object Detector
with Minimized End-to-End Delay for Autonomous Driving.
IEEE Real-Time Systems Symposium, pages 191–204, 2020.

[38] Ziheng Jiang. Schedule Primitives in TVM. https:
//tvm.apache.org/docs/how_to/work_with_
schedules/schedule_primitives.html.

[39] Hyeonsu Lee, Hyunjune Kim, Cheolgi Kim, Hwansoo Han,
and Euiseong Seo. Idempotence-Based Preemptive GPU Ker-
nel Scheduling for Embedded Systems. IEEE Transactions on
Computers, 70:332–346, 2021.

[40] Hyeonsu Lee, Jaehun Roh, and Euiseong Seo. A GPU Kernel
Transactionization Scheme for Preemptive Priority Schedul-
ing. In 2018 IEEE Real-Time and Embedded Technology and
Applications Symposium, RTAS’18, pages 202–213, 2018.

[41] TIMOTHY B. LEE. Tesla’s autonomy event:Impressive
progress with an unrealistic timeline. https:
//arstechnica.com/cars/2019/04/teslas-
autonomy-event-impressive-progress-with-
an-unrealistic-timeline/, 2019.

[42] LG Electronics Inc. Running Apollo 5.0 with SVL Simulator.
https://www.svlsimulator.com/docs/system-
under-test/apollo5-0-instructions/, 2022.

[43] Yun Liang, Huynh Phung Huynh, Kyle Rupnow, R. Goh, and
Deming Chen. Efficient GPU Spatial-Temporal Multitask-
ing. IEEE Transactions on Parallel and Distributed Systems,
26:748–760, 2015.

[44] Zhen Lin, L. Nyland, and Huiyang Zhou. Enabling Efficient
Preemption for SIMT Architectures with Lightweight Context
Switching. International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 898–908,
2016.

[45] LLVM. User Guide for AMDGPU Backend. https://
llvm.org/docs/AMDGPUUsage.html, 2021.

[46] Justin Luitjens. CUDA Streams—Best Practices and
Common Pitfalls. http://on-demand.gputechconf.
com/gtc/2014/presentations/S4158-cuda-
streams-best-practices-common-pitfalls.
pdf.

[47] Lingxiao Ma, Z. Xie, Zhi Yang, J. Xue, Youshan Miao, Wei
Cui, W. Hu, Fan Yang, Lintao Zhang, and Lidong Zhou. Ram-
mer: Enabling Holistic Deep Learning Compiler Optimizations
with rTasks. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI’20, pages 881–897,
2020.

[48] Pavlo Molchanov, Shalini Gupta, Kihwan Kim, and Kari Pulli.
Multi-sensor System for Driver’s Hand-gesture Recognition.
11th IEEE International Conference and Workshops on Auto-
matic Face and Gesture Recognition, 1:1–8, 2015.

https://gpuopen.com/documentation/amd-isa-documentation
https://gpuopen.com/documentation/amd-isa-documentation
https://eng.uber.com/michelangelo-machine-learning-platform/
https://eng.uber.com/michelangelo-machine-learning-platform/
https://tvm.apache.org/docs/how_to/work_with_schedules/schedule_primitives.html
https://tvm.apache.org/docs/how_to/work_with_schedules/schedule_primitives.html
https://tvm.apache.org/docs/how_to/work_with_schedules/schedule_primitives.html
https://arstechnica.com/cars/2019/04/teslas-autonomy-event-impressive-progress-with-an-unrealistic-timeline/
https://arstechnica.com/cars/2019/04/teslas-autonomy-event-impressive-progress-with-an-unrealistic-timeline/
https://arstechnica.com/cars/2019/04/teslas-autonomy-event-impressive-progress-with-an-unrealistic-timeline/
https://arstechnica.com/cars/2019/04/teslas-autonomy-event-impressive-progress-with-an-unrealistic-timeline/
https://www.svlsimulator.com/docs/system-under-test/apollo5-0-instructions/
https://www.svlsimulator.com/docs/system-under-test/apollo5-0-instructions/
https://llvm.org/docs/AMDGPUUsage.html
https://llvm.org/docs/AMDGPUUsage.html
http://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf
http://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf
http://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf
http://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf

[49] Deepak Narayanan, Keshav Santhanam, Amar Phanishayee,
and Matei Zaharia. Accelerating Deep Learning Workloads
Through Efficient Multi-model Execution. In NeurIPS Work-
shop on Systems for Machine Learning, page 20, 2018.

[50] NVIDIA. NVIDIA TensorRT. https://developer.
nvidia.com/tensorrt.

[51] NVIDIA. NVIDIA Tesla P100. http://www.
nvidia.com/object/pascal-architecture-
whitepaper.html, 2016.

[52] NVIDIA. CUDA Toolkit: Develop, Optimize and Deploy
GPU-Accelerated Apps. https://developer.nvidia.
com/cuda-toolkit, 2021.

[53] Christopher Olston, Fangwei Li, Jeremiah Harmsen, Jordan
Soyke, Kiril Gorovoy, Li Lao, Noah Fiedel, Sukriti Ramesh,
and Vinu Rajashekhar. Tensorflow-serving: Flexible, high-
performance ml serving. In Workshop on ML Systems at NIPS
2017, 2017.

[54] Nathan Otterness and James H. Anderson. AMD GPUs as
an Alternative to NVIDIA for Supporting Real-Time Work-
loads. In 32nd Euromicro Conference on Real-Time Systems,
ECRTS’20, 2020.

[55] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan. Improv-
ing GPGPU Concurrency with Elastic Kernels. In Eighteenth
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS’13,
2013.

[56] J. Park, Yongjun Park, and S. Mahlke. Chimera: Collabora-
tive Preemption for Multitasking on a Shared GPU. Twentieth
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2015.

[57] J. Park, Yongjun Park, and S. Mahlke. Dynamic Resource
Management for Efficient Utilization of Multitasking GPUs.
Twenty-Second International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
2017.

[58] Reid Pinkham, Andrew Berkovich, and Zhengya Zhang. Near-
Sensor Distributed DNN Processing for Augmented and Vir-
tual Reality. IEEE Journal on Emerging and Selected Topics
in Circuits and Systems, 2021.

[59] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick,
and Ali Farhadi. You Only Look Once: Unified, Real-Time
Object Detection. IEEE Conference on Computer Vision and
Pattern Recognition, pages 779–788, 2016.

[60] Steve Rennich. CUDA C/C++ Streams
and Concurrency. https://developer.
download.nvidia.cn/CUDA/training/
StreamsAndConcurrencyWebinar.pdf.

[61] ROCm Core Technology. AMD GPU kernel driver with
KFD. https://github.com/RadeonOpenCompute/
ROCK-Kernel-Driver, 2022.

[62] ROCm Core Technology. AMD GPU kernel driver
with KFD: unmap_queues_cpsch. https://github.
com/RadeonOpenCompute/ROCK-Kernel-
Driver/blob/master/drivers/gpu/drm/amd/
amdkfd/kfd_device_queue_manager.c, 2022.

[63] ROCm Developer Tools. Hip: C++ heterogeneous-compute
interface for portability. https://github.com/ROCm-
Developer-Tools/HIP, 2022.

[64] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and Christos
Kozyrakis. INFaaS: Automated Model-less Inference Serving.
In USENIX Annual Technical Conference, ATC’21, pages 397–
411, 2021.

[65] Guodong Rong, Byung Hyun Shin, Hadi Tabatabaee, Qiang Lu,
Steve Lemke, Mārtin, š Možeiko, Eric Boise, Geehoon Uhm,
Mark Gerow, Shalin Mehta, Eugene Agafonov, Tae Hyung
Kim, Eric Sterner, Keunhae Ushiroda, Michael Reyes, Dmitry
Zelenkovsky, and Seonman Kim. LGSVL Simulator: A High
Fidelity Simulator for Autonomous Driving. In IEEE 23rd
International Conference on Intelligent Transportation Systems
Conference, ITSC’20, pages 1–6, 2020.

[66] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas
Wolf. DistilBERT, A Distilled Version of BERT: Smaller,
Faster, Cheaper and Lighter. CoRR, abs/1910.01108, 2019.

[67] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu
Kong, Matthai Philipose, Arvind Krishnamurthy, and Ravi Sun-
daram. Nexus: A GPU Cluster Engine for Accelerating DNN-
based Video Analysis. 27th ACM Symposium on Operating
Systems Principles, 2019.

[68] Karen Simonyan and Andrew Zisserman. Very Deep Convo-
lutional Networks for Large-scale Image Recognition. CoRR,
abs/1409.1556, 2014.

[69] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon
Shlens, and Zbigniew Wojna. Rethinking the Inception Archi-
tecture for Computer Vision. IEEE Conference on Computer
Vision and Pattern Recognition, pages 2818–2826, 2016.

[70] I. Tanasić, Isaac Gelado, Javier Cabezas, A. Ramírez,
N. Navarro, and M. Valero. Enabling Preemptive Multipro-
gramming on GPUs. ACM/IEEE 41st International Symposium
on Computer Architecture, pages 193–204, 2014.

[71] TESLARATI. AMD confirms Tesla’s new Model S
and Model X will boast RDNA 2 GPUs. https:
//www.teslarati.com/tesla-model-s-model-
x-mcu3-specs-amd-gpu-confirmed-video/,
2021.

[72] Apache TVM. A test suite of DNN models.
https://github.com/apache/tvm/tree/v0.
8/python/tvm/relay/testing, 2021.

[73] Apache TVM. Apache TVM: An End to End Machine Learn-
ing Compiler Framework for CPUs, GPUs and accelerators.
https://tvm.apache.org/, 2021.

https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
http://www.nvidia.com/object/pascal-architecture-whitepaper.html
http://www.nvidia.com/object/pascal-architecture-whitepaper.html
http://www.nvidia.com/object/pascal-architecture-whitepaper.html
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://developer.download.nvidia.cn/CUDA/training/StreamsAndConcurrencyWebinar.pdf
https://developer.download.nvidia.cn/CUDA/training/StreamsAndConcurrencyWebinar.pdf
https://developer.download.nvidia.cn/CUDA/training/StreamsAndConcurrencyWebinar.pdf
https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver
https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver
https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver/blob/master/drivers/gpu/drm/amd/amdkfd/kfd_device_queue_manager.c
https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver/blob/master/drivers/gpu/drm/amd/amdkfd/kfd_device_queue_manager.c
https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver/blob/master/drivers/gpu/drm/amd/amdkfd/kfd_device_queue_manager.c
https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver/blob/master/drivers/gpu/drm/amd/amdkfd/kfd_device_queue_manager.c
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/ROCm-Developer-Tools/HIP
https://www.teslarati.com/tesla-model-s-model-x-mcu3-specs-amd-gpu-confirmed-video/
https://www.teslarati.com/tesla-model-s-model-x-mcu3-specs-amd-gpu-confirmed-video/
https://www.teslarati.com/tesla-model-s-model-x-mcu3-specs-amd-gpu-confirmed-video/
https://github.com/apache/tvm/tree/v0.8/python/tvm/relay/testing
https://github.com/apache/tvm/tree/v0.8/python/tvm/relay/testing
https://tvm.apache.org/

[74] Guibin Wang, Yisong Lin, and Wei Yi. Kernel Fusion: An
Effective Method for Better Power Efficiency on Multithreaded
GPU. IEEE/ACM Int’l Conference on Green Computing and
Communications & Int’l Conference on Cyber, Physical and
Social Computing, pages 344–350, 2010.

[75] Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton, Yonghui
Wu, Ron J Weiss, Navdeep Jaitly, Zongheng Yang, Ying
Xiao, Zhifeng Chen, Samy Bengio, et al. Tacotron: A Fully
End-to-end Text-to-speech Synthesis Model. arXiv preprint
arXiv:1703.10135, 2017.

[76] Zhenning Wang, J. Yang, R. Melhem, B. Childers, Youtao
Zhang, and M. Guo. Simultaneous Multikernel GPU: Multi-
tasking Throughput Processors via Fine-grained Sharing. IEEE
International Symposium on High Performance Computer Ar-
chitecture, pages 358–369, 2016.

[77] Bo Wu, Xu Liu, Xiaobo Zhou, and C. Jiang. Flep: Enabling
flexible and efficient preemption on gpus. Twenty-Second
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2017.

[78] Yecheng Xiang and Hyoseung Kim. Pipelined Data-Parallel
CPU/GPU Scheduling for Multi-DNN Real-Time Inference.
IEEE Real-Time Systems Symposium, pages 392–405, 2019.

[79] Feng Yan, Yuxiong He, Olatunji Ruwase, and Evgenia Smirni.
Efficient Deep Neural Network Serving: Fast and Furious.
IEEE Transactions on Network and Service Management,
15:112–126, 2018.

[80] Ming Yang, Shige Wang, Joshua Bakita, Thanh Vu, F. Donel-
son Smith, James H. Anderson, and Jan-Michael Frahm. Re-
Thinking CNN Frameworks for Time-Sensitive Autonomous-
Driving Applications: Addressing an Industrial Challenge.
IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 305–317, 2019.

[81] Wai Chee Yau. How Zendesk Serves TensorFlow Models in
Production. https://zendesk.engineering/how-
zendesk-serves-tensorflow-models-in-
production-751ee22f0f4b, 2017.

[82] T. Yeh, Matthew D. Sinclair, Bradford M. Beckmann, and
Timothy G. Rogers. Deadline-Aware Offloading for High-
Throughput Accelerators. IEEE International Symposium
on High-Performance Computer Architecture, pages 479–492,
2021.

[83] Juheon Yi and Youngki Lee. Heimdall: mobile gpu coordi-
nation platform for augmented reality applications. In 26th
Annual International Conference on Mobile Computing and
Networking, MobiCom’20, pages 1–14, 2020.

[84] Sebastian Zepf, Javier Hernandez, Alexander Schmitt, Wolf-
gang Minker, and Rosalind W. Picard. Driver Emotion Recog-
nition for Intelligent Vehicles. ACM Computing Surveys, 53:1–
30, 2020.

[85] Hengyu Zhao, Yubo Zhang, Pingfan Meng, Hui Shi, Erran L.
Li, Tiancheng Lou, and Jishen Zhao. Towards Safety-Aware
Computing System Design in Autonomous Vehicles. ArXiv,
abs/1905.08453, 2019.

[86] Wenyi Zhao, Quan Chen, and M. Guo. KSM: Online
Application-Level Performance Slowdown Prediction for Spa-
tial Multitasking GPGPU. IEEE Computer Architecture Let-
ters, 17:187–191, 2018.

[87] Wenyi Zhao, Quan Chen, H. Lin, Jianfeng Zhang, Jingwen
Leng, C. Li, Wenli Zheng, Linlin Li, and M. Guo. Themis:
Predicting and Reining in Application-Level Slowdown on
Spatial Multitasking GPUs. IEEE International Parallel and
Distributed Processing Symposium, pages 653–663, 2019.

[88] Xia Zhao, Magnus Jahre, and L. Eeckhout. HSM: A Hy-
brid Slowdown Model for Multitasking GPUs. Twenty-Fifth
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2020.

[89] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang
Zhuo, Koushik Sen, Joseph E. Gonzalez, and Ion Stoica. An-
sor : Generating High-Performance Tensor Programs for Deep
Learning. In 14th USENIX Symposium on Operating Systems
Design and Implementation, OSDI’20, 2020.

[90] H. Zhou, G. Tong, and Cong Liu. GPES: A Preemptive Execu-
tion System for GPGPU Computing. 21st IEEE Real-Time and
Embedded Technology and Applications Symposium, pages
87–97, 2015.

[91] Husheng Zhou, Soroush Bateni, and Cong Liu. S3DNN: Su-
pervised Streaming and Scheduling for GPU-Accelerated Real-
Time DNN Workloads. 2018 IEEE Real-Time and Embed-
ded Technology and Applications Symposium, pages 190–201,
2018.

https://zendesk.engineering/how-zendesk-serves-tensorflow-models-in-production-751ee22f0f4b
https://zendesk.engineering/how-zendesk-serves-tensorflow-models-in-production-751ee22f0f4b
https://zendesk.engineering/how-zendesk-serves-tensorflow-models-in-production-751ee22f0f4b

A Artifact Appendix
This artifact provides the source code of REEF, a detailed readme,
and scripts to reproduce the main experimental results from the
OSDI 2022 paper—“Microsecond-scale Preemption for Concurrent
GPU-accelerated DNN Inferences” by M. Han, H. Zhang, R. Chen,
and H. Chen. REEF is the first GPU-accelerated DNN inference
serving system that enables microsecond-scale kernel preemption
and controlled concurrent execution in GPU scheduling. We provide
instructions to build the software package and run experiments. Our

artifact obtained the “Artifacts Available”, “Artifacts Functional” and
“Artifacts Reproduced” badges from the Artifact Evaluation process
of OSDI 2022. The DOI of our artifact is https://doi.org/
10.5281/zenodo.6586106.

Artifact repository. All project source code, including full
instructions on how to build and run the main experi-
ments on REEF and benchmarks is available in the following
git repository: https://github.com/SJTU-IPADS/reef-
artifacts/tree/osdi22-ae.

https://doi.org/10.5281/zenodo.6586106
https://doi.org/10.5281/zenodo.6586106
https://github.com/SJTU-IPADS/reef-artifacts/tree/osdi22-ae
https://github.com/SJTU-IPADS/reef-artifacts/tree/osdi22-ae

	Introduction
	Background and Motivation
	Characterizing GPU-Accelerated DNN Inference
	State-of-the-art GPU Scheduling

	Reef Overview
	System Architecture
	An Illustrative Example

	Reset-based Preemption
	Evicting Buffered Kernels
	Killing Running Kernels
	Restoring Preempted Tasks
	Preemption on closed-source GPUs

	Dynamic Kernel Padding
	Efficient Function Pointers
	Kernel Selection

	Implementation
	Evaluation
	Experimental Setup
	Overall Performance
	DNN Inference Preemption
	Dynamic Kernel Padding
	Closed-source GPUs

	Discussion
	Related Work
	Conclusion
	Acknowledgment
	Artifact Appendix

